1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/configfs_macros.h> 47 #include <target/target_core_base.h> 48 #include <target/target_core_fabric_configfs.h> 49 #include <target/target_core_fabric.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static void srpt_release_channel(struct srpt_rdma_ch *ch); 97 static int srpt_queue_status(struct se_cmd *cmd); 98 99 /** 100 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 101 */ 102 static inline 103 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 104 { 105 switch (dir) { 106 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 107 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 108 default: return dir; 109 } 110 } 111 112 /** 113 * srpt_sdev_name() - Return the name associated with the HCA. 114 * 115 * Examples are ib0, ib1, ... 116 */ 117 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 118 { 119 return sdev->device->name; 120 } 121 122 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 123 { 124 unsigned long flags; 125 enum rdma_ch_state state; 126 127 spin_lock_irqsave(&ch->spinlock, flags); 128 state = ch->state; 129 spin_unlock_irqrestore(&ch->spinlock, flags); 130 return state; 131 } 132 133 static enum rdma_ch_state 134 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 135 { 136 unsigned long flags; 137 enum rdma_ch_state prev; 138 139 spin_lock_irqsave(&ch->spinlock, flags); 140 prev = ch->state; 141 ch->state = new_state; 142 spin_unlock_irqrestore(&ch->spinlock, flags); 143 return prev; 144 } 145 146 /** 147 * srpt_test_and_set_ch_state() - Test and set the channel state. 148 * 149 * Returns true if and only if the channel state has been set to the new state. 150 */ 151 static bool 152 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 153 enum rdma_ch_state new) 154 { 155 unsigned long flags; 156 enum rdma_ch_state prev; 157 158 spin_lock_irqsave(&ch->spinlock, flags); 159 prev = ch->state; 160 if (prev == old) 161 ch->state = new; 162 spin_unlock_irqrestore(&ch->spinlock, flags); 163 return prev == old; 164 } 165 166 /** 167 * srpt_event_handler() - Asynchronous IB event callback function. 168 * 169 * Callback function called by the InfiniBand core when an asynchronous IB 170 * event occurs. This callback may occur in interrupt context. See also 171 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 172 * Architecture Specification. 173 */ 174 static void srpt_event_handler(struct ib_event_handler *handler, 175 struct ib_event *event) 176 { 177 struct srpt_device *sdev; 178 struct srpt_port *sport; 179 180 sdev = ib_get_client_data(event->device, &srpt_client); 181 if (!sdev || sdev->device != event->device) 182 return; 183 184 pr_debug("ASYNC event= %d on device= %s\n", event->event, 185 srpt_sdev_name(sdev)); 186 187 switch (event->event) { 188 case IB_EVENT_PORT_ERR: 189 if (event->element.port_num <= sdev->device->phys_port_cnt) { 190 sport = &sdev->port[event->element.port_num - 1]; 191 sport->lid = 0; 192 sport->sm_lid = 0; 193 } 194 break; 195 case IB_EVENT_PORT_ACTIVE: 196 case IB_EVENT_LID_CHANGE: 197 case IB_EVENT_PKEY_CHANGE: 198 case IB_EVENT_SM_CHANGE: 199 case IB_EVENT_CLIENT_REREGISTER: 200 case IB_EVENT_GID_CHANGE: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 pr_err("received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 pr_info("SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 pr_err("received unrecognized IB QP event %d\n", event->event); 245 break; 246 } 247 } 248 249 /** 250 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 251 * 252 * @slot: one-based slot number. 253 * @value: four-bit value. 254 * 255 * Copies the lowest four bits of value in element slot of the array of four 256 * bit elements called c_list (controller list). The index slot is one-based. 257 */ 258 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 259 { 260 u16 id; 261 u8 tmp; 262 263 id = (slot - 1) / 2; 264 if (slot & 0x1) { 265 tmp = c_list[id] & 0xf; 266 c_list[id] = (value << 4) | tmp; 267 } else { 268 tmp = c_list[id] & 0xf0; 269 c_list[id] = (value & 0xf) | tmp; 270 } 271 } 272 273 /** 274 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 275 * 276 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 277 * Specification. 278 */ 279 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 280 { 281 struct ib_class_port_info *cif; 282 283 cif = (struct ib_class_port_info *)mad->data; 284 memset(cif, 0, sizeof *cif); 285 cif->base_version = 1; 286 cif->class_version = 1; 287 cif->resp_time_value = 20; 288 289 mad->mad_hdr.status = 0; 290 } 291 292 /** 293 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 294 * 295 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 296 * Specification. See also section B.7, table B.6 in the SRP r16a document. 297 */ 298 static void srpt_get_iou(struct ib_dm_mad *mad) 299 { 300 struct ib_dm_iou_info *ioui; 301 u8 slot; 302 int i; 303 304 ioui = (struct ib_dm_iou_info *)mad->data; 305 ioui->change_id = cpu_to_be16(1); 306 ioui->max_controllers = 16; 307 308 /* set present for slot 1 and empty for the rest */ 309 srpt_set_ioc(ioui->controller_list, 1, 1); 310 for (i = 1, slot = 2; i < 16; i++, slot++) 311 srpt_set_ioc(ioui->controller_list, slot, 0); 312 313 mad->mad_hdr.status = 0; 314 } 315 316 /** 317 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 318 * 319 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 320 * Architecture Specification. See also section B.7, table B.7 in the SRP 321 * r16a document. 322 */ 323 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 324 struct ib_dm_mad *mad) 325 { 326 struct srpt_device *sdev = sport->sdev; 327 struct ib_dm_ioc_profile *iocp; 328 329 iocp = (struct ib_dm_ioc_profile *)mad->data; 330 331 if (!slot || slot > 16) { 332 mad->mad_hdr.status 333 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 334 return; 335 } 336 337 if (slot > 2) { 338 mad->mad_hdr.status 339 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 340 return; 341 } 342 343 memset(iocp, 0, sizeof *iocp); 344 strcpy(iocp->id_string, SRPT_ID_STRING); 345 iocp->guid = cpu_to_be64(srpt_service_guid); 346 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 347 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 348 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 349 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 350 iocp->subsys_device_id = 0x0; 351 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 352 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 353 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 354 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 355 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 356 iocp->rdma_read_depth = 4; 357 iocp->send_size = cpu_to_be32(srp_max_req_size); 358 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 359 1U << 24)); 360 iocp->num_svc_entries = 1; 361 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 362 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 363 364 mad->mad_hdr.status = 0; 365 } 366 367 /** 368 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 369 * 370 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 371 * Specification. See also section B.7, table B.8 in the SRP r16a document. 372 */ 373 static void srpt_get_svc_entries(u64 ioc_guid, 374 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 375 { 376 struct ib_dm_svc_entries *svc_entries; 377 378 WARN_ON(!ioc_guid); 379 380 if (!slot || slot > 16) { 381 mad->mad_hdr.status 382 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 383 return; 384 } 385 386 if (slot > 2 || lo > hi || hi > 1) { 387 mad->mad_hdr.status 388 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 389 return; 390 } 391 392 svc_entries = (struct ib_dm_svc_entries *)mad->data; 393 memset(svc_entries, 0, sizeof *svc_entries); 394 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 395 snprintf(svc_entries->service_entries[0].name, 396 sizeof(svc_entries->service_entries[0].name), 397 "%s%016llx", 398 SRP_SERVICE_NAME_PREFIX, 399 ioc_guid); 400 401 mad->mad_hdr.status = 0; 402 } 403 404 /** 405 * srpt_mgmt_method_get() - Process a received management datagram. 406 * @sp: source port through which the MAD has been received. 407 * @rq_mad: received MAD. 408 * @rsp_mad: response MAD. 409 */ 410 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 411 struct ib_dm_mad *rsp_mad) 412 { 413 u16 attr_id; 414 u32 slot; 415 u8 hi, lo; 416 417 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 418 switch (attr_id) { 419 case DM_ATTR_CLASS_PORT_INFO: 420 srpt_get_class_port_info(rsp_mad); 421 break; 422 case DM_ATTR_IOU_INFO: 423 srpt_get_iou(rsp_mad); 424 break; 425 case DM_ATTR_IOC_PROFILE: 426 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 427 srpt_get_ioc(sp, slot, rsp_mad); 428 break; 429 case DM_ATTR_SVC_ENTRIES: 430 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 431 hi = (u8) ((slot >> 8) & 0xff); 432 lo = (u8) (slot & 0xff); 433 slot = (u16) ((slot >> 16) & 0xffff); 434 srpt_get_svc_entries(srpt_service_guid, 435 slot, hi, lo, rsp_mad); 436 break; 437 default: 438 rsp_mad->mad_hdr.status = 439 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 440 break; 441 } 442 } 443 444 /** 445 * srpt_mad_send_handler() - Post MAD-send callback function. 446 */ 447 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 448 struct ib_mad_send_wc *mad_wc) 449 { 450 ib_destroy_ah(mad_wc->send_buf->ah); 451 ib_free_send_mad(mad_wc->send_buf); 452 } 453 454 /** 455 * srpt_mad_recv_handler() - MAD reception callback function. 456 */ 457 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 458 struct ib_mad_recv_wc *mad_wc) 459 { 460 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 461 struct ib_ah *ah; 462 struct ib_mad_send_buf *rsp; 463 struct ib_dm_mad *dm_mad; 464 465 if (!mad_wc || !mad_wc->recv_buf.mad) 466 return; 467 468 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 469 mad_wc->recv_buf.grh, mad_agent->port_num); 470 if (IS_ERR(ah)) 471 goto err; 472 473 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 474 475 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 476 mad_wc->wc->pkey_index, 0, 477 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 478 GFP_KERNEL, 479 IB_MGMT_BASE_VERSION); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport, 0); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 pr_err("disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->pd->local_dma_lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 pr_warn("IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->pd->local_dma_lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 pr_err("received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct ib_device *dev = ch->sport->sdev->device; 1082 struct se_cmd *cmd; 1083 struct scatterlist *sg, *sg_orig; 1084 int sg_cnt; 1085 enum dma_data_direction dir; 1086 struct rdma_iu *riu; 1087 struct srp_direct_buf *db; 1088 dma_addr_t dma_addr; 1089 struct ib_sge *sge; 1090 u64 raddr; 1091 u32 rsize; 1092 u32 tsize; 1093 u32 dma_len; 1094 int count, nrdma; 1095 int i, j, k; 1096 1097 BUG_ON(!ch); 1098 BUG_ON(!ioctx); 1099 cmd = &ioctx->cmd; 1100 dir = cmd->data_direction; 1101 BUG_ON(dir == DMA_NONE); 1102 1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1105 1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1107 opposite_dma_dir(dir)); 1108 if (unlikely(!count)) 1109 return -EAGAIN; 1110 1111 ioctx->mapped_sg_count = count; 1112 1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1114 nrdma = ioctx->n_rdma_ius; 1115 else { 1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1117 + ioctx->n_rbuf; 1118 1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1120 if (!ioctx->rdma_ius) 1121 goto free_mem; 1122 1123 ioctx->n_rdma_ius = nrdma; 1124 } 1125 1126 db = ioctx->rbufs; 1127 tsize = cmd->data_length; 1128 dma_len = ib_sg_dma_len(dev, &sg[0]); 1129 riu = ioctx->rdma_ius; 1130 1131 /* 1132 * For each remote desc - calculate the #ib_sge. 1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1134 * each remote desc rdma_iu is required a rdma wr; 1135 * else 1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1137 * another rdma wr 1138 */ 1139 for (i = 0, j = 0; 1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1141 rsize = be32_to_cpu(db->len); 1142 raddr = be64_to_cpu(db->va); 1143 riu->raddr = raddr; 1144 riu->rkey = be32_to_cpu(db->key); 1145 riu->sge_cnt = 0; 1146 1147 /* calculate how many sge required for this remote_buf */ 1148 while (rsize > 0 && tsize > 0) { 1149 1150 if (rsize >= dma_len) { 1151 tsize -= dma_len; 1152 rsize -= dma_len; 1153 raddr += dma_len; 1154 1155 if (tsize > 0) { 1156 ++j; 1157 if (j < count) { 1158 sg = sg_next(sg); 1159 dma_len = ib_sg_dma_len( 1160 dev, sg); 1161 } 1162 } 1163 } else { 1164 tsize -= rsize; 1165 dma_len -= rsize; 1166 rsize = 0; 1167 } 1168 1169 ++riu->sge_cnt; 1170 1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1172 ++ioctx->n_rdma; 1173 riu->sge = 1174 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1175 GFP_KERNEL); 1176 if (!riu->sge) 1177 goto free_mem; 1178 1179 ++riu; 1180 riu->sge_cnt = 0; 1181 riu->raddr = raddr; 1182 riu->rkey = be32_to_cpu(db->key); 1183 } 1184 } 1185 1186 ++ioctx->n_rdma; 1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1188 GFP_KERNEL); 1189 if (!riu->sge) 1190 goto free_mem; 1191 } 1192 1193 db = ioctx->rbufs; 1194 tsize = cmd->data_length; 1195 riu = ioctx->rdma_ius; 1196 sg = sg_orig; 1197 dma_len = ib_sg_dma_len(dev, &sg[0]); 1198 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1199 1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1201 for (i = 0, j = 0; 1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1203 rsize = be32_to_cpu(db->len); 1204 sge = riu->sge; 1205 k = 0; 1206 1207 while (rsize > 0 && tsize > 0) { 1208 sge->addr = dma_addr; 1209 sge->lkey = ch->sport->sdev->pd->local_dma_lkey; 1210 1211 if (rsize >= dma_len) { 1212 sge->length = 1213 (tsize < dma_len) ? tsize : dma_len; 1214 tsize -= dma_len; 1215 rsize -= dma_len; 1216 1217 if (tsize > 0) { 1218 ++j; 1219 if (j < count) { 1220 sg = sg_next(sg); 1221 dma_len = ib_sg_dma_len( 1222 dev, sg); 1223 dma_addr = ib_sg_dma_address( 1224 dev, sg); 1225 } 1226 } 1227 } else { 1228 sge->length = (tsize < rsize) ? tsize : rsize; 1229 tsize -= rsize; 1230 dma_len -= rsize; 1231 dma_addr += rsize; 1232 rsize = 0; 1233 } 1234 1235 ++k; 1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1237 ++riu; 1238 sge = riu->sge; 1239 k = 0; 1240 } else if (rsize > 0 && tsize > 0) 1241 ++sge; 1242 } 1243 } 1244 1245 return 0; 1246 1247 free_mem: 1248 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1249 1250 return -ENOMEM; 1251 } 1252 1253 /** 1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1255 */ 1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1257 { 1258 struct srpt_send_ioctx *ioctx; 1259 unsigned long flags; 1260 1261 BUG_ON(!ch); 1262 1263 ioctx = NULL; 1264 spin_lock_irqsave(&ch->spinlock, flags); 1265 if (!list_empty(&ch->free_list)) { 1266 ioctx = list_first_entry(&ch->free_list, 1267 struct srpt_send_ioctx, free_list); 1268 list_del(&ioctx->free_list); 1269 } 1270 spin_unlock_irqrestore(&ch->spinlock, flags); 1271 1272 if (!ioctx) 1273 return ioctx; 1274 1275 BUG_ON(ioctx->ch != ch); 1276 spin_lock_init(&ioctx->spinlock); 1277 ioctx->state = SRPT_STATE_NEW; 1278 ioctx->n_rbuf = 0; 1279 ioctx->rbufs = NULL; 1280 ioctx->n_rdma = 0; 1281 ioctx->n_rdma_ius = 0; 1282 ioctx->rdma_ius = NULL; 1283 ioctx->mapped_sg_count = 0; 1284 init_completion(&ioctx->tx_done); 1285 ioctx->queue_status_only = false; 1286 /* 1287 * transport_init_se_cmd() does not initialize all fields, so do it 1288 * here. 1289 */ 1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1292 1293 return ioctx; 1294 } 1295 1296 /** 1297 * srpt_abort_cmd() - Abort a SCSI command. 1298 * @ioctx: I/O context associated with the SCSI command. 1299 * @context: Preferred execution context. 1300 */ 1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1302 { 1303 enum srpt_command_state state; 1304 unsigned long flags; 1305 1306 BUG_ON(!ioctx); 1307 1308 /* 1309 * If the command is in a state where the target core is waiting for 1310 * the ib_srpt driver, change the state to the next state. Changing 1311 * the state of the command from SRPT_STATE_NEED_DATA to 1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1313 * function a second time. 1314 */ 1315 1316 spin_lock_irqsave(&ioctx->spinlock, flags); 1317 state = ioctx->state; 1318 switch (state) { 1319 case SRPT_STATE_NEED_DATA: 1320 ioctx->state = SRPT_STATE_DATA_IN; 1321 break; 1322 case SRPT_STATE_DATA_IN: 1323 case SRPT_STATE_CMD_RSP_SENT: 1324 case SRPT_STATE_MGMT_RSP_SENT: 1325 ioctx->state = SRPT_STATE_DONE; 1326 break; 1327 default: 1328 break; 1329 } 1330 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1331 1332 if (state == SRPT_STATE_DONE) { 1333 struct srpt_rdma_ch *ch = ioctx->ch; 1334 1335 BUG_ON(ch->sess == NULL); 1336 1337 target_put_sess_cmd(&ioctx->cmd); 1338 goto out; 1339 } 1340 1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1342 ioctx->cmd.tag); 1343 1344 switch (state) { 1345 case SRPT_STATE_NEW: 1346 case SRPT_STATE_DATA_IN: 1347 case SRPT_STATE_MGMT: 1348 /* 1349 * Do nothing - defer abort processing until 1350 * srpt_queue_response() is invoked. 1351 */ 1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1353 break; 1354 case SRPT_STATE_NEED_DATA: 1355 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1356 1357 /* XXX(hch): this is a horrible layering violation.. */ 1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1359 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1360 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1361 break; 1362 case SRPT_STATE_CMD_RSP_SENT: 1363 /* 1364 * SRP_RSP sending failed or the SRP_RSP send completion has 1365 * not been received in time. 1366 */ 1367 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1368 target_put_sess_cmd(&ioctx->cmd); 1369 break; 1370 case SRPT_STATE_MGMT_RSP_SENT: 1371 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1372 target_put_sess_cmd(&ioctx->cmd); 1373 break; 1374 default: 1375 WARN(1, "Unexpected command state (%d)", state); 1376 break; 1377 } 1378 1379 out: 1380 return state; 1381 } 1382 1383 /** 1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1385 */ 1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1387 { 1388 struct srpt_send_ioctx *ioctx; 1389 enum srpt_command_state state; 1390 u32 index; 1391 1392 atomic_inc(&ch->sq_wr_avail); 1393 1394 index = idx_from_wr_id(wr_id); 1395 ioctx = ch->ioctx_ring[index]; 1396 state = srpt_get_cmd_state(ioctx); 1397 1398 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1399 && state != SRPT_STATE_MGMT_RSP_SENT 1400 && state != SRPT_STATE_NEED_DATA 1401 && state != SRPT_STATE_DONE); 1402 1403 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1404 if (state == SRPT_STATE_CMD_RSP_SENT 1405 || state == SRPT_STATE_MGMT_RSP_SENT) 1406 atomic_dec(&ch->req_lim); 1407 1408 srpt_abort_cmd(ioctx); 1409 } 1410 1411 /** 1412 * srpt_handle_send_comp() - Process an IB send completion notification. 1413 */ 1414 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1415 struct srpt_send_ioctx *ioctx) 1416 { 1417 enum srpt_command_state state; 1418 1419 atomic_inc(&ch->sq_wr_avail); 1420 1421 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1422 1423 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1424 && state != SRPT_STATE_MGMT_RSP_SENT 1425 && state != SRPT_STATE_DONE)) 1426 pr_debug("state = %d\n", state); 1427 1428 if (state != SRPT_STATE_DONE) { 1429 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1430 transport_generic_free_cmd(&ioctx->cmd, 0); 1431 } else { 1432 pr_err("IB completion has been received too late for" 1433 " wr_id = %u.\n", ioctx->ioctx.index); 1434 } 1435 } 1436 1437 /** 1438 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1439 * 1440 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1441 * the data that has been transferred via IB RDMA had to be postponed until the 1442 * check_stop_free() callback. None of this is necessary anymore and needs to 1443 * be cleaned up. 1444 */ 1445 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1446 struct srpt_send_ioctx *ioctx, 1447 enum srpt_opcode opcode) 1448 { 1449 WARN_ON(ioctx->n_rdma <= 0); 1450 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1451 1452 if (opcode == SRPT_RDMA_READ_LAST) { 1453 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1454 SRPT_STATE_DATA_IN)) 1455 target_execute_cmd(&ioctx->cmd); 1456 else 1457 pr_err("%s[%d]: wrong state = %d\n", __func__, 1458 __LINE__, srpt_get_cmd_state(ioctx)); 1459 } else if (opcode == SRPT_RDMA_ABORT) { 1460 ioctx->rdma_aborted = true; 1461 } else { 1462 WARN(true, "unexpected opcode %d\n", opcode); 1463 } 1464 } 1465 1466 /** 1467 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1468 */ 1469 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1470 struct srpt_send_ioctx *ioctx, 1471 enum srpt_opcode opcode) 1472 { 1473 enum srpt_command_state state; 1474 1475 state = srpt_get_cmd_state(ioctx); 1476 switch (opcode) { 1477 case SRPT_RDMA_READ_LAST: 1478 if (ioctx->n_rdma <= 0) { 1479 pr_err("Received invalid RDMA read" 1480 " error completion with idx %d\n", 1481 ioctx->ioctx.index); 1482 break; 1483 } 1484 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1485 if (state == SRPT_STATE_NEED_DATA) 1486 srpt_abort_cmd(ioctx); 1487 else 1488 pr_err("%s[%d]: wrong state = %d\n", 1489 __func__, __LINE__, state); 1490 break; 1491 case SRPT_RDMA_WRITE_LAST: 1492 break; 1493 default: 1494 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode); 1495 break; 1496 } 1497 } 1498 1499 /** 1500 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1501 * @ch: RDMA channel through which the request has been received. 1502 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1503 * be built in the buffer ioctx->buf points at and hence this function will 1504 * overwrite the request data. 1505 * @tag: tag of the request for which this response is being generated. 1506 * @status: value for the STATUS field of the SRP_RSP information unit. 1507 * 1508 * Returns the size in bytes of the SRP_RSP response. 1509 * 1510 * An SRP_RSP response contains a SCSI status or service response. See also 1511 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1512 * response. See also SPC-2 for more information about sense data. 1513 */ 1514 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1515 struct srpt_send_ioctx *ioctx, u64 tag, 1516 int status) 1517 { 1518 struct srp_rsp *srp_rsp; 1519 const u8 *sense_data; 1520 int sense_data_len, max_sense_len; 1521 1522 /* 1523 * The lowest bit of all SAM-3 status codes is zero (see also 1524 * paragraph 5.3 in SAM-3). 1525 */ 1526 WARN_ON(status & 1); 1527 1528 srp_rsp = ioctx->ioctx.buf; 1529 BUG_ON(!srp_rsp); 1530 1531 sense_data = ioctx->sense_data; 1532 sense_data_len = ioctx->cmd.scsi_sense_length; 1533 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1534 1535 memset(srp_rsp, 0, sizeof *srp_rsp); 1536 srp_rsp->opcode = SRP_RSP; 1537 srp_rsp->req_lim_delta = 1538 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1539 srp_rsp->tag = tag; 1540 srp_rsp->status = status; 1541 1542 if (sense_data_len) { 1543 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1544 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1545 if (sense_data_len > max_sense_len) { 1546 pr_warn("truncated sense data from %d to %d" 1547 " bytes\n", sense_data_len, max_sense_len); 1548 sense_data_len = max_sense_len; 1549 } 1550 1551 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1552 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1553 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1554 } 1555 1556 return sizeof(*srp_rsp) + sense_data_len; 1557 } 1558 1559 /** 1560 * srpt_build_tskmgmt_rsp() - Build a task management response. 1561 * @ch: RDMA channel through which the request has been received. 1562 * @ioctx: I/O context in which the SRP_RSP response will be built. 1563 * @rsp_code: RSP_CODE that will be stored in the response. 1564 * @tag: Tag of the request for which this response is being generated. 1565 * 1566 * Returns the size in bytes of the SRP_RSP response. 1567 * 1568 * An SRP_RSP response contains a SCSI status or service response. See also 1569 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1570 * response. 1571 */ 1572 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1573 struct srpt_send_ioctx *ioctx, 1574 u8 rsp_code, u64 tag) 1575 { 1576 struct srp_rsp *srp_rsp; 1577 int resp_data_len; 1578 int resp_len; 1579 1580 resp_data_len = 4; 1581 resp_len = sizeof(*srp_rsp) + resp_data_len; 1582 1583 srp_rsp = ioctx->ioctx.buf; 1584 BUG_ON(!srp_rsp); 1585 memset(srp_rsp, 0, sizeof *srp_rsp); 1586 1587 srp_rsp->opcode = SRP_RSP; 1588 srp_rsp->req_lim_delta = 1589 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1590 srp_rsp->tag = tag; 1591 1592 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1593 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1594 srp_rsp->data[3] = rsp_code; 1595 1596 return resp_len; 1597 } 1598 1599 #define NO_SUCH_LUN ((uint64_t)-1LL) 1600 1601 /* 1602 * SCSI LUN addressing method. See also SAM-2 and the section about 1603 * eight byte LUNs. 1604 */ 1605 enum scsi_lun_addr_method { 1606 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1607 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1608 SCSI_LUN_ADDR_METHOD_LUN = 2, 1609 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1610 }; 1611 1612 /* 1613 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1614 * 1615 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1616 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1617 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1618 */ 1619 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1620 { 1621 uint64_t res = NO_SUCH_LUN; 1622 int addressing_method; 1623 1624 if (unlikely(len < 2)) { 1625 pr_err("Illegal LUN length %d, expected 2 bytes or more\n", 1626 len); 1627 goto out; 1628 } 1629 1630 switch (len) { 1631 case 8: 1632 if ((*((__be64 *)lun) & 1633 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1634 goto out_err; 1635 break; 1636 case 4: 1637 if (*((__be16 *)&lun[2]) != 0) 1638 goto out_err; 1639 break; 1640 case 6: 1641 if (*((__be32 *)&lun[2]) != 0) 1642 goto out_err; 1643 break; 1644 case 2: 1645 break; 1646 default: 1647 goto out_err; 1648 } 1649 1650 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1651 switch (addressing_method) { 1652 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1653 case SCSI_LUN_ADDR_METHOD_FLAT: 1654 case SCSI_LUN_ADDR_METHOD_LUN: 1655 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1656 break; 1657 1658 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1659 default: 1660 pr_err("Unimplemented LUN addressing method %u\n", 1661 addressing_method); 1662 break; 1663 } 1664 1665 out: 1666 return res; 1667 1668 out_err: 1669 pr_err("Support for multi-level LUNs has not yet been implemented\n"); 1670 goto out; 1671 } 1672 1673 static int srpt_check_stop_free(struct se_cmd *cmd) 1674 { 1675 struct srpt_send_ioctx *ioctx = container_of(cmd, 1676 struct srpt_send_ioctx, cmd); 1677 1678 return target_put_sess_cmd(&ioctx->cmd); 1679 } 1680 1681 /** 1682 * srpt_handle_cmd() - Process SRP_CMD. 1683 */ 1684 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1685 struct srpt_recv_ioctx *recv_ioctx, 1686 struct srpt_send_ioctx *send_ioctx) 1687 { 1688 struct se_cmd *cmd; 1689 struct srp_cmd *srp_cmd; 1690 uint64_t unpacked_lun; 1691 u64 data_len; 1692 enum dma_data_direction dir; 1693 sense_reason_t ret; 1694 int rc; 1695 1696 BUG_ON(!send_ioctx); 1697 1698 srp_cmd = recv_ioctx->ioctx.buf; 1699 cmd = &send_ioctx->cmd; 1700 cmd->tag = srp_cmd->tag; 1701 1702 switch (srp_cmd->task_attr) { 1703 case SRP_CMD_SIMPLE_Q: 1704 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1705 break; 1706 case SRP_CMD_ORDERED_Q: 1707 default: 1708 cmd->sam_task_attr = TCM_ORDERED_TAG; 1709 break; 1710 case SRP_CMD_HEAD_OF_Q: 1711 cmd->sam_task_attr = TCM_HEAD_TAG; 1712 break; 1713 case SRP_CMD_ACA: 1714 cmd->sam_task_attr = TCM_ACA_TAG; 1715 break; 1716 } 1717 1718 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1719 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1720 srp_cmd->tag); 1721 ret = TCM_INVALID_CDB_FIELD; 1722 goto send_sense; 1723 } 1724 1725 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1726 sizeof(srp_cmd->lun)); 1727 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1728 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1729 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1730 if (rc != 0) { 1731 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1732 goto send_sense; 1733 } 1734 return 0; 1735 1736 send_sense: 1737 transport_send_check_condition_and_sense(cmd, ret, 0); 1738 return -1; 1739 } 1740 1741 /** 1742 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1743 * @ch: RDMA channel of the task management request. 1744 * @fn: Task management function to perform. 1745 * @req_tag: Tag of the SRP task management request. 1746 * @mgmt_ioctx: I/O context of the task management request. 1747 * 1748 * Returns zero if the target core will process the task management 1749 * request asynchronously. 1750 * 1751 * Note: It is assumed that the initiator serializes tag-based task management 1752 * requests. 1753 */ 1754 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1755 { 1756 struct srpt_device *sdev; 1757 struct srpt_rdma_ch *ch; 1758 struct srpt_send_ioctx *target; 1759 int ret, i; 1760 1761 ret = -EINVAL; 1762 ch = ioctx->ch; 1763 BUG_ON(!ch); 1764 BUG_ON(!ch->sport); 1765 sdev = ch->sport->sdev; 1766 BUG_ON(!sdev); 1767 spin_lock_irq(&sdev->spinlock); 1768 for (i = 0; i < ch->rq_size; ++i) { 1769 target = ch->ioctx_ring[i]; 1770 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1771 target->cmd.tag == tag && 1772 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1773 ret = 0; 1774 /* now let the target core abort &target->cmd; */ 1775 break; 1776 } 1777 } 1778 spin_unlock_irq(&sdev->spinlock); 1779 return ret; 1780 } 1781 1782 static int srp_tmr_to_tcm(int fn) 1783 { 1784 switch (fn) { 1785 case SRP_TSK_ABORT_TASK: 1786 return TMR_ABORT_TASK; 1787 case SRP_TSK_ABORT_TASK_SET: 1788 return TMR_ABORT_TASK_SET; 1789 case SRP_TSK_CLEAR_TASK_SET: 1790 return TMR_CLEAR_TASK_SET; 1791 case SRP_TSK_LUN_RESET: 1792 return TMR_LUN_RESET; 1793 case SRP_TSK_CLEAR_ACA: 1794 return TMR_CLEAR_ACA; 1795 default: 1796 return -1; 1797 } 1798 } 1799 1800 /** 1801 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1802 * 1803 * Returns 0 if and only if the request will be processed by the target core. 1804 * 1805 * For more information about SRP_TSK_MGMT information units, see also section 1806 * 6.7 in the SRP r16a document. 1807 */ 1808 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1809 struct srpt_recv_ioctx *recv_ioctx, 1810 struct srpt_send_ioctx *send_ioctx) 1811 { 1812 struct srp_tsk_mgmt *srp_tsk; 1813 struct se_cmd *cmd; 1814 struct se_session *sess = ch->sess; 1815 uint64_t unpacked_lun; 1816 uint32_t tag = 0; 1817 int tcm_tmr; 1818 int rc; 1819 1820 BUG_ON(!send_ioctx); 1821 1822 srp_tsk = recv_ioctx->ioctx.buf; 1823 cmd = &send_ioctx->cmd; 1824 1825 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1826 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1827 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1828 1829 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1830 send_ioctx->cmd.tag = srp_tsk->tag; 1831 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1832 if (tcm_tmr < 0) { 1833 send_ioctx->cmd.se_tmr_req->response = 1834 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1835 goto fail; 1836 } 1837 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1838 sizeof(srp_tsk->lun)); 1839 1840 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1841 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1842 if (rc < 0) { 1843 send_ioctx->cmd.se_tmr_req->response = 1844 TMR_TASK_DOES_NOT_EXIST; 1845 goto fail; 1846 } 1847 tag = srp_tsk->task_tag; 1848 } 1849 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1850 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1851 TARGET_SCF_ACK_KREF); 1852 if (rc != 0) { 1853 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1854 goto fail; 1855 } 1856 return; 1857 fail: 1858 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1859 } 1860 1861 /** 1862 * srpt_handle_new_iu() - Process a newly received information unit. 1863 * @ch: RDMA channel through which the information unit has been received. 1864 * @ioctx: SRPT I/O context associated with the information unit. 1865 */ 1866 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1867 struct srpt_recv_ioctx *recv_ioctx, 1868 struct srpt_send_ioctx *send_ioctx) 1869 { 1870 struct srp_cmd *srp_cmd; 1871 enum rdma_ch_state ch_state; 1872 1873 BUG_ON(!ch); 1874 BUG_ON(!recv_ioctx); 1875 1876 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1877 recv_ioctx->ioctx.dma, srp_max_req_size, 1878 DMA_FROM_DEVICE); 1879 1880 ch_state = srpt_get_ch_state(ch); 1881 if (unlikely(ch_state == CH_CONNECTING)) { 1882 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1883 goto out; 1884 } 1885 1886 if (unlikely(ch_state != CH_LIVE)) 1887 goto out; 1888 1889 srp_cmd = recv_ioctx->ioctx.buf; 1890 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1891 if (!send_ioctx) 1892 send_ioctx = srpt_get_send_ioctx(ch); 1893 if (unlikely(!send_ioctx)) { 1894 list_add_tail(&recv_ioctx->wait_list, 1895 &ch->cmd_wait_list); 1896 goto out; 1897 } 1898 } 1899 1900 switch (srp_cmd->opcode) { 1901 case SRP_CMD: 1902 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1903 break; 1904 case SRP_TSK_MGMT: 1905 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1906 break; 1907 case SRP_I_LOGOUT: 1908 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1909 break; 1910 case SRP_CRED_RSP: 1911 pr_debug("received SRP_CRED_RSP\n"); 1912 break; 1913 case SRP_AER_RSP: 1914 pr_debug("received SRP_AER_RSP\n"); 1915 break; 1916 case SRP_RSP: 1917 pr_err("Received SRP_RSP\n"); 1918 break; 1919 default: 1920 pr_err("received IU with unknown opcode 0x%x\n", 1921 srp_cmd->opcode); 1922 break; 1923 } 1924 1925 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1926 out: 1927 return; 1928 } 1929 1930 static void srpt_process_rcv_completion(struct ib_cq *cq, 1931 struct srpt_rdma_ch *ch, 1932 struct ib_wc *wc) 1933 { 1934 struct srpt_device *sdev = ch->sport->sdev; 1935 struct srpt_recv_ioctx *ioctx; 1936 u32 index; 1937 1938 index = idx_from_wr_id(wc->wr_id); 1939 if (wc->status == IB_WC_SUCCESS) { 1940 int req_lim; 1941 1942 req_lim = atomic_dec_return(&ch->req_lim); 1943 if (unlikely(req_lim < 0)) 1944 pr_err("req_lim = %d < 0\n", req_lim); 1945 ioctx = sdev->ioctx_ring[index]; 1946 srpt_handle_new_iu(ch, ioctx, NULL); 1947 } else { 1948 pr_info("receiving failed for idx %u with status %d\n", 1949 index, wc->status); 1950 } 1951 } 1952 1953 /** 1954 * srpt_process_send_completion() - Process an IB send completion. 1955 * 1956 * Note: Although this has not yet been observed during tests, at least in 1957 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1958 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1959 * value in each response is set to one, and it is possible that this response 1960 * makes the initiator send a new request before the send completion for that 1961 * response has been processed. This could e.g. happen if the call to 1962 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1963 * if IB retransmission causes generation of the send completion to be 1964 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1965 * are queued on cmd_wait_list. The code below processes these delayed 1966 * requests one at a time. 1967 */ 1968 static void srpt_process_send_completion(struct ib_cq *cq, 1969 struct srpt_rdma_ch *ch, 1970 struct ib_wc *wc) 1971 { 1972 struct srpt_send_ioctx *send_ioctx; 1973 uint32_t index; 1974 enum srpt_opcode opcode; 1975 1976 index = idx_from_wr_id(wc->wr_id); 1977 opcode = opcode_from_wr_id(wc->wr_id); 1978 send_ioctx = ch->ioctx_ring[index]; 1979 if (wc->status == IB_WC_SUCCESS) { 1980 if (opcode == SRPT_SEND) 1981 srpt_handle_send_comp(ch, send_ioctx); 1982 else { 1983 WARN_ON(opcode != SRPT_RDMA_ABORT && 1984 wc->opcode != IB_WC_RDMA_READ); 1985 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1986 } 1987 } else { 1988 if (opcode == SRPT_SEND) { 1989 pr_info("sending response for idx %u failed" 1990 " with status %d\n", index, wc->status); 1991 srpt_handle_send_err_comp(ch, wc->wr_id); 1992 } else if (opcode != SRPT_RDMA_MID) { 1993 pr_info("RDMA t %d for idx %u failed with" 1994 " status %d\n", opcode, index, wc->status); 1995 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 1996 } 1997 } 1998 1999 while (unlikely(opcode == SRPT_SEND 2000 && !list_empty(&ch->cmd_wait_list) 2001 && srpt_get_ch_state(ch) == CH_LIVE 2002 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2003 struct srpt_recv_ioctx *recv_ioctx; 2004 2005 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2006 struct srpt_recv_ioctx, 2007 wait_list); 2008 list_del(&recv_ioctx->wait_list); 2009 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2010 } 2011 } 2012 2013 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2014 { 2015 struct ib_wc *const wc = ch->wc; 2016 int i, n; 2017 2018 WARN_ON(cq != ch->cq); 2019 2020 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2021 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2022 for (i = 0; i < n; i++) { 2023 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2024 srpt_process_rcv_completion(cq, ch, &wc[i]); 2025 else 2026 srpt_process_send_completion(cq, ch, &wc[i]); 2027 } 2028 } 2029 } 2030 2031 /** 2032 * srpt_completion() - IB completion queue callback function. 2033 * 2034 * Notes: 2035 * - It is guaranteed that a completion handler will never be invoked 2036 * concurrently on two different CPUs for the same completion queue. See also 2037 * Documentation/infiniband/core_locking.txt and the implementation of 2038 * handle_edge_irq() in kernel/irq/chip.c. 2039 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2040 * context instead of interrupt context. 2041 */ 2042 static void srpt_completion(struct ib_cq *cq, void *ctx) 2043 { 2044 struct srpt_rdma_ch *ch = ctx; 2045 2046 wake_up_interruptible(&ch->wait_queue); 2047 } 2048 2049 static int srpt_compl_thread(void *arg) 2050 { 2051 struct srpt_rdma_ch *ch; 2052 2053 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2054 current->flags |= PF_NOFREEZE; 2055 2056 ch = arg; 2057 BUG_ON(!ch); 2058 pr_info("Session %s: kernel thread %s (PID %d) started\n", 2059 ch->sess_name, ch->thread->comm, current->pid); 2060 while (!kthread_should_stop()) { 2061 wait_event_interruptible(ch->wait_queue, 2062 (srpt_process_completion(ch->cq, ch), 2063 kthread_should_stop())); 2064 } 2065 pr_info("Session %s: kernel thread %s (PID %d) stopped\n", 2066 ch->sess_name, ch->thread->comm, current->pid); 2067 return 0; 2068 } 2069 2070 /** 2071 * srpt_create_ch_ib() - Create receive and send completion queues. 2072 */ 2073 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2074 { 2075 struct ib_qp_init_attr *qp_init; 2076 struct srpt_port *sport = ch->sport; 2077 struct srpt_device *sdev = sport->sdev; 2078 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2079 struct ib_cq_init_attr cq_attr = {}; 2080 int ret; 2081 2082 WARN_ON(ch->rq_size < 1); 2083 2084 ret = -ENOMEM; 2085 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2086 if (!qp_init) 2087 goto out; 2088 2089 retry: 2090 cq_attr.cqe = ch->rq_size + srp_sq_size; 2091 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2092 &cq_attr); 2093 if (IS_ERR(ch->cq)) { 2094 ret = PTR_ERR(ch->cq); 2095 pr_err("failed to create CQ cqe= %d ret= %d\n", 2096 ch->rq_size + srp_sq_size, ret); 2097 goto out; 2098 } 2099 2100 qp_init->qp_context = (void *)ch; 2101 qp_init->event_handler 2102 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2103 qp_init->send_cq = ch->cq; 2104 qp_init->recv_cq = ch->cq; 2105 qp_init->srq = sdev->srq; 2106 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2107 qp_init->qp_type = IB_QPT_RC; 2108 qp_init->cap.max_send_wr = srp_sq_size; 2109 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2110 2111 ch->qp = ib_create_qp(sdev->pd, qp_init); 2112 if (IS_ERR(ch->qp)) { 2113 ret = PTR_ERR(ch->qp); 2114 if (ret == -ENOMEM) { 2115 srp_sq_size /= 2; 2116 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 2117 ib_destroy_cq(ch->cq); 2118 goto retry; 2119 } 2120 } 2121 pr_err("failed to create_qp ret= %d\n", ret); 2122 goto err_destroy_cq; 2123 } 2124 2125 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2126 2127 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2128 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2129 qp_init->cap.max_send_wr, ch->cm_id); 2130 2131 ret = srpt_init_ch_qp(ch, ch->qp); 2132 if (ret) 2133 goto err_destroy_qp; 2134 2135 init_waitqueue_head(&ch->wait_queue); 2136 2137 pr_debug("creating thread for session %s\n", ch->sess_name); 2138 2139 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2140 if (IS_ERR(ch->thread)) { 2141 pr_err("failed to create kernel thread %ld\n", 2142 PTR_ERR(ch->thread)); 2143 ch->thread = NULL; 2144 goto err_destroy_qp; 2145 } 2146 2147 out: 2148 kfree(qp_init); 2149 return ret; 2150 2151 err_destroy_qp: 2152 ib_destroy_qp(ch->qp); 2153 err_destroy_cq: 2154 ib_destroy_cq(ch->cq); 2155 goto out; 2156 } 2157 2158 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2159 { 2160 if (ch->thread) 2161 kthread_stop(ch->thread); 2162 2163 ib_destroy_qp(ch->qp); 2164 ib_destroy_cq(ch->cq); 2165 } 2166 2167 /** 2168 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2169 * 2170 * Reset the QP and make sure all resources associated with the channel will 2171 * be deallocated at an appropriate time. 2172 * 2173 * Note: The caller must hold ch->sport->sdev->spinlock. 2174 */ 2175 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2176 { 2177 enum rdma_ch_state prev_state; 2178 unsigned long flags; 2179 2180 spin_lock_irqsave(&ch->spinlock, flags); 2181 prev_state = ch->state; 2182 switch (prev_state) { 2183 case CH_CONNECTING: 2184 case CH_LIVE: 2185 ch->state = CH_DISCONNECTING; 2186 break; 2187 default: 2188 break; 2189 } 2190 spin_unlock_irqrestore(&ch->spinlock, flags); 2191 2192 switch (prev_state) { 2193 case CH_CONNECTING: 2194 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2195 NULL, 0); 2196 /* fall through */ 2197 case CH_LIVE: 2198 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2199 pr_err("sending CM DREQ failed.\n"); 2200 break; 2201 case CH_DISCONNECTING: 2202 break; 2203 case CH_DRAINING: 2204 case CH_RELEASING: 2205 break; 2206 } 2207 } 2208 2209 /** 2210 * srpt_close_ch() - Close an RDMA channel. 2211 */ 2212 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2213 { 2214 struct srpt_device *sdev; 2215 2216 sdev = ch->sport->sdev; 2217 spin_lock_irq(&sdev->spinlock); 2218 __srpt_close_ch(ch); 2219 spin_unlock_irq(&sdev->spinlock); 2220 } 2221 2222 /** 2223 * srpt_shutdown_session() - Whether or not a session may be shut down. 2224 */ 2225 static int srpt_shutdown_session(struct se_session *se_sess) 2226 { 2227 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2228 unsigned long flags; 2229 2230 spin_lock_irqsave(&ch->spinlock, flags); 2231 if (ch->in_shutdown) { 2232 spin_unlock_irqrestore(&ch->spinlock, flags); 2233 return true; 2234 } 2235 2236 ch->in_shutdown = true; 2237 target_sess_cmd_list_set_waiting(se_sess); 2238 spin_unlock_irqrestore(&ch->spinlock, flags); 2239 2240 return true; 2241 } 2242 2243 /** 2244 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2245 * @cm_id: Pointer to the CM ID of the channel to be drained. 2246 * 2247 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2248 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2249 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2250 * waits until all target sessions for the associated IB device have been 2251 * unregistered and target session registration involves a call to 2252 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2253 * this function has finished). 2254 */ 2255 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2256 { 2257 struct srpt_device *sdev; 2258 struct srpt_rdma_ch *ch; 2259 int ret; 2260 bool do_reset = false; 2261 2262 WARN_ON_ONCE(irqs_disabled()); 2263 2264 sdev = cm_id->context; 2265 BUG_ON(!sdev); 2266 spin_lock_irq(&sdev->spinlock); 2267 list_for_each_entry(ch, &sdev->rch_list, list) { 2268 if (ch->cm_id == cm_id) { 2269 do_reset = srpt_test_and_set_ch_state(ch, 2270 CH_CONNECTING, CH_DRAINING) || 2271 srpt_test_and_set_ch_state(ch, 2272 CH_LIVE, CH_DRAINING) || 2273 srpt_test_and_set_ch_state(ch, 2274 CH_DISCONNECTING, CH_DRAINING); 2275 break; 2276 } 2277 } 2278 spin_unlock_irq(&sdev->spinlock); 2279 2280 if (do_reset) { 2281 if (ch->sess) 2282 srpt_shutdown_session(ch->sess); 2283 2284 ret = srpt_ch_qp_err(ch); 2285 if (ret < 0) 2286 pr_err("Setting queue pair in error state" 2287 " failed: %d\n", ret); 2288 } 2289 } 2290 2291 /** 2292 * srpt_find_channel() - Look up an RDMA channel. 2293 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2294 * 2295 * Return NULL if no matching RDMA channel has been found. 2296 */ 2297 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2298 struct ib_cm_id *cm_id) 2299 { 2300 struct srpt_rdma_ch *ch; 2301 bool found; 2302 2303 WARN_ON_ONCE(irqs_disabled()); 2304 BUG_ON(!sdev); 2305 2306 found = false; 2307 spin_lock_irq(&sdev->spinlock); 2308 list_for_each_entry(ch, &sdev->rch_list, list) { 2309 if (ch->cm_id == cm_id) { 2310 found = true; 2311 break; 2312 } 2313 } 2314 spin_unlock_irq(&sdev->spinlock); 2315 2316 return found ? ch : NULL; 2317 } 2318 2319 /** 2320 * srpt_release_channel() - Release channel resources. 2321 * 2322 * Schedules the actual release because: 2323 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2324 * trigger a deadlock. 2325 * - It is not safe to call TCM transport_* functions from interrupt context. 2326 */ 2327 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2328 { 2329 schedule_work(&ch->release_work); 2330 } 2331 2332 static void srpt_release_channel_work(struct work_struct *w) 2333 { 2334 struct srpt_rdma_ch *ch; 2335 struct srpt_device *sdev; 2336 struct se_session *se_sess; 2337 2338 ch = container_of(w, struct srpt_rdma_ch, release_work); 2339 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2340 ch->release_done); 2341 2342 sdev = ch->sport->sdev; 2343 BUG_ON(!sdev); 2344 2345 se_sess = ch->sess; 2346 BUG_ON(!se_sess); 2347 2348 target_wait_for_sess_cmds(se_sess); 2349 2350 transport_deregister_session_configfs(se_sess); 2351 transport_deregister_session(se_sess); 2352 ch->sess = NULL; 2353 2354 ib_destroy_cm_id(ch->cm_id); 2355 2356 srpt_destroy_ch_ib(ch); 2357 2358 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2359 ch->sport->sdev, ch->rq_size, 2360 ch->rsp_size, DMA_TO_DEVICE); 2361 2362 spin_lock_irq(&sdev->spinlock); 2363 list_del(&ch->list); 2364 spin_unlock_irq(&sdev->spinlock); 2365 2366 if (ch->release_done) 2367 complete(ch->release_done); 2368 2369 wake_up(&sdev->ch_releaseQ); 2370 2371 kfree(ch); 2372 } 2373 2374 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2375 u8 i_port_id[16]) 2376 { 2377 struct srpt_node_acl *nacl; 2378 2379 list_for_each_entry(nacl, &sport->port_acl_list, list) 2380 if (memcmp(nacl->i_port_id, i_port_id, 2381 sizeof(nacl->i_port_id)) == 0) 2382 return nacl; 2383 2384 return NULL; 2385 } 2386 2387 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2388 u8 i_port_id[16]) 2389 { 2390 struct srpt_node_acl *nacl; 2391 2392 spin_lock_irq(&sport->port_acl_lock); 2393 nacl = __srpt_lookup_acl(sport, i_port_id); 2394 spin_unlock_irq(&sport->port_acl_lock); 2395 2396 return nacl; 2397 } 2398 2399 /** 2400 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2401 * 2402 * Ownership of the cm_id is transferred to the target session if this 2403 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2404 */ 2405 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2406 struct ib_cm_req_event_param *param, 2407 void *private_data) 2408 { 2409 struct srpt_device *sdev = cm_id->context; 2410 struct srpt_port *sport = &sdev->port[param->port - 1]; 2411 struct srp_login_req *req; 2412 struct srp_login_rsp *rsp; 2413 struct srp_login_rej *rej; 2414 struct ib_cm_rep_param *rep_param; 2415 struct srpt_rdma_ch *ch, *tmp_ch; 2416 struct srpt_node_acl *nacl; 2417 u32 it_iu_len; 2418 int i; 2419 int ret = 0; 2420 2421 WARN_ON_ONCE(irqs_disabled()); 2422 2423 if (WARN_ON(!sdev || !private_data)) 2424 return -EINVAL; 2425 2426 req = (struct srp_login_req *)private_data; 2427 2428 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2429 2430 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2431 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2432 " (guid=0x%llx:0x%llx)\n", 2433 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2434 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2435 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2436 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2437 it_iu_len, 2438 param->port, 2439 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2440 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2441 2442 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2443 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2444 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2445 2446 if (!rsp || !rej || !rep_param) { 2447 ret = -ENOMEM; 2448 goto out; 2449 } 2450 2451 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2452 rej->reason = cpu_to_be32( 2453 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2454 ret = -EINVAL; 2455 pr_err("rejected SRP_LOGIN_REQ because its" 2456 " length (%d bytes) is out of range (%d .. %d)\n", 2457 it_iu_len, 64, srp_max_req_size); 2458 goto reject; 2459 } 2460 2461 if (!sport->enabled) { 2462 rej->reason = cpu_to_be32( 2463 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2464 ret = -EINVAL; 2465 pr_err("rejected SRP_LOGIN_REQ because the target port" 2466 " has not yet been enabled\n"); 2467 goto reject; 2468 } 2469 2470 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2471 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2472 2473 spin_lock_irq(&sdev->spinlock); 2474 2475 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2476 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2477 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2478 && param->port == ch->sport->port 2479 && param->listen_id == ch->sport->sdev->cm_id 2480 && ch->cm_id) { 2481 enum rdma_ch_state ch_state; 2482 2483 ch_state = srpt_get_ch_state(ch); 2484 if (ch_state != CH_CONNECTING 2485 && ch_state != CH_LIVE) 2486 continue; 2487 2488 /* found an existing channel */ 2489 pr_debug("Found existing channel %s" 2490 " cm_id= %p state= %d\n", 2491 ch->sess_name, ch->cm_id, ch_state); 2492 2493 __srpt_close_ch(ch); 2494 2495 rsp->rsp_flags = 2496 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2497 } 2498 } 2499 2500 spin_unlock_irq(&sdev->spinlock); 2501 2502 } else 2503 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2504 2505 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2506 || *(__be64 *)(req->target_port_id + 8) != 2507 cpu_to_be64(srpt_service_guid)) { 2508 rej->reason = cpu_to_be32( 2509 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2510 ret = -ENOMEM; 2511 pr_err("rejected SRP_LOGIN_REQ because it" 2512 " has an invalid target port identifier.\n"); 2513 goto reject; 2514 } 2515 2516 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2517 if (!ch) { 2518 rej->reason = cpu_to_be32( 2519 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2520 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2521 ret = -ENOMEM; 2522 goto reject; 2523 } 2524 2525 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2526 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2527 memcpy(ch->t_port_id, req->target_port_id, 16); 2528 ch->sport = &sdev->port[param->port - 1]; 2529 ch->cm_id = cm_id; 2530 /* 2531 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2532 * for the SRP protocol to the command queue size. 2533 */ 2534 ch->rq_size = SRPT_RQ_SIZE; 2535 spin_lock_init(&ch->spinlock); 2536 ch->state = CH_CONNECTING; 2537 INIT_LIST_HEAD(&ch->cmd_wait_list); 2538 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2539 2540 ch->ioctx_ring = (struct srpt_send_ioctx **) 2541 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2542 sizeof(*ch->ioctx_ring[0]), 2543 ch->rsp_size, DMA_TO_DEVICE); 2544 if (!ch->ioctx_ring) 2545 goto free_ch; 2546 2547 INIT_LIST_HEAD(&ch->free_list); 2548 for (i = 0; i < ch->rq_size; i++) { 2549 ch->ioctx_ring[i]->ch = ch; 2550 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2551 } 2552 2553 ret = srpt_create_ch_ib(ch); 2554 if (ret) { 2555 rej->reason = cpu_to_be32( 2556 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2557 pr_err("rejected SRP_LOGIN_REQ because creating" 2558 " a new RDMA channel failed.\n"); 2559 goto free_ring; 2560 } 2561 2562 ret = srpt_ch_qp_rtr(ch, ch->qp); 2563 if (ret) { 2564 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2565 pr_err("rejected SRP_LOGIN_REQ because enabling" 2566 " RTR failed (error code = %d)\n", ret); 2567 goto destroy_ib; 2568 } 2569 /* 2570 * Use the initator port identifier as the session name. 2571 */ 2572 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2573 be64_to_cpu(*(__be64 *)ch->i_port_id), 2574 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2575 2576 pr_debug("registering session %s\n", ch->sess_name); 2577 2578 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2579 if (!nacl) { 2580 pr_info("Rejected login because no ACL has been" 2581 " configured yet for initiator %s.\n", ch->sess_name); 2582 rej->reason = cpu_to_be32( 2583 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2584 goto destroy_ib; 2585 } 2586 2587 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2588 if (IS_ERR(ch->sess)) { 2589 rej->reason = cpu_to_be32( 2590 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2591 pr_debug("Failed to create session\n"); 2592 goto deregister_session; 2593 } 2594 ch->sess->se_node_acl = &nacl->nacl; 2595 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2596 2597 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2598 ch->sess_name, ch->cm_id); 2599 2600 /* create srp_login_response */ 2601 rsp->opcode = SRP_LOGIN_RSP; 2602 rsp->tag = req->tag; 2603 rsp->max_it_iu_len = req->req_it_iu_len; 2604 rsp->max_ti_iu_len = req->req_it_iu_len; 2605 ch->max_ti_iu_len = it_iu_len; 2606 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2607 | SRP_BUF_FORMAT_INDIRECT); 2608 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2609 atomic_set(&ch->req_lim, ch->rq_size); 2610 atomic_set(&ch->req_lim_delta, 0); 2611 2612 /* create cm reply */ 2613 rep_param->qp_num = ch->qp->qp_num; 2614 rep_param->private_data = (void *)rsp; 2615 rep_param->private_data_len = sizeof *rsp; 2616 rep_param->rnr_retry_count = 7; 2617 rep_param->flow_control = 1; 2618 rep_param->failover_accepted = 0; 2619 rep_param->srq = 1; 2620 rep_param->responder_resources = 4; 2621 rep_param->initiator_depth = 4; 2622 2623 ret = ib_send_cm_rep(cm_id, rep_param); 2624 if (ret) { 2625 pr_err("sending SRP_LOGIN_REQ response failed" 2626 " (error code = %d)\n", ret); 2627 goto release_channel; 2628 } 2629 2630 spin_lock_irq(&sdev->spinlock); 2631 list_add_tail(&ch->list, &sdev->rch_list); 2632 spin_unlock_irq(&sdev->spinlock); 2633 2634 goto out; 2635 2636 release_channel: 2637 srpt_set_ch_state(ch, CH_RELEASING); 2638 transport_deregister_session_configfs(ch->sess); 2639 2640 deregister_session: 2641 transport_deregister_session(ch->sess); 2642 ch->sess = NULL; 2643 2644 destroy_ib: 2645 srpt_destroy_ch_ib(ch); 2646 2647 free_ring: 2648 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2649 ch->sport->sdev, ch->rq_size, 2650 ch->rsp_size, DMA_TO_DEVICE); 2651 free_ch: 2652 kfree(ch); 2653 2654 reject: 2655 rej->opcode = SRP_LOGIN_REJ; 2656 rej->tag = req->tag; 2657 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2658 | SRP_BUF_FORMAT_INDIRECT); 2659 2660 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2661 (void *)rej, sizeof *rej); 2662 2663 out: 2664 kfree(rep_param); 2665 kfree(rsp); 2666 kfree(rej); 2667 2668 return ret; 2669 } 2670 2671 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2672 { 2673 pr_info("Received IB REJ for cm_id %p.\n", cm_id); 2674 srpt_drain_channel(cm_id); 2675 } 2676 2677 /** 2678 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2679 * 2680 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2681 * and that the recipient may begin transmitting (RTU = ready to use). 2682 */ 2683 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2684 { 2685 struct srpt_rdma_ch *ch; 2686 int ret; 2687 2688 ch = srpt_find_channel(cm_id->context, cm_id); 2689 BUG_ON(!ch); 2690 2691 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2692 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2693 2694 ret = srpt_ch_qp_rts(ch, ch->qp); 2695 2696 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2697 wait_list) { 2698 list_del(&ioctx->wait_list); 2699 srpt_handle_new_iu(ch, ioctx, NULL); 2700 } 2701 if (ret) 2702 srpt_close_ch(ch); 2703 } 2704 } 2705 2706 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2707 { 2708 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id); 2709 srpt_drain_channel(cm_id); 2710 } 2711 2712 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2713 { 2714 pr_info("Received IB REP error for cm_id %p.\n", cm_id); 2715 srpt_drain_channel(cm_id); 2716 } 2717 2718 /** 2719 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2720 */ 2721 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2722 { 2723 struct srpt_rdma_ch *ch; 2724 unsigned long flags; 2725 bool send_drep = false; 2726 2727 ch = srpt_find_channel(cm_id->context, cm_id); 2728 BUG_ON(!ch); 2729 2730 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2731 2732 spin_lock_irqsave(&ch->spinlock, flags); 2733 switch (ch->state) { 2734 case CH_CONNECTING: 2735 case CH_LIVE: 2736 send_drep = true; 2737 ch->state = CH_DISCONNECTING; 2738 break; 2739 case CH_DISCONNECTING: 2740 case CH_DRAINING: 2741 case CH_RELEASING: 2742 WARN(true, "unexpected channel state %d\n", ch->state); 2743 break; 2744 } 2745 spin_unlock_irqrestore(&ch->spinlock, flags); 2746 2747 if (send_drep) { 2748 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2749 pr_err("Sending IB DREP failed.\n"); 2750 pr_info("Received DREQ and sent DREP for session %s.\n", 2751 ch->sess_name); 2752 } 2753 } 2754 2755 /** 2756 * srpt_cm_drep_recv() - Process reception of a DREP message. 2757 */ 2758 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2759 { 2760 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id); 2761 srpt_drain_channel(cm_id); 2762 } 2763 2764 /** 2765 * srpt_cm_handler() - IB connection manager callback function. 2766 * 2767 * A non-zero return value will cause the caller destroy the CM ID. 2768 * 2769 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2770 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2771 * a non-zero value in any other case will trigger a race with the 2772 * ib_destroy_cm_id() call in srpt_release_channel(). 2773 */ 2774 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2775 { 2776 int ret; 2777 2778 ret = 0; 2779 switch (event->event) { 2780 case IB_CM_REQ_RECEIVED: 2781 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2782 event->private_data); 2783 break; 2784 case IB_CM_REJ_RECEIVED: 2785 srpt_cm_rej_recv(cm_id); 2786 break; 2787 case IB_CM_RTU_RECEIVED: 2788 case IB_CM_USER_ESTABLISHED: 2789 srpt_cm_rtu_recv(cm_id); 2790 break; 2791 case IB_CM_DREQ_RECEIVED: 2792 srpt_cm_dreq_recv(cm_id); 2793 break; 2794 case IB_CM_DREP_RECEIVED: 2795 srpt_cm_drep_recv(cm_id); 2796 break; 2797 case IB_CM_TIMEWAIT_EXIT: 2798 srpt_cm_timewait_exit(cm_id); 2799 break; 2800 case IB_CM_REP_ERROR: 2801 srpt_cm_rep_error(cm_id); 2802 break; 2803 case IB_CM_DREQ_ERROR: 2804 pr_info("Received IB DREQ ERROR event.\n"); 2805 break; 2806 case IB_CM_MRA_RECEIVED: 2807 pr_info("Received IB MRA event\n"); 2808 break; 2809 default: 2810 pr_err("received unrecognized IB CM event %d\n", event->event); 2811 break; 2812 } 2813 2814 return ret; 2815 } 2816 2817 /** 2818 * srpt_perform_rdmas() - Perform IB RDMA. 2819 * 2820 * Returns zero upon success or a negative number upon failure. 2821 */ 2822 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2823 struct srpt_send_ioctx *ioctx) 2824 { 2825 struct ib_send_wr wr; 2826 struct ib_send_wr *bad_wr; 2827 struct rdma_iu *riu; 2828 int i; 2829 int ret; 2830 int sq_wr_avail; 2831 enum dma_data_direction dir; 2832 const int n_rdma = ioctx->n_rdma; 2833 2834 dir = ioctx->cmd.data_direction; 2835 if (dir == DMA_TO_DEVICE) { 2836 /* write */ 2837 ret = -ENOMEM; 2838 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2839 if (sq_wr_avail < 0) { 2840 pr_warn("IB send queue full (needed %d)\n", 2841 n_rdma); 2842 goto out; 2843 } 2844 } 2845 2846 ioctx->rdma_aborted = false; 2847 ret = 0; 2848 riu = ioctx->rdma_ius; 2849 memset(&wr, 0, sizeof wr); 2850 2851 for (i = 0; i < n_rdma; ++i, ++riu) { 2852 if (dir == DMA_FROM_DEVICE) { 2853 wr.opcode = IB_WR_RDMA_WRITE; 2854 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2855 SRPT_RDMA_WRITE_LAST : 2856 SRPT_RDMA_MID, 2857 ioctx->ioctx.index); 2858 } else { 2859 wr.opcode = IB_WR_RDMA_READ; 2860 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2861 SRPT_RDMA_READ_LAST : 2862 SRPT_RDMA_MID, 2863 ioctx->ioctx.index); 2864 } 2865 wr.next = NULL; 2866 wr.wr.rdma.remote_addr = riu->raddr; 2867 wr.wr.rdma.rkey = riu->rkey; 2868 wr.num_sge = riu->sge_cnt; 2869 wr.sg_list = riu->sge; 2870 2871 /* only get completion event for the last rdma write */ 2872 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2873 wr.send_flags = IB_SEND_SIGNALED; 2874 2875 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2876 if (ret) 2877 break; 2878 } 2879 2880 if (ret) 2881 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2882 __func__, __LINE__, ret, i, n_rdma); 2883 if (ret && i > 0) { 2884 wr.num_sge = 0; 2885 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2886 wr.send_flags = IB_SEND_SIGNALED; 2887 while (ch->state == CH_LIVE && 2888 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2889 pr_info("Trying to abort failed RDMA transfer [%d]\n", 2890 ioctx->ioctx.index); 2891 msleep(1000); 2892 } 2893 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2894 pr_info("Waiting until RDMA abort finished [%d]\n", 2895 ioctx->ioctx.index); 2896 msleep(1000); 2897 } 2898 } 2899 out: 2900 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2901 atomic_add(n_rdma, &ch->sq_wr_avail); 2902 return ret; 2903 } 2904 2905 /** 2906 * srpt_xfer_data() - Start data transfer from initiator to target. 2907 */ 2908 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2909 struct srpt_send_ioctx *ioctx) 2910 { 2911 int ret; 2912 2913 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2914 if (ret) { 2915 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2916 goto out; 2917 } 2918 2919 ret = srpt_perform_rdmas(ch, ioctx); 2920 if (ret) { 2921 if (ret == -EAGAIN || ret == -ENOMEM) 2922 pr_info("%s[%d] queue full -- ret=%d\n", 2923 __func__, __LINE__, ret); 2924 else 2925 pr_err("%s[%d] fatal error -- ret=%d\n", 2926 __func__, __LINE__, ret); 2927 goto out_unmap; 2928 } 2929 2930 out: 2931 return ret; 2932 out_unmap: 2933 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2934 goto out; 2935 } 2936 2937 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2938 { 2939 struct srpt_send_ioctx *ioctx; 2940 2941 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2942 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2943 } 2944 2945 /* 2946 * srpt_write_pending() - Start data transfer from initiator to target (write). 2947 */ 2948 static int srpt_write_pending(struct se_cmd *se_cmd) 2949 { 2950 struct srpt_rdma_ch *ch; 2951 struct srpt_send_ioctx *ioctx; 2952 enum srpt_command_state new_state; 2953 enum rdma_ch_state ch_state; 2954 int ret; 2955 2956 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2957 2958 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2959 WARN_ON(new_state == SRPT_STATE_DONE); 2960 2961 ch = ioctx->ch; 2962 BUG_ON(!ch); 2963 2964 ch_state = srpt_get_ch_state(ch); 2965 switch (ch_state) { 2966 case CH_CONNECTING: 2967 WARN(true, "unexpected channel state %d\n", ch_state); 2968 ret = -EINVAL; 2969 goto out; 2970 case CH_LIVE: 2971 break; 2972 case CH_DISCONNECTING: 2973 case CH_DRAINING: 2974 case CH_RELEASING: 2975 pr_debug("cmd with tag %lld: channel disconnecting\n", 2976 ioctx->cmd.tag); 2977 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2978 ret = -EINVAL; 2979 goto out; 2980 } 2981 ret = srpt_xfer_data(ch, ioctx); 2982 2983 out: 2984 return ret; 2985 } 2986 2987 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2988 { 2989 switch (tcm_mgmt_status) { 2990 case TMR_FUNCTION_COMPLETE: 2991 return SRP_TSK_MGMT_SUCCESS; 2992 case TMR_FUNCTION_REJECTED: 2993 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2994 } 2995 return SRP_TSK_MGMT_FAILED; 2996 } 2997 2998 /** 2999 * srpt_queue_response() - Transmits the response to a SCSI command. 3000 * 3001 * Callback function called by the TCM core. Must not block since it can be 3002 * invoked on the context of the IB completion handler. 3003 */ 3004 static void srpt_queue_response(struct se_cmd *cmd) 3005 { 3006 struct srpt_rdma_ch *ch; 3007 struct srpt_send_ioctx *ioctx; 3008 enum srpt_command_state state; 3009 unsigned long flags; 3010 int ret; 3011 enum dma_data_direction dir; 3012 int resp_len; 3013 u8 srp_tm_status; 3014 3015 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3016 ch = ioctx->ch; 3017 BUG_ON(!ch); 3018 3019 spin_lock_irqsave(&ioctx->spinlock, flags); 3020 state = ioctx->state; 3021 switch (state) { 3022 case SRPT_STATE_NEW: 3023 case SRPT_STATE_DATA_IN: 3024 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3025 break; 3026 case SRPT_STATE_MGMT: 3027 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3028 break; 3029 default: 3030 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3031 ch, ioctx->ioctx.index, ioctx->state); 3032 break; 3033 } 3034 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3035 3036 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3037 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3038 atomic_inc(&ch->req_lim_delta); 3039 srpt_abort_cmd(ioctx); 3040 return; 3041 } 3042 3043 dir = ioctx->cmd.data_direction; 3044 3045 /* For read commands, transfer the data to the initiator. */ 3046 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3047 !ioctx->queue_status_only) { 3048 ret = srpt_xfer_data(ch, ioctx); 3049 if (ret) { 3050 pr_err("xfer_data failed for tag %llu\n", 3051 ioctx->cmd.tag); 3052 return; 3053 } 3054 } 3055 3056 if (state != SRPT_STATE_MGMT) 3057 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 3058 cmd->scsi_status); 3059 else { 3060 srp_tm_status 3061 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3062 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3063 ioctx->cmd.tag); 3064 } 3065 ret = srpt_post_send(ch, ioctx, resp_len); 3066 if (ret) { 3067 pr_err("sending cmd response failed for tag %llu\n", 3068 ioctx->cmd.tag); 3069 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3070 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3071 target_put_sess_cmd(&ioctx->cmd); 3072 } 3073 } 3074 3075 static int srpt_queue_data_in(struct se_cmd *cmd) 3076 { 3077 srpt_queue_response(cmd); 3078 return 0; 3079 } 3080 3081 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3082 { 3083 srpt_queue_response(cmd); 3084 } 3085 3086 static void srpt_aborted_task(struct se_cmd *cmd) 3087 { 3088 struct srpt_send_ioctx *ioctx = container_of(cmd, 3089 struct srpt_send_ioctx, cmd); 3090 3091 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3092 } 3093 3094 static int srpt_queue_status(struct se_cmd *cmd) 3095 { 3096 struct srpt_send_ioctx *ioctx; 3097 3098 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3099 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3100 if (cmd->se_cmd_flags & 3101 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3102 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3103 ioctx->queue_status_only = true; 3104 srpt_queue_response(cmd); 3105 return 0; 3106 } 3107 3108 static void srpt_refresh_port_work(struct work_struct *work) 3109 { 3110 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3111 3112 srpt_refresh_port(sport); 3113 } 3114 3115 static int srpt_ch_list_empty(struct srpt_device *sdev) 3116 { 3117 int res; 3118 3119 spin_lock_irq(&sdev->spinlock); 3120 res = list_empty(&sdev->rch_list); 3121 spin_unlock_irq(&sdev->spinlock); 3122 3123 return res; 3124 } 3125 3126 /** 3127 * srpt_release_sdev() - Free the channel resources associated with a target. 3128 */ 3129 static int srpt_release_sdev(struct srpt_device *sdev) 3130 { 3131 struct srpt_rdma_ch *ch, *tmp_ch; 3132 int res; 3133 3134 WARN_ON_ONCE(irqs_disabled()); 3135 3136 BUG_ON(!sdev); 3137 3138 spin_lock_irq(&sdev->spinlock); 3139 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3140 __srpt_close_ch(ch); 3141 spin_unlock_irq(&sdev->spinlock); 3142 3143 res = wait_event_interruptible(sdev->ch_releaseQ, 3144 srpt_ch_list_empty(sdev)); 3145 if (res) 3146 pr_err("%s: interrupted.\n", __func__); 3147 3148 return 0; 3149 } 3150 3151 static struct srpt_port *__srpt_lookup_port(const char *name) 3152 { 3153 struct ib_device *dev; 3154 struct srpt_device *sdev; 3155 struct srpt_port *sport; 3156 int i; 3157 3158 list_for_each_entry(sdev, &srpt_dev_list, list) { 3159 dev = sdev->device; 3160 if (!dev) 3161 continue; 3162 3163 for (i = 0; i < dev->phys_port_cnt; i++) { 3164 sport = &sdev->port[i]; 3165 3166 if (!strcmp(sport->port_guid, name)) 3167 return sport; 3168 } 3169 } 3170 3171 return NULL; 3172 } 3173 3174 static struct srpt_port *srpt_lookup_port(const char *name) 3175 { 3176 struct srpt_port *sport; 3177 3178 spin_lock(&srpt_dev_lock); 3179 sport = __srpt_lookup_port(name); 3180 spin_unlock(&srpt_dev_lock); 3181 3182 return sport; 3183 } 3184 3185 /** 3186 * srpt_add_one() - Infiniband device addition callback function. 3187 */ 3188 static void srpt_add_one(struct ib_device *device) 3189 { 3190 struct srpt_device *sdev; 3191 struct srpt_port *sport; 3192 struct ib_srq_init_attr srq_attr; 3193 int i; 3194 3195 pr_debug("device = %p, device->dma_ops = %p\n", device, 3196 device->dma_ops); 3197 3198 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3199 if (!sdev) 3200 goto err; 3201 3202 sdev->device = device; 3203 INIT_LIST_HEAD(&sdev->rch_list); 3204 init_waitqueue_head(&sdev->ch_releaseQ); 3205 spin_lock_init(&sdev->spinlock); 3206 3207 if (ib_query_device(device, &sdev->dev_attr)) 3208 goto free_dev; 3209 3210 sdev->pd = ib_alloc_pd(device); 3211 if (IS_ERR(sdev->pd)) 3212 goto free_dev; 3213 3214 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3215 3216 srq_attr.event_handler = srpt_srq_event; 3217 srq_attr.srq_context = (void *)sdev; 3218 srq_attr.attr.max_wr = sdev->srq_size; 3219 srq_attr.attr.max_sge = 1; 3220 srq_attr.attr.srq_limit = 0; 3221 srq_attr.srq_type = IB_SRQT_BASIC; 3222 3223 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3224 if (IS_ERR(sdev->srq)) 3225 goto err_pd; 3226 3227 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3228 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3229 device->name); 3230 3231 if (!srpt_service_guid) 3232 srpt_service_guid = be64_to_cpu(device->node_guid); 3233 3234 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3235 if (IS_ERR(sdev->cm_id)) 3236 goto err_srq; 3237 3238 /* print out target login information */ 3239 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3240 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3241 srpt_service_guid, srpt_service_guid); 3242 3243 /* 3244 * We do not have a consistent service_id (ie. also id_ext of target_id) 3245 * to identify this target. We currently use the guid of the first HCA 3246 * in the system as service_id; therefore, the target_id will change 3247 * if this HCA is gone bad and replaced by different HCA 3248 */ 3249 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 3250 goto err_cm; 3251 3252 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3253 srpt_event_handler); 3254 if (ib_register_event_handler(&sdev->event_handler)) 3255 goto err_cm; 3256 3257 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3258 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3259 sizeof(*sdev->ioctx_ring[0]), 3260 srp_max_req_size, DMA_FROM_DEVICE); 3261 if (!sdev->ioctx_ring) 3262 goto err_event; 3263 3264 for (i = 0; i < sdev->srq_size; ++i) 3265 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3266 3267 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3268 3269 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3270 sport = &sdev->port[i - 1]; 3271 sport->sdev = sdev; 3272 sport->port = i; 3273 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3274 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3275 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3276 INIT_WORK(&sport->work, srpt_refresh_port_work); 3277 INIT_LIST_HEAD(&sport->port_acl_list); 3278 spin_lock_init(&sport->port_acl_lock); 3279 3280 if (srpt_refresh_port(sport)) { 3281 pr_err("MAD registration failed for %s-%d.\n", 3282 srpt_sdev_name(sdev), i); 3283 goto err_ring; 3284 } 3285 snprintf(sport->port_guid, sizeof(sport->port_guid), 3286 "0x%016llx%016llx", 3287 be64_to_cpu(sport->gid.global.subnet_prefix), 3288 be64_to_cpu(sport->gid.global.interface_id)); 3289 } 3290 3291 spin_lock(&srpt_dev_lock); 3292 list_add_tail(&sdev->list, &srpt_dev_list); 3293 spin_unlock(&srpt_dev_lock); 3294 3295 out: 3296 ib_set_client_data(device, &srpt_client, sdev); 3297 pr_debug("added %s.\n", device->name); 3298 return; 3299 3300 err_ring: 3301 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3302 sdev->srq_size, srp_max_req_size, 3303 DMA_FROM_DEVICE); 3304 err_event: 3305 ib_unregister_event_handler(&sdev->event_handler); 3306 err_cm: 3307 ib_destroy_cm_id(sdev->cm_id); 3308 err_srq: 3309 ib_destroy_srq(sdev->srq); 3310 err_pd: 3311 ib_dealloc_pd(sdev->pd); 3312 free_dev: 3313 kfree(sdev); 3314 err: 3315 sdev = NULL; 3316 pr_info("%s(%s) failed.\n", __func__, device->name); 3317 goto out; 3318 } 3319 3320 /** 3321 * srpt_remove_one() - InfiniBand device removal callback function. 3322 */ 3323 static void srpt_remove_one(struct ib_device *device, void *client_data) 3324 { 3325 struct srpt_device *sdev = client_data; 3326 int i; 3327 3328 if (!sdev) { 3329 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3330 return; 3331 } 3332 3333 srpt_unregister_mad_agent(sdev); 3334 3335 ib_unregister_event_handler(&sdev->event_handler); 3336 3337 /* Cancel any work queued by the just unregistered IB event handler. */ 3338 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3339 cancel_work_sync(&sdev->port[i].work); 3340 3341 ib_destroy_cm_id(sdev->cm_id); 3342 3343 /* 3344 * Unregistering a target must happen after destroying sdev->cm_id 3345 * such that no new SRP_LOGIN_REQ information units can arrive while 3346 * destroying the target. 3347 */ 3348 spin_lock(&srpt_dev_lock); 3349 list_del(&sdev->list); 3350 spin_unlock(&srpt_dev_lock); 3351 srpt_release_sdev(sdev); 3352 3353 ib_destroy_srq(sdev->srq); 3354 ib_dealloc_pd(sdev->pd); 3355 3356 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3357 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3358 sdev->ioctx_ring = NULL; 3359 kfree(sdev); 3360 } 3361 3362 static struct ib_client srpt_client = { 3363 .name = DRV_NAME, 3364 .add = srpt_add_one, 3365 .remove = srpt_remove_one 3366 }; 3367 3368 static int srpt_check_true(struct se_portal_group *se_tpg) 3369 { 3370 return 1; 3371 } 3372 3373 static int srpt_check_false(struct se_portal_group *se_tpg) 3374 { 3375 return 0; 3376 } 3377 3378 static char *srpt_get_fabric_name(void) 3379 { 3380 return "srpt"; 3381 } 3382 3383 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3384 { 3385 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3386 3387 return sport->port_guid; 3388 } 3389 3390 static u16 srpt_get_tag(struct se_portal_group *tpg) 3391 { 3392 return 1; 3393 } 3394 3395 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3396 { 3397 return 1; 3398 } 3399 3400 static void srpt_release_cmd(struct se_cmd *se_cmd) 3401 { 3402 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3403 struct srpt_send_ioctx, cmd); 3404 struct srpt_rdma_ch *ch = ioctx->ch; 3405 unsigned long flags; 3406 3407 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3408 WARN_ON(ioctx->mapped_sg_count != 0); 3409 3410 if (ioctx->n_rbuf > 1) { 3411 kfree(ioctx->rbufs); 3412 ioctx->rbufs = NULL; 3413 ioctx->n_rbuf = 0; 3414 } 3415 3416 spin_lock_irqsave(&ch->spinlock, flags); 3417 list_add(&ioctx->free_list, &ch->free_list); 3418 spin_unlock_irqrestore(&ch->spinlock, flags); 3419 } 3420 3421 /** 3422 * srpt_close_session() - Forcibly close a session. 3423 * 3424 * Callback function invoked by the TCM core to clean up sessions associated 3425 * with a node ACL when the user invokes 3426 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3427 */ 3428 static void srpt_close_session(struct se_session *se_sess) 3429 { 3430 DECLARE_COMPLETION_ONSTACK(release_done); 3431 struct srpt_rdma_ch *ch; 3432 struct srpt_device *sdev; 3433 unsigned long res; 3434 3435 ch = se_sess->fabric_sess_ptr; 3436 WARN_ON(ch->sess != se_sess); 3437 3438 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3439 3440 sdev = ch->sport->sdev; 3441 spin_lock_irq(&sdev->spinlock); 3442 BUG_ON(ch->release_done); 3443 ch->release_done = &release_done; 3444 __srpt_close_ch(ch); 3445 spin_unlock_irq(&sdev->spinlock); 3446 3447 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3448 WARN_ON(res == 0); 3449 } 3450 3451 /** 3452 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3453 * 3454 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3455 * This object represents an arbitrary integer used to uniquely identify a 3456 * particular attached remote initiator port to a particular SCSI target port 3457 * within a particular SCSI target device within a particular SCSI instance. 3458 */ 3459 static u32 srpt_sess_get_index(struct se_session *se_sess) 3460 { 3461 return 0; 3462 } 3463 3464 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3465 { 3466 } 3467 3468 /* Note: only used from inside debug printk's by the TCM core. */ 3469 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3470 { 3471 struct srpt_send_ioctx *ioctx; 3472 3473 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3474 return srpt_get_cmd_state(ioctx); 3475 } 3476 3477 /** 3478 * srpt_parse_i_port_id() - Parse an initiator port ID. 3479 * @name: ASCII representation of a 128-bit initiator port ID. 3480 * @i_port_id: Binary 128-bit port ID. 3481 */ 3482 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3483 { 3484 const char *p; 3485 unsigned len, count, leading_zero_bytes; 3486 int ret, rc; 3487 3488 p = name; 3489 if (strncasecmp(p, "0x", 2) == 0) 3490 p += 2; 3491 ret = -EINVAL; 3492 len = strlen(p); 3493 if (len % 2) 3494 goto out; 3495 count = min(len / 2, 16U); 3496 leading_zero_bytes = 16 - count; 3497 memset(i_port_id, 0, leading_zero_bytes); 3498 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3499 if (rc < 0) 3500 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3501 ret = 0; 3502 out: 3503 return ret; 3504 } 3505 3506 /* 3507 * configfs callback function invoked for 3508 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3509 */ 3510 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3511 { 3512 struct srpt_port *sport = 3513 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1); 3514 struct srpt_node_acl *nacl = 3515 container_of(se_nacl, struct srpt_node_acl, nacl); 3516 u8 i_port_id[16]; 3517 3518 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3519 pr_err("invalid initiator port ID %s\n", name); 3520 return -EINVAL; 3521 } 3522 3523 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3524 nacl->sport = sport; 3525 3526 spin_lock_irq(&sport->port_acl_lock); 3527 list_add_tail(&nacl->list, &sport->port_acl_list); 3528 spin_unlock_irq(&sport->port_acl_lock); 3529 3530 return 0; 3531 } 3532 3533 /* 3534 * configfs callback function invoked for 3535 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3536 */ 3537 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl) 3538 { 3539 struct srpt_node_acl *nacl = 3540 container_of(se_nacl, struct srpt_node_acl, nacl); 3541 struct srpt_port *sport = nacl->sport; 3542 3543 spin_lock_irq(&sport->port_acl_lock); 3544 list_del(&nacl->list); 3545 spin_unlock_irq(&sport->port_acl_lock); 3546 } 3547 3548 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3549 struct se_portal_group *se_tpg, 3550 char *page) 3551 { 3552 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3553 3554 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3555 } 3556 3557 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3558 struct se_portal_group *se_tpg, 3559 const char *page, 3560 size_t count) 3561 { 3562 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3563 unsigned long val; 3564 int ret; 3565 3566 ret = kstrtoul(page, 0, &val); 3567 if (ret < 0) { 3568 pr_err("kstrtoul() failed with ret: %d\n", ret); 3569 return -EINVAL; 3570 } 3571 if (val > MAX_SRPT_RDMA_SIZE) { 3572 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3573 MAX_SRPT_RDMA_SIZE); 3574 return -EINVAL; 3575 } 3576 if (val < DEFAULT_MAX_RDMA_SIZE) { 3577 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3578 val, DEFAULT_MAX_RDMA_SIZE); 3579 return -EINVAL; 3580 } 3581 sport->port_attrib.srp_max_rdma_size = val; 3582 3583 return count; 3584 } 3585 3586 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3587 3588 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3589 struct se_portal_group *se_tpg, 3590 char *page) 3591 { 3592 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3593 3594 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3595 } 3596 3597 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3598 struct se_portal_group *se_tpg, 3599 const char *page, 3600 size_t count) 3601 { 3602 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3603 unsigned long val; 3604 int ret; 3605 3606 ret = kstrtoul(page, 0, &val); 3607 if (ret < 0) { 3608 pr_err("kstrtoul() failed with ret: %d\n", ret); 3609 return -EINVAL; 3610 } 3611 if (val > MAX_SRPT_RSP_SIZE) { 3612 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3613 MAX_SRPT_RSP_SIZE); 3614 return -EINVAL; 3615 } 3616 if (val < MIN_MAX_RSP_SIZE) { 3617 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3618 MIN_MAX_RSP_SIZE); 3619 return -EINVAL; 3620 } 3621 sport->port_attrib.srp_max_rsp_size = val; 3622 3623 return count; 3624 } 3625 3626 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3627 3628 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3629 struct se_portal_group *se_tpg, 3630 char *page) 3631 { 3632 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3633 3634 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3635 } 3636 3637 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3638 struct se_portal_group *se_tpg, 3639 const char *page, 3640 size_t count) 3641 { 3642 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3643 unsigned long val; 3644 int ret; 3645 3646 ret = kstrtoul(page, 0, &val); 3647 if (ret < 0) { 3648 pr_err("kstrtoul() failed with ret: %d\n", ret); 3649 return -EINVAL; 3650 } 3651 if (val > MAX_SRPT_SRQ_SIZE) { 3652 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3653 MAX_SRPT_SRQ_SIZE); 3654 return -EINVAL; 3655 } 3656 if (val < MIN_SRPT_SRQ_SIZE) { 3657 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3658 MIN_SRPT_SRQ_SIZE); 3659 return -EINVAL; 3660 } 3661 sport->port_attrib.srp_sq_size = val; 3662 3663 return count; 3664 } 3665 3666 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3667 3668 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3669 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3670 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3671 &srpt_tpg_attrib_srp_sq_size.attr, 3672 NULL, 3673 }; 3674 3675 static ssize_t srpt_tpg_show_enable( 3676 struct se_portal_group *se_tpg, 3677 char *page) 3678 { 3679 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3680 3681 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3682 } 3683 3684 static ssize_t srpt_tpg_store_enable( 3685 struct se_portal_group *se_tpg, 3686 const char *page, 3687 size_t count) 3688 { 3689 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3690 unsigned long tmp; 3691 int ret; 3692 3693 ret = kstrtoul(page, 0, &tmp); 3694 if (ret < 0) { 3695 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3696 return -EINVAL; 3697 } 3698 3699 if ((tmp != 0) && (tmp != 1)) { 3700 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3701 return -EINVAL; 3702 } 3703 if (tmp == 1) 3704 sport->enabled = true; 3705 else 3706 sport->enabled = false; 3707 3708 return count; 3709 } 3710 3711 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3712 3713 static struct configfs_attribute *srpt_tpg_attrs[] = { 3714 &srpt_tpg_enable.attr, 3715 NULL, 3716 }; 3717 3718 /** 3719 * configfs callback invoked for 3720 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3721 */ 3722 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3723 struct config_group *group, 3724 const char *name) 3725 { 3726 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3727 int res; 3728 3729 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3730 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 3731 if (res) 3732 return ERR_PTR(res); 3733 3734 return &sport->port_tpg_1; 3735 } 3736 3737 /** 3738 * configfs callback invoked for 3739 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3740 */ 3741 static void srpt_drop_tpg(struct se_portal_group *tpg) 3742 { 3743 struct srpt_port *sport = container_of(tpg, 3744 struct srpt_port, port_tpg_1); 3745 3746 sport->enabled = false; 3747 core_tpg_deregister(&sport->port_tpg_1); 3748 } 3749 3750 /** 3751 * configfs callback invoked for 3752 * mkdir /sys/kernel/config/target/$driver/$port 3753 */ 3754 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3755 struct config_group *group, 3756 const char *name) 3757 { 3758 struct srpt_port *sport; 3759 int ret; 3760 3761 sport = srpt_lookup_port(name); 3762 pr_debug("make_tport(%s)\n", name); 3763 ret = -EINVAL; 3764 if (!sport) 3765 goto err; 3766 3767 return &sport->port_wwn; 3768 3769 err: 3770 return ERR_PTR(ret); 3771 } 3772 3773 /** 3774 * configfs callback invoked for 3775 * rmdir /sys/kernel/config/target/$driver/$port 3776 */ 3777 static void srpt_drop_tport(struct se_wwn *wwn) 3778 { 3779 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3780 3781 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3782 } 3783 3784 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3785 char *buf) 3786 { 3787 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3788 } 3789 3790 TF_WWN_ATTR_RO(srpt, version); 3791 3792 static struct configfs_attribute *srpt_wwn_attrs[] = { 3793 &srpt_wwn_version.attr, 3794 NULL, 3795 }; 3796 3797 static const struct target_core_fabric_ops srpt_template = { 3798 .module = THIS_MODULE, 3799 .name = "srpt", 3800 .node_acl_size = sizeof(struct srpt_node_acl), 3801 .get_fabric_name = srpt_get_fabric_name, 3802 .tpg_get_wwn = srpt_get_fabric_wwn, 3803 .tpg_get_tag = srpt_get_tag, 3804 .tpg_check_demo_mode = srpt_check_false, 3805 .tpg_check_demo_mode_cache = srpt_check_true, 3806 .tpg_check_demo_mode_write_protect = srpt_check_true, 3807 .tpg_check_prod_mode_write_protect = srpt_check_false, 3808 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3809 .release_cmd = srpt_release_cmd, 3810 .check_stop_free = srpt_check_stop_free, 3811 .shutdown_session = srpt_shutdown_session, 3812 .close_session = srpt_close_session, 3813 .sess_get_index = srpt_sess_get_index, 3814 .sess_get_initiator_sid = NULL, 3815 .write_pending = srpt_write_pending, 3816 .write_pending_status = srpt_write_pending_status, 3817 .set_default_node_attributes = srpt_set_default_node_attrs, 3818 .get_cmd_state = srpt_get_tcm_cmd_state, 3819 .queue_data_in = srpt_queue_data_in, 3820 .queue_status = srpt_queue_status, 3821 .queue_tm_rsp = srpt_queue_tm_rsp, 3822 .aborted_task = srpt_aborted_task, 3823 /* 3824 * Setup function pointers for generic logic in 3825 * target_core_fabric_configfs.c 3826 */ 3827 .fabric_make_wwn = srpt_make_tport, 3828 .fabric_drop_wwn = srpt_drop_tport, 3829 .fabric_make_tpg = srpt_make_tpg, 3830 .fabric_drop_tpg = srpt_drop_tpg, 3831 .fabric_init_nodeacl = srpt_init_nodeacl, 3832 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl, 3833 3834 .tfc_wwn_attrs = srpt_wwn_attrs, 3835 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3836 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3837 }; 3838 3839 /** 3840 * srpt_init_module() - Kernel module initialization. 3841 * 3842 * Note: Since ib_register_client() registers callback functions, and since at 3843 * least one of these callback functions (srpt_add_one()) calls target core 3844 * functions, this driver must be registered with the target core before 3845 * ib_register_client() is called. 3846 */ 3847 static int __init srpt_init_module(void) 3848 { 3849 int ret; 3850 3851 ret = -EINVAL; 3852 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3853 pr_err("invalid value %d for kernel module parameter" 3854 " srp_max_req_size -- must be at least %d.\n", 3855 srp_max_req_size, MIN_MAX_REQ_SIZE); 3856 goto out; 3857 } 3858 3859 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3860 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3861 pr_err("invalid value %d for kernel module parameter" 3862 " srpt_srq_size -- must be in the range [%d..%d].\n", 3863 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3864 goto out; 3865 } 3866 3867 ret = target_register_template(&srpt_template); 3868 if (ret) 3869 goto out; 3870 3871 ret = ib_register_client(&srpt_client); 3872 if (ret) { 3873 pr_err("couldn't register IB client\n"); 3874 goto out_unregister_target; 3875 } 3876 3877 return 0; 3878 3879 out_unregister_target: 3880 target_unregister_template(&srpt_template); 3881 out: 3882 return ret; 3883 } 3884 3885 static void __exit srpt_cleanup_module(void) 3886 { 3887 ib_unregister_client(&srpt_client); 3888 target_unregister_template(&srpt_template); 3889 } 3890 3891 module_init(srpt_init_module); 3892 module_exit(srpt_cleanup_module); 3893