1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static spinlock_t srpt_dev_lock; /* Protects srpt_dev_list. */ 73 static struct list_head srpt_dev_list; /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 printk(KERN_ERR "received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 printk(KERN_INFO "SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 printk(KERN_ERR "received unrecognized IB QP event %d\n", 245 event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 printk(KERN_ERR "disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 out: 691 return ring; 692 } 693 694 /** 695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 696 */ 697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 698 struct srpt_device *sdev, int ring_size, 699 int dma_size, enum dma_data_direction dir) 700 { 701 int i; 702 703 for (i = 0; i < ring_size; ++i) 704 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 705 kfree(ioctx_ring); 706 } 707 708 /** 709 * srpt_get_cmd_state() - Get the state of a SCSI command. 710 */ 711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 712 { 713 enum srpt_command_state state; 714 unsigned long flags; 715 716 BUG_ON(!ioctx); 717 718 spin_lock_irqsave(&ioctx->spinlock, flags); 719 state = ioctx->state; 720 spin_unlock_irqrestore(&ioctx->spinlock, flags); 721 return state; 722 } 723 724 /** 725 * srpt_set_cmd_state() - Set the state of a SCSI command. 726 * 727 * Does not modify the state of aborted commands. Returns the previous command 728 * state. 729 */ 730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 731 enum srpt_command_state new) 732 { 733 enum srpt_command_state previous; 734 unsigned long flags; 735 736 BUG_ON(!ioctx); 737 738 spin_lock_irqsave(&ioctx->spinlock, flags); 739 previous = ioctx->state; 740 if (previous != SRPT_STATE_DONE) 741 ioctx->state = new; 742 spin_unlock_irqrestore(&ioctx->spinlock, flags); 743 744 return previous; 745 } 746 747 /** 748 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 749 * 750 * Returns true if and only if the previous command state was equal to 'old'. 751 */ 752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 753 enum srpt_command_state old, 754 enum srpt_command_state new) 755 { 756 enum srpt_command_state previous; 757 unsigned long flags; 758 759 WARN_ON(!ioctx); 760 WARN_ON(old == SRPT_STATE_DONE); 761 WARN_ON(new == SRPT_STATE_NEW); 762 763 spin_lock_irqsave(&ioctx->spinlock, flags); 764 previous = ioctx->state; 765 if (previous == old) 766 ioctx->state = new; 767 spin_unlock_irqrestore(&ioctx->spinlock, flags); 768 return previous == old; 769 } 770 771 /** 772 * srpt_post_recv() - Post an IB receive request. 773 */ 774 static int srpt_post_recv(struct srpt_device *sdev, 775 struct srpt_recv_ioctx *ioctx) 776 { 777 struct ib_sge list; 778 struct ib_recv_wr wr, *bad_wr; 779 780 BUG_ON(!sdev); 781 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 782 783 list.addr = ioctx->ioctx.dma; 784 list.length = srp_max_req_size; 785 list.lkey = sdev->mr->lkey; 786 787 wr.next = NULL; 788 wr.sg_list = &list; 789 wr.num_sge = 1; 790 791 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 792 } 793 794 /** 795 * srpt_post_send() - Post an IB send request. 796 * 797 * Returns zero upon success and a non-zero value upon failure. 798 */ 799 static int srpt_post_send(struct srpt_rdma_ch *ch, 800 struct srpt_send_ioctx *ioctx, int len) 801 { 802 struct ib_sge list; 803 struct ib_send_wr wr, *bad_wr; 804 struct srpt_device *sdev = ch->sport->sdev; 805 int ret; 806 807 atomic_inc(&ch->req_lim); 808 809 ret = -ENOMEM; 810 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 811 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 812 goto out; 813 } 814 815 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 816 DMA_TO_DEVICE); 817 818 list.addr = ioctx->ioctx.dma; 819 list.length = len; 820 list.lkey = sdev->mr->lkey; 821 822 wr.next = NULL; 823 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 824 wr.sg_list = &list; 825 wr.num_sge = 1; 826 wr.opcode = IB_WR_SEND; 827 wr.send_flags = IB_SEND_SIGNALED; 828 829 ret = ib_post_send(ch->qp, &wr, &bad_wr); 830 831 out: 832 if (ret < 0) { 833 atomic_inc(&ch->sq_wr_avail); 834 atomic_dec(&ch->req_lim); 835 } 836 return ret; 837 } 838 839 /** 840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 841 * @ioctx: Pointer to the I/O context associated with the request. 842 * @srp_cmd: Pointer to the SRP_CMD request data. 843 * @dir: Pointer to the variable to which the transfer direction will be 844 * written. 845 * @data_len: Pointer to the variable to which the total data length of all 846 * descriptors in the SRP_CMD request will be written. 847 * 848 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 849 * 850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 851 * -ENOMEM when memory allocation fails and zero upon success. 852 */ 853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 854 struct srp_cmd *srp_cmd, 855 enum dma_data_direction *dir, u64 *data_len) 856 { 857 struct srp_indirect_buf *idb; 858 struct srp_direct_buf *db; 859 unsigned add_cdb_offset; 860 int ret; 861 862 /* 863 * The pointer computations below will only be compiled correctly 864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 865 * whether srp_cmd::add_data has been declared as a byte pointer. 866 */ 867 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 868 && !__same_type(srp_cmd->add_data[0], (u8)0)); 869 870 BUG_ON(!dir); 871 BUG_ON(!data_len); 872 873 ret = 0; 874 *data_len = 0; 875 876 /* 877 * The lower four bits of the buffer format field contain the DATA-IN 878 * buffer descriptor format, and the highest four bits contain the 879 * DATA-OUT buffer descriptor format. 880 */ 881 *dir = DMA_NONE; 882 if (srp_cmd->buf_fmt & 0xf) 883 /* DATA-IN: transfer data from target to initiator (read). */ 884 *dir = DMA_FROM_DEVICE; 885 else if (srp_cmd->buf_fmt >> 4) 886 /* DATA-OUT: transfer data from initiator to target (write). */ 887 *dir = DMA_TO_DEVICE; 888 889 /* 890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 891 * CDB LENGTH' field are reserved and the size in bytes of this field 892 * is four times the value specified in bits 3..7. Hence the "& ~3". 893 */ 894 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 895 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 896 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 897 ioctx->n_rbuf = 1; 898 ioctx->rbufs = &ioctx->single_rbuf; 899 900 db = (struct srp_direct_buf *)(srp_cmd->add_data 901 + add_cdb_offset); 902 memcpy(ioctx->rbufs, db, sizeof *db); 903 *data_len = be32_to_cpu(db->len); 904 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 905 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 906 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 907 + add_cdb_offset); 908 909 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 910 911 if (ioctx->n_rbuf > 912 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 913 printk(KERN_ERR "received unsupported SRP_CMD request" 914 " type (%u out + %u in != %u / %zu)\n", 915 srp_cmd->data_out_desc_cnt, 916 srp_cmd->data_in_desc_cnt, 917 be32_to_cpu(idb->table_desc.len), 918 sizeof(*db)); 919 ioctx->n_rbuf = 0; 920 ret = -EINVAL; 921 goto out; 922 } 923 924 if (ioctx->n_rbuf == 1) 925 ioctx->rbufs = &ioctx->single_rbuf; 926 else { 927 ioctx->rbufs = 928 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 929 if (!ioctx->rbufs) { 930 ioctx->n_rbuf = 0; 931 ret = -ENOMEM; 932 goto out; 933 } 934 } 935 936 db = idb->desc_list; 937 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 938 *data_len = be32_to_cpu(idb->len); 939 } 940 out: 941 return ret; 942 } 943 944 /** 945 * srpt_init_ch_qp() - Initialize queue pair attributes. 946 * 947 * Initialized the attributes of queue pair 'qp' by allowing local write, 948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 949 */ 950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 951 { 952 struct ib_qp_attr *attr; 953 int ret; 954 955 attr = kzalloc(sizeof *attr, GFP_KERNEL); 956 if (!attr) 957 return -ENOMEM; 958 959 attr->qp_state = IB_QPS_INIT; 960 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 961 IB_ACCESS_REMOTE_WRITE; 962 attr->port_num = ch->sport->port; 963 attr->pkey_index = 0; 964 965 ret = ib_modify_qp(qp, attr, 966 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 967 IB_QP_PKEY_INDEX); 968 969 kfree(attr); 970 return ret; 971 } 972 973 /** 974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 975 * @ch: channel of the queue pair. 976 * @qp: queue pair to change the state of. 977 * 978 * Returns zero upon success and a negative value upon failure. 979 * 980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 981 * If this structure ever becomes larger, it might be necessary to allocate 982 * it dynamically instead of on the stack. 983 */ 984 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 985 { 986 struct ib_qp_attr qp_attr; 987 int attr_mask; 988 int ret; 989 990 qp_attr.qp_state = IB_QPS_RTR; 991 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 992 if (ret) 993 goto out; 994 995 qp_attr.max_dest_rd_atomic = 4; 996 997 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 998 999 out: 1000 return ret; 1001 } 1002 1003 /** 1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1005 * @ch: channel of the queue pair. 1006 * @qp: queue pair to change the state of. 1007 * 1008 * Returns zero upon success and a negative value upon failure. 1009 * 1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1011 * If this structure ever becomes larger, it might be necessary to allocate 1012 * it dynamically instead of on the stack. 1013 */ 1014 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1015 { 1016 struct ib_qp_attr qp_attr; 1017 int attr_mask; 1018 int ret; 1019 1020 qp_attr.qp_state = IB_QPS_RTS; 1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1022 if (ret) 1023 goto out; 1024 1025 qp_attr.max_rd_atomic = 4; 1026 1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1028 1029 out: 1030 return ret; 1031 } 1032 1033 /** 1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1035 */ 1036 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1037 { 1038 struct ib_qp_attr qp_attr; 1039 1040 qp_attr.qp_state = IB_QPS_ERR; 1041 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1042 } 1043 1044 /** 1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1046 */ 1047 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1048 struct srpt_send_ioctx *ioctx) 1049 { 1050 struct scatterlist *sg; 1051 enum dma_data_direction dir; 1052 1053 BUG_ON(!ch); 1054 BUG_ON(!ioctx); 1055 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1056 1057 while (ioctx->n_rdma) 1058 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1059 1060 kfree(ioctx->rdma_ius); 1061 ioctx->rdma_ius = NULL; 1062 1063 if (ioctx->mapped_sg_count) { 1064 sg = ioctx->sg; 1065 WARN_ON(!sg); 1066 dir = ioctx->cmd.data_direction; 1067 BUG_ON(dir == DMA_NONE); 1068 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1069 opposite_dma_dir(dir)); 1070 ioctx->mapped_sg_count = 0; 1071 } 1072 } 1073 1074 /** 1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1076 */ 1077 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1078 struct srpt_send_ioctx *ioctx) 1079 { 1080 struct se_cmd *cmd; 1081 struct scatterlist *sg, *sg_orig; 1082 int sg_cnt; 1083 enum dma_data_direction dir; 1084 struct rdma_iu *riu; 1085 struct srp_direct_buf *db; 1086 dma_addr_t dma_addr; 1087 struct ib_sge *sge; 1088 u64 raddr; 1089 u32 rsize; 1090 u32 tsize; 1091 u32 dma_len; 1092 int count, nrdma; 1093 int i, j, k; 1094 1095 BUG_ON(!ch); 1096 BUG_ON(!ioctx); 1097 cmd = &ioctx->cmd; 1098 dir = cmd->data_direction; 1099 BUG_ON(dir == DMA_NONE); 1100 1101 transport_do_task_sg_chain(cmd); 1102 ioctx->sg = sg = sg_orig = cmd->t_tasks_sg_chained; 1103 ioctx->sg_cnt = sg_cnt = cmd->t_tasks_sg_chained_no; 1104 1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1106 opposite_dma_dir(dir)); 1107 if (unlikely(!count)) 1108 return -EAGAIN; 1109 1110 ioctx->mapped_sg_count = count; 1111 1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1113 nrdma = ioctx->n_rdma_ius; 1114 else { 1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1116 + ioctx->n_rbuf; 1117 1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1119 if (!ioctx->rdma_ius) 1120 goto free_mem; 1121 1122 ioctx->n_rdma_ius = nrdma; 1123 } 1124 1125 db = ioctx->rbufs; 1126 tsize = cmd->data_length; 1127 dma_len = sg_dma_len(&sg[0]); 1128 riu = ioctx->rdma_ius; 1129 1130 /* 1131 * For each remote desc - calculate the #ib_sge. 1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1133 * each remote desc rdma_iu is required a rdma wr; 1134 * else 1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1136 * another rdma wr 1137 */ 1138 for (i = 0, j = 0; 1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1140 rsize = be32_to_cpu(db->len); 1141 raddr = be64_to_cpu(db->va); 1142 riu->raddr = raddr; 1143 riu->rkey = be32_to_cpu(db->key); 1144 riu->sge_cnt = 0; 1145 1146 /* calculate how many sge required for this remote_buf */ 1147 while (rsize > 0 && tsize > 0) { 1148 1149 if (rsize >= dma_len) { 1150 tsize -= dma_len; 1151 rsize -= dma_len; 1152 raddr += dma_len; 1153 1154 if (tsize > 0) { 1155 ++j; 1156 if (j < count) { 1157 sg = sg_next(sg); 1158 dma_len = sg_dma_len(sg); 1159 } 1160 } 1161 } else { 1162 tsize -= rsize; 1163 dma_len -= rsize; 1164 rsize = 0; 1165 } 1166 1167 ++riu->sge_cnt; 1168 1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1170 ++ioctx->n_rdma; 1171 riu->sge = 1172 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1173 GFP_KERNEL); 1174 if (!riu->sge) 1175 goto free_mem; 1176 1177 ++riu; 1178 riu->sge_cnt = 0; 1179 riu->raddr = raddr; 1180 riu->rkey = be32_to_cpu(db->key); 1181 } 1182 } 1183 1184 ++ioctx->n_rdma; 1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1186 GFP_KERNEL); 1187 if (!riu->sge) 1188 goto free_mem; 1189 } 1190 1191 db = ioctx->rbufs; 1192 tsize = cmd->data_length; 1193 riu = ioctx->rdma_ius; 1194 sg = sg_orig; 1195 dma_len = sg_dma_len(&sg[0]); 1196 dma_addr = sg_dma_address(&sg[0]); 1197 1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1199 for (i = 0, j = 0; 1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1201 rsize = be32_to_cpu(db->len); 1202 sge = riu->sge; 1203 k = 0; 1204 1205 while (rsize > 0 && tsize > 0) { 1206 sge->addr = dma_addr; 1207 sge->lkey = ch->sport->sdev->mr->lkey; 1208 1209 if (rsize >= dma_len) { 1210 sge->length = 1211 (tsize < dma_len) ? tsize : dma_len; 1212 tsize -= dma_len; 1213 rsize -= dma_len; 1214 1215 if (tsize > 0) { 1216 ++j; 1217 if (j < count) { 1218 sg = sg_next(sg); 1219 dma_len = sg_dma_len(sg); 1220 dma_addr = sg_dma_address(sg); 1221 } 1222 } 1223 } else { 1224 sge->length = (tsize < rsize) ? tsize : rsize; 1225 tsize -= rsize; 1226 dma_len -= rsize; 1227 dma_addr += rsize; 1228 rsize = 0; 1229 } 1230 1231 ++k; 1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1233 ++riu; 1234 sge = riu->sge; 1235 k = 0; 1236 } else if (rsize > 0 && tsize > 0) 1237 ++sge; 1238 } 1239 } 1240 1241 return 0; 1242 1243 free_mem: 1244 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1245 1246 return -ENOMEM; 1247 } 1248 1249 /** 1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1251 */ 1252 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1253 { 1254 struct srpt_send_ioctx *ioctx; 1255 unsigned long flags; 1256 1257 BUG_ON(!ch); 1258 1259 ioctx = NULL; 1260 spin_lock_irqsave(&ch->spinlock, flags); 1261 if (!list_empty(&ch->free_list)) { 1262 ioctx = list_first_entry(&ch->free_list, 1263 struct srpt_send_ioctx, free_list); 1264 list_del(&ioctx->free_list); 1265 } 1266 spin_unlock_irqrestore(&ch->spinlock, flags); 1267 1268 if (!ioctx) 1269 return ioctx; 1270 1271 BUG_ON(ioctx->ch != ch); 1272 kref_init(&ioctx->kref); 1273 spin_lock_init(&ioctx->spinlock); 1274 ioctx->state = SRPT_STATE_NEW; 1275 ioctx->n_rbuf = 0; 1276 ioctx->rbufs = NULL; 1277 ioctx->n_rdma = 0; 1278 ioctx->n_rdma_ius = 0; 1279 ioctx->rdma_ius = NULL; 1280 ioctx->mapped_sg_count = 0; 1281 init_completion(&ioctx->tx_done); 1282 ioctx->queue_status_only = false; 1283 /* 1284 * transport_init_se_cmd() does not initialize all fields, so do it 1285 * here. 1286 */ 1287 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1288 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1289 1290 return ioctx; 1291 } 1292 1293 /** 1294 * srpt_put_send_ioctx() - Free up resources. 1295 */ 1296 static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx) 1297 { 1298 struct srpt_rdma_ch *ch; 1299 unsigned long flags; 1300 1301 BUG_ON(!ioctx); 1302 ch = ioctx->ch; 1303 BUG_ON(!ch); 1304 1305 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE); 1306 1307 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1308 transport_generic_free_cmd(&ioctx->cmd, 0); 1309 1310 if (ioctx->n_rbuf > 1) { 1311 kfree(ioctx->rbufs); 1312 ioctx->rbufs = NULL; 1313 ioctx->n_rbuf = 0; 1314 } 1315 1316 spin_lock_irqsave(&ch->spinlock, flags); 1317 list_add(&ioctx->free_list, &ch->free_list); 1318 spin_unlock_irqrestore(&ch->spinlock, flags); 1319 } 1320 1321 static void srpt_put_send_ioctx_kref(struct kref *kref) 1322 { 1323 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref)); 1324 } 1325 1326 /** 1327 * srpt_abort_cmd() - Abort a SCSI command. 1328 * @ioctx: I/O context associated with the SCSI command. 1329 * @context: Preferred execution context. 1330 */ 1331 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1332 { 1333 enum srpt_command_state state; 1334 unsigned long flags; 1335 1336 BUG_ON(!ioctx); 1337 1338 /* 1339 * If the command is in a state where the target core is waiting for 1340 * the ib_srpt driver, change the state to the next state. Changing 1341 * the state of the command from SRPT_STATE_NEED_DATA to 1342 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1343 * function a second time. 1344 */ 1345 1346 spin_lock_irqsave(&ioctx->spinlock, flags); 1347 state = ioctx->state; 1348 switch (state) { 1349 case SRPT_STATE_NEED_DATA: 1350 ioctx->state = SRPT_STATE_DATA_IN; 1351 break; 1352 case SRPT_STATE_DATA_IN: 1353 case SRPT_STATE_CMD_RSP_SENT: 1354 case SRPT_STATE_MGMT_RSP_SENT: 1355 ioctx->state = SRPT_STATE_DONE; 1356 break; 1357 default: 1358 break; 1359 } 1360 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1361 1362 if (state == SRPT_STATE_DONE) 1363 goto out; 1364 1365 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1366 ioctx->tag); 1367 1368 switch (state) { 1369 case SRPT_STATE_NEW: 1370 case SRPT_STATE_DATA_IN: 1371 case SRPT_STATE_MGMT: 1372 /* 1373 * Do nothing - defer abort processing until 1374 * srpt_queue_response() is invoked. 1375 */ 1376 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1377 break; 1378 case SRPT_STATE_NEED_DATA: 1379 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1380 atomic_set(&ioctx->cmd.transport_lun_stop, 1); 1381 transport_generic_handle_data(&ioctx->cmd); 1382 break; 1383 case SRPT_STATE_CMD_RSP_SENT: 1384 /* 1385 * SRP_RSP sending failed or the SRP_RSP send completion has 1386 * not been received in time. 1387 */ 1388 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1389 atomic_set(&ioctx->cmd.transport_lun_stop, 1); 1390 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1391 break; 1392 case SRPT_STATE_MGMT_RSP_SENT: 1393 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1394 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1395 break; 1396 default: 1397 WARN_ON("ERROR: unexpected command state"); 1398 break; 1399 } 1400 1401 out: 1402 return state; 1403 } 1404 1405 /** 1406 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1407 */ 1408 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1409 { 1410 struct srpt_send_ioctx *ioctx; 1411 enum srpt_command_state state; 1412 struct se_cmd *cmd; 1413 u32 index; 1414 1415 atomic_inc(&ch->sq_wr_avail); 1416 1417 index = idx_from_wr_id(wr_id); 1418 ioctx = ch->ioctx_ring[index]; 1419 state = srpt_get_cmd_state(ioctx); 1420 cmd = &ioctx->cmd; 1421 1422 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1423 && state != SRPT_STATE_MGMT_RSP_SENT 1424 && state != SRPT_STATE_NEED_DATA 1425 && state != SRPT_STATE_DONE); 1426 1427 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1428 if (state == SRPT_STATE_CMD_RSP_SENT 1429 || state == SRPT_STATE_MGMT_RSP_SENT) 1430 atomic_dec(&ch->req_lim); 1431 1432 srpt_abort_cmd(ioctx); 1433 } 1434 1435 /** 1436 * srpt_handle_send_comp() - Process an IB send completion notification. 1437 */ 1438 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1439 struct srpt_send_ioctx *ioctx) 1440 { 1441 enum srpt_command_state state; 1442 1443 atomic_inc(&ch->sq_wr_avail); 1444 1445 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1446 1447 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1448 && state != SRPT_STATE_MGMT_RSP_SENT 1449 && state != SRPT_STATE_DONE)) 1450 pr_debug("state = %d\n", state); 1451 1452 if (state != SRPT_STATE_DONE) 1453 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1454 else 1455 printk(KERN_ERR "IB completion has been received too late for" 1456 " wr_id = %u.\n", ioctx->ioctx.index); 1457 } 1458 1459 /** 1460 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1461 * 1462 * Note: transport_generic_handle_data() is asynchronous so unmapping the 1463 * data that has been transferred via IB RDMA must be postponed until the 1464 * check_stop_free() callback. 1465 */ 1466 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1467 struct srpt_send_ioctx *ioctx, 1468 enum srpt_opcode opcode) 1469 { 1470 WARN_ON(ioctx->n_rdma <= 0); 1471 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1472 1473 if (opcode == SRPT_RDMA_READ_LAST) { 1474 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1475 SRPT_STATE_DATA_IN)) 1476 transport_generic_handle_data(&ioctx->cmd); 1477 else 1478 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1479 __LINE__, srpt_get_cmd_state(ioctx)); 1480 } else if (opcode == SRPT_RDMA_ABORT) { 1481 ioctx->rdma_aborted = true; 1482 } else { 1483 WARN(true, "unexpected opcode %d\n", opcode); 1484 } 1485 } 1486 1487 /** 1488 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1489 */ 1490 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1491 struct srpt_send_ioctx *ioctx, 1492 enum srpt_opcode opcode) 1493 { 1494 struct se_cmd *cmd; 1495 enum srpt_command_state state; 1496 1497 cmd = &ioctx->cmd; 1498 state = srpt_get_cmd_state(ioctx); 1499 switch (opcode) { 1500 case SRPT_RDMA_READ_LAST: 1501 if (ioctx->n_rdma <= 0) { 1502 printk(KERN_ERR "Received invalid RDMA read" 1503 " error completion with idx %d\n", 1504 ioctx->ioctx.index); 1505 break; 1506 } 1507 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1508 if (state == SRPT_STATE_NEED_DATA) 1509 srpt_abort_cmd(ioctx); 1510 else 1511 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1512 __func__, __LINE__, state); 1513 break; 1514 case SRPT_RDMA_WRITE_LAST: 1515 atomic_set(&ioctx->cmd.transport_lun_stop, 1); 1516 break; 1517 default: 1518 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1519 __LINE__, opcode); 1520 break; 1521 } 1522 } 1523 1524 /** 1525 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1526 * @ch: RDMA channel through which the request has been received. 1527 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1528 * be built in the buffer ioctx->buf points at and hence this function will 1529 * overwrite the request data. 1530 * @tag: tag of the request for which this response is being generated. 1531 * @status: value for the STATUS field of the SRP_RSP information unit. 1532 * 1533 * Returns the size in bytes of the SRP_RSP response. 1534 * 1535 * An SRP_RSP response contains a SCSI status or service response. See also 1536 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1537 * response. See also SPC-2 for more information about sense data. 1538 */ 1539 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1540 struct srpt_send_ioctx *ioctx, u64 tag, 1541 int status) 1542 { 1543 struct srp_rsp *srp_rsp; 1544 const u8 *sense_data; 1545 int sense_data_len, max_sense_len; 1546 1547 /* 1548 * The lowest bit of all SAM-3 status codes is zero (see also 1549 * paragraph 5.3 in SAM-3). 1550 */ 1551 WARN_ON(status & 1); 1552 1553 srp_rsp = ioctx->ioctx.buf; 1554 BUG_ON(!srp_rsp); 1555 1556 sense_data = ioctx->sense_data; 1557 sense_data_len = ioctx->cmd.scsi_sense_length; 1558 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1559 1560 memset(srp_rsp, 0, sizeof *srp_rsp); 1561 srp_rsp->opcode = SRP_RSP; 1562 srp_rsp->req_lim_delta = 1563 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1564 srp_rsp->tag = tag; 1565 srp_rsp->status = status; 1566 1567 if (sense_data_len) { 1568 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1569 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1570 if (sense_data_len > max_sense_len) { 1571 printk(KERN_WARNING "truncated sense data from %d to %d" 1572 " bytes\n", sense_data_len, max_sense_len); 1573 sense_data_len = max_sense_len; 1574 } 1575 1576 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1577 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1578 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1579 } 1580 1581 return sizeof(*srp_rsp) + sense_data_len; 1582 } 1583 1584 /** 1585 * srpt_build_tskmgmt_rsp() - Build a task management response. 1586 * @ch: RDMA channel through which the request has been received. 1587 * @ioctx: I/O context in which the SRP_RSP response will be built. 1588 * @rsp_code: RSP_CODE that will be stored in the response. 1589 * @tag: Tag of the request for which this response is being generated. 1590 * 1591 * Returns the size in bytes of the SRP_RSP response. 1592 * 1593 * An SRP_RSP response contains a SCSI status or service response. See also 1594 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1595 * response. 1596 */ 1597 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1598 struct srpt_send_ioctx *ioctx, 1599 u8 rsp_code, u64 tag) 1600 { 1601 struct srp_rsp *srp_rsp; 1602 int resp_data_len; 1603 int resp_len; 1604 1605 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4; 1606 resp_len = sizeof(*srp_rsp) + resp_data_len; 1607 1608 srp_rsp = ioctx->ioctx.buf; 1609 BUG_ON(!srp_rsp); 1610 memset(srp_rsp, 0, sizeof *srp_rsp); 1611 1612 srp_rsp->opcode = SRP_RSP; 1613 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1614 + atomic_xchg(&ch->req_lim_delta, 0)); 1615 srp_rsp->tag = tag; 1616 1617 if (rsp_code != SRP_TSK_MGMT_SUCCESS) { 1618 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1619 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1620 srp_rsp->data[3] = rsp_code; 1621 } 1622 1623 return resp_len; 1624 } 1625 1626 #define NO_SUCH_LUN ((uint64_t)-1LL) 1627 1628 /* 1629 * SCSI LUN addressing method. See also SAM-2 and the section about 1630 * eight byte LUNs. 1631 */ 1632 enum scsi_lun_addr_method { 1633 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1634 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1635 SCSI_LUN_ADDR_METHOD_LUN = 2, 1636 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1637 }; 1638 1639 /* 1640 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1641 * 1642 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1643 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1644 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1645 */ 1646 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1647 { 1648 uint64_t res = NO_SUCH_LUN; 1649 int addressing_method; 1650 1651 if (unlikely(len < 2)) { 1652 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1653 "more", len); 1654 goto out; 1655 } 1656 1657 switch (len) { 1658 case 8: 1659 if ((*((__be64 *)lun) & 1660 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1661 goto out_err; 1662 break; 1663 case 4: 1664 if (*((__be16 *)&lun[2]) != 0) 1665 goto out_err; 1666 break; 1667 case 6: 1668 if (*((__be32 *)&lun[2]) != 0) 1669 goto out_err; 1670 break; 1671 case 2: 1672 break; 1673 default: 1674 goto out_err; 1675 } 1676 1677 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1678 switch (addressing_method) { 1679 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1680 case SCSI_LUN_ADDR_METHOD_FLAT: 1681 case SCSI_LUN_ADDR_METHOD_LUN: 1682 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1683 break; 1684 1685 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1686 default: 1687 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1688 addressing_method); 1689 break; 1690 } 1691 1692 out: 1693 return res; 1694 1695 out_err: 1696 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1697 " implemented"); 1698 goto out; 1699 } 1700 1701 static int srpt_check_stop_free(struct se_cmd *cmd) 1702 { 1703 struct srpt_send_ioctx *ioctx; 1704 1705 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 1706 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1707 } 1708 1709 /** 1710 * srpt_handle_cmd() - Process SRP_CMD. 1711 */ 1712 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1713 struct srpt_recv_ioctx *recv_ioctx, 1714 struct srpt_send_ioctx *send_ioctx) 1715 { 1716 struct se_cmd *cmd; 1717 struct srp_cmd *srp_cmd; 1718 uint64_t unpacked_lun; 1719 u64 data_len; 1720 enum dma_data_direction dir; 1721 int ret; 1722 1723 BUG_ON(!send_ioctx); 1724 1725 srp_cmd = recv_ioctx->ioctx.buf; 1726 kref_get(&send_ioctx->kref); 1727 cmd = &send_ioctx->cmd; 1728 send_ioctx->tag = srp_cmd->tag; 1729 1730 switch (srp_cmd->task_attr) { 1731 case SRP_CMD_SIMPLE_Q: 1732 cmd->sam_task_attr = MSG_SIMPLE_TAG; 1733 break; 1734 case SRP_CMD_ORDERED_Q: 1735 default: 1736 cmd->sam_task_attr = MSG_ORDERED_TAG; 1737 break; 1738 case SRP_CMD_HEAD_OF_Q: 1739 cmd->sam_task_attr = MSG_HEAD_TAG; 1740 break; 1741 case SRP_CMD_ACA: 1742 cmd->sam_task_attr = MSG_ACA_TAG; 1743 break; 1744 } 1745 1746 ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len); 1747 if (ret) { 1748 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1749 srp_cmd->tag); 1750 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1751 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1752 goto send_sense; 1753 } 1754 1755 cmd->data_length = data_len; 1756 cmd->data_direction = dir; 1757 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1758 sizeof(srp_cmd->lun)); 1759 if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) 1760 goto send_sense; 1761 ret = transport_generic_allocate_tasks(cmd, srp_cmd->cdb); 1762 if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) 1763 srpt_queue_status(cmd); 1764 else if (cmd->se_cmd_flags & SCF_SCSI_CDB_EXCEPTION) 1765 goto send_sense; 1766 else 1767 WARN_ON_ONCE(ret); 1768 1769 transport_handle_cdb_direct(cmd); 1770 return 0; 1771 1772 send_sense: 1773 transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason, 1774 0); 1775 return -1; 1776 } 1777 1778 /** 1779 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1780 * @ch: RDMA channel of the task management request. 1781 * @fn: Task management function to perform. 1782 * @req_tag: Tag of the SRP task management request. 1783 * @mgmt_ioctx: I/O context of the task management request. 1784 * 1785 * Returns zero if the target core will process the task management 1786 * request asynchronously. 1787 * 1788 * Note: It is assumed that the initiator serializes tag-based task management 1789 * requests. 1790 */ 1791 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1792 { 1793 struct srpt_device *sdev; 1794 struct srpt_rdma_ch *ch; 1795 struct srpt_send_ioctx *target; 1796 int ret, i; 1797 1798 ret = -EINVAL; 1799 ch = ioctx->ch; 1800 BUG_ON(!ch); 1801 BUG_ON(!ch->sport); 1802 sdev = ch->sport->sdev; 1803 BUG_ON(!sdev); 1804 spin_lock_irq(&sdev->spinlock); 1805 for (i = 0; i < ch->rq_size; ++i) { 1806 target = ch->ioctx_ring[i]; 1807 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1808 target->tag == tag && 1809 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1810 ret = 0; 1811 /* now let the target core abort &target->cmd; */ 1812 break; 1813 } 1814 } 1815 spin_unlock_irq(&sdev->spinlock); 1816 return ret; 1817 } 1818 1819 static int srp_tmr_to_tcm(int fn) 1820 { 1821 switch (fn) { 1822 case SRP_TSK_ABORT_TASK: 1823 return TMR_ABORT_TASK; 1824 case SRP_TSK_ABORT_TASK_SET: 1825 return TMR_ABORT_TASK_SET; 1826 case SRP_TSK_CLEAR_TASK_SET: 1827 return TMR_CLEAR_TASK_SET; 1828 case SRP_TSK_LUN_RESET: 1829 return TMR_LUN_RESET; 1830 case SRP_TSK_CLEAR_ACA: 1831 return TMR_CLEAR_ACA; 1832 default: 1833 return -1; 1834 } 1835 } 1836 1837 /** 1838 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1839 * 1840 * Returns 0 if and only if the request will be processed by the target core. 1841 * 1842 * For more information about SRP_TSK_MGMT information units, see also section 1843 * 6.7 in the SRP r16a document. 1844 */ 1845 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1846 struct srpt_recv_ioctx *recv_ioctx, 1847 struct srpt_send_ioctx *send_ioctx) 1848 { 1849 struct srp_tsk_mgmt *srp_tsk; 1850 struct se_cmd *cmd; 1851 uint64_t unpacked_lun; 1852 int tcm_tmr; 1853 int res; 1854 1855 BUG_ON(!send_ioctx); 1856 1857 srp_tsk = recv_ioctx->ioctx.buf; 1858 cmd = &send_ioctx->cmd; 1859 1860 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1861 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1862 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1863 1864 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1865 send_ioctx->tag = srp_tsk->tag; 1866 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1867 if (tcm_tmr < 0) { 1868 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1869 send_ioctx->cmd.se_tmr_req->response = 1870 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1871 goto process_tmr; 1872 } 1873 cmd->se_tmr_req = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL); 1874 if (!cmd->se_tmr_req) { 1875 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1876 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1877 goto process_tmr; 1878 } 1879 1880 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1881 sizeof(srp_tsk->lun)); 1882 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun); 1883 if (res) { 1884 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun); 1885 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1886 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1887 goto process_tmr; 1888 } 1889 1890 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) 1891 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1892 1893 process_tmr: 1894 kref_get(&send_ioctx->kref); 1895 if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION)) 1896 transport_generic_handle_tmr(&send_ioctx->cmd); 1897 else 1898 transport_send_check_condition_and_sense(cmd, 1899 cmd->scsi_sense_reason, 0); 1900 1901 } 1902 1903 /** 1904 * srpt_handle_new_iu() - Process a newly received information unit. 1905 * @ch: RDMA channel through which the information unit has been received. 1906 * @ioctx: SRPT I/O context associated with the information unit. 1907 */ 1908 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1909 struct srpt_recv_ioctx *recv_ioctx, 1910 struct srpt_send_ioctx *send_ioctx) 1911 { 1912 struct srp_cmd *srp_cmd; 1913 enum rdma_ch_state ch_state; 1914 1915 BUG_ON(!ch); 1916 BUG_ON(!recv_ioctx); 1917 1918 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1919 recv_ioctx->ioctx.dma, srp_max_req_size, 1920 DMA_FROM_DEVICE); 1921 1922 ch_state = srpt_get_ch_state(ch); 1923 if (unlikely(ch_state == CH_CONNECTING)) { 1924 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1925 goto out; 1926 } 1927 1928 if (unlikely(ch_state != CH_LIVE)) 1929 goto out; 1930 1931 srp_cmd = recv_ioctx->ioctx.buf; 1932 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1933 if (!send_ioctx) 1934 send_ioctx = srpt_get_send_ioctx(ch); 1935 if (unlikely(!send_ioctx)) { 1936 list_add_tail(&recv_ioctx->wait_list, 1937 &ch->cmd_wait_list); 1938 goto out; 1939 } 1940 } 1941 1942 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess, 1943 0, DMA_NONE, MSG_SIMPLE_TAG, 1944 send_ioctx->sense_data); 1945 1946 switch (srp_cmd->opcode) { 1947 case SRP_CMD: 1948 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1949 break; 1950 case SRP_TSK_MGMT: 1951 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1952 break; 1953 case SRP_I_LOGOUT: 1954 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1955 break; 1956 case SRP_CRED_RSP: 1957 pr_debug("received SRP_CRED_RSP\n"); 1958 break; 1959 case SRP_AER_RSP: 1960 pr_debug("received SRP_AER_RSP\n"); 1961 break; 1962 case SRP_RSP: 1963 printk(KERN_ERR "Received SRP_RSP\n"); 1964 break; 1965 default: 1966 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1967 srp_cmd->opcode); 1968 break; 1969 } 1970 1971 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1972 out: 1973 return; 1974 } 1975 1976 static void srpt_process_rcv_completion(struct ib_cq *cq, 1977 struct srpt_rdma_ch *ch, 1978 struct ib_wc *wc) 1979 { 1980 struct srpt_device *sdev = ch->sport->sdev; 1981 struct srpt_recv_ioctx *ioctx; 1982 u32 index; 1983 1984 index = idx_from_wr_id(wc->wr_id); 1985 if (wc->status == IB_WC_SUCCESS) { 1986 int req_lim; 1987 1988 req_lim = atomic_dec_return(&ch->req_lim); 1989 if (unlikely(req_lim < 0)) 1990 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 1991 ioctx = sdev->ioctx_ring[index]; 1992 srpt_handle_new_iu(ch, ioctx, NULL); 1993 } else { 1994 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 1995 index, wc->status); 1996 } 1997 } 1998 1999 /** 2000 * srpt_process_send_completion() - Process an IB send completion. 2001 * 2002 * Note: Although this has not yet been observed during tests, at least in 2003 * theory it is possible that the srpt_get_send_ioctx() call invoked by 2004 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 2005 * value in each response is set to one, and it is possible that this response 2006 * makes the initiator send a new request before the send completion for that 2007 * response has been processed. This could e.g. happen if the call to 2008 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 2009 * if IB retransmission causes generation of the send completion to be 2010 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 2011 * are queued on cmd_wait_list. The code below processes these delayed 2012 * requests one at a time. 2013 */ 2014 static void srpt_process_send_completion(struct ib_cq *cq, 2015 struct srpt_rdma_ch *ch, 2016 struct ib_wc *wc) 2017 { 2018 struct srpt_send_ioctx *send_ioctx; 2019 uint32_t index; 2020 enum srpt_opcode opcode; 2021 2022 index = idx_from_wr_id(wc->wr_id); 2023 opcode = opcode_from_wr_id(wc->wr_id); 2024 send_ioctx = ch->ioctx_ring[index]; 2025 if (wc->status == IB_WC_SUCCESS) { 2026 if (opcode == SRPT_SEND) 2027 srpt_handle_send_comp(ch, send_ioctx); 2028 else { 2029 WARN_ON(opcode != SRPT_RDMA_ABORT && 2030 wc->opcode != IB_WC_RDMA_READ); 2031 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 2032 } 2033 } else { 2034 if (opcode == SRPT_SEND) { 2035 printk(KERN_INFO "sending response for idx %u failed" 2036 " with status %d\n", index, wc->status); 2037 srpt_handle_send_err_comp(ch, wc->wr_id); 2038 } else if (opcode != SRPT_RDMA_MID) { 2039 printk(KERN_INFO "RDMA t %d for idx %u failed with" 2040 " status %d", opcode, index, wc->status); 2041 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2042 } 2043 } 2044 2045 while (unlikely(opcode == SRPT_SEND 2046 && !list_empty(&ch->cmd_wait_list) 2047 && srpt_get_ch_state(ch) == CH_LIVE 2048 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2049 struct srpt_recv_ioctx *recv_ioctx; 2050 2051 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2052 struct srpt_recv_ioctx, 2053 wait_list); 2054 list_del(&recv_ioctx->wait_list); 2055 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2056 } 2057 } 2058 2059 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2060 { 2061 struct ib_wc *const wc = ch->wc; 2062 int i, n; 2063 2064 WARN_ON(cq != ch->cq); 2065 2066 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2067 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2068 for (i = 0; i < n; i++) { 2069 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2070 srpt_process_rcv_completion(cq, ch, &wc[i]); 2071 else 2072 srpt_process_send_completion(cq, ch, &wc[i]); 2073 } 2074 } 2075 } 2076 2077 /** 2078 * srpt_completion() - IB completion queue callback function. 2079 * 2080 * Notes: 2081 * - It is guaranteed that a completion handler will never be invoked 2082 * concurrently on two different CPUs for the same completion queue. See also 2083 * Documentation/infiniband/core_locking.txt and the implementation of 2084 * handle_edge_irq() in kernel/irq/chip.c. 2085 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2086 * context instead of interrupt context. 2087 */ 2088 static void srpt_completion(struct ib_cq *cq, void *ctx) 2089 { 2090 struct srpt_rdma_ch *ch = ctx; 2091 2092 wake_up_interruptible(&ch->wait_queue); 2093 } 2094 2095 static int srpt_compl_thread(void *arg) 2096 { 2097 struct srpt_rdma_ch *ch; 2098 2099 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2100 current->flags |= PF_NOFREEZE; 2101 2102 ch = arg; 2103 BUG_ON(!ch); 2104 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2105 ch->sess_name, ch->thread->comm, current->pid); 2106 while (!kthread_should_stop()) { 2107 wait_event_interruptible(ch->wait_queue, 2108 (srpt_process_completion(ch->cq, ch), 2109 kthread_should_stop())); 2110 } 2111 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2112 ch->sess_name, ch->thread->comm, current->pid); 2113 return 0; 2114 } 2115 2116 /** 2117 * srpt_create_ch_ib() - Create receive and send completion queues. 2118 */ 2119 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2120 { 2121 struct ib_qp_init_attr *qp_init; 2122 struct srpt_port *sport = ch->sport; 2123 struct srpt_device *sdev = sport->sdev; 2124 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2125 int ret; 2126 2127 WARN_ON(ch->rq_size < 1); 2128 2129 ret = -ENOMEM; 2130 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2131 if (!qp_init) 2132 goto out; 2133 2134 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2135 ch->rq_size + srp_sq_size, 0); 2136 if (IS_ERR(ch->cq)) { 2137 ret = PTR_ERR(ch->cq); 2138 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2139 ch->rq_size + srp_sq_size, ret); 2140 goto out; 2141 } 2142 2143 qp_init->qp_context = (void *)ch; 2144 qp_init->event_handler 2145 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2146 qp_init->send_cq = ch->cq; 2147 qp_init->recv_cq = ch->cq; 2148 qp_init->srq = sdev->srq; 2149 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2150 qp_init->qp_type = IB_QPT_RC; 2151 qp_init->cap.max_send_wr = srp_sq_size; 2152 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2153 2154 ch->qp = ib_create_qp(sdev->pd, qp_init); 2155 if (IS_ERR(ch->qp)) { 2156 ret = PTR_ERR(ch->qp); 2157 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2158 goto err_destroy_cq; 2159 } 2160 2161 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2162 2163 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2164 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2165 qp_init->cap.max_send_wr, ch->cm_id); 2166 2167 ret = srpt_init_ch_qp(ch, ch->qp); 2168 if (ret) 2169 goto err_destroy_qp; 2170 2171 init_waitqueue_head(&ch->wait_queue); 2172 2173 pr_debug("creating thread for session %s\n", ch->sess_name); 2174 2175 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2176 if (IS_ERR(ch->thread)) { 2177 printk(KERN_ERR "failed to create kernel thread %ld\n", 2178 PTR_ERR(ch->thread)); 2179 ch->thread = NULL; 2180 goto err_destroy_qp; 2181 } 2182 2183 out: 2184 kfree(qp_init); 2185 return ret; 2186 2187 err_destroy_qp: 2188 ib_destroy_qp(ch->qp); 2189 err_destroy_cq: 2190 ib_destroy_cq(ch->cq); 2191 goto out; 2192 } 2193 2194 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2195 { 2196 if (ch->thread) 2197 kthread_stop(ch->thread); 2198 2199 ib_destroy_qp(ch->qp); 2200 ib_destroy_cq(ch->cq); 2201 } 2202 2203 /** 2204 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2205 * 2206 * Reset the QP and make sure all resources associated with the channel will 2207 * be deallocated at an appropriate time. 2208 * 2209 * Note: The caller must hold ch->sport->sdev->spinlock. 2210 */ 2211 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2212 { 2213 struct srpt_device *sdev; 2214 enum rdma_ch_state prev_state; 2215 unsigned long flags; 2216 2217 sdev = ch->sport->sdev; 2218 2219 spin_lock_irqsave(&ch->spinlock, flags); 2220 prev_state = ch->state; 2221 switch (prev_state) { 2222 case CH_CONNECTING: 2223 case CH_LIVE: 2224 ch->state = CH_DISCONNECTING; 2225 break; 2226 default: 2227 break; 2228 } 2229 spin_unlock_irqrestore(&ch->spinlock, flags); 2230 2231 switch (prev_state) { 2232 case CH_CONNECTING: 2233 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2234 NULL, 0); 2235 /* fall through */ 2236 case CH_LIVE: 2237 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2238 printk(KERN_ERR "sending CM DREQ failed.\n"); 2239 break; 2240 case CH_DISCONNECTING: 2241 break; 2242 case CH_DRAINING: 2243 case CH_RELEASING: 2244 break; 2245 } 2246 } 2247 2248 /** 2249 * srpt_close_ch() - Close an RDMA channel. 2250 */ 2251 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2252 { 2253 struct srpt_device *sdev; 2254 2255 sdev = ch->sport->sdev; 2256 spin_lock_irq(&sdev->spinlock); 2257 __srpt_close_ch(ch); 2258 spin_unlock_irq(&sdev->spinlock); 2259 } 2260 2261 /** 2262 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2263 * @cm_id: Pointer to the CM ID of the channel to be drained. 2264 * 2265 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2266 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2267 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2268 * waits until all target sessions for the associated IB device have been 2269 * unregistered and target session registration involves a call to 2270 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2271 * this function has finished). 2272 */ 2273 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2274 { 2275 struct srpt_device *sdev; 2276 struct srpt_rdma_ch *ch; 2277 int ret; 2278 bool do_reset = false; 2279 2280 WARN_ON_ONCE(irqs_disabled()); 2281 2282 sdev = cm_id->context; 2283 BUG_ON(!sdev); 2284 spin_lock_irq(&sdev->spinlock); 2285 list_for_each_entry(ch, &sdev->rch_list, list) { 2286 if (ch->cm_id == cm_id) { 2287 do_reset = srpt_test_and_set_ch_state(ch, 2288 CH_CONNECTING, CH_DRAINING) || 2289 srpt_test_and_set_ch_state(ch, 2290 CH_LIVE, CH_DRAINING) || 2291 srpt_test_and_set_ch_state(ch, 2292 CH_DISCONNECTING, CH_DRAINING); 2293 break; 2294 } 2295 } 2296 spin_unlock_irq(&sdev->spinlock); 2297 2298 if (do_reset) { 2299 ret = srpt_ch_qp_err(ch); 2300 if (ret < 0) 2301 printk(KERN_ERR "Setting queue pair in error state" 2302 " failed: %d\n", ret); 2303 } 2304 } 2305 2306 /** 2307 * srpt_find_channel() - Look up an RDMA channel. 2308 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2309 * 2310 * Return NULL if no matching RDMA channel has been found. 2311 */ 2312 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2313 struct ib_cm_id *cm_id) 2314 { 2315 struct srpt_rdma_ch *ch; 2316 bool found; 2317 2318 WARN_ON_ONCE(irqs_disabled()); 2319 BUG_ON(!sdev); 2320 2321 found = false; 2322 spin_lock_irq(&sdev->spinlock); 2323 list_for_each_entry(ch, &sdev->rch_list, list) { 2324 if (ch->cm_id == cm_id) { 2325 found = true; 2326 break; 2327 } 2328 } 2329 spin_unlock_irq(&sdev->spinlock); 2330 2331 return found ? ch : NULL; 2332 } 2333 2334 /** 2335 * srpt_release_channel() - Release channel resources. 2336 * 2337 * Schedules the actual release because: 2338 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2339 * trigger a deadlock. 2340 * - It is not safe to call TCM transport_* functions from interrupt context. 2341 */ 2342 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2343 { 2344 schedule_work(&ch->release_work); 2345 } 2346 2347 static void srpt_release_channel_work(struct work_struct *w) 2348 { 2349 struct srpt_rdma_ch *ch; 2350 struct srpt_device *sdev; 2351 2352 ch = container_of(w, struct srpt_rdma_ch, release_work); 2353 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2354 ch->release_done); 2355 2356 sdev = ch->sport->sdev; 2357 BUG_ON(!sdev); 2358 2359 transport_deregister_session_configfs(ch->sess); 2360 transport_deregister_session(ch->sess); 2361 ch->sess = NULL; 2362 2363 srpt_destroy_ch_ib(ch); 2364 2365 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2366 ch->sport->sdev, ch->rq_size, 2367 ch->rsp_size, DMA_TO_DEVICE); 2368 2369 spin_lock_irq(&sdev->spinlock); 2370 list_del(&ch->list); 2371 spin_unlock_irq(&sdev->spinlock); 2372 2373 ib_destroy_cm_id(ch->cm_id); 2374 2375 if (ch->release_done) 2376 complete(ch->release_done); 2377 2378 wake_up(&sdev->ch_releaseQ); 2379 2380 kfree(ch); 2381 } 2382 2383 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2384 u8 i_port_id[16]) 2385 { 2386 struct srpt_node_acl *nacl; 2387 2388 list_for_each_entry(nacl, &sport->port_acl_list, list) 2389 if (memcmp(nacl->i_port_id, i_port_id, 2390 sizeof(nacl->i_port_id)) == 0) 2391 return nacl; 2392 2393 return NULL; 2394 } 2395 2396 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2397 u8 i_port_id[16]) 2398 { 2399 struct srpt_node_acl *nacl; 2400 2401 spin_lock_irq(&sport->port_acl_lock); 2402 nacl = __srpt_lookup_acl(sport, i_port_id); 2403 spin_unlock_irq(&sport->port_acl_lock); 2404 2405 return nacl; 2406 } 2407 2408 /** 2409 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2410 * 2411 * Ownership of the cm_id is transferred to the target session if this 2412 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2413 */ 2414 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2415 struct ib_cm_req_event_param *param, 2416 void *private_data) 2417 { 2418 struct srpt_device *sdev = cm_id->context; 2419 struct srpt_port *sport = &sdev->port[param->port - 1]; 2420 struct srp_login_req *req; 2421 struct srp_login_rsp *rsp; 2422 struct srp_login_rej *rej; 2423 struct ib_cm_rep_param *rep_param; 2424 struct srpt_rdma_ch *ch, *tmp_ch; 2425 struct srpt_node_acl *nacl; 2426 u32 it_iu_len; 2427 int i; 2428 int ret = 0; 2429 2430 WARN_ON_ONCE(irqs_disabled()); 2431 2432 if (WARN_ON(!sdev || !private_data)) 2433 return -EINVAL; 2434 2435 req = (struct srp_login_req *)private_data; 2436 2437 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2438 2439 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2440 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2441 " (guid=0x%llx:0x%llx)\n", 2442 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2443 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2444 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2445 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2446 it_iu_len, 2447 param->port, 2448 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2449 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2450 2451 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2452 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2453 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2454 2455 if (!rsp || !rej || !rep_param) { 2456 ret = -ENOMEM; 2457 goto out; 2458 } 2459 2460 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2461 rej->reason = __constant_cpu_to_be32( 2462 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2463 ret = -EINVAL; 2464 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2465 " length (%d bytes) is out of range (%d .. %d)\n", 2466 it_iu_len, 64, srp_max_req_size); 2467 goto reject; 2468 } 2469 2470 if (!sport->enabled) { 2471 rej->reason = __constant_cpu_to_be32( 2472 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2473 ret = -EINVAL; 2474 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2475 " has not yet been enabled\n"); 2476 goto reject; 2477 } 2478 2479 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2480 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2481 2482 spin_lock_irq(&sdev->spinlock); 2483 2484 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2485 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2486 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2487 && param->port == ch->sport->port 2488 && param->listen_id == ch->sport->sdev->cm_id 2489 && ch->cm_id) { 2490 enum rdma_ch_state ch_state; 2491 2492 ch_state = srpt_get_ch_state(ch); 2493 if (ch_state != CH_CONNECTING 2494 && ch_state != CH_LIVE) 2495 continue; 2496 2497 /* found an existing channel */ 2498 pr_debug("Found existing channel %s" 2499 " cm_id= %p state= %d\n", 2500 ch->sess_name, ch->cm_id, ch_state); 2501 2502 __srpt_close_ch(ch); 2503 2504 rsp->rsp_flags = 2505 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2506 } 2507 } 2508 2509 spin_unlock_irq(&sdev->spinlock); 2510 2511 } else 2512 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2513 2514 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2515 || *(__be64 *)(req->target_port_id + 8) != 2516 cpu_to_be64(srpt_service_guid)) { 2517 rej->reason = __constant_cpu_to_be32( 2518 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2519 ret = -ENOMEM; 2520 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2521 " has an invalid target port identifier.\n"); 2522 goto reject; 2523 } 2524 2525 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2526 if (!ch) { 2527 rej->reason = __constant_cpu_to_be32( 2528 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2529 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2530 ret = -ENOMEM; 2531 goto reject; 2532 } 2533 2534 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2535 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2536 memcpy(ch->t_port_id, req->target_port_id, 16); 2537 ch->sport = &sdev->port[param->port - 1]; 2538 ch->cm_id = cm_id; 2539 /* 2540 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2541 * for the SRP protocol to the command queue size. 2542 */ 2543 ch->rq_size = SRPT_RQ_SIZE; 2544 spin_lock_init(&ch->spinlock); 2545 ch->state = CH_CONNECTING; 2546 INIT_LIST_HEAD(&ch->cmd_wait_list); 2547 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2548 2549 ch->ioctx_ring = (struct srpt_send_ioctx **) 2550 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2551 sizeof(*ch->ioctx_ring[0]), 2552 ch->rsp_size, DMA_TO_DEVICE); 2553 if (!ch->ioctx_ring) 2554 goto free_ch; 2555 2556 INIT_LIST_HEAD(&ch->free_list); 2557 for (i = 0; i < ch->rq_size; i++) { 2558 ch->ioctx_ring[i]->ch = ch; 2559 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2560 } 2561 2562 ret = srpt_create_ch_ib(ch); 2563 if (ret) { 2564 rej->reason = __constant_cpu_to_be32( 2565 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2566 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2567 " a new RDMA channel failed.\n"); 2568 goto free_ring; 2569 } 2570 2571 ret = srpt_ch_qp_rtr(ch, ch->qp); 2572 if (ret) { 2573 rej->reason = __constant_cpu_to_be32( 2574 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2575 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2576 " RTR failed (error code = %d)\n", ret); 2577 goto destroy_ib; 2578 } 2579 /* 2580 * Use the initator port identifier as the session name. 2581 */ 2582 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2583 be64_to_cpu(*(__be64 *)ch->i_port_id), 2584 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2585 2586 pr_debug("registering session %s\n", ch->sess_name); 2587 2588 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2589 if (!nacl) { 2590 printk(KERN_INFO "Rejected login because no ACL has been" 2591 " configured yet for initiator %s.\n", ch->sess_name); 2592 rej->reason = __constant_cpu_to_be32( 2593 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2594 goto destroy_ib; 2595 } 2596 2597 ch->sess = transport_init_session(); 2598 if (!ch->sess) { 2599 rej->reason = __constant_cpu_to_be32( 2600 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2601 pr_debug("Failed to create session\n"); 2602 goto deregister_session; 2603 } 2604 ch->sess->se_node_acl = &nacl->nacl; 2605 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2606 2607 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2608 ch->sess_name, ch->cm_id); 2609 2610 /* create srp_login_response */ 2611 rsp->opcode = SRP_LOGIN_RSP; 2612 rsp->tag = req->tag; 2613 rsp->max_it_iu_len = req->req_it_iu_len; 2614 rsp->max_ti_iu_len = req->req_it_iu_len; 2615 ch->max_ti_iu_len = it_iu_len; 2616 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2617 | SRP_BUF_FORMAT_INDIRECT); 2618 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2619 atomic_set(&ch->req_lim, ch->rq_size); 2620 atomic_set(&ch->req_lim_delta, 0); 2621 2622 /* create cm reply */ 2623 rep_param->qp_num = ch->qp->qp_num; 2624 rep_param->private_data = (void *)rsp; 2625 rep_param->private_data_len = sizeof *rsp; 2626 rep_param->rnr_retry_count = 7; 2627 rep_param->flow_control = 1; 2628 rep_param->failover_accepted = 0; 2629 rep_param->srq = 1; 2630 rep_param->responder_resources = 4; 2631 rep_param->initiator_depth = 4; 2632 2633 ret = ib_send_cm_rep(cm_id, rep_param); 2634 if (ret) { 2635 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2636 " (error code = %d)\n", ret); 2637 goto release_channel; 2638 } 2639 2640 spin_lock_irq(&sdev->spinlock); 2641 list_add_tail(&ch->list, &sdev->rch_list); 2642 spin_unlock_irq(&sdev->spinlock); 2643 2644 goto out; 2645 2646 release_channel: 2647 srpt_set_ch_state(ch, CH_RELEASING); 2648 transport_deregister_session_configfs(ch->sess); 2649 2650 deregister_session: 2651 transport_deregister_session(ch->sess); 2652 ch->sess = NULL; 2653 2654 destroy_ib: 2655 srpt_destroy_ch_ib(ch); 2656 2657 free_ring: 2658 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2659 ch->sport->sdev, ch->rq_size, 2660 ch->rsp_size, DMA_TO_DEVICE); 2661 free_ch: 2662 kfree(ch); 2663 2664 reject: 2665 rej->opcode = SRP_LOGIN_REJ; 2666 rej->tag = req->tag; 2667 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2668 | SRP_BUF_FORMAT_INDIRECT); 2669 2670 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2671 (void *)rej, sizeof *rej); 2672 2673 out: 2674 kfree(rep_param); 2675 kfree(rsp); 2676 kfree(rej); 2677 2678 return ret; 2679 } 2680 2681 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2682 { 2683 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2684 srpt_drain_channel(cm_id); 2685 } 2686 2687 /** 2688 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2689 * 2690 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2691 * and that the recipient may begin transmitting (RTU = ready to use). 2692 */ 2693 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2694 { 2695 struct srpt_rdma_ch *ch; 2696 int ret; 2697 2698 ch = srpt_find_channel(cm_id->context, cm_id); 2699 BUG_ON(!ch); 2700 2701 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2702 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2703 2704 ret = srpt_ch_qp_rts(ch, ch->qp); 2705 2706 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2707 wait_list) { 2708 list_del(&ioctx->wait_list); 2709 srpt_handle_new_iu(ch, ioctx, NULL); 2710 } 2711 if (ret) 2712 srpt_close_ch(ch); 2713 } 2714 } 2715 2716 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2717 { 2718 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2719 srpt_drain_channel(cm_id); 2720 } 2721 2722 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2723 { 2724 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2725 srpt_drain_channel(cm_id); 2726 } 2727 2728 /** 2729 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2730 */ 2731 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2732 { 2733 struct srpt_rdma_ch *ch; 2734 unsigned long flags; 2735 bool send_drep = false; 2736 2737 ch = srpt_find_channel(cm_id->context, cm_id); 2738 BUG_ON(!ch); 2739 2740 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2741 2742 spin_lock_irqsave(&ch->spinlock, flags); 2743 switch (ch->state) { 2744 case CH_CONNECTING: 2745 case CH_LIVE: 2746 send_drep = true; 2747 ch->state = CH_DISCONNECTING; 2748 break; 2749 case CH_DISCONNECTING: 2750 case CH_DRAINING: 2751 case CH_RELEASING: 2752 WARN(true, "unexpected channel state %d\n", ch->state); 2753 break; 2754 } 2755 spin_unlock_irqrestore(&ch->spinlock, flags); 2756 2757 if (send_drep) { 2758 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2759 printk(KERN_ERR "Sending IB DREP failed.\n"); 2760 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2761 ch->sess_name); 2762 } 2763 } 2764 2765 /** 2766 * srpt_cm_drep_recv() - Process reception of a DREP message. 2767 */ 2768 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2769 { 2770 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2771 cm_id); 2772 srpt_drain_channel(cm_id); 2773 } 2774 2775 /** 2776 * srpt_cm_handler() - IB connection manager callback function. 2777 * 2778 * A non-zero return value will cause the caller destroy the CM ID. 2779 * 2780 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2781 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2782 * a non-zero value in any other case will trigger a race with the 2783 * ib_destroy_cm_id() call in srpt_release_channel(). 2784 */ 2785 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2786 { 2787 int ret; 2788 2789 ret = 0; 2790 switch (event->event) { 2791 case IB_CM_REQ_RECEIVED: 2792 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2793 event->private_data); 2794 break; 2795 case IB_CM_REJ_RECEIVED: 2796 srpt_cm_rej_recv(cm_id); 2797 break; 2798 case IB_CM_RTU_RECEIVED: 2799 case IB_CM_USER_ESTABLISHED: 2800 srpt_cm_rtu_recv(cm_id); 2801 break; 2802 case IB_CM_DREQ_RECEIVED: 2803 srpt_cm_dreq_recv(cm_id); 2804 break; 2805 case IB_CM_DREP_RECEIVED: 2806 srpt_cm_drep_recv(cm_id); 2807 break; 2808 case IB_CM_TIMEWAIT_EXIT: 2809 srpt_cm_timewait_exit(cm_id); 2810 break; 2811 case IB_CM_REP_ERROR: 2812 srpt_cm_rep_error(cm_id); 2813 break; 2814 case IB_CM_DREQ_ERROR: 2815 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2816 break; 2817 case IB_CM_MRA_RECEIVED: 2818 printk(KERN_INFO "Received IB MRA event\n"); 2819 break; 2820 default: 2821 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2822 event->event); 2823 break; 2824 } 2825 2826 return ret; 2827 } 2828 2829 /** 2830 * srpt_perform_rdmas() - Perform IB RDMA. 2831 * 2832 * Returns zero upon success or a negative number upon failure. 2833 */ 2834 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2835 struct srpt_send_ioctx *ioctx) 2836 { 2837 struct ib_send_wr wr; 2838 struct ib_send_wr *bad_wr; 2839 struct rdma_iu *riu; 2840 int i; 2841 int ret; 2842 int sq_wr_avail; 2843 enum dma_data_direction dir; 2844 const int n_rdma = ioctx->n_rdma; 2845 2846 dir = ioctx->cmd.data_direction; 2847 if (dir == DMA_TO_DEVICE) { 2848 /* write */ 2849 ret = -ENOMEM; 2850 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2851 if (sq_wr_avail < 0) { 2852 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2853 n_rdma); 2854 goto out; 2855 } 2856 } 2857 2858 ioctx->rdma_aborted = false; 2859 ret = 0; 2860 riu = ioctx->rdma_ius; 2861 memset(&wr, 0, sizeof wr); 2862 2863 for (i = 0; i < n_rdma; ++i, ++riu) { 2864 if (dir == DMA_FROM_DEVICE) { 2865 wr.opcode = IB_WR_RDMA_WRITE; 2866 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2867 SRPT_RDMA_WRITE_LAST : 2868 SRPT_RDMA_MID, 2869 ioctx->ioctx.index); 2870 } else { 2871 wr.opcode = IB_WR_RDMA_READ; 2872 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2873 SRPT_RDMA_READ_LAST : 2874 SRPT_RDMA_MID, 2875 ioctx->ioctx.index); 2876 } 2877 wr.next = NULL; 2878 wr.wr.rdma.remote_addr = riu->raddr; 2879 wr.wr.rdma.rkey = riu->rkey; 2880 wr.num_sge = riu->sge_cnt; 2881 wr.sg_list = riu->sge; 2882 2883 /* only get completion event for the last rdma write */ 2884 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2885 wr.send_flags = IB_SEND_SIGNALED; 2886 2887 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2888 if (ret) 2889 break; 2890 } 2891 2892 if (ret) 2893 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2894 __func__, __LINE__, ret, i, n_rdma); 2895 if (ret && i > 0) { 2896 wr.num_sge = 0; 2897 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2898 wr.send_flags = IB_SEND_SIGNALED; 2899 while (ch->state == CH_LIVE && 2900 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2901 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2902 ioctx->ioctx.index); 2903 msleep(1000); 2904 } 2905 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2906 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2907 ioctx->ioctx.index); 2908 msleep(1000); 2909 } 2910 } 2911 out: 2912 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2913 atomic_add(n_rdma, &ch->sq_wr_avail); 2914 return ret; 2915 } 2916 2917 /** 2918 * srpt_xfer_data() - Start data transfer from initiator to target. 2919 */ 2920 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2921 struct srpt_send_ioctx *ioctx) 2922 { 2923 int ret; 2924 2925 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2926 if (ret) { 2927 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2928 goto out; 2929 } 2930 2931 ret = srpt_perform_rdmas(ch, ioctx); 2932 if (ret) { 2933 if (ret == -EAGAIN || ret == -ENOMEM) 2934 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2935 __func__, __LINE__, ret); 2936 else 2937 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2938 __func__, __LINE__, ret); 2939 goto out_unmap; 2940 } 2941 2942 out: 2943 return ret; 2944 out_unmap: 2945 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2946 goto out; 2947 } 2948 2949 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2950 { 2951 struct srpt_send_ioctx *ioctx; 2952 2953 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2954 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2955 } 2956 2957 /* 2958 * srpt_write_pending() - Start data transfer from initiator to target (write). 2959 */ 2960 static int srpt_write_pending(struct se_cmd *se_cmd) 2961 { 2962 struct srpt_rdma_ch *ch; 2963 struct srpt_send_ioctx *ioctx; 2964 enum srpt_command_state new_state; 2965 enum rdma_ch_state ch_state; 2966 int ret; 2967 2968 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2969 2970 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2971 WARN_ON(new_state == SRPT_STATE_DONE); 2972 2973 ch = ioctx->ch; 2974 BUG_ON(!ch); 2975 2976 ch_state = srpt_get_ch_state(ch); 2977 switch (ch_state) { 2978 case CH_CONNECTING: 2979 WARN(true, "unexpected channel state %d\n", ch_state); 2980 ret = -EINVAL; 2981 goto out; 2982 case CH_LIVE: 2983 break; 2984 case CH_DISCONNECTING: 2985 case CH_DRAINING: 2986 case CH_RELEASING: 2987 pr_debug("cmd with tag %lld: channel disconnecting\n", 2988 ioctx->tag); 2989 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2990 ret = -EINVAL; 2991 goto out; 2992 } 2993 ret = srpt_xfer_data(ch, ioctx); 2994 2995 out: 2996 return ret; 2997 } 2998 2999 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 3000 { 3001 switch (tcm_mgmt_status) { 3002 case TMR_FUNCTION_COMPLETE: 3003 return SRP_TSK_MGMT_SUCCESS; 3004 case TMR_FUNCTION_REJECTED: 3005 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3006 } 3007 return SRP_TSK_MGMT_FAILED; 3008 } 3009 3010 /** 3011 * srpt_queue_response() - Transmits the response to a SCSI command. 3012 * 3013 * Callback function called by the TCM core. Must not block since it can be 3014 * invoked on the context of the IB completion handler. 3015 */ 3016 static int srpt_queue_response(struct se_cmd *cmd) 3017 { 3018 struct srpt_rdma_ch *ch; 3019 struct srpt_send_ioctx *ioctx; 3020 enum srpt_command_state state; 3021 unsigned long flags; 3022 int ret; 3023 enum dma_data_direction dir; 3024 int resp_len; 3025 u8 srp_tm_status; 3026 3027 ret = 0; 3028 3029 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3030 ch = ioctx->ch; 3031 BUG_ON(!ch); 3032 3033 spin_lock_irqsave(&ioctx->spinlock, flags); 3034 state = ioctx->state; 3035 switch (state) { 3036 case SRPT_STATE_NEW: 3037 case SRPT_STATE_DATA_IN: 3038 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3039 break; 3040 case SRPT_STATE_MGMT: 3041 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3042 break; 3043 default: 3044 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3045 ch, ioctx->ioctx.index, ioctx->state); 3046 break; 3047 } 3048 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3049 3050 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3051 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3052 atomic_inc(&ch->req_lim_delta); 3053 srpt_abort_cmd(ioctx); 3054 goto out; 3055 } 3056 3057 dir = ioctx->cmd.data_direction; 3058 3059 /* For read commands, transfer the data to the initiator. */ 3060 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3061 !ioctx->queue_status_only) { 3062 ret = srpt_xfer_data(ch, ioctx); 3063 if (ret) { 3064 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3065 ioctx->tag); 3066 goto out; 3067 } 3068 } 3069 3070 if (state != SRPT_STATE_MGMT) 3071 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3072 cmd->scsi_status); 3073 else { 3074 srp_tm_status 3075 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3076 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3077 ioctx->tag); 3078 } 3079 ret = srpt_post_send(ch, ioctx, resp_len); 3080 if (ret) { 3081 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3082 ioctx->tag); 3083 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3084 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3085 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 3086 } 3087 3088 out: 3089 return ret; 3090 } 3091 3092 static int srpt_queue_status(struct se_cmd *cmd) 3093 { 3094 struct srpt_send_ioctx *ioctx; 3095 3096 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3097 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3098 if (cmd->se_cmd_flags & 3099 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3100 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3101 ioctx->queue_status_only = true; 3102 return srpt_queue_response(cmd); 3103 } 3104 3105 static void srpt_refresh_port_work(struct work_struct *work) 3106 { 3107 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3108 3109 srpt_refresh_port(sport); 3110 } 3111 3112 static int srpt_ch_list_empty(struct srpt_device *sdev) 3113 { 3114 int res; 3115 3116 spin_lock_irq(&sdev->spinlock); 3117 res = list_empty(&sdev->rch_list); 3118 spin_unlock_irq(&sdev->spinlock); 3119 3120 return res; 3121 } 3122 3123 /** 3124 * srpt_release_sdev() - Free the channel resources associated with a target. 3125 */ 3126 static int srpt_release_sdev(struct srpt_device *sdev) 3127 { 3128 struct srpt_rdma_ch *ch, *tmp_ch; 3129 int res; 3130 3131 WARN_ON_ONCE(irqs_disabled()); 3132 3133 BUG_ON(!sdev); 3134 3135 spin_lock_irq(&sdev->spinlock); 3136 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3137 __srpt_close_ch(ch); 3138 spin_unlock_irq(&sdev->spinlock); 3139 3140 res = wait_event_interruptible(sdev->ch_releaseQ, 3141 srpt_ch_list_empty(sdev)); 3142 if (res) 3143 printk(KERN_ERR "%s: interrupted.\n", __func__); 3144 3145 return 0; 3146 } 3147 3148 static struct srpt_port *__srpt_lookup_port(const char *name) 3149 { 3150 struct ib_device *dev; 3151 struct srpt_device *sdev; 3152 struct srpt_port *sport; 3153 int i; 3154 3155 list_for_each_entry(sdev, &srpt_dev_list, list) { 3156 dev = sdev->device; 3157 if (!dev) 3158 continue; 3159 3160 for (i = 0; i < dev->phys_port_cnt; i++) { 3161 sport = &sdev->port[i]; 3162 3163 if (!strcmp(sport->port_guid, name)) 3164 return sport; 3165 } 3166 } 3167 3168 return NULL; 3169 } 3170 3171 static struct srpt_port *srpt_lookup_port(const char *name) 3172 { 3173 struct srpt_port *sport; 3174 3175 spin_lock(&srpt_dev_lock); 3176 sport = __srpt_lookup_port(name); 3177 spin_unlock(&srpt_dev_lock); 3178 3179 return sport; 3180 } 3181 3182 /** 3183 * srpt_add_one() - Infiniband device addition callback function. 3184 */ 3185 static void srpt_add_one(struct ib_device *device) 3186 { 3187 struct srpt_device *sdev; 3188 struct srpt_port *sport; 3189 struct ib_srq_init_attr srq_attr; 3190 int i; 3191 3192 pr_debug("device = %p, device->dma_ops = %p\n", device, 3193 device->dma_ops); 3194 3195 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3196 if (!sdev) 3197 goto err; 3198 3199 sdev->device = device; 3200 INIT_LIST_HEAD(&sdev->rch_list); 3201 init_waitqueue_head(&sdev->ch_releaseQ); 3202 spin_lock_init(&sdev->spinlock); 3203 3204 if (ib_query_device(device, &sdev->dev_attr)) 3205 goto free_dev; 3206 3207 sdev->pd = ib_alloc_pd(device); 3208 if (IS_ERR(sdev->pd)) 3209 goto free_dev; 3210 3211 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3212 if (IS_ERR(sdev->mr)) 3213 goto err_pd; 3214 3215 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3216 3217 srq_attr.event_handler = srpt_srq_event; 3218 srq_attr.srq_context = (void *)sdev; 3219 srq_attr.attr.max_wr = sdev->srq_size; 3220 srq_attr.attr.max_sge = 1; 3221 srq_attr.attr.srq_limit = 0; 3222 3223 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3224 if (IS_ERR(sdev->srq)) 3225 goto err_mr; 3226 3227 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3228 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3229 device->name); 3230 3231 if (!srpt_service_guid) 3232 srpt_service_guid = be64_to_cpu(device->node_guid); 3233 3234 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3235 if (IS_ERR(sdev->cm_id)) 3236 goto err_srq; 3237 3238 /* print out target login information */ 3239 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3240 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3241 srpt_service_guid, srpt_service_guid); 3242 3243 /* 3244 * We do not have a consistent service_id (ie. also id_ext of target_id) 3245 * to identify this target. We currently use the guid of the first HCA 3246 * in the system as service_id; therefore, the target_id will change 3247 * if this HCA is gone bad and replaced by different HCA 3248 */ 3249 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3250 goto err_cm; 3251 3252 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3253 srpt_event_handler); 3254 if (ib_register_event_handler(&sdev->event_handler)) 3255 goto err_cm; 3256 3257 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3258 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3259 sizeof(*sdev->ioctx_ring[0]), 3260 srp_max_req_size, DMA_FROM_DEVICE); 3261 if (!sdev->ioctx_ring) 3262 goto err_event; 3263 3264 for (i = 0; i < sdev->srq_size; ++i) 3265 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3266 3267 WARN_ON(sdev->device->phys_port_cnt 3268 > sizeof(sdev->port)/sizeof(sdev->port[0])); 3269 3270 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3271 sport = &sdev->port[i - 1]; 3272 sport->sdev = sdev; 3273 sport->port = i; 3274 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3275 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3276 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3277 INIT_WORK(&sport->work, srpt_refresh_port_work); 3278 INIT_LIST_HEAD(&sport->port_acl_list); 3279 spin_lock_init(&sport->port_acl_lock); 3280 3281 if (srpt_refresh_port(sport)) { 3282 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3283 srpt_sdev_name(sdev), i); 3284 goto err_ring; 3285 } 3286 snprintf(sport->port_guid, sizeof(sport->port_guid), 3287 "0x%016llx%016llx", 3288 be64_to_cpu(sport->gid.global.subnet_prefix), 3289 be64_to_cpu(sport->gid.global.interface_id)); 3290 } 3291 3292 spin_lock(&srpt_dev_lock); 3293 list_add_tail(&sdev->list, &srpt_dev_list); 3294 spin_unlock(&srpt_dev_lock); 3295 3296 out: 3297 ib_set_client_data(device, &srpt_client, sdev); 3298 pr_debug("added %s.\n", device->name); 3299 return; 3300 3301 err_ring: 3302 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3303 sdev->srq_size, srp_max_req_size, 3304 DMA_FROM_DEVICE); 3305 err_event: 3306 ib_unregister_event_handler(&sdev->event_handler); 3307 err_cm: 3308 ib_destroy_cm_id(sdev->cm_id); 3309 err_srq: 3310 ib_destroy_srq(sdev->srq); 3311 err_mr: 3312 ib_dereg_mr(sdev->mr); 3313 err_pd: 3314 ib_dealloc_pd(sdev->pd); 3315 free_dev: 3316 kfree(sdev); 3317 err: 3318 sdev = NULL; 3319 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3320 goto out; 3321 } 3322 3323 /** 3324 * srpt_remove_one() - InfiniBand device removal callback function. 3325 */ 3326 static void srpt_remove_one(struct ib_device *device) 3327 { 3328 struct srpt_device *sdev; 3329 int i; 3330 3331 sdev = ib_get_client_data(device, &srpt_client); 3332 if (!sdev) { 3333 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3334 device->name); 3335 return; 3336 } 3337 3338 srpt_unregister_mad_agent(sdev); 3339 3340 ib_unregister_event_handler(&sdev->event_handler); 3341 3342 /* Cancel any work queued by the just unregistered IB event handler. */ 3343 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3344 cancel_work_sync(&sdev->port[i].work); 3345 3346 ib_destroy_cm_id(sdev->cm_id); 3347 3348 /* 3349 * Unregistering a target must happen after destroying sdev->cm_id 3350 * such that no new SRP_LOGIN_REQ information units can arrive while 3351 * destroying the target. 3352 */ 3353 spin_lock(&srpt_dev_lock); 3354 list_del(&sdev->list); 3355 spin_unlock(&srpt_dev_lock); 3356 srpt_release_sdev(sdev); 3357 3358 ib_destroy_srq(sdev->srq); 3359 ib_dereg_mr(sdev->mr); 3360 ib_dealloc_pd(sdev->pd); 3361 3362 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3363 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3364 sdev->ioctx_ring = NULL; 3365 kfree(sdev); 3366 } 3367 3368 static struct ib_client srpt_client = { 3369 .name = DRV_NAME, 3370 .add = srpt_add_one, 3371 .remove = srpt_remove_one 3372 }; 3373 3374 static int srpt_check_true(struct se_portal_group *se_tpg) 3375 { 3376 return 1; 3377 } 3378 3379 static int srpt_check_false(struct se_portal_group *se_tpg) 3380 { 3381 return 0; 3382 } 3383 3384 static char *srpt_get_fabric_name(void) 3385 { 3386 return "srpt"; 3387 } 3388 3389 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3390 { 3391 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3392 } 3393 3394 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3395 { 3396 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3397 3398 return sport->port_guid; 3399 } 3400 3401 static u16 srpt_get_tag(struct se_portal_group *tpg) 3402 { 3403 return 1; 3404 } 3405 3406 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3407 { 3408 return 1; 3409 } 3410 3411 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3412 struct se_node_acl *se_nacl, 3413 struct t10_pr_registration *pr_reg, 3414 int *format_code, unsigned char *buf) 3415 { 3416 struct srpt_node_acl *nacl; 3417 struct spc_rdma_transport_id *tr_id; 3418 3419 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3420 tr_id = (void *)buf; 3421 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3422 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3423 return sizeof(*tr_id); 3424 } 3425 3426 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3427 struct se_node_acl *se_nacl, 3428 struct t10_pr_registration *pr_reg, 3429 int *format_code) 3430 { 3431 *format_code = 0; 3432 return sizeof(struct spc_rdma_transport_id); 3433 } 3434 3435 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3436 const char *buf, u32 *out_tid_len, 3437 char **port_nexus_ptr) 3438 { 3439 struct spc_rdma_transport_id *tr_id; 3440 3441 *port_nexus_ptr = NULL; 3442 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3443 tr_id = (void *)buf; 3444 return (char *)tr_id->i_port_id; 3445 } 3446 3447 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3448 { 3449 struct srpt_node_acl *nacl; 3450 3451 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3452 if (!nacl) { 3453 printk(KERN_ERR "Unable to alocate struct srpt_node_acl\n"); 3454 return NULL; 3455 } 3456 3457 return &nacl->nacl; 3458 } 3459 3460 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3461 struct se_node_acl *se_nacl) 3462 { 3463 struct srpt_node_acl *nacl; 3464 3465 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3466 kfree(nacl); 3467 } 3468 3469 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3470 { 3471 return 1; 3472 } 3473 3474 static void srpt_release_cmd(struct se_cmd *se_cmd) 3475 { 3476 } 3477 3478 /** 3479 * srpt_shutdown_session() - Whether or not a session may be shut down. 3480 */ 3481 static int srpt_shutdown_session(struct se_session *se_sess) 3482 { 3483 return true; 3484 } 3485 3486 /** 3487 * srpt_close_session() - Forcibly close a session. 3488 * 3489 * Callback function invoked by the TCM core to clean up sessions associated 3490 * with a node ACL when the user invokes 3491 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3492 */ 3493 static void srpt_close_session(struct se_session *se_sess) 3494 { 3495 DECLARE_COMPLETION_ONSTACK(release_done); 3496 struct srpt_rdma_ch *ch; 3497 struct srpt_device *sdev; 3498 int res; 3499 3500 ch = se_sess->fabric_sess_ptr; 3501 WARN_ON(ch->sess != se_sess); 3502 3503 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3504 3505 sdev = ch->sport->sdev; 3506 spin_lock_irq(&sdev->spinlock); 3507 BUG_ON(ch->release_done); 3508 ch->release_done = &release_done; 3509 __srpt_close_ch(ch); 3510 spin_unlock_irq(&sdev->spinlock); 3511 3512 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3513 WARN_ON(res <= 0); 3514 } 3515 3516 /** 3517 * To do: Find out whether stop_session() has a meaning for transports 3518 * other than iSCSI. 3519 */ 3520 static void srpt_stop_session(struct se_session *se_sess, int sess_sleep, 3521 int conn_sleep) 3522 { 3523 } 3524 3525 static void srpt_reset_nexus(struct se_session *sess) 3526 { 3527 printk(KERN_ERR "This is the SRP protocol, not iSCSI\n"); 3528 } 3529 3530 static int srpt_sess_logged_in(struct se_session *se_sess) 3531 { 3532 return true; 3533 } 3534 3535 /** 3536 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3537 * 3538 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3539 * This object represents an arbitrary integer used to uniquely identify a 3540 * particular attached remote initiator port to a particular SCSI target port 3541 * within a particular SCSI target device within a particular SCSI instance. 3542 */ 3543 static u32 srpt_sess_get_index(struct se_session *se_sess) 3544 { 3545 return 0; 3546 } 3547 3548 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3549 { 3550 } 3551 3552 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3553 { 3554 struct srpt_send_ioctx *ioctx; 3555 3556 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3557 return ioctx->tag; 3558 } 3559 3560 /* Note: only used from inside debug printk's by the TCM core. */ 3561 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3562 { 3563 struct srpt_send_ioctx *ioctx; 3564 3565 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3566 return srpt_get_cmd_state(ioctx); 3567 } 3568 3569 static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length) 3570 { 3571 return 0; 3572 } 3573 3574 static u16 srpt_get_fabric_sense_len(void) 3575 { 3576 return 0; 3577 } 3578 3579 static int srpt_is_state_remove(struct se_cmd *se_cmd) 3580 { 3581 return 0; 3582 } 3583 3584 /** 3585 * srpt_parse_i_port_id() - Parse an initiator port ID. 3586 * @name: ASCII representation of a 128-bit initiator port ID. 3587 * @i_port_id: Binary 128-bit port ID. 3588 */ 3589 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3590 { 3591 const char *p; 3592 unsigned len, count, leading_zero_bytes; 3593 int ret, rc; 3594 3595 p = name; 3596 if (strnicmp(p, "0x", 2) == 0) 3597 p += 2; 3598 ret = -EINVAL; 3599 len = strlen(p); 3600 if (len % 2) 3601 goto out; 3602 count = min(len / 2, 16U); 3603 leading_zero_bytes = 16 - count; 3604 memset(i_port_id, 0, leading_zero_bytes); 3605 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3606 if (rc < 0) 3607 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3608 ret = 0; 3609 out: 3610 return ret; 3611 } 3612 3613 /* 3614 * configfs callback function invoked for 3615 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3616 */ 3617 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3618 struct config_group *group, 3619 const char *name) 3620 { 3621 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3622 struct se_node_acl *se_nacl, *se_nacl_new; 3623 struct srpt_node_acl *nacl; 3624 int ret = 0; 3625 u32 nexus_depth = 1; 3626 u8 i_port_id[16]; 3627 3628 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3629 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3630 ret = -EINVAL; 3631 goto err; 3632 } 3633 3634 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3635 if (!se_nacl_new) { 3636 ret = -ENOMEM; 3637 goto err; 3638 } 3639 /* 3640 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3641 * when converting a node ACL from demo mode to explict 3642 */ 3643 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3644 nexus_depth); 3645 if (IS_ERR(se_nacl)) { 3646 ret = PTR_ERR(se_nacl); 3647 goto err; 3648 } 3649 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3650 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3651 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3652 nacl->sport = sport; 3653 3654 spin_lock_irq(&sport->port_acl_lock); 3655 list_add_tail(&nacl->list, &sport->port_acl_list); 3656 spin_unlock_irq(&sport->port_acl_lock); 3657 3658 return se_nacl; 3659 err: 3660 return ERR_PTR(ret); 3661 } 3662 3663 /* 3664 * configfs callback function invoked for 3665 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3666 */ 3667 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3668 { 3669 struct srpt_node_acl *nacl; 3670 struct srpt_device *sdev; 3671 struct srpt_port *sport; 3672 3673 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3674 sport = nacl->sport; 3675 sdev = sport->sdev; 3676 spin_lock_irq(&sport->port_acl_lock); 3677 list_del(&nacl->list); 3678 spin_unlock_irq(&sport->port_acl_lock); 3679 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3680 srpt_release_fabric_acl(NULL, se_nacl); 3681 } 3682 3683 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3684 struct se_portal_group *se_tpg, 3685 char *page) 3686 { 3687 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3688 3689 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3690 } 3691 3692 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3693 struct se_portal_group *se_tpg, 3694 const char *page, 3695 size_t count) 3696 { 3697 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3698 unsigned long val; 3699 int ret; 3700 3701 ret = strict_strtoul(page, 0, &val); 3702 if (ret < 0) { 3703 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3704 return -EINVAL; 3705 } 3706 if (val > MAX_SRPT_RDMA_SIZE) { 3707 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3708 MAX_SRPT_RDMA_SIZE); 3709 return -EINVAL; 3710 } 3711 if (val < DEFAULT_MAX_RDMA_SIZE) { 3712 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3713 val, DEFAULT_MAX_RDMA_SIZE); 3714 return -EINVAL; 3715 } 3716 sport->port_attrib.srp_max_rdma_size = val; 3717 3718 return count; 3719 } 3720 3721 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3722 3723 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3724 struct se_portal_group *se_tpg, 3725 char *page) 3726 { 3727 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3728 3729 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3730 } 3731 3732 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3733 struct se_portal_group *se_tpg, 3734 const char *page, 3735 size_t count) 3736 { 3737 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3738 unsigned long val; 3739 int ret; 3740 3741 ret = strict_strtoul(page, 0, &val); 3742 if (ret < 0) { 3743 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3744 return -EINVAL; 3745 } 3746 if (val > MAX_SRPT_RSP_SIZE) { 3747 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3748 MAX_SRPT_RSP_SIZE); 3749 return -EINVAL; 3750 } 3751 if (val < MIN_MAX_RSP_SIZE) { 3752 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3753 MIN_MAX_RSP_SIZE); 3754 return -EINVAL; 3755 } 3756 sport->port_attrib.srp_max_rsp_size = val; 3757 3758 return count; 3759 } 3760 3761 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3762 3763 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3764 struct se_portal_group *se_tpg, 3765 char *page) 3766 { 3767 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3768 3769 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3770 } 3771 3772 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3773 struct se_portal_group *se_tpg, 3774 const char *page, 3775 size_t count) 3776 { 3777 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3778 unsigned long val; 3779 int ret; 3780 3781 ret = strict_strtoul(page, 0, &val); 3782 if (ret < 0) { 3783 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3784 return -EINVAL; 3785 } 3786 if (val > MAX_SRPT_SRQ_SIZE) { 3787 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3788 MAX_SRPT_SRQ_SIZE); 3789 return -EINVAL; 3790 } 3791 if (val < MIN_SRPT_SRQ_SIZE) { 3792 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3793 MIN_SRPT_SRQ_SIZE); 3794 return -EINVAL; 3795 } 3796 sport->port_attrib.srp_sq_size = val; 3797 3798 return count; 3799 } 3800 3801 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3802 3803 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3804 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3805 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3806 &srpt_tpg_attrib_srp_sq_size.attr, 3807 NULL, 3808 }; 3809 3810 static ssize_t srpt_tpg_show_enable( 3811 struct se_portal_group *se_tpg, 3812 char *page) 3813 { 3814 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3815 3816 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3817 } 3818 3819 static ssize_t srpt_tpg_store_enable( 3820 struct se_portal_group *se_tpg, 3821 const char *page, 3822 size_t count) 3823 { 3824 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3825 unsigned long tmp; 3826 int ret; 3827 3828 ret = strict_strtoul(page, 0, &tmp); 3829 if (ret < 0) { 3830 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3831 return -EINVAL; 3832 } 3833 3834 if ((tmp != 0) && (tmp != 1)) { 3835 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3836 return -EINVAL; 3837 } 3838 if (tmp == 1) 3839 sport->enabled = true; 3840 else 3841 sport->enabled = false; 3842 3843 return count; 3844 } 3845 3846 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3847 3848 static struct configfs_attribute *srpt_tpg_attrs[] = { 3849 &srpt_tpg_enable.attr, 3850 NULL, 3851 }; 3852 3853 /** 3854 * configfs callback invoked for 3855 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3856 */ 3857 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3858 struct config_group *group, 3859 const char *name) 3860 { 3861 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3862 int res; 3863 3864 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3865 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3866 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3867 if (res) 3868 return ERR_PTR(res); 3869 3870 return &sport->port_tpg_1; 3871 } 3872 3873 /** 3874 * configfs callback invoked for 3875 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3876 */ 3877 static void srpt_drop_tpg(struct se_portal_group *tpg) 3878 { 3879 struct srpt_port *sport = container_of(tpg, 3880 struct srpt_port, port_tpg_1); 3881 3882 sport->enabled = false; 3883 core_tpg_deregister(&sport->port_tpg_1); 3884 } 3885 3886 /** 3887 * configfs callback invoked for 3888 * mkdir /sys/kernel/config/target/$driver/$port 3889 */ 3890 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3891 struct config_group *group, 3892 const char *name) 3893 { 3894 struct srpt_port *sport; 3895 int ret; 3896 3897 sport = srpt_lookup_port(name); 3898 pr_debug("make_tport(%s)\n", name); 3899 ret = -EINVAL; 3900 if (!sport) 3901 goto err; 3902 3903 return &sport->port_wwn; 3904 3905 err: 3906 return ERR_PTR(ret); 3907 } 3908 3909 /** 3910 * configfs callback invoked for 3911 * rmdir /sys/kernel/config/target/$driver/$port 3912 */ 3913 static void srpt_drop_tport(struct se_wwn *wwn) 3914 { 3915 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3916 3917 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3918 } 3919 3920 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3921 char *buf) 3922 { 3923 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3924 } 3925 3926 TF_WWN_ATTR_RO(srpt, version); 3927 3928 static struct configfs_attribute *srpt_wwn_attrs[] = { 3929 &srpt_wwn_version.attr, 3930 NULL, 3931 }; 3932 3933 static struct target_core_fabric_ops srpt_template = { 3934 .get_fabric_name = srpt_get_fabric_name, 3935 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3936 .tpg_get_wwn = srpt_get_fabric_wwn, 3937 .tpg_get_tag = srpt_get_tag, 3938 .tpg_get_default_depth = srpt_get_default_depth, 3939 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3940 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3941 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3942 .tpg_check_demo_mode = srpt_check_false, 3943 .tpg_check_demo_mode_cache = srpt_check_true, 3944 .tpg_check_demo_mode_write_protect = srpt_check_true, 3945 .tpg_check_prod_mode_write_protect = srpt_check_false, 3946 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3947 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3948 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3949 .release_cmd = srpt_release_cmd, 3950 .check_stop_free = srpt_check_stop_free, 3951 .shutdown_session = srpt_shutdown_session, 3952 .close_session = srpt_close_session, 3953 .stop_session = srpt_stop_session, 3954 .fall_back_to_erl0 = srpt_reset_nexus, 3955 .sess_logged_in = srpt_sess_logged_in, 3956 .sess_get_index = srpt_sess_get_index, 3957 .sess_get_initiator_sid = NULL, 3958 .write_pending = srpt_write_pending, 3959 .write_pending_status = srpt_write_pending_status, 3960 .set_default_node_attributes = srpt_set_default_node_attrs, 3961 .get_task_tag = srpt_get_task_tag, 3962 .get_cmd_state = srpt_get_tcm_cmd_state, 3963 .queue_data_in = srpt_queue_response, 3964 .queue_status = srpt_queue_status, 3965 .queue_tm_rsp = srpt_queue_response, 3966 .get_fabric_sense_len = srpt_get_fabric_sense_len, 3967 .set_fabric_sense_len = srpt_set_fabric_sense_len, 3968 .is_state_remove = srpt_is_state_remove, 3969 /* 3970 * Setup function pointers for generic logic in 3971 * target_core_fabric_configfs.c 3972 */ 3973 .fabric_make_wwn = srpt_make_tport, 3974 .fabric_drop_wwn = srpt_drop_tport, 3975 .fabric_make_tpg = srpt_make_tpg, 3976 .fabric_drop_tpg = srpt_drop_tpg, 3977 .fabric_post_link = NULL, 3978 .fabric_pre_unlink = NULL, 3979 .fabric_make_np = NULL, 3980 .fabric_drop_np = NULL, 3981 .fabric_make_nodeacl = srpt_make_nodeacl, 3982 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3983 }; 3984 3985 /** 3986 * srpt_init_module() - Kernel module initialization. 3987 * 3988 * Note: Since ib_register_client() registers callback functions, and since at 3989 * least one of these callback functions (srpt_add_one()) calls target core 3990 * functions, this driver must be registered with the target core before 3991 * ib_register_client() is called. 3992 */ 3993 static int __init srpt_init_module(void) 3994 { 3995 int ret; 3996 3997 ret = -EINVAL; 3998 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3999 printk(KERN_ERR "invalid value %d for kernel module parameter" 4000 " srp_max_req_size -- must be at least %d.\n", 4001 srp_max_req_size, MIN_MAX_REQ_SIZE); 4002 goto out; 4003 } 4004 4005 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 4006 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 4007 printk(KERN_ERR "invalid value %d for kernel module parameter" 4008 " srpt_srq_size -- must be in the range [%d..%d].\n", 4009 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 4010 goto out; 4011 } 4012 4013 spin_lock_init(&srpt_dev_lock); 4014 INIT_LIST_HEAD(&srpt_dev_list); 4015 4016 ret = -ENODEV; 4017 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 4018 if (!srpt_target) { 4019 printk(KERN_ERR "couldn't register\n"); 4020 goto out; 4021 } 4022 4023 srpt_target->tf_ops = srpt_template; 4024 4025 /* Enable SG chaining */ 4026 srpt_target->tf_ops.task_sg_chaining = true; 4027 4028 /* 4029 * Set up default attribute lists. 4030 */ 4031 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 4032 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 4033 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 4034 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 4035 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 4036 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 4037 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 4038 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 4039 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 4040 4041 ret = target_fabric_configfs_register(srpt_target); 4042 if (ret < 0) { 4043 printk(KERN_ERR "couldn't register\n"); 4044 goto out_free_target; 4045 } 4046 4047 ret = ib_register_client(&srpt_client); 4048 if (ret) { 4049 printk(KERN_ERR "couldn't register IB client\n"); 4050 goto out_unregister_target; 4051 } 4052 4053 return 0; 4054 4055 out_unregister_target: 4056 target_fabric_configfs_deregister(srpt_target); 4057 srpt_target = NULL; 4058 out_free_target: 4059 if (srpt_target) 4060 target_fabric_configfs_free(srpt_target); 4061 out: 4062 return ret; 4063 } 4064 4065 static void __exit srpt_cleanup_module(void) 4066 { 4067 ib_unregister_client(&srpt_client); 4068 target_fabric_configfs_deregister(srpt_target); 4069 srpt_target = NULL; 4070 } 4071 4072 module_init(srpt_init_module); 4073 module_exit(srpt_cleanup_module); 4074