1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_cmd(struct se_cmd *se_cmd); 95 static void srpt_free_ch(struct kref *kref); 96 static int srpt_queue_status(struct se_cmd *cmd); 97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 100 101 /* 102 * The only allowed channel state changes are those that change the channel 103 * state into a state with a higher numerical value. Hence the new > prev test. 104 */ 105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 106 { 107 unsigned long flags; 108 enum rdma_ch_state prev; 109 bool changed = false; 110 111 spin_lock_irqsave(&ch->spinlock, flags); 112 prev = ch->state; 113 if (new > prev) { 114 ch->state = new; 115 changed = true; 116 } 117 spin_unlock_irqrestore(&ch->spinlock, flags); 118 119 return changed; 120 } 121 122 /** 123 * srpt_event_handler() - Asynchronous IB event callback function. 124 * 125 * Callback function called by the InfiniBand core when an asynchronous IB 126 * event occurs. This callback may occur in interrupt context. See also 127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 128 * Architecture Specification. 129 */ 130 static void srpt_event_handler(struct ib_event_handler *handler, 131 struct ib_event *event) 132 { 133 struct srpt_device *sdev; 134 struct srpt_port *sport; 135 136 sdev = ib_get_client_data(event->device, &srpt_client); 137 if (!sdev || sdev->device != event->device) 138 return; 139 140 pr_debug("ASYNC event= %d on device= %s\n", event->event, 141 sdev->device->name); 142 143 switch (event->event) { 144 case IB_EVENT_PORT_ERR: 145 if (event->element.port_num <= sdev->device->phys_port_cnt) { 146 sport = &sdev->port[event->element.port_num - 1]; 147 sport->lid = 0; 148 sport->sm_lid = 0; 149 } 150 break; 151 case IB_EVENT_PORT_ACTIVE: 152 case IB_EVENT_LID_CHANGE: 153 case IB_EVENT_PKEY_CHANGE: 154 case IB_EVENT_SM_CHANGE: 155 case IB_EVENT_CLIENT_REREGISTER: 156 case IB_EVENT_GID_CHANGE: 157 /* Refresh port data asynchronously. */ 158 if (event->element.port_num <= sdev->device->phys_port_cnt) { 159 sport = &sdev->port[event->element.port_num - 1]; 160 if (!sport->lid && !sport->sm_lid) 161 schedule_work(&sport->work); 162 } 163 break; 164 default: 165 pr_err("received unrecognized IB event %d\n", 166 event->event); 167 break; 168 } 169 } 170 171 /** 172 * srpt_srq_event() - SRQ event callback function. 173 */ 174 static void srpt_srq_event(struct ib_event *event, void *ctx) 175 { 176 pr_info("SRQ event %d\n", event->event); 177 } 178 179 static const char *get_ch_state_name(enum rdma_ch_state s) 180 { 181 switch (s) { 182 case CH_CONNECTING: 183 return "connecting"; 184 case CH_LIVE: 185 return "live"; 186 case CH_DISCONNECTING: 187 return "disconnecting"; 188 case CH_DRAINING: 189 return "draining"; 190 case CH_DISCONNECTED: 191 return "disconnected"; 192 } 193 return "???"; 194 } 195 196 /** 197 * srpt_qp_event() - QP event callback function. 198 */ 199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 200 { 201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 202 event->event, ch->cm_id, ch->sess_name, ch->state); 203 204 switch (event->event) { 205 case IB_EVENT_COMM_EST: 206 ib_cm_notify(ch->cm_id, event->event); 207 break; 208 case IB_EVENT_QP_LAST_WQE_REACHED: 209 pr_debug("%s-%d, state %s: received Last WQE event.\n", 210 ch->sess_name, ch->qp->qp_num, 211 get_ch_state_name(ch->state)); 212 break; 213 default: 214 pr_err("received unrecognized IB QP event %d\n", event->event); 215 break; 216 } 217 } 218 219 /** 220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 221 * 222 * @slot: one-based slot number. 223 * @value: four-bit value. 224 * 225 * Copies the lowest four bits of value in element slot of the array of four 226 * bit elements called c_list (controller list). The index slot is one-based. 227 */ 228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 229 { 230 u16 id; 231 u8 tmp; 232 233 id = (slot - 1) / 2; 234 if (slot & 0x1) { 235 tmp = c_list[id] & 0xf; 236 c_list[id] = (value << 4) | tmp; 237 } else { 238 tmp = c_list[id] & 0xf0; 239 c_list[id] = (value & 0xf) | tmp; 240 } 241 } 242 243 /** 244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 245 * 246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 247 * Specification. 248 */ 249 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 250 { 251 struct ib_class_port_info *cif; 252 253 cif = (struct ib_class_port_info *)mad->data; 254 memset(cif, 0, sizeof(*cif)); 255 cif->base_version = 1; 256 cif->class_version = 1; 257 258 ib_set_cpi_resp_time(cif, 20); 259 mad->mad_hdr.status = 0; 260 } 261 262 /** 263 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 264 * 265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 266 * Specification. See also section B.7, table B.6 in the SRP r16a document. 267 */ 268 static void srpt_get_iou(struct ib_dm_mad *mad) 269 { 270 struct ib_dm_iou_info *ioui; 271 u8 slot; 272 int i; 273 274 ioui = (struct ib_dm_iou_info *)mad->data; 275 ioui->change_id = cpu_to_be16(1); 276 ioui->max_controllers = 16; 277 278 /* set present for slot 1 and empty for the rest */ 279 srpt_set_ioc(ioui->controller_list, 1, 1); 280 for (i = 1, slot = 2; i < 16; i++, slot++) 281 srpt_set_ioc(ioui->controller_list, slot, 0); 282 283 mad->mad_hdr.status = 0; 284 } 285 286 /** 287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 288 * 289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 290 * Architecture Specification. See also section B.7, table B.7 in the SRP 291 * r16a document. 292 */ 293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 294 struct ib_dm_mad *mad) 295 { 296 struct srpt_device *sdev = sport->sdev; 297 struct ib_dm_ioc_profile *iocp; 298 299 iocp = (struct ib_dm_ioc_profile *)mad->data; 300 301 if (!slot || slot > 16) { 302 mad->mad_hdr.status 303 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 304 return; 305 } 306 307 if (slot > 2) { 308 mad->mad_hdr.status 309 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 310 return; 311 } 312 313 memset(iocp, 0, sizeof(*iocp)); 314 strcpy(iocp->id_string, SRPT_ID_STRING); 315 iocp->guid = cpu_to_be64(srpt_service_guid); 316 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 317 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 318 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 319 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 320 iocp->subsys_device_id = 0x0; 321 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 322 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 323 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 324 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 325 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 326 iocp->rdma_read_depth = 4; 327 iocp->send_size = cpu_to_be32(srp_max_req_size); 328 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 329 1U << 24)); 330 iocp->num_svc_entries = 1; 331 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 332 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 333 334 mad->mad_hdr.status = 0; 335 } 336 337 /** 338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 339 * 340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 341 * Specification. See also section B.7, table B.8 in the SRP r16a document. 342 */ 343 static void srpt_get_svc_entries(u64 ioc_guid, 344 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 345 { 346 struct ib_dm_svc_entries *svc_entries; 347 348 WARN_ON(!ioc_guid); 349 350 if (!slot || slot > 16) { 351 mad->mad_hdr.status 352 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 353 return; 354 } 355 356 if (slot > 2 || lo > hi || hi > 1) { 357 mad->mad_hdr.status 358 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 359 return; 360 } 361 362 svc_entries = (struct ib_dm_svc_entries *)mad->data; 363 memset(svc_entries, 0, sizeof(*svc_entries)); 364 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 365 snprintf(svc_entries->service_entries[0].name, 366 sizeof(svc_entries->service_entries[0].name), 367 "%s%016llx", 368 SRP_SERVICE_NAME_PREFIX, 369 ioc_guid); 370 371 mad->mad_hdr.status = 0; 372 } 373 374 /** 375 * srpt_mgmt_method_get() - Process a received management datagram. 376 * @sp: source port through which the MAD has been received. 377 * @rq_mad: received MAD. 378 * @rsp_mad: response MAD. 379 */ 380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 381 struct ib_dm_mad *rsp_mad) 382 { 383 u16 attr_id; 384 u32 slot; 385 u8 hi, lo; 386 387 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 388 switch (attr_id) { 389 case DM_ATTR_CLASS_PORT_INFO: 390 srpt_get_class_port_info(rsp_mad); 391 break; 392 case DM_ATTR_IOU_INFO: 393 srpt_get_iou(rsp_mad); 394 break; 395 case DM_ATTR_IOC_PROFILE: 396 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 397 srpt_get_ioc(sp, slot, rsp_mad); 398 break; 399 case DM_ATTR_SVC_ENTRIES: 400 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 401 hi = (u8) ((slot >> 8) & 0xff); 402 lo = (u8) (slot & 0xff); 403 slot = (u16) ((slot >> 16) & 0xffff); 404 srpt_get_svc_entries(srpt_service_guid, 405 slot, hi, lo, rsp_mad); 406 break; 407 default: 408 rsp_mad->mad_hdr.status = 409 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 410 break; 411 } 412 } 413 414 /** 415 * srpt_mad_send_handler() - Post MAD-send callback function. 416 */ 417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 418 struct ib_mad_send_wc *mad_wc) 419 { 420 rdma_destroy_ah(mad_wc->send_buf->ah); 421 ib_free_send_mad(mad_wc->send_buf); 422 } 423 424 /** 425 * srpt_mad_recv_handler() - MAD reception callback function. 426 */ 427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 428 struct ib_mad_send_buf *send_buf, 429 struct ib_mad_recv_wc *mad_wc) 430 { 431 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 432 struct ib_ah *ah; 433 struct ib_mad_send_buf *rsp; 434 struct ib_dm_mad *dm_mad; 435 436 if (!mad_wc || !mad_wc->recv_buf.mad) 437 return; 438 439 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 440 mad_wc->recv_buf.grh, mad_agent->port_num); 441 if (IS_ERR(ah)) 442 goto err; 443 444 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 445 446 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 447 mad_wc->wc->pkey_index, 0, 448 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 449 GFP_KERNEL, 450 IB_MGMT_BASE_VERSION); 451 if (IS_ERR(rsp)) 452 goto err_rsp; 453 454 rsp->ah = ah; 455 456 dm_mad = rsp->mad; 457 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 458 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 459 dm_mad->mad_hdr.status = 0; 460 461 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 462 case IB_MGMT_METHOD_GET: 463 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 464 break; 465 case IB_MGMT_METHOD_SET: 466 dm_mad->mad_hdr.status = 467 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 468 break; 469 default: 470 dm_mad->mad_hdr.status = 471 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 472 break; 473 } 474 475 if (!ib_post_send_mad(rsp, NULL)) { 476 ib_free_recv_mad(mad_wc); 477 /* will destroy_ah & free_send_mad in send completion */ 478 return; 479 } 480 481 ib_free_send_mad(rsp); 482 483 err_rsp: 484 rdma_destroy_ah(ah); 485 err: 486 ib_free_recv_mad(mad_wc); 487 } 488 489 /** 490 * srpt_refresh_port() - Configure a HCA port. 491 * 492 * Enable InfiniBand management datagram processing, update the cached sm_lid, 493 * lid and gid values, and register a callback function for processing MADs 494 * on the specified port. 495 * 496 * Note: It is safe to call this function more than once for the same port. 497 */ 498 static int srpt_refresh_port(struct srpt_port *sport) 499 { 500 struct ib_mad_reg_req reg_req; 501 struct ib_port_modify port_modify; 502 struct ib_port_attr port_attr; 503 __be16 *guid; 504 int ret; 505 506 memset(&port_modify, 0, sizeof(port_modify)); 507 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 508 port_modify.clr_port_cap_mask = 0; 509 510 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 511 if (ret) 512 goto err_mod_port; 513 514 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 515 if (ret) 516 goto err_query_port; 517 518 sport->sm_lid = port_attr.sm_lid; 519 sport->lid = port_attr.lid; 520 521 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 522 NULL); 523 if (ret) 524 goto err_query_port; 525 526 sport->port_guid_wwn.priv = sport; 527 guid = (__be16 *)&sport->gid.global.interface_id; 528 snprintf(sport->port_guid, sizeof(sport->port_guid), 529 "%04x:%04x:%04x:%04x", 530 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]), 531 be16_to_cpu(guid[2]), be16_to_cpu(guid[3])); 532 sport->port_gid_wwn.priv = sport; 533 snprintf(sport->port_gid, sizeof(sport->port_gid), 534 "0x%016llx%016llx", 535 be64_to_cpu(sport->gid.global.subnet_prefix), 536 be64_to_cpu(sport->gid.global.interface_id)); 537 538 if (!sport->mad_agent) { 539 memset(®_req, 0, sizeof(reg_req)); 540 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 541 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 542 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 543 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 544 545 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 546 sport->port, 547 IB_QPT_GSI, 548 ®_req, 0, 549 srpt_mad_send_handler, 550 srpt_mad_recv_handler, 551 sport, 0); 552 if (IS_ERR(sport->mad_agent)) { 553 ret = PTR_ERR(sport->mad_agent); 554 sport->mad_agent = NULL; 555 goto err_query_port; 556 } 557 } 558 559 return 0; 560 561 err_query_port: 562 563 port_modify.set_port_cap_mask = 0; 564 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 565 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 566 567 err_mod_port: 568 569 return ret; 570 } 571 572 /** 573 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 574 * 575 * Note: It is safe to call this function more than once for the same device. 576 */ 577 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 578 { 579 struct ib_port_modify port_modify = { 580 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 581 }; 582 struct srpt_port *sport; 583 int i; 584 585 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 586 sport = &sdev->port[i - 1]; 587 WARN_ON(sport->port != i); 588 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 589 pr_err("disabling MAD processing failed.\n"); 590 if (sport->mad_agent) { 591 ib_unregister_mad_agent(sport->mad_agent); 592 sport->mad_agent = NULL; 593 } 594 } 595 } 596 597 /** 598 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 599 */ 600 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 601 int ioctx_size, int dma_size, 602 enum dma_data_direction dir) 603 { 604 struct srpt_ioctx *ioctx; 605 606 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 607 if (!ioctx) 608 goto err; 609 610 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 611 if (!ioctx->buf) 612 goto err_free_ioctx; 613 614 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 615 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 616 goto err_free_buf; 617 618 return ioctx; 619 620 err_free_buf: 621 kfree(ioctx->buf); 622 err_free_ioctx: 623 kfree(ioctx); 624 err: 625 return NULL; 626 } 627 628 /** 629 * srpt_free_ioctx() - Free an SRPT I/O context structure. 630 */ 631 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 632 int dma_size, enum dma_data_direction dir) 633 { 634 if (!ioctx) 635 return; 636 637 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 638 kfree(ioctx->buf); 639 kfree(ioctx); 640 } 641 642 /** 643 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 644 * @sdev: Device to allocate the I/O context ring for. 645 * @ring_size: Number of elements in the I/O context ring. 646 * @ioctx_size: I/O context size. 647 * @dma_size: DMA buffer size. 648 * @dir: DMA data direction. 649 */ 650 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 651 int ring_size, int ioctx_size, 652 int dma_size, enum dma_data_direction dir) 653 { 654 struct srpt_ioctx **ring; 655 int i; 656 657 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 658 && ioctx_size != sizeof(struct srpt_send_ioctx)); 659 660 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 661 if (!ring) 662 goto out; 663 for (i = 0; i < ring_size; ++i) { 664 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 665 if (!ring[i]) 666 goto err; 667 ring[i]->index = i; 668 } 669 goto out; 670 671 err: 672 while (--i >= 0) 673 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 674 kfree(ring); 675 ring = NULL; 676 out: 677 return ring; 678 } 679 680 /** 681 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 682 */ 683 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 684 struct srpt_device *sdev, int ring_size, 685 int dma_size, enum dma_data_direction dir) 686 { 687 int i; 688 689 for (i = 0; i < ring_size; ++i) 690 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 691 kfree(ioctx_ring); 692 } 693 694 /** 695 * srpt_get_cmd_state() - Get the state of a SCSI command. 696 */ 697 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 698 { 699 enum srpt_command_state state; 700 unsigned long flags; 701 702 BUG_ON(!ioctx); 703 704 spin_lock_irqsave(&ioctx->spinlock, flags); 705 state = ioctx->state; 706 spin_unlock_irqrestore(&ioctx->spinlock, flags); 707 return state; 708 } 709 710 /** 711 * srpt_set_cmd_state() - Set the state of a SCSI command. 712 * 713 * Does not modify the state of aborted commands. Returns the previous command 714 * state. 715 */ 716 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 717 enum srpt_command_state new) 718 { 719 enum srpt_command_state previous; 720 unsigned long flags; 721 722 BUG_ON(!ioctx); 723 724 spin_lock_irqsave(&ioctx->spinlock, flags); 725 previous = ioctx->state; 726 if (previous != SRPT_STATE_DONE) 727 ioctx->state = new; 728 spin_unlock_irqrestore(&ioctx->spinlock, flags); 729 730 return previous; 731 } 732 733 /** 734 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 735 * 736 * Returns true if and only if the previous command state was equal to 'old'. 737 */ 738 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 739 enum srpt_command_state old, 740 enum srpt_command_state new) 741 { 742 enum srpt_command_state previous; 743 unsigned long flags; 744 745 WARN_ON(!ioctx); 746 WARN_ON(old == SRPT_STATE_DONE); 747 WARN_ON(new == SRPT_STATE_NEW); 748 749 spin_lock_irqsave(&ioctx->spinlock, flags); 750 previous = ioctx->state; 751 if (previous == old) 752 ioctx->state = new; 753 spin_unlock_irqrestore(&ioctx->spinlock, flags); 754 return previous == old; 755 } 756 757 /** 758 * srpt_post_recv() - Post an IB receive request. 759 */ 760 static int srpt_post_recv(struct srpt_device *sdev, 761 struct srpt_recv_ioctx *ioctx) 762 { 763 struct ib_sge list; 764 struct ib_recv_wr wr, *bad_wr; 765 766 BUG_ON(!sdev); 767 list.addr = ioctx->ioctx.dma; 768 list.length = srp_max_req_size; 769 list.lkey = sdev->pd->local_dma_lkey; 770 771 ioctx->ioctx.cqe.done = srpt_recv_done; 772 wr.wr_cqe = &ioctx->ioctx.cqe; 773 wr.next = NULL; 774 wr.sg_list = &list; 775 wr.num_sge = 1; 776 777 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 778 } 779 780 /** 781 * srpt_zerolength_write() - Perform a zero-length RDMA write. 782 * 783 * A quote from the InfiniBand specification: C9-88: For an HCA responder 784 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 785 * request, the R_Key shall not be validated, even if the request includes 786 * Immediate data. 787 */ 788 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 789 { 790 struct ib_send_wr wr, *bad_wr; 791 792 memset(&wr, 0, sizeof(wr)); 793 wr.opcode = IB_WR_RDMA_WRITE; 794 wr.wr_cqe = &ch->zw_cqe; 795 wr.send_flags = IB_SEND_SIGNALED; 796 return ib_post_send(ch->qp, &wr, &bad_wr); 797 } 798 799 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 800 { 801 struct srpt_rdma_ch *ch = cq->cq_context; 802 803 if (wc->status == IB_WC_SUCCESS) { 804 srpt_process_wait_list(ch); 805 } else { 806 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 807 schedule_work(&ch->release_work); 808 else 809 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num); 810 } 811 } 812 813 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 814 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 815 unsigned *sg_cnt) 816 { 817 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 818 struct srpt_rdma_ch *ch = ioctx->ch; 819 struct scatterlist *prev = NULL; 820 unsigned prev_nents; 821 int ret, i; 822 823 if (nbufs == 1) { 824 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 825 } else { 826 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 827 GFP_KERNEL); 828 if (!ioctx->rw_ctxs) 829 return -ENOMEM; 830 } 831 832 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 833 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 834 u64 remote_addr = be64_to_cpu(db->va); 835 u32 size = be32_to_cpu(db->len); 836 u32 rkey = be32_to_cpu(db->key); 837 838 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 839 i < nbufs - 1); 840 if (ret) 841 goto unwind; 842 843 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 844 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 845 if (ret < 0) { 846 target_free_sgl(ctx->sg, ctx->nents); 847 goto unwind; 848 } 849 850 ioctx->n_rdma += ret; 851 ioctx->n_rw_ctx++; 852 853 if (prev) { 854 sg_unmark_end(&prev[prev_nents - 1]); 855 sg_chain(prev, prev_nents + 1, ctx->sg); 856 } else { 857 *sg = ctx->sg; 858 } 859 860 prev = ctx->sg; 861 prev_nents = ctx->nents; 862 863 *sg_cnt += ctx->nents; 864 } 865 866 return 0; 867 868 unwind: 869 while (--i >= 0) { 870 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 871 872 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 873 ctx->sg, ctx->nents, dir); 874 target_free_sgl(ctx->sg, ctx->nents); 875 } 876 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 877 kfree(ioctx->rw_ctxs); 878 return ret; 879 } 880 881 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 882 struct srpt_send_ioctx *ioctx) 883 { 884 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 885 int i; 886 887 for (i = 0; i < ioctx->n_rw_ctx; i++) { 888 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 889 890 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 891 ctx->sg, ctx->nents, dir); 892 target_free_sgl(ctx->sg, ctx->nents); 893 } 894 895 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 896 kfree(ioctx->rw_ctxs); 897 } 898 899 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 900 { 901 /* 902 * The pointer computations below will only be compiled correctly 903 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 904 * whether srp_cmd::add_data has been declared as a byte pointer. 905 */ 906 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 907 !__same_type(srp_cmd->add_data[0], (u8)0)); 908 909 /* 910 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 911 * CDB LENGTH' field are reserved and the size in bytes of this field 912 * is four times the value specified in bits 3..7. Hence the "& ~3". 913 */ 914 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 915 } 916 917 /** 918 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 919 * @ioctx: Pointer to the I/O context associated with the request. 920 * @srp_cmd: Pointer to the SRP_CMD request data. 921 * @dir: Pointer to the variable to which the transfer direction will be 922 * written. 923 * @data_len: Pointer to the variable to which the total data length of all 924 * descriptors in the SRP_CMD request will be written. 925 * 926 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 927 * 928 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 929 * -ENOMEM when memory allocation fails and zero upon success. 930 */ 931 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 932 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 933 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len) 934 { 935 BUG_ON(!dir); 936 BUG_ON(!data_len); 937 938 /* 939 * The lower four bits of the buffer format field contain the DATA-IN 940 * buffer descriptor format, and the highest four bits contain the 941 * DATA-OUT buffer descriptor format. 942 */ 943 if (srp_cmd->buf_fmt & 0xf) 944 /* DATA-IN: transfer data from target to initiator (read). */ 945 *dir = DMA_FROM_DEVICE; 946 else if (srp_cmd->buf_fmt >> 4) 947 /* DATA-OUT: transfer data from initiator to target (write). */ 948 *dir = DMA_TO_DEVICE; 949 else 950 *dir = DMA_NONE; 951 952 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 953 ioctx->cmd.data_direction = *dir; 954 955 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 956 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 957 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 958 959 *data_len = be32_to_cpu(db->len); 960 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 961 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 962 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 963 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 964 int nbufs = be32_to_cpu(idb->table_desc.len) / 965 sizeof(struct srp_direct_buf); 966 967 if (nbufs > 968 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 969 pr_err("received unsupported SRP_CMD request" 970 " type (%u out + %u in != %u / %zu)\n", 971 srp_cmd->data_out_desc_cnt, 972 srp_cmd->data_in_desc_cnt, 973 be32_to_cpu(idb->table_desc.len), 974 sizeof(struct srp_direct_buf)); 975 return -EINVAL; 976 } 977 978 *data_len = be32_to_cpu(idb->len); 979 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 980 sg, sg_cnt); 981 } else { 982 *data_len = 0; 983 return 0; 984 } 985 } 986 987 /** 988 * srpt_init_ch_qp() - Initialize queue pair attributes. 989 * 990 * Initialized the attributes of queue pair 'qp' by allowing local write, 991 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 992 */ 993 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 994 { 995 struct ib_qp_attr *attr; 996 int ret; 997 998 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 999 if (!attr) 1000 return -ENOMEM; 1001 1002 attr->qp_state = IB_QPS_INIT; 1003 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 1004 IB_ACCESS_REMOTE_WRITE; 1005 attr->port_num = ch->sport->port; 1006 attr->pkey_index = 0; 1007 1008 ret = ib_modify_qp(qp, attr, 1009 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1010 IB_QP_PKEY_INDEX); 1011 1012 kfree(attr); 1013 return ret; 1014 } 1015 1016 /** 1017 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 1018 * @ch: channel of the queue pair. 1019 * @qp: queue pair to change the state of. 1020 * 1021 * Returns zero upon success and a negative value upon failure. 1022 * 1023 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1024 * If this structure ever becomes larger, it might be necessary to allocate 1025 * it dynamically instead of on the stack. 1026 */ 1027 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1028 { 1029 struct ib_qp_attr qp_attr; 1030 int attr_mask; 1031 int ret; 1032 1033 qp_attr.qp_state = IB_QPS_RTR; 1034 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1035 if (ret) 1036 goto out; 1037 1038 qp_attr.max_dest_rd_atomic = 4; 1039 1040 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1041 1042 out: 1043 return ret; 1044 } 1045 1046 /** 1047 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1048 * @ch: channel of the queue pair. 1049 * @qp: queue pair to change the state of. 1050 * 1051 * Returns zero upon success and a negative value upon failure. 1052 * 1053 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1054 * If this structure ever becomes larger, it might be necessary to allocate 1055 * it dynamically instead of on the stack. 1056 */ 1057 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1058 { 1059 struct ib_qp_attr qp_attr; 1060 int attr_mask; 1061 int ret; 1062 1063 qp_attr.qp_state = IB_QPS_RTS; 1064 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1065 if (ret) 1066 goto out; 1067 1068 qp_attr.max_rd_atomic = 4; 1069 1070 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1071 1072 out: 1073 return ret; 1074 } 1075 1076 /** 1077 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1078 */ 1079 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1080 { 1081 struct ib_qp_attr qp_attr; 1082 1083 qp_attr.qp_state = IB_QPS_ERR; 1084 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1085 } 1086 1087 /** 1088 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1089 */ 1090 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1091 { 1092 struct srpt_send_ioctx *ioctx; 1093 unsigned long flags; 1094 1095 BUG_ON(!ch); 1096 1097 ioctx = NULL; 1098 spin_lock_irqsave(&ch->spinlock, flags); 1099 if (!list_empty(&ch->free_list)) { 1100 ioctx = list_first_entry(&ch->free_list, 1101 struct srpt_send_ioctx, free_list); 1102 list_del(&ioctx->free_list); 1103 } 1104 spin_unlock_irqrestore(&ch->spinlock, flags); 1105 1106 if (!ioctx) 1107 return ioctx; 1108 1109 BUG_ON(ioctx->ch != ch); 1110 spin_lock_init(&ioctx->spinlock); 1111 ioctx->state = SRPT_STATE_NEW; 1112 ioctx->n_rdma = 0; 1113 ioctx->n_rw_ctx = 0; 1114 init_completion(&ioctx->tx_done); 1115 ioctx->queue_status_only = false; 1116 /* 1117 * transport_init_se_cmd() does not initialize all fields, so do it 1118 * here. 1119 */ 1120 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1121 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1122 1123 return ioctx; 1124 } 1125 1126 /** 1127 * srpt_abort_cmd() - Abort a SCSI command. 1128 * @ioctx: I/O context associated with the SCSI command. 1129 * @context: Preferred execution context. 1130 */ 1131 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1132 { 1133 enum srpt_command_state state; 1134 unsigned long flags; 1135 1136 BUG_ON(!ioctx); 1137 1138 /* 1139 * If the command is in a state where the target core is waiting for 1140 * the ib_srpt driver, change the state to the next state. 1141 */ 1142 1143 spin_lock_irqsave(&ioctx->spinlock, flags); 1144 state = ioctx->state; 1145 switch (state) { 1146 case SRPT_STATE_NEED_DATA: 1147 ioctx->state = SRPT_STATE_DATA_IN; 1148 break; 1149 case SRPT_STATE_CMD_RSP_SENT: 1150 case SRPT_STATE_MGMT_RSP_SENT: 1151 ioctx->state = SRPT_STATE_DONE; 1152 break; 1153 default: 1154 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1155 __func__, state); 1156 break; 1157 } 1158 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1159 1160 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1161 ioctx->state, ioctx->cmd.tag); 1162 1163 switch (state) { 1164 case SRPT_STATE_NEW: 1165 case SRPT_STATE_DATA_IN: 1166 case SRPT_STATE_MGMT: 1167 case SRPT_STATE_DONE: 1168 /* 1169 * Do nothing - defer abort processing until 1170 * srpt_queue_response() is invoked. 1171 */ 1172 break; 1173 case SRPT_STATE_NEED_DATA: 1174 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1175 transport_generic_request_failure(&ioctx->cmd, 1176 TCM_CHECK_CONDITION_ABORT_CMD); 1177 break; 1178 case SRPT_STATE_CMD_RSP_SENT: 1179 /* 1180 * SRP_RSP sending failed or the SRP_RSP send completion has 1181 * not been received in time. 1182 */ 1183 transport_generic_free_cmd(&ioctx->cmd, 0); 1184 break; 1185 case SRPT_STATE_MGMT_RSP_SENT: 1186 transport_generic_free_cmd(&ioctx->cmd, 0); 1187 break; 1188 default: 1189 WARN(1, "Unexpected command state (%d)", state); 1190 break; 1191 } 1192 1193 return state; 1194 } 1195 1196 /** 1197 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1198 * the data that has been transferred via IB RDMA had to be postponed until the 1199 * check_stop_free() callback. None of this is necessary anymore and needs to 1200 * be cleaned up. 1201 */ 1202 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1203 { 1204 struct srpt_rdma_ch *ch = cq->cq_context; 1205 struct srpt_send_ioctx *ioctx = 1206 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1207 1208 WARN_ON(ioctx->n_rdma <= 0); 1209 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1210 ioctx->n_rdma = 0; 1211 1212 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1213 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1214 ioctx, wc->status); 1215 srpt_abort_cmd(ioctx); 1216 return; 1217 } 1218 1219 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1220 SRPT_STATE_DATA_IN)) 1221 target_execute_cmd(&ioctx->cmd); 1222 else 1223 pr_err("%s[%d]: wrong state = %d\n", __func__, 1224 __LINE__, srpt_get_cmd_state(ioctx)); 1225 } 1226 1227 /** 1228 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1229 * @ch: RDMA channel through which the request has been received. 1230 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1231 * be built in the buffer ioctx->buf points at and hence this function will 1232 * overwrite the request data. 1233 * @tag: tag of the request for which this response is being generated. 1234 * @status: value for the STATUS field of the SRP_RSP information unit. 1235 * 1236 * Returns the size in bytes of the SRP_RSP response. 1237 * 1238 * An SRP_RSP response contains a SCSI status or service response. See also 1239 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1240 * response. See also SPC-2 for more information about sense data. 1241 */ 1242 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1243 struct srpt_send_ioctx *ioctx, u64 tag, 1244 int status) 1245 { 1246 struct srp_rsp *srp_rsp; 1247 const u8 *sense_data; 1248 int sense_data_len, max_sense_len; 1249 1250 /* 1251 * The lowest bit of all SAM-3 status codes is zero (see also 1252 * paragraph 5.3 in SAM-3). 1253 */ 1254 WARN_ON(status & 1); 1255 1256 srp_rsp = ioctx->ioctx.buf; 1257 BUG_ON(!srp_rsp); 1258 1259 sense_data = ioctx->sense_data; 1260 sense_data_len = ioctx->cmd.scsi_sense_length; 1261 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1262 1263 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1264 srp_rsp->opcode = SRP_RSP; 1265 srp_rsp->req_lim_delta = 1266 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1267 srp_rsp->tag = tag; 1268 srp_rsp->status = status; 1269 1270 if (sense_data_len) { 1271 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1272 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1273 if (sense_data_len > max_sense_len) { 1274 pr_warn("truncated sense data from %d to %d" 1275 " bytes\n", sense_data_len, max_sense_len); 1276 sense_data_len = max_sense_len; 1277 } 1278 1279 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1280 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1281 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1282 } 1283 1284 return sizeof(*srp_rsp) + sense_data_len; 1285 } 1286 1287 /** 1288 * srpt_build_tskmgmt_rsp() - Build a task management response. 1289 * @ch: RDMA channel through which the request has been received. 1290 * @ioctx: I/O context in which the SRP_RSP response will be built. 1291 * @rsp_code: RSP_CODE that will be stored in the response. 1292 * @tag: Tag of the request for which this response is being generated. 1293 * 1294 * Returns the size in bytes of the SRP_RSP response. 1295 * 1296 * An SRP_RSP response contains a SCSI status or service response. See also 1297 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1298 * response. 1299 */ 1300 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1301 struct srpt_send_ioctx *ioctx, 1302 u8 rsp_code, u64 tag) 1303 { 1304 struct srp_rsp *srp_rsp; 1305 int resp_data_len; 1306 int resp_len; 1307 1308 resp_data_len = 4; 1309 resp_len = sizeof(*srp_rsp) + resp_data_len; 1310 1311 srp_rsp = ioctx->ioctx.buf; 1312 BUG_ON(!srp_rsp); 1313 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1314 1315 srp_rsp->opcode = SRP_RSP; 1316 srp_rsp->req_lim_delta = 1317 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1318 srp_rsp->tag = tag; 1319 1320 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1321 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1322 srp_rsp->data[3] = rsp_code; 1323 1324 return resp_len; 1325 } 1326 1327 static int srpt_check_stop_free(struct se_cmd *cmd) 1328 { 1329 struct srpt_send_ioctx *ioctx = container_of(cmd, 1330 struct srpt_send_ioctx, cmd); 1331 1332 return target_put_sess_cmd(&ioctx->cmd); 1333 } 1334 1335 /** 1336 * srpt_handle_cmd() - Process SRP_CMD. 1337 */ 1338 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1339 struct srpt_recv_ioctx *recv_ioctx, 1340 struct srpt_send_ioctx *send_ioctx) 1341 { 1342 struct se_cmd *cmd; 1343 struct srp_cmd *srp_cmd; 1344 struct scatterlist *sg = NULL; 1345 unsigned sg_cnt = 0; 1346 u64 data_len; 1347 enum dma_data_direction dir; 1348 int rc; 1349 1350 BUG_ON(!send_ioctx); 1351 1352 srp_cmd = recv_ioctx->ioctx.buf; 1353 cmd = &send_ioctx->cmd; 1354 cmd->tag = srp_cmd->tag; 1355 1356 switch (srp_cmd->task_attr) { 1357 case SRP_CMD_SIMPLE_Q: 1358 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1359 break; 1360 case SRP_CMD_ORDERED_Q: 1361 default: 1362 cmd->sam_task_attr = TCM_ORDERED_TAG; 1363 break; 1364 case SRP_CMD_HEAD_OF_Q: 1365 cmd->sam_task_attr = TCM_HEAD_TAG; 1366 break; 1367 case SRP_CMD_ACA: 1368 cmd->sam_task_attr = TCM_ACA_TAG; 1369 break; 1370 } 1371 1372 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, 1373 &data_len); 1374 if (rc) { 1375 if (rc != -EAGAIN) { 1376 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1377 srp_cmd->tag); 1378 } 1379 goto release_ioctx; 1380 } 1381 1382 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1383 &send_ioctx->sense_data[0], 1384 scsilun_to_int(&srp_cmd->lun), data_len, 1385 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1386 sg, sg_cnt, NULL, 0, NULL, 0); 1387 if (rc != 0) { 1388 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1389 srp_cmd->tag); 1390 goto release_ioctx; 1391 } 1392 return; 1393 1394 release_ioctx: 1395 send_ioctx->state = SRPT_STATE_DONE; 1396 srpt_release_cmd(cmd); 1397 } 1398 1399 static int srp_tmr_to_tcm(int fn) 1400 { 1401 switch (fn) { 1402 case SRP_TSK_ABORT_TASK: 1403 return TMR_ABORT_TASK; 1404 case SRP_TSK_ABORT_TASK_SET: 1405 return TMR_ABORT_TASK_SET; 1406 case SRP_TSK_CLEAR_TASK_SET: 1407 return TMR_CLEAR_TASK_SET; 1408 case SRP_TSK_LUN_RESET: 1409 return TMR_LUN_RESET; 1410 case SRP_TSK_CLEAR_ACA: 1411 return TMR_CLEAR_ACA; 1412 default: 1413 return -1; 1414 } 1415 } 1416 1417 /** 1418 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1419 * 1420 * Returns 0 if and only if the request will be processed by the target core. 1421 * 1422 * For more information about SRP_TSK_MGMT information units, see also section 1423 * 6.7 in the SRP r16a document. 1424 */ 1425 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1426 struct srpt_recv_ioctx *recv_ioctx, 1427 struct srpt_send_ioctx *send_ioctx) 1428 { 1429 struct srp_tsk_mgmt *srp_tsk; 1430 struct se_cmd *cmd; 1431 struct se_session *sess = ch->sess; 1432 int tcm_tmr; 1433 int rc; 1434 1435 BUG_ON(!send_ioctx); 1436 1437 srp_tsk = recv_ioctx->ioctx.buf; 1438 cmd = &send_ioctx->cmd; 1439 1440 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1441 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1442 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1443 1444 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1445 send_ioctx->cmd.tag = srp_tsk->tag; 1446 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1447 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1448 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1449 GFP_KERNEL, srp_tsk->task_tag, 1450 TARGET_SCF_ACK_KREF); 1451 if (rc != 0) { 1452 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1453 goto fail; 1454 } 1455 return; 1456 fail: 1457 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1458 } 1459 1460 /** 1461 * srpt_handle_new_iu() - Process a newly received information unit. 1462 * @ch: RDMA channel through which the information unit has been received. 1463 * @ioctx: SRPT I/O context associated with the information unit. 1464 */ 1465 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1466 struct srpt_recv_ioctx *recv_ioctx, 1467 struct srpt_send_ioctx *send_ioctx) 1468 { 1469 struct srp_cmd *srp_cmd; 1470 1471 BUG_ON(!ch); 1472 BUG_ON(!recv_ioctx); 1473 1474 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1475 recv_ioctx->ioctx.dma, srp_max_req_size, 1476 DMA_FROM_DEVICE); 1477 1478 if (unlikely(ch->state == CH_CONNECTING)) 1479 goto out_wait; 1480 1481 if (unlikely(ch->state != CH_LIVE)) 1482 return; 1483 1484 srp_cmd = recv_ioctx->ioctx.buf; 1485 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1486 if (!send_ioctx) { 1487 if (!list_empty(&ch->cmd_wait_list)) 1488 goto out_wait; 1489 send_ioctx = srpt_get_send_ioctx(ch); 1490 } 1491 if (unlikely(!send_ioctx)) 1492 goto out_wait; 1493 } 1494 1495 switch (srp_cmd->opcode) { 1496 case SRP_CMD: 1497 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1498 break; 1499 case SRP_TSK_MGMT: 1500 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1501 break; 1502 case SRP_I_LOGOUT: 1503 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1504 break; 1505 case SRP_CRED_RSP: 1506 pr_debug("received SRP_CRED_RSP\n"); 1507 break; 1508 case SRP_AER_RSP: 1509 pr_debug("received SRP_AER_RSP\n"); 1510 break; 1511 case SRP_RSP: 1512 pr_err("Received SRP_RSP\n"); 1513 break; 1514 default: 1515 pr_err("received IU with unknown opcode 0x%x\n", 1516 srp_cmd->opcode); 1517 break; 1518 } 1519 1520 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1521 return; 1522 1523 out_wait: 1524 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1525 } 1526 1527 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1528 { 1529 struct srpt_rdma_ch *ch = cq->cq_context; 1530 struct srpt_recv_ioctx *ioctx = 1531 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1532 1533 if (wc->status == IB_WC_SUCCESS) { 1534 int req_lim; 1535 1536 req_lim = atomic_dec_return(&ch->req_lim); 1537 if (unlikely(req_lim < 0)) 1538 pr_err("req_lim = %d < 0\n", req_lim); 1539 srpt_handle_new_iu(ch, ioctx, NULL); 1540 } else { 1541 pr_info("receiving failed for ioctx %p with status %d\n", 1542 ioctx, wc->status); 1543 } 1544 } 1545 1546 /* 1547 * This function must be called from the context in which RDMA completions are 1548 * processed because it accesses the wait list without protection against 1549 * access from other threads. 1550 */ 1551 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1552 { 1553 struct srpt_send_ioctx *ioctx; 1554 1555 while (!list_empty(&ch->cmd_wait_list) && 1556 ch->state >= CH_LIVE && 1557 (ioctx = srpt_get_send_ioctx(ch)) != NULL) { 1558 struct srpt_recv_ioctx *recv_ioctx; 1559 1560 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1561 struct srpt_recv_ioctx, 1562 wait_list); 1563 list_del(&recv_ioctx->wait_list); 1564 srpt_handle_new_iu(ch, recv_ioctx, ioctx); 1565 } 1566 } 1567 1568 /** 1569 * Note: Although this has not yet been observed during tests, at least in 1570 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1571 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1572 * value in each response is set to one, and it is possible that this response 1573 * makes the initiator send a new request before the send completion for that 1574 * response has been processed. This could e.g. happen if the call to 1575 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1576 * if IB retransmission causes generation of the send completion to be 1577 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1578 * are queued on cmd_wait_list. The code below processes these delayed 1579 * requests one at a time. 1580 */ 1581 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1582 { 1583 struct srpt_rdma_ch *ch = cq->cq_context; 1584 struct srpt_send_ioctx *ioctx = 1585 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1586 enum srpt_command_state state; 1587 1588 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1589 1590 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1591 state != SRPT_STATE_MGMT_RSP_SENT); 1592 1593 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1594 1595 if (wc->status != IB_WC_SUCCESS) 1596 pr_info("sending response for ioctx 0x%p failed" 1597 " with status %d\n", ioctx, wc->status); 1598 1599 if (state != SRPT_STATE_DONE) { 1600 transport_generic_free_cmd(&ioctx->cmd, 0); 1601 } else { 1602 pr_err("IB completion has been received too late for" 1603 " wr_id = %u.\n", ioctx->ioctx.index); 1604 } 1605 1606 srpt_process_wait_list(ch); 1607 } 1608 1609 /** 1610 * srpt_create_ch_ib() - Create receive and send completion queues. 1611 */ 1612 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1613 { 1614 struct ib_qp_init_attr *qp_init; 1615 struct srpt_port *sport = ch->sport; 1616 struct srpt_device *sdev = sport->sdev; 1617 const struct ib_device_attr *attrs = &sdev->device->attrs; 1618 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 1619 int ret; 1620 1621 WARN_ON(ch->rq_size < 1); 1622 1623 ret = -ENOMEM; 1624 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1625 if (!qp_init) 1626 goto out; 1627 1628 retry: 1629 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size, 1630 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1631 if (IS_ERR(ch->cq)) { 1632 ret = PTR_ERR(ch->cq); 1633 pr_err("failed to create CQ cqe= %d ret= %d\n", 1634 ch->rq_size + srp_sq_size, ret); 1635 goto out; 1636 } 1637 1638 qp_init->qp_context = (void *)ch; 1639 qp_init->event_handler 1640 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1641 qp_init->send_cq = ch->cq; 1642 qp_init->recv_cq = ch->cq; 1643 qp_init->srq = sdev->srq; 1644 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1645 qp_init->qp_type = IB_QPT_RC; 1646 /* 1647 * We divide up our send queue size into half SEND WRs to send the 1648 * completions, and half R/W contexts to actually do the RDMA 1649 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1650 * both both, as RDMA contexts will also post completions for the 1651 * RDMA READ case. 1652 */ 1653 qp_init->cap.max_send_wr = srp_sq_size / 2; 1654 qp_init->cap.max_rdma_ctxs = srp_sq_size / 2; 1655 qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE); 1656 qp_init->port_num = ch->sport->port; 1657 1658 ch->qp = ib_create_qp(sdev->pd, qp_init); 1659 if (IS_ERR(ch->qp)) { 1660 ret = PTR_ERR(ch->qp); 1661 if (ret == -ENOMEM) { 1662 srp_sq_size /= 2; 1663 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 1664 ib_destroy_cq(ch->cq); 1665 goto retry; 1666 } 1667 } 1668 pr_err("failed to create_qp ret= %d\n", ret); 1669 goto err_destroy_cq; 1670 } 1671 1672 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1673 1674 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1675 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1676 qp_init->cap.max_send_wr, ch->cm_id); 1677 1678 ret = srpt_init_ch_qp(ch, ch->qp); 1679 if (ret) 1680 goto err_destroy_qp; 1681 1682 out: 1683 kfree(qp_init); 1684 return ret; 1685 1686 err_destroy_qp: 1687 ib_destroy_qp(ch->qp); 1688 err_destroy_cq: 1689 ib_free_cq(ch->cq); 1690 goto out; 1691 } 1692 1693 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1694 { 1695 ib_destroy_qp(ch->qp); 1696 ib_free_cq(ch->cq); 1697 } 1698 1699 /** 1700 * srpt_close_ch() - Close an RDMA channel. 1701 * 1702 * Make sure all resources associated with the channel will be deallocated at 1703 * an appropriate time. 1704 * 1705 * Returns true if and only if the channel state has been modified into 1706 * CH_DRAINING. 1707 */ 1708 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1709 { 1710 int ret; 1711 1712 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1713 pr_debug("%s-%d: already closed\n", ch->sess_name, 1714 ch->qp->qp_num); 1715 return false; 1716 } 1717 1718 kref_get(&ch->kref); 1719 1720 ret = srpt_ch_qp_err(ch); 1721 if (ret < 0) 1722 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1723 ch->sess_name, ch->qp->qp_num, ret); 1724 1725 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 1726 ch->qp->qp_num); 1727 ret = srpt_zerolength_write(ch); 1728 if (ret < 0) { 1729 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1730 ch->sess_name, ch->qp->qp_num, ret); 1731 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1732 schedule_work(&ch->release_work); 1733 else 1734 WARN_ON_ONCE(true); 1735 } 1736 1737 kref_put(&ch->kref, srpt_free_ch); 1738 1739 return true; 1740 } 1741 1742 /* 1743 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1744 * reached the connected state, close it. If a channel is in the connected 1745 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1746 * the responsibility of the caller to ensure that this function is not 1747 * invoked concurrently with the code that accepts a connection. This means 1748 * that this function must either be invoked from inside a CM callback 1749 * function or that it must be invoked with the srpt_port.mutex held. 1750 */ 1751 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1752 { 1753 int ret; 1754 1755 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1756 return -ENOTCONN; 1757 1758 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0); 1759 if (ret < 0) 1760 ret = ib_send_cm_drep(ch->cm_id, NULL, 0); 1761 1762 if (ret < 0 && srpt_close_ch(ch)) 1763 ret = 0; 1764 1765 return ret; 1766 } 1767 1768 static void __srpt_close_all_ch(struct srpt_device *sdev) 1769 { 1770 struct srpt_rdma_ch *ch; 1771 1772 lockdep_assert_held(&sdev->mutex); 1773 1774 list_for_each_entry(ch, &sdev->rch_list, list) { 1775 if (srpt_disconnect_ch(ch) >= 0) 1776 pr_info("Closing channel %s-%d because target %s has been disabled\n", 1777 ch->sess_name, ch->qp->qp_num, 1778 sdev->device->name); 1779 srpt_close_ch(ch); 1780 } 1781 } 1782 1783 static void srpt_free_ch(struct kref *kref) 1784 { 1785 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 1786 1787 kfree(ch); 1788 } 1789 1790 static void srpt_release_channel_work(struct work_struct *w) 1791 { 1792 struct srpt_rdma_ch *ch; 1793 struct srpt_device *sdev; 1794 struct se_session *se_sess; 1795 1796 ch = container_of(w, struct srpt_rdma_ch, release_work); 1797 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name, 1798 ch->qp->qp_num, ch->release_done); 1799 1800 sdev = ch->sport->sdev; 1801 BUG_ON(!sdev); 1802 1803 se_sess = ch->sess; 1804 BUG_ON(!se_sess); 1805 1806 target_sess_cmd_list_set_waiting(se_sess); 1807 target_wait_for_sess_cmds(se_sess); 1808 1809 transport_deregister_session_configfs(se_sess); 1810 transport_deregister_session(se_sess); 1811 ch->sess = NULL; 1812 1813 ib_destroy_cm_id(ch->cm_id); 1814 1815 srpt_destroy_ch_ib(ch); 1816 1817 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 1818 ch->sport->sdev, ch->rq_size, 1819 ch->rsp_size, DMA_TO_DEVICE); 1820 1821 mutex_lock(&sdev->mutex); 1822 list_del_init(&ch->list); 1823 if (ch->release_done) 1824 complete(ch->release_done); 1825 mutex_unlock(&sdev->mutex); 1826 1827 wake_up(&sdev->ch_releaseQ); 1828 1829 kref_put(&ch->kref, srpt_free_ch); 1830 } 1831 1832 /** 1833 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 1834 * 1835 * Ownership of the cm_id is transferred to the target session if this 1836 * functions returns zero. Otherwise the caller remains the owner of cm_id. 1837 */ 1838 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 1839 struct ib_cm_req_event_param *param, 1840 void *private_data) 1841 { 1842 struct srpt_device *sdev = cm_id->context; 1843 struct srpt_port *sport = &sdev->port[param->port - 1]; 1844 struct srp_login_req *req; 1845 struct srp_login_rsp *rsp; 1846 struct srp_login_rej *rej; 1847 struct ib_cm_rep_param *rep_param; 1848 struct srpt_rdma_ch *ch, *tmp_ch; 1849 __be16 *guid; 1850 u32 it_iu_len; 1851 int i, ret = 0; 1852 1853 WARN_ON_ONCE(irqs_disabled()); 1854 1855 if (WARN_ON(!sdev || !private_data)) 1856 return -EINVAL; 1857 1858 req = (struct srp_login_req *)private_data; 1859 1860 it_iu_len = be32_to_cpu(req->req_it_iu_len); 1861 1862 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 1863 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 1864 " (guid=0x%llx:0x%llx)\n", 1865 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 1866 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 1867 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 1868 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 1869 it_iu_len, 1870 param->port, 1871 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 1872 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 1873 1874 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 1875 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 1876 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 1877 1878 if (!rsp || !rej || !rep_param) { 1879 ret = -ENOMEM; 1880 goto out; 1881 } 1882 1883 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 1884 rej->reason = cpu_to_be32( 1885 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 1886 ret = -EINVAL; 1887 pr_err("rejected SRP_LOGIN_REQ because its" 1888 " length (%d bytes) is out of range (%d .. %d)\n", 1889 it_iu_len, 64, srp_max_req_size); 1890 goto reject; 1891 } 1892 1893 if (!sport->enabled) { 1894 rej->reason = cpu_to_be32( 1895 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1896 ret = -EINVAL; 1897 pr_err("rejected SRP_LOGIN_REQ because the target port" 1898 " has not yet been enabled\n"); 1899 goto reject; 1900 } 1901 1902 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 1903 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 1904 1905 mutex_lock(&sdev->mutex); 1906 1907 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 1908 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 1909 && !memcmp(ch->t_port_id, req->target_port_id, 16) 1910 && param->port == ch->sport->port 1911 && param->listen_id == ch->sport->sdev->cm_id 1912 && ch->cm_id) { 1913 if (srpt_disconnect_ch(ch) < 0) 1914 continue; 1915 pr_info("Relogin - closed existing channel %s\n", 1916 ch->sess_name); 1917 rsp->rsp_flags = 1918 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 1919 } 1920 } 1921 1922 mutex_unlock(&sdev->mutex); 1923 1924 } else 1925 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 1926 1927 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 1928 || *(__be64 *)(req->target_port_id + 8) != 1929 cpu_to_be64(srpt_service_guid)) { 1930 rej->reason = cpu_to_be32( 1931 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 1932 ret = -ENOMEM; 1933 pr_err("rejected SRP_LOGIN_REQ because it" 1934 " has an invalid target port identifier.\n"); 1935 goto reject; 1936 } 1937 1938 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 1939 if (!ch) { 1940 rej->reason = cpu_to_be32( 1941 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1942 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 1943 ret = -ENOMEM; 1944 goto reject; 1945 } 1946 1947 kref_init(&ch->kref); 1948 ch->zw_cqe.done = srpt_zerolength_write_done; 1949 INIT_WORK(&ch->release_work, srpt_release_channel_work); 1950 memcpy(ch->i_port_id, req->initiator_port_id, 16); 1951 memcpy(ch->t_port_id, req->target_port_id, 16); 1952 ch->sport = &sdev->port[param->port - 1]; 1953 ch->cm_id = cm_id; 1954 cm_id->context = ch; 1955 /* 1956 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 1957 * for the SRP protocol to the command queue size. 1958 */ 1959 ch->rq_size = SRPT_RQ_SIZE; 1960 spin_lock_init(&ch->spinlock); 1961 ch->state = CH_CONNECTING; 1962 INIT_LIST_HEAD(&ch->cmd_wait_list); 1963 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 1964 1965 ch->ioctx_ring = (struct srpt_send_ioctx **) 1966 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 1967 sizeof(*ch->ioctx_ring[0]), 1968 ch->rsp_size, DMA_TO_DEVICE); 1969 if (!ch->ioctx_ring) 1970 goto free_ch; 1971 1972 INIT_LIST_HEAD(&ch->free_list); 1973 for (i = 0; i < ch->rq_size; i++) { 1974 ch->ioctx_ring[i]->ch = ch; 1975 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 1976 } 1977 1978 ret = srpt_create_ch_ib(ch); 1979 if (ret) { 1980 rej->reason = cpu_to_be32( 1981 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1982 pr_err("rejected SRP_LOGIN_REQ because creating" 1983 " a new RDMA channel failed.\n"); 1984 goto free_ring; 1985 } 1986 1987 ret = srpt_ch_qp_rtr(ch, ch->qp); 1988 if (ret) { 1989 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1990 pr_err("rejected SRP_LOGIN_REQ because enabling" 1991 " RTR failed (error code = %d)\n", ret); 1992 goto destroy_ib; 1993 } 1994 1995 guid = (__be16 *)¶m->primary_path->sgid.global.interface_id; 1996 snprintf(ch->ini_guid, sizeof(ch->ini_guid), "%04x:%04x:%04x:%04x", 1997 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]), 1998 be16_to_cpu(guid[2]), be16_to_cpu(guid[3])); 1999 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2000 be64_to_cpu(*(__be64 *)ch->i_port_id), 2001 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2002 2003 pr_debug("registering session %s\n", ch->sess_name); 2004 2005 if (sport->port_guid_tpg.se_tpg_wwn) 2006 ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0, 2007 TARGET_PROT_NORMAL, 2008 ch->ini_guid, ch, NULL); 2009 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2010 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0, 2011 TARGET_PROT_NORMAL, ch->sess_name, ch, 2012 NULL); 2013 /* Retry without leading "0x" */ 2014 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2015 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0, 2016 TARGET_PROT_NORMAL, 2017 ch->sess_name + 2, ch, NULL); 2018 if (IS_ERR_OR_NULL(ch->sess)) { 2019 pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n", 2020 ch->sess_name); 2021 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ? 2022 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2023 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2024 goto destroy_ib; 2025 } 2026 2027 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2028 ch->sess_name, ch->cm_id); 2029 2030 /* create srp_login_response */ 2031 rsp->opcode = SRP_LOGIN_RSP; 2032 rsp->tag = req->tag; 2033 rsp->max_it_iu_len = req->req_it_iu_len; 2034 rsp->max_ti_iu_len = req->req_it_iu_len; 2035 ch->max_ti_iu_len = it_iu_len; 2036 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2037 | SRP_BUF_FORMAT_INDIRECT); 2038 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2039 atomic_set(&ch->req_lim, ch->rq_size); 2040 atomic_set(&ch->req_lim_delta, 0); 2041 2042 /* create cm reply */ 2043 rep_param->qp_num = ch->qp->qp_num; 2044 rep_param->private_data = (void *)rsp; 2045 rep_param->private_data_len = sizeof(*rsp); 2046 rep_param->rnr_retry_count = 7; 2047 rep_param->flow_control = 1; 2048 rep_param->failover_accepted = 0; 2049 rep_param->srq = 1; 2050 rep_param->responder_resources = 4; 2051 rep_param->initiator_depth = 4; 2052 2053 ret = ib_send_cm_rep(cm_id, rep_param); 2054 if (ret) { 2055 pr_err("sending SRP_LOGIN_REQ response failed" 2056 " (error code = %d)\n", ret); 2057 goto release_channel; 2058 } 2059 2060 mutex_lock(&sdev->mutex); 2061 list_add_tail(&ch->list, &sdev->rch_list); 2062 mutex_unlock(&sdev->mutex); 2063 2064 goto out; 2065 2066 release_channel: 2067 srpt_disconnect_ch(ch); 2068 transport_deregister_session_configfs(ch->sess); 2069 transport_deregister_session(ch->sess); 2070 ch->sess = NULL; 2071 2072 destroy_ib: 2073 srpt_destroy_ch_ib(ch); 2074 2075 free_ring: 2076 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2077 ch->sport->sdev, ch->rq_size, 2078 ch->rsp_size, DMA_TO_DEVICE); 2079 free_ch: 2080 kfree(ch); 2081 2082 reject: 2083 rej->opcode = SRP_LOGIN_REJ; 2084 rej->tag = req->tag; 2085 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2086 | SRP_BUF_FORMAT_INDIRECT); 2087 2088 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2089 (void *)rej, sizeof(*rej)); 2090 2091 out: 2092 kfree(rep_param); 2093 kfree(rsp); 2094 kfree(rej); 2095 2096 return ret; 2097 } 2098 2099 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2100 enum ib_cm_rej_reason reason, 2101 const u8 *private_data, 2102 u8 private_data_len) 2103 { 2104 char *priv = NULL; 2105 int i; 2106 2107 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2108 GFP_KERNEL))) { 2109 for (i = 0; i < private_data_len; i++) 2110 sprintf(priv + 3 * i, " %02x", private_data[i]); 2111 } 2112 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2113 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2114 "; private data" : "", priv ? priv : " (?)"); 2115 kfree(priv); 2116 } 2117 2118 /** 2119 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2120 * 2121 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2122 * and that the recipient may begin transmitting (RTU = ready to use). 2123 */ 2124 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2125 { 2126 int ret; 2127 2128 if (srpt_set_ch_state(ch, CH_LIVE)) { 2129 ret = srpt_ch_qp_rts(ch, ch->qp); 2130 2131 if (ret == 0) { 2132 /* Trigger wait list processing. */ 2133 ret = srpt_zerolength_write(ch); 2134 WARN_ONCE(ret < 0, "%d\n", ret); 2135 } else { 2136 srpt_close_ch(ch); 2137 } 2138 } 2139 } 2140 2141 /** 2142 * srpt_cm_handler() - IB connection manager callback function. 2143 * 2144 * A non-zero return value will cause the caller destroy the CM ID. 2145 * 2146 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2147 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2148 * a non-zero value in any other case will trigger a race with the 2149 * ib_destroy_cm_id() call in srpt_release_channel(). 2150 */ 2151 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2152 { 2153 struct srpt_rdma_ch *ch = cm_id->context; 2154 int ret; 2155 2156 ret = 0; 2157 switch (event->event) { 2158 case IB_CM_REQ_RECEIVED: 2159 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2160 event->private_data); 2161 break; 2162 case IB_CM_REJ_RECEIVED: 2163 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2164 event->private_data, 2165 IB_CM_REJ_PRIVATE_DATA_SIZE); 2166 break; 2167 case IB_CM_RTU_RECEIVED: 2168 case IB_CM_USER_ESTABLISHED: 2169 srpt_cm_rtu_recv(ch); 2170 break; 2171 case IB_CM_DREQ_RECEIVED: 2172 srpt_disconnect_ch(ch); 2173 break; 2174 case IB_CM_DREP_RECEIVED: 2175 pr_info("Received CM DREP message for ch %s-%d.\n", 2176 ch->sess_name, ch->qp->qp_num); 2177 srpt_close_ch(ch); 2178 break; 2179 case IB_CM_TIMEWAIT_EXIT: 2180 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2181 ch->sess_name, ch->qp->qp_num); 2182 srpt_close_ch(ch); 2183 break; 2184 case IB_CM_REP_ERROR: 2185 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2186 ch->qp->qp_num); 2187 break; 2188 case IB_CM_DREQ_ERROR: 2189 pr_info("Received CM DREQ ERROR event.\n"); 2190 break; 2191 case IB_CM_MRA_RECEIVED: 2192 pr_info("Received CM MRA event\n"); 2193 break; 2194 default: 2195 pr_err("received unrecognized CM event %d\n", event->event); 2196 break; 2197 } 2198 2199 return ret; 2200 } 2201 2202 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2203 { 2204 struct srpt_send_ioctx *ioctx; 2205 2206 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2207 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2208 } 2209 2210 /* 2211 * srpt_write_pending() - Start data transfer from initiator to target (write). 2212 */ 2213 static int srpt_write_pending(struct se_cmd *se_cmd) 2214 { 2215 struct srpt_send_ioctx *ioctx = 2216 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2217 struct srpt_rdma_ch *ch = ioctx->ch; 2218 struct ib_send_wr *first_wr = NULL, *bad_wr; 2219 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2220 enum srpt_command_state new_state; 2221 int ret, i; 2222 2223 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2224 WARN_ON(new_state == SRPT_STATE_DONE); 2225 2226 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2227 pr_warn("%s: IB send queue full (needed %d)\n", 2228 __func__, ioctx->n_rdma); 2229 ret = -ENOMEM; 2230 goto out_undo; 2231 } 2232 2233 cqe->done = srpt_rdma_read_done; 2234 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2235 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2236 2237 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2238 cqe, first_wr); 2239 cqe = NULL; 2240 } 2241 2242 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2243 if (ret) { 2244 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2245 __func__, ret, ioctx->n_rdma, 2246 atomic_read(&ch->sq_wr_avail)); 2247 goto out_undo; 2248 } 2249 2250 return 0; 2251 out_undo: 2252 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2253 return ret; 2254 } 2255 2256 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2257 { 2258 switch (tcm_mgmt_status) { 2259 case TMR_FUNCTION_COMPLETE: 2260 return SRP_TSK_MGMT_SUCCESS; 2261 case TMR_FUNCTION_REJECTED: 2262 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2263 } 2264 return SRP_TSK_MGMT_FAILED; 2265 } 2266 2267 /** 2268 * srpt_queue_response() - Transmits the response to a SCSI command. 2269 * 2270 * Callback function called by the TCM core. Must not block since it can be 2271 * invoked on the context of the IB completion handler. 2272 */ 2273 static void srpt_queue_response(struct se_cmd *cmd) 2274 { 2275 struct srpt_send_ioctx *ioctx = 2276 container_of(cmd, struct srpt_send_ioctx, cmd); 2277 struct srpt_rdma_ch *ch = ioctx->ch; 2278 struct srpt_device *sdev = ch->sport->sdev; 2279 struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr; 2280 struct ib_sge sge; 2281 enum srpt_command_state state; 2282 unsigned long flags; 2283 int resp_len, ret, i; 2284 u8 srp_tm_status; 2285 2286 BUG_ON(!ch); 2287 2288 spin_lock_irqsave(&ioctx->spinlock, flags); 2289 state = ioctx->state; 2290 switch (state) { 2291 case SRPT_STATE_NEW: 2292 case SRPT_STATE_DATA_IN: 2293 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2294 break; 2295 case SRPT_STATE_MGMT: 2296 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2297 break; 2298 default: 2299 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2300 ch, ioctx->ioctx.index, ioctx->state); 2301 break; 2302 } 2303 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2304 2305 if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) 2306 return; 2307 2308 /* For read commands, transfer the data to the initiator. */ 2309 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2310 ioctx->cmd.data_length && 2311 !ioctx->queue_status_only) { 2312 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2313 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2314 2315 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2316 ch->sport->port, NULL, first_wr); 2317 } 2318 } 2319 2320 if (state != SRPT_STATE_MGMT) 2321 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2322 cmd->scsi_status); 2323 else { 2324 srp_tm_status 2325 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2326 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2327 ioctx->cmd.tag); 2328 } 2329 2330 atomic_inc(&ch->req_lim); 2331 2332 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2333 &ch->sq_wr_avail) < 0)) { 2334 pr_warn("%s: IB send queue full (needed %d)\n", 2335 __func__, ioctx->n_rdma); 2336 ret = -ENOMEM; 2337 goto out; 2338 } 2339 2340 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2341 DMA_TO_DEVICE); 2342 2343 sge.addr = ioctx->ioctx.dma; 2344 sge.length = resp_len; 2345 sge.lkey = sdev->pd->local_dma_lkey; 2346 2347 ioctx->ioctx.cqe.done = srpt_send_done; 2348 send_wr.next = NULL; 2349 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2350 send_wr.sg_list = &sge; 2351 send_wr.num_sge = 1; 2352 send_wr.opcode = IB_WR_SEND; 2353 send_wr.send_flags = IB_SEND_SIGNALED; 2354 2355 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2356 if (ret < 0) { 2357 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2358 __func__, ioctx->cmd.tag, ret); 2359 goto out; 2360 } 2361 2362 return; 2363 2364 out: 2365 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2366 atomic_dec(&ch->req_lim); 2367 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2368 target_put_sess_cmd(&ioctx->cmd); 2369 } 2370 2371 static int srpt_queue_data_in(struct se_cmd *cmd) 2372 { 2373 srpt_queue_response(cmd); 2374 return 0; 2375 } 2376 2377 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2378 { 2379 srpt_queue_response(cmd); 2380 } 2381 2382 static void srpt_aborted_task(struct se_cmd *cmd) 2383 { 2384 } 2385 2386 static int srpt_queue_status(struct se_cmd *cmd) 2387 { 2388 struct srpt_send_ioctx *ioctx; 2389 2390 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2391 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2392 if (cmd->se_cmd_flags & 2393 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2394 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2395 ioctx->queue_status_only = true; 2396 srpt_queue_response(cmd); 2397 return 0; 2398 } 2399 2400 static void srpt_refresh_port_work(struct work_struct *work) 2401 { 2402 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2403 2404 srpt_refresh_port(sport); 2405 } 2406 2407 /** 2408 * srpt_release_sdev() - Free the channel resources associated with a target. 2409 */ 2410 static int srpt_release_sdev(struct srpt_device *sdev) 2411 { 2412 int i, res; 2413 2414 WARN_ON_ONCE(irqs_disabled()); 2415 2416 BUG_ON(!sdev); 2417 2418 mutex_lock(&sdev->mutex); 2419 for (i = 0; i < ARRAY_SIZE(sdev->port); i++) 2420 sdev->port[i].enabled = false; 2421 __srpt_close_all_ch(sdev); 2422 mutex_unlock(&sdev->mutex); 2423 2424 res = wait_event_interruptible(sdev->ch_releaseQ, 2425 list_empty_careful(&sdev->rch_list)); 2426 if (res) 2427 pr_err("%s: interrupted.\n", __func__); 2428 2429 return 0; 2430 } 2431 2432 static struct se_wwn *__srpt_lookup_wwn(const char *name) 2433 { 2434 struct ib_device *dev; 2435 struct srpt_device *sdev; 2436 struct srpt_port *sport; 2437 int i; 2438 2439 list_for_each_entry(sdev, &srpt_dev_list, list) { 2440 dev = sdev->device; 2441 if (!dev) 2442 continue; 2443 2444 for (i = 0; i < dev->phys_port_cnt; i++) { 2445 sport = &sdev->port[i]; 2446 2447 if (strcmp(sport->port_guid, name) == 0) 2448 return &sport->port_guid_wwn; 2449 if (strcmp(sport->port_gid, name) == 0) 2450 return &sport->port_gid_wwn; 2451 } 2452 } 2453 2454 return NULL; 2455 } 2456 2457 static struct se_wwn *srpt_lookup_wwn(const char *name) 2458 { 2459 struct se_wwn *wwn; 2460 2461 spin_lock(&srpt_dev_lock); 2462 wwn = __srpt_lookup_wwn(name); 2463 spin_unlock(&srpt_dev_lock); 2464 2465 return wwn; 2466 } 2467 2468 /** 2469 * srpt_add_one() - Infiniband device addition callback function. 2470 */ 2471 static void srpt_add_one(struct ib_device *device) 2472 { 2473 struct srpt_device *sdev; 2474 struct srpt_port *sport; 2475 struct ib_srq_init_attr srq_attr; 2476 int i; 2477 2478 pr_debug("device = %p\n", device); 2479 2480 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 2481 if (!sdev) 2482 goto err; 2483 2484 sdev->device = device; 2485 INIT_LIST_HEAD(&sdev->rch_list); 2486 init_waitqueue_head(&sdev->ch_releaseQ); 2487 mutex_init(&sdev->mutex); 2488 2489 sdev->pd = ib_alloc_pd(device, 0); 2490 if (IS_ERR(sdev->pd)) 2491 goto free_dev; 2492 2493 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 2494 2495 srq_attr.event_handler = srpt_srq_event; 2496 srq_attr.srq_context = (void *)sdev; 2497 srq_attr.attr.max_wr = sdev->srq_size; 2498 srq_attr.attr.max_sge = 1; 2499 srq_attr.attr.srq_limit = 0; 2500 srq_attr.srq_type = IB_SRQT_BASIC; 2501 2502 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 2503 if (IS_ERR(sdev->srq)) 2504 goto err_pd; 2505 2506 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 2507 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr, 2508 device->name); 2509 2510 if (!srpt_service_guid) 2511 srpt_service_guid = be64_to_cpu(device->node_guid); 2512 2513 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 2514 if (IS_ERR(sdev->cm_id)) 2515 goto err_srq; 2516 2517 /* print out target login information */ 2518 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 2519 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 2520 srpt_service_guid, srpt_service_guid); 2521 2522 /* 2523 * We do not have a consistent service_id (ie. also id_ext of target_id) 2524 * to identify this target. We currently use the guid of the first HCA 2525 * in the system as service_id; therefore, the target_id will change 2526 * if this HCA is gone bad and replaced by different HCA 2527 */ 2528 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 2529 goto err_cm; 2530 2531 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 2532 srpt_event_handler); 2533 ib_register_event_handler(&sdev->event_handler); 2534 2535 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2536 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2537 sizeof(*sdev->ioctx_ring[0]), 2538 srp_max_req_size, DMA_FROM_DEVICE); 2539 if (!sdev->ioctx_ring) 2540 goto err_event; 2541 2542 for (i = 0; i < sdev->srq_size; ++i) 2543 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 2544 2545 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 2546 2547 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 2548 sport = &sdev->port[i - 1]; 2549 sport->sdev = sdev; 2550 sport->port = i; 2551 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 2552 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 2553 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 2554 INIT_WORK(&sport->work, srpt_refresh_port_work); 2555 2556 if (srpt_refresh_port(sport)) { 2557 pr_err("MAD registration failed for %s-%d.\n", 2558 sdev->device->name, i); 2559 goto err_ring; 2560 } 2561 } 2562 2563 spin_lock(&srpt_dev_lock); 2564 list_add_tail(&sdev->list, &srpt_dev_list); 2565 spin_unlock(&srpt_dev_lock); 2566 2567 out: 2568 ib_set_client_data(device, &srpt_client, sdev); 2569 pr_debug("added %s.\n", device->name); 2570 return; 2571 2572 err_ring: 2573 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2574 sdev->srq_size, srp_max_req_size, 2575 DMA_FROM_DEVICE); 2576 err_event: 2577 ib_unregister_event_handler(&sdev->event_handler); 2578 err_cm: 2579 ib_destroy_cm_id(sdev->cm_id); 2580 err_srq: 2581 ib_destroy_srq(sdev->srq); 2582 err_pd: 2583 ib_dealloc_pd(sdev->pd); 2584 free_dev: 2585 kfree(sdev); 2586 err: 2587 sdev = NULL; 2588 pr_info("%s(%s) failed.\n", __func__, device->name); 2589 goto out; 2590 } 2591 2592 /** 2593 * srpt_remove_one() - InfiniBand device removal callback function. 2594 */ 2595 static void srpt_remove_one(struct ib_device *device, void *client_data) 2596 { 2597 struct srpt_device *sdev = client_data; 2598 int i; 2599 2600 if (!sdev) { 2601 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 2602 return; 2603 } 2604 2605 srpt_unregister_mad_agent(sdev); 2606 2607 ib_unregister_event_handler(&sdev->event_handler); 2608 2609 /* Cancel any work queued by the just unregistered IB event handler. */ 2610 for (i = 0; i < sdev->device->phys_port_cnt; i++) 2611 cancel_work_sync(&sdev->port[i].work); 2612 2613 ib_destroy_cm_id(sdev->cm_id); 2614 2615 /* 2616 * Unregistering a target must happen after destroying sdev->cm_id 2617 * such that no new SRP_LOGIN_REQ information units can arrive while 2618 * destroying the target. 2619 */ 2620 spin_lock(&srpt_dev_lock); 2621 list_del(&sdev->list); 2622 spin_unlock(&srpt_dev_lock); 2623 srpt_release_sdev(sdev); 2624 2625 ib_destroy_srq(sdev->srq); 2626 ib_dealloc_pd(sdev->pd); 2627 2628 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2629 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2630 sdev->ioctx_ring = NULL; 2631 kfree(sdev); 2632 } 2633 2634 static struct ib_client srpt_client = { 2635 .name = DRV_NAME, 2636 .add = srpt_add_one, 2637 .remove = srpt_remove_one 2638 }; 2639 2640 static int srpt_check_true(struct se_portal_group *se_tpg) 2641 { 2642 return 1; 2643 } 2644 2645 static int srpt_check_false(struct se_portal_group *se_tpg) 2646 { 2647 return 0; 2648 } 2649 2650 static char *srpt_get_fabric_name(void) 2651 { 2652 return "srpt"; 2653 } 2654 2655 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 2656 { 2657 return tpg->se_tpg_wwn->priv; 2658 } 2659 2660 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 2661 { 2662 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 2663 2664 WARN_ON_ONCE(tpg != &sport->port_guid_tpg && 2665 tpg != &sport->port_gid_tpg); 2666 return tpg == &sport->port_guid_tpg ? sport->port_guid : 2667 sport->port_gid; 2668 } 2669 2670 static u16 srpt_get_tag(struct se_portal_group *tpg) 2671 { 2672 return 1; 2673 } 2674 2675 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 2676 { 2677 return 1; 2678 } 2679 2680 static void srpt_release_cmd(struct se_cmd *se_cmd) 2681 { 2682 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 2683 struct srpt_send_ioctx, cmd); 2684 struct srpt_rdma_ch *ch = ioctx->ch; 2685 unsigned long flags; 2686 2687 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 2688 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 2689 2690 if (ioctx->n_rw_ctx) { 2691 srpt_free_rw_ctxs(ch, ioctx); 2692 ioctx->n_rw_ctx = 0; 2693 } 2694 2695 spin_lock_irqsave(&ch->spinlock, flags); 2696 list_add(&ioctx->free_list, &ch->free_list); 2697 spin_unlock_irqrestore(&ch->spinlock, flags); 2698 } 2699 2700 /** 2701 * srpt_close_session() - Forcibly close a session. 2702 * 2703 * Callback function invoked by the TCM core to clean up sessions associated 2704 * with a node ACL when the user invokes 2705 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2706 */ 2707 static void srpt_close_session(struct se_session *se_sess) 2708 { 2709 DECLARE_COMPLETION_ONSTACK(release_done); 2710 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2711 struct srpt_device *sdev = ch->sport->sdev; 2712 bool wait; 2713 2714 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 2715 ch->state); 2716 2717 mutex_lock(&sdev->mutex); 2718 BUG_ON(ch->release_done); 2719 ch->release_done = &release_done; 2720 wait = !list_empty(&ch->list); 2721 srpt_disconnect_ch(ch); 2722 mutex_unlock(&sdev->mutex); 2723 2724 if (!wait) 2725 return; 2726 2727 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0) 2728 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 2729 ch->sess_name, ch->qp->qp_num, ch->state); 2730 } 2731 2732 /** 2733 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 2734 * 2735 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 2736 * This object represents an arbitrary integer used to uniquely identify a 2737 * particular attached remote initiator port to a particular SCSI target port 2738 * within a particular SCSI target device within a particular SCSI instance. 2739 */ 2740 static u32 srpt_sess_get_index(struct se_session *se_sess) 2741 { 2742 return 0; 2743 } 2744 2745 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 2746 { 2747 } 2748 2749 /* Note: only used from inside debug printk's by the TCM core. */ 2750 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 2751 { 2752 struct srpt_send_ioctx *ioctx; 2753 2754 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2755 return srpt_get_cmd_state(ioctx); 2756 } 2757 2758 static int srpt_parse_guid(u64 *guid, const char *name) 2759 { 2760 u16 w[4]; 2761 int ret = -EINVAL; 2762 2763 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 2764 goto out; 2765 *guid = get_unaligned_be64(w); 2766 ret = 0; 2767 out: 2768 return ret; 2769 } 2770 2771 /** 2772 * srpt_parse_i_port_id() - Parse an initiator port ID. 2773 * @name: ASCII representation of a 128-bit initiator port ID. 2774 * @i_port_id: Binary 128-bit port ID. 2775 */ 2776 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 2777 { 2778 const char *p; 2779 unsigned len, count, leading_zero_bytes; 2780 int ret, rc; 2781 2782 p = name; 2783 if (strncasecmp(p, "0x", 2) == 0) 2784 p += 2; 2785 ret = -EINVAL; 2786 len = strlen(p); 2787 if (len % 2) 2788 goto out; 2789 count = min(len / 2, 16U); 2790 leading_zero_bytes = 16 - count; 2791 memset(i_port_id, 0, leading_zero_bytes); 2792 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 2793 if (rc < 0) 2794 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 2795 ret = 0; 2796 out: 2797 return ret; 2798 } 2799 2800 /* 2801 * configfs callback function invoked for 2802 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2803 */ 2804 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 2805 { 2806 u64 guid; 2807 u8 i_port_id[16]; 2808 int ret; 2809 2810 ret = srpt_parse_guid(&guid, name); 2811 if (ret < 0) 2812 ret = srpt_parse_i_port_id(i_port_id, name); 2813 if (ret < 0) 2814 pr_err("invalid initiator port ID %s\n", name); 2815 return ret; 2816 } 2817 2818 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 2819 char *page) 2820 { 2821 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2822 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2823 2824 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 2825 } 2826 2827 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 2828 const char *page, size_t count) 2829 { 2830 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2831 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2832 unsigned long val; 2833 int ret; 2834 2835 ret = kstrtoul(page, 0, &val); 2836 if (ret < 0) { 2837 pr_err("kstrtoul() failed with ret: %d\n", ret); 2838 return -EINVAL; 2839 } 2840 if (val > MAX_SRPT_RDMA_SIZE) { 2841 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 2842 MAX_SRPT_RDMA_SIZE); 2843 return -EINVAL; 2844 } 2845 if (val < DEFAULT_MAX_RDMA_SIZE) { 2846 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 2847 val, DEFAULT_MAX_RDMA_SIZE); 2848 return -EINVAL; 2849 } 2850 sport->port_attrib.srp_max_rdma_size = val; 2851 2852 return count; 2853 } 2854 2855 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 2856 char *page) 2857 { 2858 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2859 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2860 2861 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 2862 } 2863 2864 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 2865 const char *page, size_t count) 2866 { 2867 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2868 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2869 unsigned long val; 2870 int ret; 2871 2872 ret = kstrtoul(page, 0, &val); 2873 if (ret < 0) { 2874 pr_err("kstrtoul() failed with ret: %d\n", ret); 2875 return -EINVAL; 2876 } 2877 if (val > MAX_SRPT_RSP_SIZE) { 2878 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 2879 MAX_SRPT_RSP_SIZE); 2880 return -EINVAL; 2881 } 2882 if (val < MIN_MAX_RSP_SIZE) { 2883 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 2884 MIN_MAX_RSP_SIZE); 2885 return -EINVAL; 2886 } 2887 sport->port_attrib.srp_max_rsp_size = val; 2888 2889 return count; 2890 } 2891 2892 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 2893 char *page) 2894 { 2895 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2896 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2897 2898 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 2899 } 2900 2901 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 2902 const char *page, size_t count) 2903 { 2904 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2905 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2906 unsigned long val; 2907 int ret; 2908 2909 ret = kstrtoul(page, 0, &val); 2910 if (ret < 0) { 2911 pr_err("kstrtoul() failed with ret: %d\n", ret); 2912 return -EINVAL; 2913 } 2914 if (val > MAX_SRPT_SRQ_SIZE) { 2915 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 2916 MAX_SRPT_SRQ_SIZE); 2917 return -EINVAL; 2918 } 2919 if (val < MIN_SRPT_SRQ_SIZE) { 2920 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 2921 MIN_SRPT_SRQ_SIZE); 2922 return -EINVAL; 2923 } 2924 sport->port_attrib.srp_sq_size = val; 2925 2926 return count; 2927 } 2928 2929 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 2930 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 2931 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 2932 2933 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 2934 &srpt_tpg_attrib_attr_srp_max_rdma_size, 2935 &srpt_tpg_attrib_attr_srp_max_rsp_size, 2936 &srpt_tpg_attrib_attr_srp_sq_size, 2937 NULL, 2938 }; 2939 2940 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 2941 { 2942 struct se_portal_group *se_tpg = to_tpg(item); 2943 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2944 2945 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 2946 } 2947 2948 static ssize_t srpt_tpg_enable_store(struct config_item *item, 2949 const char *page, size_t count) 2950 { 2951 struct se_portal_group *se_tpg = to_tpg(item); 2952 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2953 struct srpt_device *sdev = sport->sdev; 2954 struct srpt_rdma_ch *ch; 2955 unsigned long tmp; 2956 int ret; 2957 2958 ret = kstrtoul(page, 0, &tmp); 2959 if (ret < 0) { 2960 pr_err("Unable to extract srpt_tpg_store_enable\n"); 2961 return -EINVAL; 2962 } 2963 2964 if ((tmp != 0) && (tmp != 1)) { 2965 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 2966 return -EINVAL; 2967 } 2968 if (sport->enabled == tmp) 2969 goto out; 2970 sport->enabled = tmp; 2971 if (sport->enabled) 2972 goto out; 2973 2974 mutex_lock(&sdev->mutex); 2975 list_for_each_entry(ch, &sdev->rch_list, list) { 2976 if (ch->sport == sport) { 2977 pr_debug("%s: ch %p %s-%d\n", __func__, ch, 2978 ch->sess_name, ch->qp->qp_num); 2979 srpt_disconnect_ch(ch); 2980 srpt_close_ch(ch); 2981 } 2982 } 2983 mutex_unlock(&sdev->mutex); 2984 2985 out: 2986 return count; 2987 } 2988 2989 CONFIGFS_ATTR(srpt_tpg_, enable); 2990 2991 static struct configfs_attribute *srpt_tpg_attrs[] = { 2992 &srpt_tpg_attr_enable, 2993 NULL, 2994 }; 2995 2996 /** 2997 * configfs callback invoked for 2998 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 2999 */ 3000 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3001 struct config_group *group, 3002 const char *name) 3003 { 3004 struct srpt_port *sport = wwn->priv; 3005 static struct se_portal_group *tpg; 3006 int res; 3007 3008 WARN_ON_ONCE(wwn != &sport->port_guid_wwn && 3009 wwn != &sport->port_gid_wwn); 3010 tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg : 3011 &sport->port_gid_tpg; 3012 res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP); 3013 if (res) 3014 return ERR_PTR(res); 3015 3016 return tpg; 3017 } 3018 3019 /** 3020 * configfs callback invoked for 3021 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3022 */ 3023 static void srpt_drop_tpg(struct se_portal_group *tpg) 3024 { 3025 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3026 3027 sport->enabled = false; 3028 core_tpg_deregister(tpg); 3029 } 3030 3031 /** 3032 * configfs callback invoked for 3033 * mkdir /sys/kernel/config/target/$driver/$port 3034 */ 3035 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3036 struct config_group *group, 3037 const char *name) 3038 { 3039 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL); 3040 } 3041 3042 /** 3043 * configfs callback invoked for 3044 * rmdir /sys/kernel/config/target/$driver/$port 3045 */ 3046 static void srpt_drop_tport(struct se_wwn *wwn) 3047 { 3048 } 3049 3050 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3051 { 3052 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3053 } 3054 3055 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3056 3057 static struct configfs_attribute *srpt_wwn_attrs[] = { 3058 &srpt_wwn_attr_version, 3059 NULL, 3060 }; 3061 3062 static const struct target_core_fabric_ops srpt_template = { 3063 .module = THIS_MODULE, 3064 .name = "srpt", 3065 .get_fabric_name = srpt_get_fabric_name, 3066 .tpg_get_wwn = srpt_get_fabric_wwn, 3067 .tpg_get_tag = srpt_get_tag, 3068 .tpg_check_demo_mode = srpt_check_false, 3069 .tpg_check_demo_mode_cache = srpt_check_true, 3070 .tpg_check_demo_mode_write_protect = srpt_check_true, 3071 .tpg_check_prod_mode_write_protect = srpt_check_false, 3072 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3073 .release_cmd = srpt_release_cmd, 3074 .check_stop_free = srpt_check_stop_free, 3075 .close_session = srpt_close_session, 3076 .sess_get_index = srpt_sess_get_index, 3077 .sess_get_initiator_sid = NULL, 3078 .write_pending = srpt_write_pending, 3079 .write_pending_status = srpt_write_pending_status, 3080 .set_default_node_attributes = srpt_set_default_node_attrs, 3081 .get_cmd_state = srpt_get_tcm_cmd_state, 3082 .queue_data_in = srpt_queue_data_in, 3083 .queue_status = srpt_queue_status, 3084 .queue_tm_rsp = srpt_queue_tm_rsp, 3085 .aborted_task = srpt_aborted_task, 3086 /* 3087 * Setup function pointers for generic logic in 3088 * target_core_fabric_configfs.c 3089 */ 3090 .fabric_make_wwn = srpt_make_tport, 3091 .fabric_drop_wwn = srpt_drop_tport, 3092 .fabric_make_tpg = srpt_make_tpg, 3093 .fabric_drop_tpg = srpt_drop_tpg, 3094 .fabric_init_nodeacl = srpt_init_nodeacl, 3095 3096 .tfc_wwn_attrs = srpt_wwn_attrs, 3097 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3098 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3099 }; 3100 3101 /** 3102 * srpt_init_module() - Kernel module initialization. 3103 * 3104 * Note: Since ib_register_client() registers callback functions, and since at 3105 * least one of these callback functions (srpt_add_one()) calls target core 3106 * functions, this driver must be registered with the target core before 3107 * ib_register_client() is called. 3108 */ 3109 static int __init srpt_init_module(void) 3110 { 3111 int ret; 3112 3113 ret = -EINVAL; 3114 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3115 pr_err("invalid value %d for kernel module parameter" 3116 " srp_max_req_size -- must be at least %d.\n", 3117 srp_max_req_size, MIN_MAX_REQ_SIZE); 3118 goto out; 3119 } 3120 3121 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3122 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3123 pr_err("invalid value %d for kernel module parameter" 3124 " srpt_srq_size -- must be in the range [%d..%d].\n", 3125 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3126 goto out; 3127 } 3128 3129 ret = target_register_template(&srpt_template); 3130 if (ret) 3131 goto out; 3132 3133 ret = ib_register_client(&srpt_client); 3134 if (ret) { 3135 pr_err("couldn't register IB client\n"); 3136 goto out_unregister_target; 3137 } 3138 3139 return 0; 3140 3141 out_unregister_target: 3142 target_unregister_template(&srpt_template); 3143 out: 3144 return ret; 3145 } 3146 3147 static void __exit srpt_cleanup_module(void) 3148 { 3149 ib_unregister_client(&srpt_client); 3150 target_unregister_template(&srpt_template); 3151 } 3152 3153 module_init(srpt_init_module); 3154 module_exit(srpt_cleanup_module); 3155