1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 /* Refresh port data asynchronously. */ 202 if (event->element.port_num <= sdev->device->phys_port_cnt) { 203 sport = &sdev->port[event->element.port_num - 1]; 204 if (!sport->lid && !sport->sm_lid) 205 schedule_work(&sport->work); 206 } 207 break; 208 default: 209 printk(KERN_ERR "received unrecognized IB event %d\n", 210 event->event); 211 break; 212 } 213 } 214 215 /** 216 * srpt_srq_event() - SRQ event callback function. 217 */ 218 static void srpt_srq_event(struct ib_event *event, void *ctx) 219 { 220 printk(KERN_INFO "SRQ event %d\n", event->event); 221 } 222 223 /** 224 * srpt_qp_event() - QP event callback function. 225 */ 226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 227 { 228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 230 231 switch (event->event) { 232 case IB_EVENT_COMM_EST: 233 ib_cm_notify(ch->cm_id, event->event); 234 break; 235 case IB_EVENT_QP_LAST_WQE_REACHED: 236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 237 CH_RELEASING)) 238 srpt_release_channel(ch); 239 else 240 pr_debug("%s: state %d - ignored LAST_WQE.\n", 241 ch->sess_name, srpt_get_ch_state(ch)); 242 break; 243 default: 244 printk(KERN_ERR "received unrecognized IB QP event %d\n", 245 event->event); 246 break; 247 } 248 } 249 250 /** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260 { 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272 } 273 274 /** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281 { 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291 } 292 293 /** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299 static void srpt_get_iou(struct ib_dm_mad *mad) 300 { 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315 } 316 317 /** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326 { 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366 } 367 368 /** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374 static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376 { 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403 } 404 405 /** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413 { 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443 } 444 445 /** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450 { 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453 } 454 455 /** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460 { 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512 err_rsp: 513 ib_destroy_ah(ah); 514 err: 515 ib_free_recv_mad(mad_wc); 516 } 517 518 /** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527 static int srpt_refresh_port(struct srpt_port *sport) 528 { 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576 err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582 err_mod_port: 583 584 return ret; 585 } 586 587 /** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593 { 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 printk(KERN_ERR "disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610 } 611 612 /** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618 { 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635 err_free_buf: 636 kfree(ioctx->buf); 637 err_free_ioctx: 638 kfree(ioctx); 639 err: 640 return NULL; 641 } 642 643 /** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648 { 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655 } 656 657 /** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668 { 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686 err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691 out: 692 return ring; 693 } 694 695 /** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701 { 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707 } 708 709 /** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713 { 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723 } 724 725 /** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733 { 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746 } 747 748 /** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756 { 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770 } 771 772 /** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775 static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777 { 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793 } 794 795 /** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800 static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802 { 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832 out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838 } 839 840 /** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857 { 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 printk(KERN_ERR "received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941 out: 942 return ret; 943 } 944 945 /** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952 { 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972 } 973 974 /** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986 { 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000 out: 1001 return ret; 1002 } 1003 1004 /** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016 { 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030 out: 1031 return ret; 1032 } 1033 1034 /** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038 { 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043 } 1044 1045 /** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050 { 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073 } 1074 1075 /** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080 { 1081 struct se_cmd *cmd; 1082 struct scatterlist *sg, *sg_orig; 1083 int sg_cnt; 1084 enum dma_data_direction dir; 1085 struct rdma_iu *riu; 1086 struct srp_direct_buf *db; 1087 dma_addr_t dma_addr; 1088 struct ib_sge *sge; 1089 u64 raddr; 1090 u32 rsize; 1091 u32 tsize; 1092 u32 dma_len; 1093 int count, nrdma; 1094 int i, j, k; 1095 1096 BUG_ON(!ch); 1097 BUG_ON(!ioctx); 1098 cmd = &ioctx->cmd; 1099 dir = cmd->data_direction; 1100 BUG_ON(dir == DMA_NONE); 1101 1102 transport_do_task_sg_chain(cmd); 1103 ioctx->sg = sg = sg_orig = cmd->t_tasks_sg_chained; 1104 ioctx->sg_cnt = sg_cnt = cmd->t_tasks_sg_chained_no; 1105 1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1107 opposite_dma_dir(dir)); 1108 if (unlikely(!count)) 1109 return -EAGAIN; 1110 1111 ioctx->mapped_sg_count = count; 1112 1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1114 nrdma = ioctx->n_rdma_ius; 1115 else { 1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1117 + ioctx->n_rbuf; 1118 1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1120 if (!ioctx->rdma_ius) 1121 goto free_mem; 1122 1123 ioctx->n_rdma_ius = nrdma; 1124 } 1125 1126 db = ioctx->rbufs; 1127 tsize = cmd->data_length; 1128 dma_len = sg_dma_len(&sg[0]); 1129 riu = ioctx->rdma_ius; 1130 1131 /* 1132 * For each remote desc - calculate the #ib_sge. 1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1134 * each remote desc rdma_iu is required a rdma wr; 1135 * else 1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1137 * another rdma wr 1138 */ 1139 for (i = 0, j = 0; 1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1141 rsize = be32_to_cpu(db->len); 1142 raddr = be64_to_cpu(db->va); 1143 riu->raddr = raddr; 1144 riu->rkey = be32_to_cpu(db->key); 1145 riu->sge_cnt = 0; 1146 1147 /* calculate how many sge required for this remote_buf */ 1148 while (rsize > 0 && tsize > 0) { 1149 1150 if (rsize >= dma_len) { 1151 tsize -= dma_len; 1152 rsize -= dma_len; 1153 raddr += dma_len; 1154 1155 if (tsize > 0) { 1156 ++j; 1157 if (j < count) { 1158 sg = sg_next(sg); 1159 dma_len = sg_dma_len(sg); 1160 } 1161 } 1162 } else { 1163 tsize -= rsize; 1164 dma_len -= rsize; 1165 rsize = 0; 1166 } 1167 1168 ++riu->sge_cnt; 1169 1170 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1171 ++ioctx->n_rdma; 1172 riu->sge = 1173 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1174 GFP_KERNEL); 1175 if (!riu->sge) 1176 goto free_mem; 1177 1178 ++riu; 1179 riu->sge_cnt = 0; 1180 riu->raddr = raddr; 1181 riu->rkey = be32_to_cpu(db->key); 1182 } 1183 } 1184 1185 ++ioctx->n_rdma; 1186 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1187 GFP_KERNEL); 1188 if (!riu->sge) 1189 goto free_mem; 1190 } 1191 1192 db = ioctx->rbufs; 1193 tsize = cmd->data_length; 1194 riu = ioctx->rdma_ius; 1195 sg = sg_orig; 1196 dma_len = sg_dma_len(&sg[0]); 1197 dma_addr = sg_dma_address(&sg[0]); 1198 1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1200 for (i = 0, j = 0; 1201 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1202 rsize = be32_to_cpu(db->len); 1203 sge = riu->sge; 1204 k = 0; 1205 1206 while (rsize > 0 && tsize > 0) { 1207 sge->addr = dma_addr; 1208 sge->lkey = ch->sport->sdev->mr->lkey; 1209 1210 if (rsize >= dma_len) { 1211 sge->length = 1212 (tsize < dma_len) ? tsize : dma_len; 1213 tsize -= dma_len; 1214 rsize -= dma_len; 1215 1216 if (tsize > 0) { 1217 ++j; 1218 if (j < count) { 1219 sg = sg_next(sg); 1220 dma_len = sg_dma_len(sg); 1221 dma_addr = sg_dma_address(sg); 1222 } 1223 } 1224 } else { 1225 sge->length = (tsize < rsize) ? tsize : rsize; 1226 tsize -= rsize; 1227 dma_len -= rsize; 1228 dma_addr += rsize; 1229 rsize = 0; 1230 } 1231 1232 ++k; 1233 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1234 ++riu; 1235 sge = riu->sge; 1236 k = 0; 1237 } else if (rsize > 0 && tsize > 0) 1238 ++sge; 1239 } 1240 } 1241 1242 return 0; 1243 1244 free_mem: 1245 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1246 1247 return -ENOMEM; 1248 } 1249 1250 /** 1251 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1252 */ 1253 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1254 { 1255 struct srpt_send_ioctx *ioctx; 1256 unsigned long flags; 1257 1258 BUG_ON(!ch); 1259 1260 ioctx = NULL; 1261 spin_lock_irqsave(&ch->spinlock, flags); 1262 if (!list_empty(&ch->free_list)) { 1263 ioctx = list_first_entry(&ch->free_list, 1264 struct srpt_send_ioctx, free_list); 1265 list_del(&ioctx->free_list); 1266 } 1267 spin_unlock_irqrestore(&ch->spinlock, flags); 1268 1269 if (!ioctx) 1270 return ioctx; 1271 1272 BUG_ON(ioctx->ch != ch); 1273 kref_init(&ioctx->kref); 1274 spin_lock_init(&ioctx->spinlock); 1275 ioctx->state = SRPT_STATE_NEW; 1276 ioctx->n_rbuf = 0; 1277 ioctx->rbufs = NULL; 1278 ioctx->n_rdma = 0; 1279 ioctx->n_rdma_ius = 0; 1280 ioctx->rdma_ius = NULL; 1281 ioctx->mapped_sg_count = 0; 1282 init_completion(&ioctx->tx_done); 1283 ioctx->queue_status_only = false; 1284 /* 1285 * transport_init_se_cmd() does not initialize all fields, so do it 1286 * here. 1287 */ 1288 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1289 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1290 1291 return ioctx; 1292 } 1293 1294 /** 1295 * srpt_put_send_ioctx() - Free up resources. 1296 */ 1297 static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx) 1298 { 1299 struct srpt_rdma_ch *ch; 1300 unsigned long flags; 1301 1302 BUG_ON(!ioctx); 1303 ch = ioctx->ch; 1304 BUG_ON(!ch); 1305 1306 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE); 1307 1308 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1309 transport_generic_free_cmd(&ioctx->cmd, 0); 1310 1311 if (ioctx->n_rbuf > 1) { 1312 kfree(ioctx->rbufs); 1313 ioctx->rbufs = NULL; 1314 ioctx->n_rbuf = 0; 1315 } 1316 1317 spin_lock_irqsave(&ch->spinlock, flags); 1318 list_add(&ioctx->free_list, &ch->free_list); 1319 spin_unlock_irqrestore(&ch->spinlock, flags); 1320 } 1321 1322 static void srpt_put_send_ioctx_kref(struct kref *kref) 1323 { 1324 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref)); 1325 } 1326 1327 /** 1328 * srpt_abort_cmd() - Abort a SCSI command. 1329 * @ioctx: I/O context associated with the SCSI command. 1330 * @context: Preferred execution context. 1331 */ 1332 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1333 { 1334 enum srpt_command_state state; 1335 unsigned long flags; 1336 1337 BUG_ON(!ioctx); 1338 1339 /* 1340 * If the command is in a state where the target core is waiting for 1341 * the ib_srpt driver, change the state to the next state. Changing 1342 * the state of the command from SRPT_STATE_NEED_DATA to 1343 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1344 * function a second time. 1345 */ 1346 1347 spin_lock_irqsave(&ioctx->spinlock, flags); 1348 state = ioctx->state; 1349 switch (state) { 1350 case SRPT_STATE_NEED_DATA: 1351 ioctx->state = SRPT_STATE_DATA_IN; 1352 break; 1353 case SRPT_STATE_DATA_IN: 1354 case SRPT_STATE_CMD_RSP_SENT: 1355 case SRPT_STATE_MGMT_RSP_SENT: 1356 ioctx->state = SRPT_STATE_DONE; 1357 break; 1358 default: 1359 break; 1360 } 1361 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1362 1363 if (state == SRPT_STATE_DONE) 1364 goto out; 1365 1366 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1367 ioctx->tag); 1368 1369 switch (state) { 1370 case SRPT_STATE_NEW: 1371 case SRPT_STATE_DATA_IN: 1372 case SRPT_STATE_MGMT: 1373 /* 1374 * Do nothing - defer abort processing until 1375 * srpt_queue_response() is invoked. 1376 */ 1377 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1378 break; 1379 case SRPT_STATE_NEED_DATA: 1380 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1381 atomic_set(&ioctx->cmd.transport_lun_stop, 1); 1382 transport_generic_handle_data(&ioctx->cmd); 1383 break; 1384 case SRPT_STATE_CMD_RSP_SENT: 1385 /* 1386 * SRP_RSP sending failed or the SRP_RSP send completion has 1387 * not been received in time. 1388 */ 1389 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1390 atomic_set(&ioctx->cmd.transport_lun_stop, 1); 1391 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1392 break; 1393 case SRPT_STATE_MGMT_RSP_SENT: 1394 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1395 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1396 break; 1397 default: 1398 WARN_ON("ERROR: unexpected command state"); 1399 break; 1400 } 1401 1402 out: 1403 return state; 1404 } 1405 1406 /** 1407 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1408 */ 1409 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1410 { 1411 struct srpt_send_ioctx *ioctx; 1412 enum srpt_command_state state; 1413 struct se_cmd *cmd; 1414 u32 index; 1415 1416 atomic_inc(&ch->sq_wr_avail); 1417 1418 index = idx_from_wr_id(wr_id); 1419 ioctx = ch->ioctx_ring[index]; 1420 state = srpt_get_cmd_state(ioctx); 1421 cmd = &ioctx->cmd; 1422 1423 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1424 && state != SRPT_STATE_MGMT_RSP_SENT 1425 && state != SRPT_STATE_NEED_DATA 1426 && state != SRPT_STATE_DONE); 1427 1428 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1429 if (state == SRPT_STATE_CMD_RSP_SENT 1430 || state == SRPT_STATE_MGMT_RSP_SENT) 1431 atomic_dec(&ch->req_lim); 1432 1433 srpt_abort_cmd(ioctx); 1434 } 1435 1436 /** 1437 * srpt_handle_send_comp() - Process an IB send completion notification. 1438 */ 1439 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1440 struct srpt_send_ioctx *ioctx) 1441 { 1442 enum srpt_command_state state; 1443 1444 atomic_inc(&ch->sq_wr_avail); 1445 1446 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1447 1448 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1449 && state != SRPT_STATE_MGMT_RSP_SENT 1450 && state != SRPT_STATE_DONE)) 1451 pr_debug("state = %d\n", state); 1452 1453 if (state != SRPT_STATE_DONE) 1454 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1455 else 1456 printk(KERN_ERR "IB completion has been received too late for" 1457 " wr_id = %u.\n", ioctx->ioctx.index); 1458 } 1459 1460 /** 1461 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1462 * 1463 * Note: transport_generic_handle_data() is asynchronous so unmapping the 1464 * data that has been transferred via IB RDMA must be postponed until the 1465 * check_stop_free() callback. 1466 */ 1467 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1468 struct srpt_send_ioctx *ioctx, 1469 enum srpt_opcode opcode) 1470 { 1471 WARN_ON(ioctx->n_rdma <= 0); 1472 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1473 1474 if (opcode == SRPT_RDMA_READ_LAST) { 1475 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1476 SRPT_STATE_DATA_IN)) 1477 transport_generic_handle_data(&ioctx->cmd); 1478 else 1479 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1480 __LINE__, srpt_get_cmd_state(ioctx)); 1481 } else if (opcode == SRPT_RDMA_ABORT) { 1482 ioctx->rdma_aborted = true; 1483 } else { 1484 WARN(true, "unexpected opcode %d\n", opcode); 1485 } 1486 } 1487 1488 /** 1489 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1490 */ 1491 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1492 struct srpt_send_ioctx *ioctx, 1493 enum srpt_opcode opcode) 1494 { 1495 struct se_cmd *cmd; 1496 enum srpt_command_state state; 1497 1498 cmd = &ioctx->cmd; 1499 state = srpt_get_cmd_state(ioctx); 1500 switch (opcode) { 1501 case SRPT_RDMA_READ_LAST: 1502 if (ioctx->n_rdma <= 0) { 1503 printk(KERN_ERR "Received invalid RDMA read" 1504 " error completion with idx %d\n", 1505 ioctx->ioctx.index); 1506 break; 1507 } 1508 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1509 if (state == SRPT_STATE_NEED_DATA) 1510 srpt_abort_cmd(ioctx); 1511 else 1512 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1513 __func__, __LINE__, state); 1514 break; 1515 case SRPT_RDMA_WRITE_LAST: 1516 atomic_set(&ioctx->cmd.transport_lun_stop, 1); 1517 break; 1518 default: 1519 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1520 __LINE__, opcode); 1521 break; 1522 } 1523 } 1524 1525 /** 1526 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1527 * @ch: RDMA channel through which the request has been received. 1528 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1529 * be built in the buffer ioctx->buf points at and hence this function will 1530 * overwrite the request data. 1531 * @tag: tag of the request for which this response is being generated. 1532 * @status: value for the STATUS field of the SRP_RSP information unit. 1533 * 1534 * Returns the size in bytes of the SRP_RSP response. 1535 * 1536 * An SRP_RSP response contains a SCSI status or service response. See also 1537 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1538 * response. See also SPC-2 for more information about sense data. 1539 */ 1540 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1541 struct srpt_send_ioctx *ioctx, u64 tag, 1542 int status) 1543 { 1544 struct srp_rsp *srp_rsp; 1545 const u8 *sense_data; 1546 int sense_data_len, max_sense_len; 1547 1548 /* 1549 * The lowest bit of all SAM-3 status codes is zero (see also 1550 * paragraph 5.3 in SAM-3). 1551 */ 1552 WARN_ON(status & 1); 1553 1554 srp_rsp = ioctx->ioctx.buf; 1555 BUG_ON(!srp_rsp); 1556 1557 sense_data = ioctx->sense_data; 1558 sense_data_len = ioctx->cmd.scsi_sense_length; 1559 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1560 1561 memset(srp_rsp, 0, sizeof *srp_rsp); 1562 srp_rsp->opcode = SRP_RSP; 1563 srp_rsp->req_lim_delta = 1564 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1565 srp_rsp->tag = tag; 1566 srp_rsp->status = status; 1567 1568 if (sense_data_len) { 1569 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1570 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1571 if (sense_data_len > max_sense_len) { 1572 printk(KERN_WARNING "truncated sense data from %d to %d" 1573 " bytes\n", sense_data_len, max_sense_len); 1574 sense_data_len = max_sense_len; 1575 } 1576 1577 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1578 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1579 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1580 } 1581 1582 return sizeof(*srp_rsp) + sense_data_len; 1583 } 1584 1585 /** 1586 * srpt_build_tskmgmt_rsp() - Build a task management response. 1587 * @ch: RDMA channel through which the request has been received. 1588 * @ioctx: I/O context in which the SRP_RSP response will be built. 1589 * @rsp_code: RSP_CODE that will be stored in the response. 1590 * @tag: Tag of the request for which this response is being generated. 1591 * 1592 * Returns the size in bytes of the SRP_RSP response. 1593 * 1594 * An SRP_RSP response contains a SCSI status or service response. See also 1595 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1596 * response. 1597 */ 1598 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1599 struct srpt_send_ioctx *ioctx, 1600 u8 rsp_code, u64 tag) 1601 { 1602 struct srp_rsp *srp_rsp; 1603 int resp_data_len; 1604 int resp_len; 1605 1606 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4; 1607 resp_len = sizeof(*srp_rsp) + resp_data_len; 1608 1609 srp_rsp = ioctx->ioctx.buf; 1610 BUG_ON(!srp_rsp); 1611 memset(srp_rsp, 0, sizeof *srp_rsp); 1612 1613 srp_rsp->opcode = SRP_RSP; 1614 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1615 + atomic_xchg(&ch->req_lim_delta, 0)); 1616 srp_rsp->tag = tag; 1617 1618 if (rsp_code != SRP_TSK_MGMT_SUCCESS) { 1619 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1620 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1621 srp_rsp->data[3] = rsp_code; 1622 } 1623 1624 return resp_len; 1625 } 1626 1627 #define NO_SUCH_LUN ((uint64_t)-1LL) 1628 1629 /* 1630 * SCSI LUN addressing method. See also SAM-2 and the section about 1631 * eight byte LUNs. 1632 */ 1633 enum scsi_lun_addr_method { 1634 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1635 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1636 SCSI_LUN_ADDR_METHOD_LUN = 2, 1637 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1638 }; 1639 1640 /* 1641 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1642 * 1643 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1644 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1645 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1646 */ 1647 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1648 { 1649 uint64_t res = NO_SUCH_LUN; 1650 int addressing_method; 1651 1652 if (unlikely(len < 2)) { 1653 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1654 "more", len); 1655 goto out; 1656 } 1657 1658 switch (len) { 1659 case 8: 1660 if ((*((__be64 *)lun) & 1661 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1662 goto out_err; 1663 break; 1664 case 4: 1665 if (*((__be16 *)&lun[2]) != 0) 1666 goto out_err; 1667 break; 1668 case 6: 1669 if (*((__be32 *)&lun[2]) != 0) 1670 goto out_err; 1671 break; 1672 case 2: 1673 break; 1674 default: 1675 goto out_err; 1676 } 1677 1678 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1679 switch (addressing_method) { 1680 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1681 case SCSI_LUN_ADDR_METHOD_FLAT: 1682 case SCSI_LUN_ADDR_METHOD_LUN: 1683 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1684 break; 1685 1686 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1687 default: 1688 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1689 addressing_method); 1690 break; 1691 } 1692 1693 out: 1694 return res; 1695 1696 out_err: 1697 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1698 " implemented"); 1699 goto out; 1700 } 1701 1702 static int srpt_check_stop_free(struct se_cmd *cmd) 1703 { 1704 struct srpt_send_ioctx *ioctx; 1705 1706 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 1707 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 1708 } 1709 1710 /** 1711 * srpt_handle_cmd() - Process SRP_CMD. 1712 */ 1713 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1714 struct srpt_recv_ioctx *recv_ioctx, 1715 struct srpt_send_ioctx *send_ioctx) 1716 { 1717 struct se_cmd *cmd; 1718 struct srp_cmd *srp_cmd; 1719 uint64_t unpacked_lun; 1720 u64 data_len; 1721 enum dma_data_direction dir; 1722 int ret; 1723 1724 BUG_ON(!send_ioctx); 1725 1726 srp_cmd = recv_ioctx->ioctx.buf; 1727 kref_get(&send_ioctx->kref); 1728 cmd = &send_ioctx->cmd; 1729 send_ioctx->tag = srp_cmd->tag; 1730 1731 switch (srp_cmd->task_attr) { 1732 case SRP_CMD_SIMPLE_Q: 1733 cmd->sam_task_attr = MSG_SIMPLE_TAG; 1734 break; 1735 case SRP_CMD_ORDERED_Q: 1736 default: 1737 cmd->sam_task_attr = MSG_ORDERED_TAG; 1738 break; 1739 case SRP_CMD_HEAD_OF_Q: 1740 cmd->sam_task_attr = MSG_HEAD_TAG; 1741 break; 1742 case SRP_CMD_ACA: 1743 cmd->sam_task_attr = MSG_ACA_TAG; 1744 break; 1745 } 1746 1747 ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len); 1748 if (ret) { 1749 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1750 srp_cmd->tag); 1751 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1752 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; 1753 goto send_sense; 1754 } 1755 1756 cmd->data_length = data_len; 1757 cmd->data_direction = dir; 1758 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1759 sizeof(srp_cmd->lun)); 1760 if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) 1761 goto send_sense; 1762 ret = transport_generic_allocate_tasks(cmd, srp_cmd->cdb); 1763 if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) 1764 srpt_queue_status(cmd); 1765 else if (cmd->se_cmd_flags & SCF_SCSI_CDB_EXCEPTION) 1766 goto send_sense; 1767 else 1768 WARN_ON_ONCE(ret); 1769 1770 transport_handle_cdb_direct(cmd); 1771 return 0; 1772 1773 send_sense: 1774 transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason, 1775 0); 1776 return -1; 1777 } 1778 1779 /** 1780 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1781 * @ch: RDMA channel of the task management request. 1782 * @fn: Task management function to perform. 1783 * @req_tag: Tag of the SRP task management request. 1784 * @mgmt_ioctx: I/O context of the task management request. 1785 * 1786 * Returns zero if the target core will process the task management 1787 * request asynchronously. 1788 * 1789 * Note: It is assumed that the initiator serializes tag-based task management 1790 * requests. 1791 */ 1792 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1793 { 1794 struct srpt_device *sdev; 1795 struct srpt_rdma_ch *ch; 1796 struct srpt_send_ioctx *target; 1797 int ret, i; 1798 1799 ret = -EINVAL; 1800 ch = ioctx->ch; 1801 BUG_ON(!ch); 1802 BUG_ON(!ch->sport); 1803 sdev = ch->sport->sdev; 1804 BUG_ON(!sdev); 1805 spin_lock_irq(&sdev->spinlock); 1806 for (i = 0; i < ch->rq_size; ++i) { 1807 target = ch->ioctx_ring[i]; 1808 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1809 target->tag == tag && 1810 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1811 ret = 0; 1812 /* now let the target core abort &target->cmd; */ 1813 break; 1814 } 1815 } 1816 spin_unlock_irq(&sdev->spinlock); 1817 return ret; 1818 } 1819 1820 static int srp_tmr_to_tcm(int fn) 1821 { 1822 switch (fn) { 1823 case SRP_TSK_ABORT_TASK: 1824 return TMR_ABORT_TASK; 1825 case SRP_TSK_ABORT_TASK_SET: 1826 return TMR_ABORT_TASK_SET; 1827 case SRP_TSK_CLEAR_TASK_SET: 1828 return TMR_CLEAR_TASK_SET; 1829 case SRP_TSK_LUN_RESET: 1830 return TMR_LUN_RESET; 1831 case SRP_TSK_CLEAR_ACA: 1832 return TMR_CLEAR_ACA; 1833 default: 1834 return -1; 1835 } 1836 } 1837 1838 /** 1839 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1840 * 1841 * Returns 0 if and only if the request will be processed by the target core. 1842 * 1843 * For more information about SRP_TSK_MGMT information units, see also section 1844 * 6.7 in the SRP r16a document. 1845 */ 1846 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1847 struct srpt_recv_ioctx *recv_ioctx, 1848 struct srpt_send_ioctx *send_ioctx) 1849 { 1850 struct srp_tsk_mgmt *srp_tsk; 1851 struct se_cmd *cmd; 1852 uint64_t unpacked_lun; 1853 int tcm_tmr; 1854 int res; 1855 1856 BUG_ON(!send_ioctx); 1857 1858 srp_tsk = recv_ioctx->ioctx.buf; 1859 cmd = &send_ioctx->cmd; 1860 1861 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1862 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1863 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1864 1865 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1866 send_ioctx->tag = srp_tsk->tag; 1867 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1868 if (tcm_tmr < 0) { 1869 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1870 send_ioctx->cmd.se_tmr_req->response = 1871 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1872 goto process_tmr; 1873 } 1874 cmd->se_tmr_req = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL); 1875 if (!cmd->se_tmr_req) { 1876 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1877 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1878 goto process_tmr; 1879 } 1880 1881 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1882 sizeof(srp_tsk->lun)); 1883 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun); 1884 if (res) { 1885 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun); 1886 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; 1887 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; 1888 goto process_tmr; 1889 } 1890 1891 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) 1892 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1893 1894 process_tmr: 1895 kref_get(&send_ioctx->kref); 1896 if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION)) 1897 transport_generic_handle_tmr(&send_ioctx->cmd); 1898 else 1899 transport_send_check_condition_and_sense(cmd, 1900 cmd->scsi_sense_reason, 0); 1901 1902 } 1903 1904 /** 1905 * srpt_handle_new_iu() - Process a newly received information unit. 1906 * @ch: RDMA channel through which the information unit has been received. 1907 * @ioctx: SRPT I/O context associated with the information unit. 1908 */ 1909 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1910 struct srpt_recv_ioctx *recv_ioctx, 1911 struct srpt_send_ioctx *send_ioctx) 1912 { 1913 struct srp_cmd *srp_cmd; 1914 enum rdma_ch_state ch_state; 1915 1916 BUG_ON(!ch); 1917 BUG_ON(!recv_ioctx); 1918 1919 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1920 recv_ioctx->ioctx.dma, srp_max_req_size, 1921 DMA_FROM_DEVICE); 1922 1923 ch_state = srpt_get_ch_state(ch); 1924 if (unlikely(ch_state == CH_CONNECTING)) { 1925 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1926 goto out; 1927 } 1928 1929 if (unlikely(ch_state != CH_LIVE)) 1930 goto out; 1931 1932 srp_cmd = recv_ioctx->ioctx.buf; 1933 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1934 if (!send_ioctx) 1935 send_ioctx = srpt_get_send_ioctx(ch); 1936 if (unlikely(!send_ioctx)) { 1937 list_add_tail(&recv_ioctx->wait_list, 1938 &ch->cmd_wait_list); 1939 goto out; 1940 } 1941 } 1942 1943 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess, 1944 0, DMA_NONE, MSG_SIMPLE_TAG, 1945 send_ioctx->sense_data); 1946 1947 switch (srp_cmd->opcode) { 1948 case SRP_CMD: 1949 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1950 break; 1951 case SRP_TSK_MGMT: 1952 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1953 break; 1954 case SRP_I_LOGOUT: 1955 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1956 break; 1957 case SRP_CRED_RSP: 1958 pr_debug("received SRP_CRED_RSP\n"); 1959 break; 1960 case SRP_AER_RSP: 1961 pr_debug("received SRP_AER_RSP\n"); 1962 break; 1963 case SRP_RSP: 1964 printk(KERN_ERR "Received SRP_RSP\n"); 1965 break; 1966 default: 1967 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1968 srp_cmd->opcode); 1969 break; 1970 } 1971 1972 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1973 out: 1974 return; 1975 } 1976 1977 static void srpt_process_rcv_completion(struct ib_cq *cq, 1978 struct srpt_rdma_ch *ch, 1979 struct ib_wc *wc) 1980 { 1981 struct srpt_device *sdev = ch->sport->sdev; 1982 struct srpt_recv_ioctx *ioctx; 1983 u32 index; 1984 1985 index = idx_from_wr_id(wc->wr_id); 1986 if (wc->status == IB_WC_SUCCESS) { 1987 int req_lim; 1988 1989 req_lim = atomic_dec_return(&ch->req_lim); 1990 if (unlikely(req_lim < 0)) 1991 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 1992 ioctx = sdev->ioctx_ring[index]; 1993 srpt_handle_new_iu(ch, ioctx, NULL); 1994 } else { 1995 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 1996 index, wc->status); 1997 } 1998 } 1999 2000 /** 2001 * srpt_process_send_completion() - Process an IB send completion. 2002 * 2003 * Note: Although this has not yet been observed during tests, at least in 2004 * theory it is possible that the srpt_get_send_ioctx() call invoked by 2005 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 2006 * value in each response is set to one, and it is possible that this response 2007 * makes the initiator send a new request before the send completion for that 2008 * response has been processed. This could e.g. happen if the call to 2009 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 2010 * if IB retransmission causes generation of the send completion to be 2011 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 2012 * are queued on cmd_wait_list. The code below processes these delayed 2013 * requests one at a time. 2014 */ 2015 static void srpt_process_send_completion(struct ib_cq *cq, 2016 struct srpt_rdma_ch *ch, 2017 struct ib_wc *wc) 2018 { 2019 struct srpt_send_ioctx *send_ioctx; 2020 uint32_t index; 2021 enum srpt_opcode opcode; 2022 2023 index = idx_from_wr_id(wc->wr_id); 2024 opcode = opcode_from_wr_id(wc->wr_id); 2025 send_ioctx = ch->ioctx_ring[index]; 2026 if (wc->status == IB_WC_SUCCESS) { 2027 if (opcode == SRPT_SEND) 2028 srpt_handle_send_comp(ch, send_ioctx); 2029 else { 2030 WARN_ON(opcode != SRPT_RDMA_ABORT && 2031 wc->opcode != IB_WC_RDMA_READ); 2032 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 2033 } 2034 } else { 2035 if (opcode == SRPT_SEND) { 2036 printk(KERN_INFO "sending response for idx %u failed" 2037 " with status %d\n", index, wc->status); 2038 srpt_handle_send_err_comp(ch, wc->wr_id); 2039 } else if (opcode != SRPT_RDMA_MID) { 2040 printk(KERN_INFO "RDMA t %d for idx %u failed with" 2041 " status %d", opcode, index, wc->status); 2042 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2043 } 2044 } 2045 2046 while (unlikely(opcode == SRPT_SEND 2047 && !list_empty(&ch->cmd_wait_list) 2048 && srpt_get_ch_state(ch) == CH_LIVE 2049 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2050 struct srpt_recv_ioctx *recv_ioctx; 2051 2052 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2053 struct srpt_recv_ioctx, 2054 wait_list); 2055 list_del(&recv_ioctx->wait_list); 2056 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2057 } 2058 } 2059 2060 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2061 { 2062 struct ib_wc *const wc = ch->wc; 2063 int i, n; 2064 2065 WARN_ON(cq != ch->cq); 2066 2067 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2068 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2069 for (i = 0; i < n; i++) { 2070 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2071 srpt_process_rcv_completion(cq, ch, &wc[i]); 2072 else 2073 srpt_process_send_completion(cq, ch, &wc[i]); 2074 } 2075 } 2076 } 2077 2078 /** 2079 * srpt_completion() - IB completion queue callback function. 2080 * 2081 * Notes: 2082 * - It is guaranteed that a completion handler will never be invoked 2083 * concurrently on two different CPUs for the same completion queue. See also 2084 * Documentation/infiniband/core_locking.txt and the implementation of 2085 * handle_edge_irq() in kernel/irq/chip.c. 2086 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2087 * context instead of interrupt context. 2088 */ 2089 static void srpt_completion(struct ib_cq *cq, void *ctx) 2090 { 2091 struct srpt_rdma_ch *ch = ctx; 2092 2093 wake_up_interruptible(&ch->wait_queue); 2094 } 2095 2096 static int srpt_compl_thread(void *arg) 2097 { 2098 struct srpt_rdma_ch *ch; 2099 2100 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2101 current->flags |= PF_NOFREEZE; 2102 2103 ch = arg; 2104 BUG_ON(!ch); 2105 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2106 ch->sess_name, ch->thread->comm, current->pid); 2107 while (!kthread_should_stop()) { 2108 wait_event_interruptible(ch->wait_queue, 2109 (srpt_process_completion(ch->cq, ch), 2110 kthread_should_stop())); 2111 } 2112 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2113 ch->sess_name, ch->thread->comm, current->pid); 2114 return 0; 2115 } 2116 2117 /** 2118 * srpt_create_ch_ib() - Create receive and send completion queues. 2119 */ 2120 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2121 { 2122 struct ib_qp_init_attr *qp_init; 2123 struct srpt_port *sport = ch->sport; 2124 struct srpt_device *sdev = sport->sdev; 2125 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2126 int ret; 2127 2128 WARN_ON(ch->rq_size < 1); 2129 2130 ret = -ENOMEM; 2131 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2132 if (!qp_init) 2133 goto out; 2134 2135 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2136 ch->rq_size + srp_sq_size, 0); 2137 if (IS_ERR(ch->cq)) { 2138 ret = PTR_ERR(ch->cq); 2139 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2140 ch->rq_size + srp_sq_size, ret); 2141 goto out; 2142 } 2143 2144 qp_init->qp_context = (void *)ch; 2145 qp_init->event_handler 2146 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2147 qp_init->send_cq = ch->cq; 2148 qp_init->recv_cq = ch->cq; 2149 qp_init->srq = sdev->srq; 2150 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2151 qp_init->qp_type = IB_QPT_RC; 2152 qp_init->cap.max_send_wr = srp_sq_size; 2153 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2154 2155 ch->qp = ib_create_qp(sdev->pd, qp_init); 2156 if (IS_ERR(ch->qp)) { 2157 ret = PTR_ERR(ch->qp); 2158 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2159 goto err_destroy_cq; 2160 } 2161 2162 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2163 2164 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2165 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2166 qp_init->cap.max_send_wr, ch->cm_id); 2167 2168 ret = srpt_init_ch_qp(ch, ch->qp); 2169 if (ret) 2170 goto err_destroy_qp; 2171 2172 init_waitqueue_head(&ch->wait_queue); 2173 2174 pr_debug("creating thread for session %s\n", ch->sess_name); 2175 2176 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2177 if (IS_ERR(ch->thread)) { 2178 printk(KERN_ERR "failed to create kernel thread %ld\n", 2179 PTR_ERR(ch->thread)); 2180 ch->thread = NULL; 2181 goto err_destroy_qp; 2182 } 2183 2184 out: 2185 kfree(qp_init); 2186 return ret; 2187 2188 err_destroy_qp: 2189 ib_destroy_qp(ch->qp); 2190 err_destroy_cq: 2191 ib_destroy_cq(ch->cq); 2192 goto out; 2193 } 2194 2195 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2196 { 2197 if (ch->thread) 2198 kthread_stop(ch->thread); 2199 2200 ib_destroy_qp(ch->qp); 2201 ib_destroy_cq(ch->cq); 2202 } 2203 2204 /** 2205 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2206 * 2207 * Reset the QP and make sure all resources associated with the channel will 2208 * be deallocated at an appropriate time. 2209 * 2210 * Note: The caller must hold ch->sport->sdev->spinlock. 2211 */ 2212 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2213 { 2214 struct srpt_device *sdev; 2215 enum rdma_ch_state prev_state; 2216 unsigned long flags; 2217 2218 sdev = ch->sport->sdev; 2219 2220 spin_lock_irqsave(&ch->spinlock, flags); 2221 prev_state = ch->state; 2222 switch (prev_state) { 2223 case CH_CONNECTING: 2224 case CH_LIVE: 2225 ch->state = CH_DISCONNECTING; 2226 break; 2227 default: 2228 break; 2229 } 2230 spin_unlock_irqrestore(&ch->spinlock, flags); 2231 2232 switch (prev_state) { 2233 case CH_CONNECTING: 2234 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2235 NULL, 0); 2236 /* fall through */ 2237 case CH_LIVE: 2238 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2239 printk(KERN_ERR "sending CM DREQ failed.\n"); 2240 break; 2241 case CH_DISCONNECTING: 2242 break; 2243 case CH_DRAINING: 2244 case CH_RELEASING: 2245 break; 2246 } 2247 } 2248 2249 /** 2250 * srpt_close_ch() - Close an RDMA channel. 2251 */ 2252 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2253 { 2254 struct srpt_device *sdev; 2255 2256 sdev = ch->sport->sdev; 2257 spin_lock_irq(&sdev->spinlock); 2258 __srpt_close_ch(ch); 2259 spin_unlock_irq(&sdev->spinlock); 2260 } 2261 2262 /** 2263 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2264 * @cm_id: Pointer to the CM ID of the channel to be drained. 2265 * 2266 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2267 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2268 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2269 * waits until all target sessions for the associated IB device have been 2270 * unregistered and target session registration involves a call to 2271 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2272 * this function has finished). 2273 */ 2274 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2275 { 2276 struct srpt_device *sdev; 2277 struct srpt_rdma_ch *ch; 2278 int ret; 2279 bool do_reset = false; 2280 2281 WARN_ON_ONCE(irqs_disabled()); 2282 2283 sdev = cm_id->context; 2284 BUG_ON(!sdev); 2285 spin_lock_irq(&sdev->spinlock); 2286 list_for_each_entry(ch, &sdev->rch_list, list) { 2287 if (ch->cm_id == cm_id) { 2288 do_reset = srpt_test_and_set_ch_state(ch, 2289 CH_CONNECTING, CH_DRAINING) || 2290 srpt_test_and_set_ch_state(ch, 2291 CH_LIVE, CH_DRAINING) || 2292 srpt_test_and_set_ch_state(ch, 2293 CH_DISCONNECTING, CH_DRAINING); 2294 break; 2295 } 2296 } 2297 spin_unlock_irq(&sdev->spinlock); 2298 2299 if (do_reset) { 2300 ret = srpt_ch_qp_err(ch); 2301 if (ret < 0) 2302 printk(KERN_ERR "Setting queue pair in error state" 2303 " failed: %d\n", ret); 2304 } 2305 } 2306 2307 /** 2308 * srpt_find_channel() - Look up an RDMA channel. 2309 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2310 * 2311 * Return NULL if no matching RDMA channel has been found. 2312 */ 2313 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2314 struct ib_cm_id *cm_id) 2315 { 2316 struct srpt_rdma_ch *ch; 2317 bool found; 2318 2319 WARN_ON_ONCE(irqs_disabled()); 2320 BUG_ON(!sdev); 2321 2322 found = false; 2323 spin_lock_irq(&sdev->spinlock); 2324 list_for_each_entry(ch, &sdev->rch_list, list) { 2325 if (ch->cm_id == cm_id) { 2326 found = true; 2327 break; 2328 } 2329 } 2330 spin_unlock_irq(&sdev->spinlock); 2331 2332 return found ? ch : NULL; 2333 } 2334 2335 /** 2336 * srpt_release_channel() - Release channel resources. 2337 * 2338 * Schedules the actual release because: 2339 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2340 * trigger a deadlock. 2341 * - It is not safe to call TCM transport_* functions from interrupt context. 2342 */ 2343 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2344 { 2345 schedule_work(&ch->release_work); 2346 } 2347 2348 static void srpt_release_channel_work(struct work_struct *w) 2349 { 2350 struct srpt_rdma_ch *ch; 2351 struct srpt_device *sdev; 2352 2353 ch = container_of(w, struct srpt_rdma_ch, release_work); 2354 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2355 ch->release_done); 2356 2357 sdev = ch->sport->sdev; 2358 BUG_ON(!sdev); 2359 2360 transport_deregister_session_configfs(ch->sess); 2361 transport_deregister_session(ch->sess); 2362 ch->sess = NULL; 2363 2364 srpt_destroy_ch_ib(ch); 2365 2366 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2367 ch->sport->sdev, ch->rq_size, 2368 ch->rsp_size, DMA_TO_DEVICE); 2369 2370 spin_lock_irq(&sdev->spinlock); 2371 list_del(&ch->list); 2372 spin_unlock_irq(&sdev->spinlock); 2373 2374 ib_destroy_cm_id(ch->cm_id); 2375 2376 if (ch->release_done) 2377 complete(ch->release_done); 2378 2379 wake_up(&sdev->ch_releaseQ); 2380 2381 kfree(ch); 2382 } 2383 2384 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2385 u8 i_port_id[16]) 2386 { 2387 struct srpt_node_acl *nacl; 2388 2389 list_for_each_entry(nacl, &sport->port_acl_list, list) 2390 if (memcmp(nacl->i_port_id, i_port_id, 2391 sizeof(nacl->i_port_id)) == 0) 2392 return nacl; 2393 2394 return NULL; 2395 } 2396 2397 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2398 u8 i_port_id[16]) 2399 { 2400 struct srpt_node_acl *nacl; 2401 2402 spin_lock_irq(&sport->port_acl_lock); 2403 nacl = __srpt_lookup_acl(sport, i_port_id); 2404 spin_unlock_irq(&sport->port_acl_lock); 2405 2406 return nacl; 2407 } 2408 2409 /** 2410 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2411 * 2412 * Ownership of the cm_id is transferred to the target session if this 2413 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2414 */ 2415 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2416 struct ib_cm_req_event_param *param, 2417 void *private_data) 2418 { 2419 struct srpt_device *sdev = cm_id->context; 2420 struct srpt_port *sport = &sdev->port[param->port - 1]; 2421 struct srp_login_req *req; 2422 struct srp_login_rsp *rsp; 2423 struct srp_login_rej *rej; 2424 struct ib_cm_rep_param *rep_param; 2425 struct srpt_rdma_ch *ch, *tmp_ch; 2426 struct srpt_node_acl *nacl; 2427 u32 it_iu_len; 2428 int i; 2429 int ret = 0; 2430 2431 WARN_ON_ONCE(irqs_disabled()); 2432 2433 if (WARN_ON(!sdev || !private_data)) 2434 return -EINVAL; 2435 2436 req = (struct srp_login_req *)private_data; 2437 2438 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2439 2440 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2441 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2442 " (guid=0x%llx:0x%llx)\n", 2443 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2444 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2445 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2446 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2447 it_iu_len, 2448 param->port, 2449 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2450 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2451 2452 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2453 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2454 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2455 2456 if (!rsp || !rej || !rep_param) { 2457 ret = -ENOMEM; 2458 goto out; 2459 } 2460 2461 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2462 rej->reason = __constant_cpu_to_be32( 2463 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2464 ret = -EINVAL; 2465 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2466 " length (%d bytes) is out of range (%d .. %d)\n", 2467 it_iu_len, 64, srp_max_req_size); 2468 goto reject; 2469 } 2470 2471 if (!sport->enabled) { 2472 rej->reason = __constant_cpu_to_be32( 2473 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2474 ret = -EINVAL; 2475 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2476 " has not yet been enabled\n"); 2477 goto reject; 2478 } 2479 2480 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2481 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2482 2483 spin_lock_irq(&sdev->spinlock); 2484 2485 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2486 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2487 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2488 && param->port == ch->sport->port 2489 && param->listen_id == ch->sport->sdev->cm_id 2490 && ch->cm_id) { 2491 enum rdma_ch_state ch_state; 2492 2493 ch_state = srpt_get_ch_state(ch); 2494 if (ch_state != CH_CONNECTING 2495 && ch_state != CH_LIVE) 2496 continue; 2497 2498 /* found an existing channel */ 2499 pr_debug("Found existing channel %s" 2500 " cm_id= %p state= %d\n", 2501 ch->sess_name, ch->cm_id, ch_state); 2502 2503 __srpt_close_ch(ch); 2504 2505 rsp->rsp_flags = 2506 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2507 } 2508 } 2509 2510 spin_unlock_irq(&sdev->spinlock); 2511 2512 } else 2513 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2514 2515 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2516 || *(__be64 *)(req->target_port_id + 8) != 2517 cpu_to_be64(srpt_service_guid)) { 2518 rej->reason = __constant_cpu_to_be32( 2519 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2520 ret = -ENOMEM; 2521 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2522 " has an invalid target port identifier.\n"); 2523 goto reject; 2524 } 2525 2526 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2527 if (!ch) { 2528 rej->reason = __constant_cpu_to_be32( 2529 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2530 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2531 ret = -ENOMEM; 2532 goto reject; 2533 } 2534 2535 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2536 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2537 memcpy(ch->t_port_id, req->target_port_id, 16); 2538 ch->sport = &sdev->port[param->port - 1]; 2539 ch->cm_id = cm_id; 2540 /* 2541 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2542 * for the SRP protocol to the command queue size. 2543 */ 2544 ch->rq_size = SRPT_RQ_SIZE; 2545 spin_lock_init(&ch->spinlock); 2546 ch->state = CH_CONNECTING; 2547 INIT_LIST_HEAD(&ch->cmd_wait_list); 2548 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2549 2550 ch->ioctx_ring = (struct srpt_send_ioctx **) 2551 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2552 sizeof(*ch->ioctx_ring[0]), 2553 ch->rsp_size, DMA_TO_DEVICE); 2554 if (!ch->ioctx_ring) 2555 goto free_ch; 2556 2557 INIT_LIST_HEAD(&ch->free_list); 2558 for (i = 0; i < ch->rq_size; i++) { 2559 ch->ioctx_ring[i]->ch = ch; 2560 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2561 } 2562 2563 ret = srpt_create_ch_ib(ch); 2564 if (ret) { 2565 rej->reason = __constant_cpu_to_be32( 2566 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2567 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2568 " a new RDMA channel failed.\n"); 2569 goto free_ring; 2570 } 2571 2572 ret = srpt_ch_qp_rtr(ch, ch->qp); 2573 if (ret) { 2574 rej->reason = __constant_cpu_to_be32( 2575 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2576 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2577 " RTR failed (error code = %d)\n", ret); 2578 goto destroy_ib; 2579 } 2580 /* 2581 * Use the initator port identifier as the session name. 2582 */ 2583 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2584 be64_to_cpu(*(__be64 *)ch->i_port_id), 2585 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2586 2587 pr_debug("registering session %s\n", ch->sess_name); 2588 2589 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2590 if (!nacl) { 2591 printk(KERN_INFO "Rejected login because no ACL has been" 2592 " configured yet for initiator %s.\n", ch->sess_name); 2593 rej->reason = __constant_cpu_to_be32( 2594 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2595 goto destroy_ib; 2596 } 2597 2598 ch->sess = transport_init_session(); 2599 if (IS_ERR(ch->sess)) { 2600 rej->reason = __constant_cpu_to_be32( 2601 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2602 pr_debug("Failed to create session\n"); 2603 goto deregister_session; 2604 } 2605 ch->sess->se_node_acl = &nacl->nacl; 2606 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2607 2608 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2609 ch->sess_name, ch->cm_id); 2610 2611 /* create srp_login_response */ 2612 rsp->opcode = SRP_LOGIN_RSP; 2613 rsp->tag = req->tag; 2614 rsp->max_it_iu_len = req->req_it_iu_len; 2615 rsp->max_ti_iu_len = req->req_it_iu_len; 2616 ch->max_ti_iu_len = it_iu_len; 2617 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2618 | SRP_BUF_FORMAT_INDIRECT); 2619 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2620 atomic_set(&ch->req_lim, ch->rq_size); 2621 atomic_set(&ch->req_lim_delta, 0); 2622 2623 /* create cm reply */ 2624 rep_param->qp_num = ch->qp->qp_num; 2625 rep_param->private_data = (void *)rsp; 2626 rep_param->private_data_len = sizeof *rsp; 2627 rep_param->rnr_retry_count = 7; 2628 rep_param->flow_control = 1; 2629 rep_param->failover_accepted = 0; 2630 rep_param->srq = 1; 2631 rep_param->responder_resources = 4; 2632 rep_param->initiator_depth = 4; 2633 2634 ret = ib_send_cm_rep(cm_id, rep_param); 2635 if (ret) { 2636 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2637 " (error code = %d)\n", ret); 2638 goto release_channel; 2639 } 2640 2641 spin_lock_irq(&sdev->spinlock); 2642 list_add_tail(&ch->list, &sdev->rch_list); 2643 spin_unlock_irq(&sdev->spinlock); 2644 2645 goto out; 2646 2647 release_channel: 2648 srpt_set_ch_state(ch, CH_RELEASING); 2649 transport_deregister_session_configfs(ch->sess); 2650 2651 deregister_session: 2652 transport_deregister_session(ch->sess); 2653 ch->sess = NULL; 2654 2655 destroy_ib: 2656 srpt_destroy_ch_ib(ch); 2657 2658 free_ring: 2659 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2660 ch->sport->sdev, ch->rq_size, 2661 ch->rsp_size, DMA_TO_DEVICE); 2662 free_ch: 2663 kfree(ch); 2664 2665 reject: 2666 rej->opcode = SRP_LOGIN_REJ; 2667 rej->tag = req->tag; 2668 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2669 | SRP_BUF_FORMAT_INDIRECT); 2670 2671 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2672 (void *)rej, sizeof *rej); 2673 2674 out: 2675 kfree(rep_param); 2676 kfree(rsp); 2677 kfree(rej); 2678 2679 return ret; 2680 } 2681 2682 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2683 { 2684 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2685 srpt_drain_channel(cm_id); 2686 } 2687 2688 /** 2689 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2690 * 2691 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2692 * and that the recipient may begin transmitting (RTU = ready to use). 2693 */ 2694 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2695 { 2696 struct srpt_rdma_ch *ch; 2697 int ret; 2698 2699 ch = srpt_find_channel(cm_id->context, cm_id); 2700 BUG_ON(!ch); 2701 2702 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2703 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2704 2705 ret = srpt_ch_qp_rts(ch, ch->qp); 2706 2707 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2708 wait_list) { 2709 list_del(&ioctx->wait_list); 2710 srpt_handle_new_iu(ch, ioctx, NULL); 2711 } 2712 if (ret) 2713 srpt_close_ch(ch); 2714 } 2715 } 2716 2717 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2718 { 2719 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2720 srpt_drain_channel(cm_id); 2721 } 2722 2723 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2724 { 2725 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2726 srpt_drain_channel(cm_id); 2727 } 2728 2729 /** 2730 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2731 */ 2732 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2733 { 2734 struct srpt_rdma_ch *ch; 2735 unsigned long flags; 2736 bool send_drep = false; 2737 2738 ch = srpt_find_channel(cm_id->context, cm_id); 2739 BUG_ON(!ch); 2740 2741 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2742 2743 spin_lock_irqsave(&ch->spinlock, flags); 2744 switch (ch->state) { 2745 case CH_CONNECTING: 2746 case CH_LIVE: 2747 send_drep = true; 2748 ch->state = CH_DISCONNECTING; 2749 break; 2750 case CH_DISCONNECTING: 2751 case CH_DRAINING: 2752 case CH_RELEASING: 2753 WARN(true, "unexpected channel state %d\n", ch->state); 2754 break; 2755 } 2756 spin_unlock_irqrestore(&ch->spinlock, flags); 2757 2758 if (send_drep) { 2759 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2760 printk(KERN_ERR "Sending IB DREP failed.\n"); 2761 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2762 ch->sess_name); 2763 } 2764 } 2765 2766 /** 2767 * srpt_cm_drep_recv() - Process reception of a DREP message. 2768 */ 2769 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2770 { 2771 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2772 cm_id); 2773 srpt_drain_channel(cm_id); 2774 } 2775 2776 /** 2777 * srpt_cm_handler() - IB connection manager callback function. 2778 * 2779 * A non-zero return value will cause the caller destroy the CM ID. 2780 * 2781 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2782 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2783 * a non-zero value in any other case will trigger a race with the 2784 * ib_destroy_cm_id() call in srpt_release_channel(). 2785 */ 2786 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2787 { 2788 int ret; 2789 2790 ret = 0; 2791 switch (event->event) { 2792 case IB_CM_REQ_RECEIVED: 2793 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2794 event->private_data); 2795 break; 2796 case IB_CM_REJ_RECEIVED: 2797 srpt_cm_rej_recv(cm_id); 2798 break; 2799 case IB_CM_RTU_RECEIVED: 2800 case IB_CM_USER_ESTABLISHED: 2801 srpt_cm_rtu_recv(cm_id); 2802 break; 2803 case IB_CM_DREQ_RECEIVED: 2804 srpt_cm_dreq_recv(cm_id); 2805 break; 2806 case IB_CM_DREP_RECEIVED: 2807 srpt_cm_drep_recv(cm_id); 2808 break; 2809 case IB_CM_TIMEWAIT_EXIT: 2810 srpt_cm_timewait_exit(cm_id); 2811 break; 2812 case IB_CM_REP_ERROR: 2813 srpt_cm_rep_error(cm_id); 2814 break; 2815 case IB_CM_DREQ_ERROR: 2816 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2817 break; 2818 case IB_CM_MRA_RECEIVED: 2819 printk(KERN_INFO "Received IB MRA event\n"); 2820 break; 2821 default: 2822 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2823 event->event); 2824 break; 2825 } 2826 2827 return ret; 2828 } 2829 2830 /** 2831 * srpt_perform_rdmas() - Perform IB RDMA. 2832 * 2833 * Returns zero upon success or a negative number upon failure. 2834 */ 2835 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2836 struct srpt_send_ioctx *ioctx) 2837 { 2838 struct ib_send_wr wr; 2839 struct ib_send_wr *bad_wr; 2840 struct rdma_iu *riu; 2841 int i; 2842 int ret; 2843 int sq_wr_avail; 2844 enum dma_data_direction dir; 2845 const int n_rdma = ioctx->n_rdma; 2846 2847 dir = ioctx->cmd.data_direction; 2848 if (dir == DMA_TO_DEVICE) { 2849 /* write */ 2850 ret = -ENOMEM; 2851 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2852 if (sq_wr_avail < 0) { 2853 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2854 n_rdma); 2855 goto out; 2856 } 2857 } 2858 2859 ioctx->rdma_aborted = false; 2860 ret = 0; 2861 riu = ioctx->rdma_ius; 2862 memset(&wr, 0, sizeof wr); 2863 2864 for (i = 0; i < n_rdma; ++i, ++riu) { 2865 if (dir == DMA_FROM_DEVICE) { 2866 wr.opcode = IB_WR_RDMA_WRITE; 2867 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2868 SRPT_RDMA_WRITE_LAST : 2869 SRPT_RDMA_MID, 2870 ioctx->ioctx.index); 2871 } else { 2872 wr.opcode = IB_WR_RDMA_READ; 2873 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2874 SRPT_RDMA_READ_LAST : 2875 SRPT_RDMA_MID, 2876 ioctx->ioctx.index); 2877 } 2878 wr.next = NULL; 2879 wr.wr.rdma.remote_addr = riu->raddr; 2880 wr.wr.rdma.rkey = riu->rkey; 2881 wr.num_sge = riu->sge_cnt; 2882 wr.sg_list = riu->sge; 2883 2884 /* only get completion event for the last rdma write */ 2885 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2886 wr.send_flags = IB_SEND_SIGNALED; 2887 2888 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2889 if (ret) 2890 break; 2891 } 2892 2893 if (ret) 2894 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2895 __func__, __LINE__, ret, i, n_rdma); 2896 if (ret && i > 0) { 2897 wr.num_sge = 0; 2898 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2899 wr.send_flags = IB_SEND_SIGNALED; 2900 while (ch->state == CH_LIVE && 2901 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2902 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2903 ioctx->ioctx.index); 2904 msleep(1000); 2905 } 2906 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2907 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2908 ioctx->ioctx.index); 2909 msleep(1000); 2910 } 2911 } 2912 out: 2913 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2914 atomic_add(n_rdma, &ch->sq_wr_avail); 2915 return ret; 2916 } 2917 2918 /** 2919 * srpt_xfer_data() - Start data transfer from initiator to target. 2920 */ 2921 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2922 struct srpt_send_ioctx *ioctx) 2923 { 2924 int ret; 2925 2926 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2927 if (ret) { 2928 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2929 goto out; 2930 } 2931 2932 ret = srpt_perform_rdmas(ch, ioctx); 2933 if (ret) { 2934 if (ret == -EAGAIN || ret == -ENOMEM) 2935 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2936 __func__, __LINE__, ret); 2937 else 2938 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2939 __func__, __LINE__, ret); 2940 goto out_unmap; 2941 } 2942 2943 out: 2944 return ret; 2945 out_unmap: 2946 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2947 goto out; 2948 } 2949 2950 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2951 { 2952 struct srpt_send_ioctx *ioctx; 2953 2954 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2955 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2956 } 2957 2958 /* 2959 * srpt_write_pending() - Start data transfer from initiator to target (write). 2960 */ 2961 static int srpt_write_pending(struct se_cmd *se_cmd) 2962 { 2963 struct srpt_rdma_ch *ch; 2964 struct srpt_send_ioctx *ioctx; 2965 enum srpt_command_state new_state; 2966 enum rdma_ch_state ch_state; 2967 int ret; 2968 2969 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2970 2971 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2972 WARN_ON(new_state == SRPT_STATE_DONE); 2973 2974 ch = ioctx->ch; 2975 BUG_ON(!ch); 2976 2977 ch_state = srpt_get_ch_state(ch); 2978 switch (ch_state) { 2979 case CH_CONNECTING: 2980 WARN(true, "unexpected channel state %d\n", ch_state); 2981 ret = -EINVAL; 2982 goto out; 2983 case CH_LIVE: 2984 break; 2985 case CH_DISCONNECTING: 2986 case CH_DRAINING: 2987 case CH_RELEASING: 2988 pr_debug("cmd with tag %lld: channel disconnecting\n", 2989 ioctx->tag); 2990 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2991 ret = -EINVAL; 2992 goto out; 2993 } 2994 ret = srpt_xfer_data(ch, ioctx); 2995 2996 out: 2997 return ret; 2998 } 2999 3000 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 3001 { 3002 switch (tcm_mgmt_status) { 3003 case TMR_FUNCTION_COMPLETE: 3004 return SRP_TSK_MGMT_SUCCESS; 3005 case TMR_FUNCTION_REJECTED: 3006 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3007 } 3008 return SRP_TSK_MGMT_FAILED; 3009 } 3010 3011 /** 3012 * srpt_queue_response() - Transmits the response to a SCSI command. 3013 * 3014 * Callback function called by the TCM core. Must not block since it can be 3015 * invoked on the context of the IB completion handler. 3016 */ 3017 static int srpt_queue_response(struct se_cmd *cmd) 3018 { 3019 struct srpt_rdma_ch *ch; 3020 struct srpt_send_ioctx *ioctx; 3021 enum srpt_command_state state; 3022 unsigned long flags; 3023 int ret; 3024 enum dma_data_direction dir; 3025 int resp_len; 3026 u8 srp_tm_status; 3027 3028 ret = 0; 3029 3030 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3031 ch = ioctx->ch; 3032 BUG_ON(!ch); 3033 3034 spin_lock_irqsave(&ioctx->spinlock, flags); 3035 state = ioctx->state; 3036 switch (state) { 3037 case SRPT_STATE_NEW: 3038 case SRPT_STATE_DATA_IN: 3039 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3040 break; 3041 case SRPT_STATE_MGMT: 3042 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3043 break; 3044 default: 3045 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3046 ch, ioctx->ioctx.index, ioctx->state); 3047 break; 3048 } 3049 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3050 3051 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3052 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3053 atomic_inc(&ch->req_lim_delta); 3054 srpt_abort_cmd(ioctx); 3055 goto out; 3056 } 3057 3058 dir = ioctx->cmd.data_direction; 3059 3060 /* For read commands, transfer the data to the initiator. */ 3061 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3062 !ioctx->queue_status_only) { 3063 ret = srpt_xfer_data(ch, ioctx); 3064 if (ret) { 3065 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3066 ioctx->tag); 3067 goto out; 3068 } 3069 } 3070 3071 if (state != SRPT_STATE_MGMT) 3072 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3073 cmd->scsi_status); 3074 else { 3075 srp_tm_status 3076 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3077 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3078 ioctx->tag); 3079 } 3080 ret = srpt_post_send(ch, ioctx, resp_len); 3081 if (ret) { 3082 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3083 ioctx->tag); 3084 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3085 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3086 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); 3087 } 3088 3089 out: 3090 return ret; 3091 } 3092 3093 static int srpt_queue_status(struct se_cmd *cmd) 3094 { 3095 struct srpt_send_ioctx *ioctx; 3096 3097 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3098 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3099 if (cmd->se_cmd_flags & 3100 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3101 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3102 ioctx->queue_status_only = true; 3103 return srpt_queue_response(cmd); 3104 } 3105 3106 static void srpt_refresh_port_work(struct work_struct *work) 3107 { 3108 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3109 3110 srpt_refresh_port(sport); 3111 } 3112 3113 static int srpt_ch_list_empty(struct srpt_device *sdev) 3114 { 3115 int res; 3116 3117 spin_lock_irq(&sdev->spinlock); 3118 res = list_empty(&sdev->rch_list); 3119 spin_unlock_irq(&sdev->spinlock); 3120 3121 return res; 3122 } 3123 3124 /** 3125 * srpt_release_sdev() - Free the channel resources associated with a target. 3126 */ 3127 static int srpt_release_sdev(struct srpt_device *sdev) 3128 { 3129 struct srpt_rdma_ch *ch, *tmp_ch; 3130 int res; 3131 3132 WARN_ON_ONCE(irqs_disabled()); 3133 3134 BUG_ON(!sdev); 3135 3136 spin_lock_irq(&sdev->spinlock); 3137 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3138 __srpt_close_ch(ch); 3139 spin_unlock_irq(&sdev->spinlock); 3140 3141 res = wait_event_interruptible(sdev->ch_releaseQ, 3142 srpt_ch_list_empty(sdev)); 3143 if (res) 3144 printk(KERN_ERR "%s: interrupted.\n", __func__); 3145 3146 return 0; 3147 } 3148 3149 static struct srpt_port *__srpt_lookup_port(const char *name) 3150 { 3151 struct ib_device *dev; 3152 struct srpt_device *sdev; 3153 struct srpt_port *sport; 3154 int i; 3155 3156 list_for_each_entry(sdev, &srpt_dev_list, list) { 3157 dev = sdev->device; 3158 if (!dev) 3159 continue; 3160 3161 for (i = 0; i < dev->phys_port_cnt; i++) { 3162 sport = &sdev->port[i]; 3163 3164 if (!strcmp(sport->port_guid, name)) 3165 return sport; 3166 } 3167 } 3168 3169 return NULL; 3170 } 3171 3172 static struct srpt_port *srpt_lookup_port(const char *name) 3173 { 3174 struct srpt_port *sport; 3175 3176 spin_lock(&srpt_dev_lock); 3177 sport = __srpt_lookup_port(name); 3178 spin_unlock(&srpt_dev_lock); 3179 3180 return sport; 3181 } 3182 3183 /** 3184 * srpt_add_one() - Infiniband device addition callback function. 3185 */ 3186 static void srpt_add_one(struct ib_device *device) 3187 { 3188 struct srpt_device *sdev; 3189 struct srpt_port *sport; 3190 struct ib_srq_init_attr srq_attr; 3191 int i; 3192 3193 pr_debug("device = %p, device->dma_ops = %p\n", device, 3194 device->dma_ops); 3195 3196 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3197 if (!sdev) 3198 goto err; 3199 3200 sdev->device = device; 3201 INIT_LIST_HEAD(&sdev->rch_list); 3202 init_waitqueue_head(&sdev->ch_releaseQ); 3203 spin_lock_init(&sdev->spinlock); 3204 3205 if (ib_query_device(device, &sdev->dev_attr)) 3206 goto free_dev; 3207 3208 sdev->pd = ib_alloc_pd(device); 3209 if (IS_ERR(sdev->pd)) 3210 goto free_dev; 3211 3212 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3213 if (IS_ERR(sdev->mr)) 3214 goto err_pd; 3215 3216 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3217 3218 srq_attr.event_handler = srpt_srq_event; 3219 srq_attr.srq_context = (void *)sdev; 3220 srq_attr.attr.max_wr = sdev->srq_size; 3221 srq_attr.attr.max_sge = 1; 3222 srq_attr.attr.srq_limit = 0; 3223 3224 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3225 if (IS_ERR(sdev->srq)) 3226 goto err_mr; 3227 3228 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3229 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3230 device->name); 3231 3232 if (!srpt_service_guid) 3233 srpt_service_guid = be64_to_cpu(device->node_guid); 3234 3235 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3236 if (IS_ERR(sdev->cm_id)) 3237 goto err_srq; 3238 3239 /* print out target login information */ 3240 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3241 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3242 srpt_service_guid, srpt_service_guid); 3243 3244 /* 3245 * We do not have a consistent service_id (ie. also id_ext of target_id) 3246 * to identify this target. We currently use the guid of the first HCA 3247 * in the system as service_id; therefore, the target_id will change 3248 * if this HCA is gone bad and replaced by different HCA 3249 */ 3250 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3251 goto err_cm; 3252 3253 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3254 srpt_event_handler); 3255 if (ib_register_event_handler(&sdev->event_handler)) 3256 goto err_cm; 3257 3258 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3259 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3260 sizeof(*sdev->ioctx_ring[0]), 3261 srp_max_req_size, DMA_FROM_DEVICE); 3262 if (!sdev->ioctx_ring) 3263 goto err_event; 3264 3265 for (i = 0; i < sdev->srq_size; ++i) 3266 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3267 3268 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3269 3270 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3271 sport = &sdev->port[i - 1]; 3272 sport->sdev = sdev; 3273 sport->port = i; 3274 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3275 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3276 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3277 INIT_WORK(&sport->work, srpt_refresh_port_work); 3278 INIT_LIST_HEAD(&sport->port_acl_list); 3279 spin_lock_init(&sport->port_acl_lock); 3280 3281 if (srpt_refresh_port(sport)) { 3282 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3283 srpt_sdev_name(sdev), i); 3284 goto err_ring; 3285 } 3286 snprintf(sport->port_guid, sizeof(sport->port_guid), 3287 "0x%016llx%016llx", 3288 be64_to_cpu(sport->gid.global.subnet_prefix), 3289 be64_to_cpu(sport->gid.global.interface_id)); 3290 } 3291 3292 spin_lock(&srpt_dev_lock); 3293 list_add_tail(&sdev->list, &srpt_dev_list); 3294 spin_unlock(&srpt_dev_lock); 3295 3296 out: 3297 ib_set_client_data(device, &srpt_client, sdev); 3298 pr_debug("added %s.\n", device->name); 3299 return; 3300 3301 err_ring: 3302 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3303 sdev->srq_size, srp_max_req_size, 3304 DMA_FROM_DEVICE); 3305 err_event: 3306 ib_unregister_event_handler(&sdev->event_handler); 3307 err_cm: 3308 ib_destroy_cm_id(sdev->cm_id); 3309 err_srq: 3310 ib_destroy_srq(sdev->srq); 3311 err_mr: 3312 ib_dereg_mr(sdev->mr); 3313 err_pd: 3314 ib_dealloc_pd(sdev->pd); 3315 free_dev: 3316 kfree(sdev); 3317 err: 3318 sdev = NULL; 3319 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3320 goto out; 3321 } 3322 3323 /** 3324 * srpt_remove_one() - InfiniBand device removal callback function. 3325 */ 3326 static void srpt_remove_one(struct ib_device *device) 3327 { 3328 struct srpt_device *sdev; 3329 int i; 3330 3331 sdev = ib_get_client_data(device, &srpt_client); 3332 if (!sdev) { 3333 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3334 device->name); 3335 return; 3336 } 3337 3338 srpt_unregister_mad_agent(sdev); 3339 3340 ib_unregister_event_handler(&sdev->event_handler); 3341 3342 /* Cancel any work queued by the just unregistered IB event handler. */ 3343 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3344 cancel_work_sync(&sdev->port[i].work); 3345 3346 ib_destroy_cm_id(sdev->cm_id); 3347 3348 /* 3349 * Unregistering a target must happen after destroying sdev->cm_id 3350 * such that no new SRP_LOGIN_REQ information units can arrive while 3351 * destroying the target. 3352 */ 3353 spin_lock(&srpt_dev_lock); 3354 list_del(&sdev->list); 3355 spin_unlock(&srpt_dev_lock); 3356 srpt_release_sdev(sdev); 3357 3358 ib_destroy_srq(sdev->srq); 3359 ib_dereg_mr(sdev->mr); 3360 ib_dealloc_pd(sdev->pd); 3361 3362 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3363 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3364 sdev->ioctx_ring = NULL; 3365 kfree(sdev); 3366 } 3367 3368 static struct ib_client srpt_client = { 3369 .name = DRV_NAME, 3370 .add = srpt_add_one, 3371 .remove = srpt_remove_one 3372 }; 3373 3374 static int srpt_check_true(struct se_portal_group *se_tpg) 3375 { 3376 return 1; 3377 } 3378 3379 static int srpt_check_false(struct se_portal_group *se_tpg) 3380 { 3381 return 0; 3382 } 3383 3384 static char *srpt_get_fabric_name(void) 3385 { 3386 return "srpt"; 3387 } 3388 3389 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3390 { 3391 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3392 } 3393 3394 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3395 { 3396 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3397 3398 return sport->port_guid; 3399 } 3400 3401 static u16 srpt_get_tag(struct se_portal_group *tpg) 3402 { 3403 return 1; 3404 } 3405 3406 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3407 { 3408 return 1; 3409 } 3410 3411 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3412 struct se_node_acl *se_nacl, 3413 struct t10_pr_registration *pr_reg, 3414 int *format_code, unsigned char *buf) 3415 { 3416 struct srpt_node_acl *nacl; 3417 struct spc_rdma_transport_id *tr_id; 3418 3419 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3420 tr_id = (void *)buf; 3421 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3422 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3423 return sizeof(*tr_id); 3424 } 3425 3426 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3427 struct se_node_acl *se_nacl, 3428 struct t10_pr_registration *pr_reg, 3429 int *format_code) 3430 { 3431 *format_code = 0; 3432 return sizeof(struct spc_rdma_transport_id); 3433 } 3434 3435 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3436 const char *buf, u32 *out_tid_len, 3437 char **port_nexus_ptr) 3438 { 3439 struct spc_rdma_transport_id *tr_id; 3440 3441 *port_nexus_ptr = NULL; 3442 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3443 tr_id = (void *)buf; 3444 return (char *)tr_id->i_port_id; 3445 } 3446 3447 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3448 { 3449 struct srpt_node_acl *nacl; 3450 3451 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3452 if (!nacl) { 3453 printk(KERN_ERR "Unable to alocate struct srpt_node_acl\n"); 3454 return NULL; 3455 } 3456 3457 return &nacl->nacl; 3458 } 3459 3460 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3461 struct se_node_acl *se_nacl) 3462 { 3463 struct srpt_node_acl *nacl; 3464 3465 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3466 kfree(nacl); 3467 } 3468 3469 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3470 { 3471 return 1; 3472 } 3473 3474 static void srpt_release_cmd(struct se_cmd *se_cmd) 3475 { 3476 } 3477 3478 /** 3479 * srpt_shutdown_session() - Whether or not a session may be shut down. 3480 */ 3481 static int srpt_shutdown_session(struct se_session *se_sess) 3482 { 3483 return true; 3484 } 3485 3486 /** 3487 * srpt_close_session() - Forcibly close a session. 3488 * 3489 * Callback function invoked by the TCM core to clean up sessions associated 3490 * with a node ACL when the user invokes 3491 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3492 */ 3493 static void srpt_close_session(struct se_session *se_sess) 3494 { 3495 DECLARE_COMPLETION_ONSTACK(release_done); 3496 struct srpt_rdma_ch *ch; 3497 struct srpt_device *sdev; 3498 int res; 3499 3500 ch = se_sess->fabric_sess_ptr; 3501 WARN_ON(ch->sess != se_sess); 3502 3503 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3504 3505 sdev = ch->sport->sdev; 3506 spin_lock_irq(&sdev->spinlock); 3507 BUG_ON(ch->release_done); 3508 ch->release_done = &release_done; 3509 __srpt_close_ch(ch); 3510 spin_unlock_irq(&sdev->spinlock); 3511 3512 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3513 WARN_ON(res <= 0); 3514 } 3515 3516 /** 3517 * To do: Find out whether stop_session() has a meaning for transports 3518 * other than iSCSI. 3519 */ 3520 static void srpt_stop_session(struct se_session *se_sess, int sess_sleep, 3521 int conn_sleep) 3522 { 3523 } 3524 3525 static void srpt_reset_nexus(struct se_session *sess) 3526 { 3527 printk(KERN_ERR "This is the SRP protocol, not iSCSI\n"); 3528 } 3529 3530 static int srpt_sess_logged_in(struct se_session *se_sess) 3531 { 3532 return true; 3533 } 3534 3535 /** 3536 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3537 * 3538 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3539 * This object represents an arbitrary integer used to uniquely identify a 3540 * particular attached remote initiator port to a particular SCSI target port 3541 * within a particular SCSI target device within a particular SCSI instance. 3542 */ 3543 static u32 srpt_sess_get_index(struct se_session *se_sess) 3544 { 3545 return 0; 3546 } 3547 3548 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3549 { 3550 } 3551 3552 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3553 { 3554 struct srpt_send_ioctx *ioctx; 3555 3556 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3557 return ioctx->tag; 3558 } 3559 3560 /* Note: only used from inside debug printk's by the TCM core. */ 3561 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3562 { 3563 struct srpt_send_ioctx *ioctx; 3564 3565 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3566 return srpt_get_cmd_state(ioctx); 3567 } 3568 3569 static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length) 3570 { 3571 return 0; 3572 } 3573 3574 static u16 srpt_get_fabric_sense_len(void) 3575 { 3576 return 0; 3577 } 3578 3579 static int srpt_is_state_remove(struct se_cmd *se_cmd) 3580 { 3581 return 0; 3582 } 3583 3584 /** 3585 * srpt_parse_i_port_id() - Parse an initiator port ID. 3586 * @name: ASCII representation of a 128-bit initiator port ID. 3587 * @i_port_id: Binary 128-bit port ID. 3588 */ 3589 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3590 { 3591 const char *p; 3592 unsigned len, count, leading_zero_bytes; 3593 int ret, rc; 3594 3595 p = name; 3596 if (strnicmp(p, "0x", 2) == 0) 3597 p += 2; 3598 ret = -EINVAL; 3599 len = strlen(p); 3600 if (len % 2) 3601 goto out; 3602 count = min(len / 2, 16U); 3603 leading_zero_bytes = 16 - count; 3604 memset(i_port_id, 0, leading_zero_bytes); 3605 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3606 if (rc < 0) 3607 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3608 ret = 0; 3609 out: 3610 return ret; 3611 } 3612 3613 /* 3614 * configfs callback function invoked for 3615 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3616 */ 3617 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3618 struct config_group *group, 3619 const char *name) 3620 { 3621 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3622 struct se_node_acl *se_nacl, *se_nacl_new; 3623 struct srpt_node_acl *nacl; 3624 int ret = 0; 3625 u32 nexus_depth = 1; 3626 u8 i_port_id[16]; 3627 3628 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3629 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3630 ret = -EINVAL; 3631 goto err; 3632 } 3633 3634 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3635 if (!se_nacl_new) { 3636 ret = -ENOMEM; 3637 goto err; 3638 } 3639 /* 3640 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3641 * when converting a node ACL from demo mode to explict 3642 */ 3643 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3644 nexus_depth); 3645 if (IS_ERR(se_nacl)) { 3646 ret = PTR_ERR(se_nacl); 3647 goto err; 3648 } 3649 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3650 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3651 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3652 nacl->sport = sport; 3653 3654 spin_lock_irq(&sport->port_acl_lock); 3655 list_add_tail(&nacl->list, &sport->port_acl_list); 3656 spin_unlock_irq(&sport->port_acl_lock); 3657 3658 return se_nacl; 3659 err: 3660 return ERR_PTR(ret); 3661 } 3662 3663 /* 3664 * configfs callback function invoked for 3665 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3666 */ 3667 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3668 { 3669 struct srpt_node_acl *nacl; 3670 struct srpt_device *sdev; 3671 struct srpt_port *sport; 3672 3673 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3674 sport = nacl->sport; 3675 sdev = sport->sdev; 3676 spin_lock_irq(&sport->port_acl_lock); 3677 list_del(&nacl->list); 3678 spin_unlock_irq(&sport->port_acl_lock); 3679 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3680 srpt_release_fabric_acl(NULL, se_nacl); 3681 } 3682 3683 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3684 struct se_portal_group *se_tpg, 3685 char *page) 3686 { 3687 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3688 3689 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3690 } 3691 3692 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3693 struct se_portal_group *se_tpg, 3694 const char *page, 3695 size_t count) 3696 { 3697 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3698 unsigned long val; 3699 int ret; 3700 3701 ret = strict_strtoul(page, 0, &val); 3702 if (ret < 0) { 3703 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3704 return -EINVAL; 3705 } 3706 if (val > MAX_SRPT_RDMA_SIZE) { 3707 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3708 MAX_SRPT_RDMA_SIZE); 3709 return -EINVAL; 3710 } 3711 if (val < DEFAULT_MAX_RDMA_SIZE) { 3712 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3713 val, DEFAULT_MAX_RDMA_SIZE); 3714 return -EINVAL; 3715 } 3716 sport->port_attrib.srp_max_rdma_size = val; 3717 3718 return count; 3719 } 3720 3721 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3722 3723 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3724 struct se_portal_group *se_tpg, 3725 char *page) 3726 { 3727 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3728 3729 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3730 } 3731 3732 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3733 struct se_portal_group *se_tpg, 3734 const char *page, 3735 size_t count) 3736 { 3737 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3738 unsigned long val; 3739 int ret; 3740 3741 ret = strict_strtoul(page, 0, &val); 3742 if (ret < 0) { 3743 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3744 return -EINVAL; 3745 } 3746 if (val > MAX_SRPT_RSP_SIZE) { 3747 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3748 MAX_SRPT_RSP_SIZE); 3749 return -EINVAL; 3750 } 3751 if (val < MIN_MAX_RSP_SIZE) { 3752 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3753 MIN_MAX_RSP_SIZE); 3754 return -EINVAL; 3755 } 3756 sport->port_attrib.srp_max_rsp_size = val; 3757 3758 return count; 3759 } 3760 3761 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3762 3763 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3764 struct se_portal_group *se_tpg, 3765 char *page) 3766 { 3767 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3768 3769 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3770 } 3771 3772 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3773 struct se_portal_group *se_tpg, 3774 const char *page, 3775 size_t count) 3776 { 3777 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3778 unsigned long val; 3779 int ret; 3780 3781 ret = strict_strtoul(page, 0, &val); 3782 if (ret < 0) { 3783 pr_err("strict_strtoul() failed with ret: %d\n", ret); 3784 return -EINVAL; 3785 } 3786 if (val > MAX_SRPT_SRQ_SIZE) { 3787 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3788 MAX_SRPT_SRQ_SIZE); 3789 return -EINVAL; 3790 } 3791 if (val < MIN_SRPT_SRQ_SIZE) { 3792 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3793 MIN_SRPT_SRQ_SIZE); 3794 return -EINVAL; 3795 } 3796 sport->port_attrib.srp_sq_size = val; 3797 3798 return count; 3799 } 3800 3801 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3802 3803 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3804 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3805 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3806 &srpt_tpg_attrib_srp_sq_size.attr, 3807 NULL, 3808 }; 3809 3810 static ssize_t srpt_tpg_show_enable( 3811 struct se_portal_group *se_tpg, 3812 char *page) 3813 { 3814 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3815 3816 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3817 } 3818 3819 static ssize_t srpt_tpg_store_enable( 3820 struct se_portal_group *se_tpg, 3821 const char *page, 3822 size_t count) 3823 { 3824 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3825 unsigned long tmp; 3826 int ret; 3827 3828 ret = strict_strtoul(page, 0, &tmp); 3829 if (ret < 0) { 3830 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3831 return -EINVAL; 3832 } 3833 3834 if ((tmp != 0) && (tmp != 1)) { 3835 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3836 return -EINVAL; 3837 } 3838 if (tmp == 1) 3839 sport->enabled = true; 3840 else 3841 sport->enabled = false; 3842 3843 return count; 3844 } 3845 3846 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3847 3848 static struct configfs_attribute *srpt_tpg_attrs[] = { 3849 &srpt_tpg_enable.attr, 3850 NULL, 3851 }; 3852 3853 /** 3854 * configfs callback invoked for 3855 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3856 */ 3857 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3858 struct config_group *group, 3859 const char *name) 3860 { 3861 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3862 int res; 3863 3864 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3865 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3866 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3867 if (res) 3868 return ERR_PTR(res); 3869 3870 return &sport->port_tpg_1; 3871 } 3872 3873 /** 3874 * configfs callback invoked for 3875 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3876 */ 3877 static void srpt_drop_tpg(struct se_portal_group *tpg) 3878 { 3879 struct srpt_port *sport = container_of(tpg, 3880 struct srpt_port, port_tpg_1); 3881 3882 sport->enabled = false; 3883 core_tpg_deregister(&sport->port_tpg_1); 3884 } 3885 3886 /** 3887 * configfs callback invoked for 3888 * mkdir /sys/kernel/config/target/$driver/$port 3889 */ 3890 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3891 struct config_group *group, 3892 const char *name) 3893 { 3894 struct srpt_port *sport; 3895 int ret; 3896 3897 sport = srpt_lookup_port(name); 3898 pr_debug("make_tport(%s)\n", name); 3899 ret = -EINVAL; 3900 if (!sport) 3901 goto err; 3902 3903 return &sport->port_wwn; 3904 3905 err: 3906 return ERR_PTR(ret); 3907 } 3908 3909 /** 3910 * configfs callback invoked for 3911 * rmdir /sys/kernel/config/target/$driver/$port 3912 */ 3913 static void srpt_drop_tport(struct se_wwn *wwn) 3914 { 3915 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3916 3917 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3918 } 3919 3920 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3921 char *buf) 3922 { 3923 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3924 } 3925 3926 TF_WWN_ATTR_RO(srpt, version); 3927 3928 static struct configfs_attribute *srpt_wwn_attrs[] = { 3929 &srpt_wwn_version.attr, 3930 NULL, 3931 }; 3932 3933 static struct target_core_fabric_ops srpt_template = { 3934 .get_fabric_name = srpt_get_fabric_name, 3935 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3936 .tpg_get_wwn = srpt_get_fabric_wwn, 3937 .tpg_get_tag = srpt_get_tag, 3938 .tpg_get_default_depth = srpt_get_default_depth, 3939 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3940 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3941 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3942 .tpg_check_demo_mode = srpt_check_false, 3943 .tpg_check_demo_mode_cache = srpt_check_true, 3944 .tpg_check_demo_mode_write_protect = srpt_check_true, 3945 .tpg_check_prod_mode_write_protect = srpt_check_false, 3946 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3947 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3948 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3949 .release_cmd = srpt_release_cmd, 3950 .check_stop_free = srpt_check_stop_free, 3951 .shutdown_session = srpt_shutdown_session, 3952 .close_session = srpt_close_session, 3953 .stop_session = srpt_stop_session, 3954 .fall_back_to_erl0 = srpt_reset_nexus, 3955 .sess_logged_in = srpt_sess_logged_in, 3956 .sess_get_index = srpt_sess_get_index, 3957 .sess_get_initiator_sid = NULL, 3958 .write_pending = srpt_write_pending, 3959 .write_pending_status = srpt_write_pending_status, 3960 .set_default_node_attributes = srpt_set_default_node_attrs, 3961 .get_task_tag = srpt_get_task_tag, 3962 .get_cmd_state = srpt_get_tcm_cmd_state, 3963 .queue_data_in = srpt_queue_response, 3964 .queue_status = srpt_queue_status, 3965 .queue_tm_rsp = srpt_queue_response, 3966 .get_fabric_sense_len = srpt_get_fabric_sense_len, 3967 .set_fabric_sense_len = srpt_set_fabric_sense_len, 3968 .is_state_remove = srpt_is_state_remove, 3969 /* 3970 * Setup function pointers for generic logic in 3971 * target_core_fabric_configfs.c 3972 */ 3973 .fabric_make_wwn = srpt_make_tport, 3974 .fabric_drop_wwn = srpt_drop_tport, 3975 .fabric_make_tpg = srpt_make_tpg, 3976 .fabric_drop_tpg = srpt_drop_tpg, 3977 .fabric_post_link = NULL, 3978 .fabric_pre_unlink = NULL, 3979 .fabric_make_np = NULL, 3980 .fabric_drop_np = NULL, 3981 .fabric_make_nodeacl = srpt_make_nodeacl, 3982 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3983 }; 3984 3985 /** 3986 * srpt_init_module() - Kernel module initialization. 3987 * 3988 * Note: Since ib_register_client() registers callback functions, and since at 3989 * least one of these callback functions (srpt_add_one()) calls target core 3990 * functions, this driver must be registered with the target core before 3991 * ib_register_client() is called. 3992 */ 3993 static int __init srpt_init_module(void) 3994 { 3995 int ret; 3996 3997 ret = -EINVAL; 3998 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3999 printk(KERN_ERR "invalid value %d for kernel module parameter" 4000 " srp_max_req_size -- must be at least %d.\n", 4001 srp_max_req_size, MIN_MAX_REQ_SIZE); 4002 goto out; 4003 } 4004 4005 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 4006 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 4007 printk(KERN_ERR "invalid value %d for kernel module parameter" 4008 " srpt_srq_size -- must be in the range [%d..%d].\n", 4009 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 4010 goto out; 4011 } 4012 4013 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 4014 if (IS_ERR(srpt_target)) { 4015 printk(KERN_ERR "couldn't register\n"); 4016 ret = PTR_ERR(srpt_target); 4017 goto out; 4018 } 4019 4020 srpt_target->tf_ops = srpt_template; 4021 4022 /* Enable SG chaining */ 4023 srpt_target->tf_ops.task_sg_chaining = true; 4024 4025 /* 4026 * Set up default attribute lists. 4027 */ 4028 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 4029 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 4030 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 4031 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 4032 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 4033 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 4034 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 4035 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 4036 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 4037 4038 ret = target_fabric_configfs_register(srpt_target); 4039 if (ret < 0) { 4040 printk(KERN_ERR "couldn't register\n"); 4041 goto out_free_target; 4042 } 4043 4044 ret = ib_register_client(&srpt_client); 4045 if (ret) { 4046 printk(KERN_ERR "couldn't register IB client\n"); 4047 goto out_unregister_target; 4048 } 4049 4050 return 0; 4051 4052 out_unregister_target: 4053 target_fabric_configfs_deregister(srpt_target); 4054 srpt_target = NULL; 4055 out_free_target: 4056 if (srpt_target) 4057 target_fabric_configfs_free(srpt_target); 4058 out: 4059 return ret; 4060 } 4061 4062 static void __exit srpt_cleanup_module(void) 4063 { 4064 ib_unregister_client(&srpt_client); 4065 target_fabric_configfs_deregister(srpt_target); 4066 srpt_target = NULL; 4067 } 4068 4069 module_init(srpt_init_module); 4070 module_exit(srpt_cleanup_module); 4071