1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_channel(struct srpt_rdma_ch *ch); 95 static int srpt_queue_status(struct se_cmd *cmd); 96 97 /** 98 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 99 */ 100 static inline 101 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 102 { 103 switch (dir) { 104 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 105 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 106 default: return dir; 107 } 108 } 109 110 /** 111 * srpt_sdev_name() - Return the name associated with the HCA. 112 * 113 * Examples are ib0, ib1, ... 114 */ 115 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 116 { 117 return sdev->device->name; 118 } 119 120 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 121 { 122 unsigned long flags; 123 enum rdma_ch_state state; 124 125 spin_lock_irqsave(&ch->spinlock, flags); 126 state = ch->state; 127 spin_unlock_irqrestore(&ch->spinlock, flags); 128 return state; 129 } 130 131 static enum rdma_ch_state 132 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 133 { 134 unsigned long flags; 135 enum rdma_ch_state prev; 136 137 spin_lock_irqsave(&ch->spinlock, flags); 138 prev = ch->state; 139 ch->state = new_state; 140 spin_unlock_irqrestore(&ch->spinlock, flags); 141 return prev; 142 } 143 144 /** 145 * srpt_test_and_set_ch_state() - Test and set the channel state. 146 * 147 * Returns true if and only if the channel state has been set to the new state. 148 */ 149 static bool 150 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 151 enum rdma_ch_state new) 152 { 153 unsigned long flags; 154 enum rdma_ch_state prev; 155 156 spin_lock_irqsave(&ch->spinlock, flags); 157 prev = ch->state; 158 if (prev == old) 159 ch->state = new; 160 spin_unlock_irqrestore(&ch->spinlock, flags); 161 return prev == old; 162 } 163 164 /** 165 * srpt_event_handler() - Asynchronous IB event callback function. 166 * 167 * Callback function called by the InfiniBand core when an asynchronous IB 168 * event occurs. This callback may occur in interrupt context. See also 169 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 170 * Architecture Specification. 171 */ 172 static void srpt_event_handler(struct ib_event_handler *handler, 173 struct ib_event *event) 174 { 175 struct srpt_device *sdev; 176 struct srpt_port *sport; 177 178 sdev = ib_get_client_data(event->device, &srpt_client); 179 if (!sdev || sdev->device != event->device) 180 return; 181 182 pr_debug("ASYNC event= %d on device= %s\n", event->event, 183 srpt_sdev_name(sdev)); 184 185 switch (event->event) { 186 case IB_EVENT_PORT_ERR: 187 if (event->element.port_num <= sdev->device->phys_port_cnt) { 188 sport = &sdev->port[event->element.port_num - 1]; 189 sport->lid = 0; 190 sport->sm_lid = 0; 191 } 192 break; 193 case IB_EVENT_PORT_ACTIVE: 194 case IB_EVENT_LID_CHANGE: 195 case IB_EVENT_PKEY_CHANGE: 196 case IB_EVENT_SM_CHANGE: 197 case IB_EVENT_CLIENT_REREGISTER: 198 case IB_EVENT_GID_CHANGE: 199 /* Refresh port data asynchronously. */ 200 if (event->element.port_num <= sdev->device->phys_port_cnt) { 201 sport = &sdev->port[event->element.port_num - 1]; 202 if (!sport->lid && !sport->sm_lid) 203 schedule_work(&sport->work); 204 } 205 break; 206 default: 207 pr_err("received unrecognized IB event %d\n", 208 event->event); 209 break; 210 } 211 } 212 213 /** 214 * srpt_srq_event() - SRQ event callback function. 215 */ 216 static void srpt_srq_event(struct ib_event *event, void *ctx) 217 { 218 pr_info("SRQ event %d\n", event->event); 219 } 220 221 /** 222 * srpt_qp_event() - QP event callback function. 223 */ 224 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 225 { 226 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 227 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 228 229 switch (event->event) { 230 case IB_EVENT_COMM_EST: 231 ib_cm_notify(ch->cm_id, event->event); 232 break; 233 case IB_EVENT_QP_LAST_WQE_REACHED: 234 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 235 CH_RELEASING)) 236 srpt_release_channel(ch); 237 else 238 pr_debug("%s: state %d - ignored LAST_WQE.\n", 239 ch->sess_name, srpt_get_ch_state(ch)); 240 break; 241 default: 242 pr_err("received unrecognized IB QP event %d\n", event->event); 243 break; 244 } 245 } 246 247 /** 248 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 249 * 250 * @slot: one-based slot number. 251 * @value: four-bit value. 252 * 253 * Copies the lowest four bits of value in element slot of the array of four 254 * bit elements called c_list (controller list). The index slot is one-based. 255 */ 256 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 257 { 258 u16 id; 259 u8 tmp; 260 261 id = (slot - 1) / 2; 262 if (slot & 0x1) { 263 tmp = c_list[id] & 0xf; 264 c_list[id] = (value << 4) | tmp; 265 } else { 266 tmp = c_list[id] & 0xf0; 267 c_list[id] = (value & 0xf) | tmp; 268 } 269 } 270 271 /** 272 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 273 * 274 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 275 * Specification. 276 */ 277 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 278 { 279 struct ib_class_port_info *cif; 280 281 cif = (struct ib_class_port_info *)mad->data; 282 memset(cif, 0, sizeof *cif); 283 cif->base_version = 1; 284 cif->class_version = 1; 285 cif->resp_time_value = 20; 286 287 mad->mad_hdr.status = 0; 288 } 289 290 /** 291 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 292 * 293 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 294 * Specification. See also section B.7, table B.6 in the SRP r16a document. 295 */ 296 static void srpt_get_iou(struct ib_dm_mad *mad) 297 { 298 struct ib_dm_iou_info *ioui; 299 u8 slot; 300 int i; 301 302 ioui = (struct ib_dm_iou_info *)mad->data; 303 ioui->change_id = cpu_to_be16(1); 304 ioui->max_controllers = 16; 305 306 /* set present for slot 1 and empty for the rest */ 307 srpt_set_ioc(ioui->controller_list, 1, 1); 308 for (i = 1, slot = 2; i < 16; i++, slot++) 309 srpt_set_ioc(ioui->controller_list, slot, 0); 310 311 mad->mad_hdr.status = 0; 312 } 313 314 /** 315 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 316 * 317 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 318 * Architecture Specification. See also section B.7, table B.7 in the SRP 319 * r16a document. 320 */ 321 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 322 struct ib_dm_mad *mad) 323 { 324 struct srpt_device *sdev = sport->sdev; 325 struct ib_dm_ioc_profile *iocp; 326 327 iocp = (struct ib_dm_ioc_profile *)mad->data; 328 329 if (!slot || slot > 16) { 330 mad->mad_hdr.status 331 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 332 return; 333 } 334 335 if (slot > 2) { 336 mad->mad_hdr.status 337 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 338 return; 339 } 340 341 memset(iocp, 0, sizeof *iocp); 342 strcpy(iocp->id_string, SRPT_ID_STRING); 343 iocp->guid = cpu_to_be64(srpt_service_guid); 344 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 345 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 346 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 347 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->subsys_device_id = 0x0; 349 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 350 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 351 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 352 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 353 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 354 iocp->rdma_read_depth = 4; 355 iocp->send_size = cpu_to_be32(srp_max_req_size); 356 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 357 1U << 24)); 358 iocp->num_svc_entries = 1; 359 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 360 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 361 362 mad->mad_hdr.status = 0; 363 } 364 365 /** 366 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 367 * 368 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 369 * Specification. See also section B.7, table B.8 in the SRP r16a document. 370 */ 371 static void srpt_get_svc_entries(u64 ioc_guid, 372 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 373 { 374 struct ib_dm_svc_entries *svc_entries; 375 376 WARN_ON(!ioc_guid); 377 378 if (!slot || slot > 16) { 379 mad->mad_hdr.status 380 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 381 return; 382 } 383 384 if (slot > 2 || lo > hi || hi > 1) { 385 mad->mad_hdr.status 386 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 387 return; 388 } 389 390 svc_entries = (struct ib_dm_svc_entries *)mad->data; 391 memset(svc_entries, 0, sizeof *svc_entries); 392 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 393 snprintf(svc_entries->service_entries[0].name, 394 sizeof(svc_entries->service_entries[0].name), 395 "%s%016llx", 396 SRP_SERVICE_NAME_PREFIX, 397 ioc_guid); 398 399 mad->mad_hdr.status = 0; 400 } 401 402 /** 403 * srpt_mgmt_method_get() - Process a received management datagram. 404 * @sp: source port through which the MAD has been received. 405 * @rq_mad: received MAD. 406 * @rsp_mad: response MAD. 407 */ 408 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 409 struct ib_dm_mad *rsp_mad) 410 { 411 u16 attr_id; 412 u32 slot; 413 u8 hi, lo; 414 415 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 416 switch (attr_id) { 417 case DM_ATTR_CLASS_PORT_INFO: 418 srpt_get_class_port_info(rsp_mad); 419 break; 420 case DM_ATTR_IOU_INFO: 421 srpt_get_iou(rsp_mad); 422 break; 423 case DM_ATTR_IOC_PROFILE: 424 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 425 srpt_get_ioc(sp, slot, rsp_mad); 426 break; 427 case DM_ATTR_SVC_ENTRIES: 428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 429 hi = (u8) ((slot >> 8) & 0xff); 430 lo = (u8) (slot & 0xff); 431 slot = (u16) ((slot >> 16) & 0xffff); 432 srpt_get_svc_entries(srpt_service_guid, 433 slot, hi, lo, rsp_mad); 434 break; 435 default: 436 rsp_mad->mad_hdr.status = 437 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 438 break; 439 } 440 } 441 442 /** 443 * srpt_mad_send_handler() - Post MAD-send callback function. 444 */ 445 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 446 struct ib_mad_send_wc *mad_wc) 447 { 448 ib_destroy_ah(mad_wc->send_buf->ah); 449 ib_free_send_mad(mad_wc->send_buf); 450 } 451 452 /** 453 * srpt_mad_recv_handler() - MAD reception callback function. 454 */ 455 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 456 struct ib_mad_recv_wc *mad_wc) 457 { 458 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 459 struct ib_ah *ah; 460 struct ib_mad_send_buf *rsp; 461 struct ib_dm_mad *dm_mad; 462 463 if (!mad_wc || !mad_wc->recv_buf.mad) 464 return; 465 466 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 467 mad_wc->recv_buf.grh, mad_agent->port_num); 468 if (IS_ERR(ah)) 469 goto err; 470 471 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 472 473 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 474 mad_wc->wc->pkey_index, 0, 475 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 476 GFP_KERNEL, 477 IB_MGMT_BASE_VERSION); 478 if (IS_ERR(rsp)) 479 goto err_rsp; 480 481 rsp->ah = ah; 482 483 dm_mad = rsp->mad; 484 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 485 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 486 dm_mad->mad_hdr.status = 0; 487 488 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 489 case IB_MGMT_METHOD_GET: 490 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 491 break; 492 case IB_MGMT_METHOD_SET: 493 dm_mad->mad_hdr.status = 494 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 495 break; 496 default: 497 dm_mad->mad_hdr.status = 498 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 499 break; 500 } 501 502 if (!ib_post_send_mad(rsp, NULL)) { 503 ib_free_recv_mad(mad_wc); 504 /* will destroy_ah & free_send_mad in send completion */ 505 return; 506 } 507 508 ib_free_send_mad(rsp); 509 510 err_rsp: 511 ib_destroy_ah(ah); 512 err: 513 ib_free_recv_mad(mad_wc); 514 } 515 516 /** 517 * srpt_refresh_port() - Configure a HCA port. 518 * 519 * Enable InfiniBand management datagram processing, update the cached sm_lid, 520 * lid and gid values, and register a callback function for processing MADs 521 * on the specified port. 522 * 523 * Note: It is safe to call this function more than once for the same port. 524 */ 525 static int srpt_refresh_port(struct srpt_port *sport) 526 { 527 struct ib_mad_reg_req reg_req; 528 struct ib_port_modify port_modify; 529 struct ib_port_attr port_attr; 530 int ret; 531 532 memset(&port_modify, 0, sizeof port_modify); 533 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 534 port_modify.clr_port_cap_mask = 0; 535 536 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 537 if (ret) 538 goto err_mod_port; 539 540 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 541 if (ret) 542 goto err_query_port; 543 544 sport->sm_lid = port_attr.sm_lid; 545 sport->lid = port_attr.lid; 546 547 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 548 if (ret) 549 goto err_query_port; 550 551 if (!sport->mad_agent) { 552 memset(®_req, 0, sizeof reg_req); 553 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 554 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 555 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 556 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 557 558 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 559 sport->port, 560 IB_QPT_GSI, 561 ®_req, 0, 562 srpt_mad_send_handler, 563 srpt_mad_recv_handler, 564 sport, 0); 565 if (IS_ERR(sport->mad_agent)) { 566 ret = PTR_ERR(sport->mad_agent); 567 sport->mad_agent = NULL; 568 goto err_query_port; 569 } 570 } 571 572 return 0; 573 574 err_query_port: 575 576 port_modify.set_port_cap_mask = 0; 577 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 578 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 579 580 err_mod_port: 581 582 return ret; 583 } 584 585 /** 586 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 587 * 588 * Note: It is safe to call this function more than once for the same device. 589 */ 590 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 591 { 592 struct ib_port_modify port_modify = { 593 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 594 }; 595 struct srpt_port *sport; 596 int i; 597 598 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 599 sport = &sdev->port[i - 1]; 600 WARN_ON(sport->port != i); 601 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 602 pr_err("disabling MAD processing failed.\n"); 603 if (sport->mad_agent) { 604 ib_unregister_mad_agent(sport->mad_agent); 605 sport->mad_agent = NULL; 606 } 607 } 608 } 609 610 /** 611 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 612 */ 613 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 614 int ioctx_size, int dma_size, 615 enum dma_data_direction dir) 616 { 617 struct srpt_ioctx *ioctx; 618 619 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 620 if (!ioctx) 621 goto err; 622 623 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 624 if (!ioctx->buf) 625 goto err_free_ioctx; 626 627 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 628 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 629 goto err_free_buf; 630 631 return ioctx; 632 633 err_free_buf: 634 kfree(ioctx->buf); 635 err_free_ioctx: 636 kfree(ioctx); 637 err: 638 return NULL; 639 } 640 641 /** 642 * srpt_free_ioctx() - Free an SRPT I/O context structure. 643 */ 644 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 645 int dma_size, enum dma_data_direction dir) 646 { 647 if (!ioctx) 648 return; 649 650 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 651 kfree(ioctx->buf); 652 kfree(ioctx); 653 } 654 655 /** 656 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 657 * @sdev: Device to allocate the I/O context ring for. 658 * @ring_size: Number of elements in the I/O context ring. 659 * @ioctx_size: I/O context size. 660 * @dma_size: DMA buffer size. 661 * @dir: DMA data direction. 662 */ 663 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 664 int ring_size, int ioctx_size, 665 int dma_size, enum dma_data_direction dir) 666 { 667 struct srpt_ioctx **ring; 668 int i; 669 670 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 671 && ioctx_size != sizeof(struct srpt_send_ioctx)); 672 673 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 674 if (!ring) 675 goto out; 676 for (i = 0; i < ring_size; ++i) { 677 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 678 if (!ring[i]) 679 goto err; 680 ring[i]->index = i; 681 } 682 goto out; 683 684 err: 685 while (--i >= 0) 686 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 687 kfree(ring); 688 ring = NULL; 689 out: 690 return ring; 691 } 692 693 /** 694 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 695 */ 696 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 697 struct srpt_device *sdev, int ring_size, 698 int dma_size, enum dma_data_direction dir) 699 { 700 int i; 701 702 for (i = 0; i < ring_size; ++i) 703 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 704 kfree(ioctx_ring); 705 } 706 707 /** 708 * srpt_get_cmd_state() - Get the state of a SCSI command. 709 */ 710 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 711 { 712 enum srpt_command_state state; 713 unsigned long flags; 714 715 BUG_ON(!ioctx); 716 717 spin_lock_irqsave(&ioctx->spinlock, flags); 718 state = ioctx->state; 719 spin_unlock_irqrestore(&ioctx->spinlock, flags); 720 return state; 721 } 722 723 /** 724 * srpt_set_cmd_state() - Set the state of a SCSI command. 725 * 726 * Does not modify the state of aborted commands. Returns the previous command 727 * state. 728 */ 729 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 730 enum srpt_command_state new) 731 { 732 enum srpt_command_state previous; 733 unsigned long flags; 734 735 BUG_ON(!ioctx); 736 737 spin_lock_irqsave(&ioctx->spinlock, flags); 738 previous = ioctx->state; 739 if (previous != SRPT_STATE_DONE) 740 ioctx->state = new; 741 spin_unlock_irqrestore(&ioctx->spinlock, flags); 742 743 return previous; 744 } 745 746 /** 747 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 748 * 749 * Returns true if and only if the previous command state was equal to 'old'. 750 */ 751 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 752 enum srpt_command_state old, 753 enum srpt_command_state new) 754 { 755 enum srpt_command_state previous; 756 unsigned long flags; 757 758 WARN_ON(!ioctx); 759 WARN_ON(old == SRPT_STATE_DONE); 760 WARN_ON(new == SRPT_STATE_NEW); 761 762 spin_lock_irqsave(&ioctx->spinlock, flags); 763 previous = ioctx->state; 764 if (previous == old) 765 ioctx->state = new; 766 spin_unlock_irqrestore(&ioctx->spinlock, flags); 767 return previous == old; 768 } 769 770 /** 771 * srpt_post_recv() - Post an IB receive request. 772 */ 773 static int srpt_post_recv(struct srpt_device *sdev, 774 struct srpt_recv_ioctx *ioctx) 775 { 776 struct ib_sge list; 777 struct ib_recv_wr wr, *bad_wr; 778 779 BUG_ON(!sdev); 780 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 781 782 list.addr = ioctx->ioctx.dma; 783 list.length = srp_max_req_size; 784 list.lkey = sdev->pd->local_dma_lkey; 785 786 wr.next = NULL; 787 wr.sg_list = &list; 788 wr.num_sge = 1; 789 790 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 791 } 792 793 /** 794 * srpt_post_send() - Post an IB send request. 795 * 796 * Returns zero upon success and a non-zero value upon failure. 797 */ 798 static int srpt_post_send(struct srpt_rdma_ch *ch, 799 struct srpt_send_ioctx *ioctx, int len) 800 { 801 struct ib_sge list; 802 struct ib_send_wr wr, *bad_wr; 803 struct srpt_device *sdev = ch->sport->sdev; 804 int ret; 805 806 atomic_inc(&ch->req_lim); 807 808 ret = -ENOMEM; 809 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 810 pr_warn("IB send queue full (needed 1)\n"); 811 goto out; 812 } 813 814 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 815 DMA_TO_DEVICE); 816 817 list.addr = ioctx->ioctx.dma; 818 list.length = len; 819 list.lkey = sdev->pd->local_dma_lkey; 820 821 wr.next = NULL; 822 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 823 wr.sg_list = &list; 824 wr.num_sge = 1; 825 wr.opcode = IB_WR_SEND; 826 wr.send_flags = IB_SEND_SIGNALED; 827 828 ret = ib_post_send(ch->qp, &wr, &bad_wr); 829 830 out: 831 if (ret < 0) { 832 atomic_inc(&ch->sq_wr_avail); 833 atomic_dec(&ch->req_lim); 834 } 835 return ret; 836 } 837 838 /** 839 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 840 * @ioctx: Pointer to the I/O context associated with the request. 841 * @srp_cmd: Pointer to the SRP_CMD request data. 842 * @dir: Pointer to the variable to which the transfer direction will be 843 * written. 844 * @data_len: Pointer to the variable to which the total data length of all 845 * descriptors in the SRP_CMD request will be written. 846 * 847 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 848 * 849 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 850 * -ENOMEM when memory allocation fails and zero upon success. 851 */ 852 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 853 struct srp_cmd *srp_cmd, 854 enum dma_data_direction *dir, u64 *data_len) 855 { 856 struct srp_indirect_buf *idb; 857 struct srp_direct_buf *db; 858 unsigned add_cdb_offset; 859 int ret; 860 861 /* 862 * The pointer computations below will only be compiled correctly 863 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 864 * whether srp_cmd::add_data has been declared as a byte pointer. 865 */ 866 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 867 && !__same_type(srp_cmd->add_data[0], (u8)0)); 868 869 BUG_ON(!dir); 870 BUG_ON(!data_len); 871 872 ret = 0; 873 *data_len = 0; 874 875 /* 876 * The lower four bits of the buffer format field contain the DATA-IN 877 * buffer descriptor format, and the highest four bits contain the 878 * DATA-OUT buffer descriptor format. 879 */ 880 *dir = DMA_NONE; 881 if (srp_cmd->buf_fmt & 0xf) 882 /* DATA-IN: transfer data from target to initiator (read). */ 883 *dir = DMA_FROM_DEVICE; 884 else if (srp_cmd->buf_fmt >> 4) 885 /* DATA-OUT: transfer data from initiator to target (write). */ 886 *dir = DMA_TO_DEVICE; 887 888 /* 889 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 890 * CDB LENGTH' field are reserved and the size in bytes of this field 891 * is four times the value specified in bits 3..7. Hence the "& ~3". 892 */ 893 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 894 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 895 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 896 ioctx->n_rbuf = 1; 897 ioctx->rbufs = &ioctx->single_rbuf; 898 899 db = (struct srp_direct_buf *)(srp_cmd->add_data 900 + add_cdb_offset); 901 memcpy(ioctx->rbufs, db, sizeof *db); 902 *data_len = be32_to_cpu(db->len); 903 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 904 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 905 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 906 + add_cdb_offset); 907 908 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 909 910 if (ioctx->n_rbuf > 911 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 912 pr_err("received unsupported SRP_CMD request" 913 " type (%u out + %u in != %u / %zu)\n", 914 srp_cmd->data_out_desc_cnt, 915 srp_cmd->data_in_desc_cnt, 916 be32_to_cpu(idb->table_desc.len), 917 sizeof(*db)); 918 ioctx->n_rbuf = 0; 919 ret = -EINVAL; 920 goto out; 921 } 922 923 if (ioctx->n_rbuf == 1) 924 ioctx->rbufs = &ioctx->single_rbuf; 925 else { 926 ioctx->rbufs = 927 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 928 if (!ioctx->rbufs) { 929 ioctx->n_rbuf = 0; 930 ret = -ENOMEM; 931 goto out; 932 } 933 } 934 935 db = idb->desc_list; 936 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 937 *data_len = be32_to_cpu(idb->len); 938 } 939 out: 940 return ret; 941 } 942 943 /** 944 * srpt_init_ch_qp() - Initialize queue pair attributes. 945 * 946 * Initialized the attributes of queue pair 'qp' by allowing local write, 947 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 948 */ 949 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 950 { 951 struct ib_qp_attr *attr; 952 int ret; 953 954 attr = kzalloc(sizeof *attr, GFP_KERNEL); 955 if (!attr) 956 return -ENOMEM; 957 958 attr->qp_state = IB_QPS_INIT; 959 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 960 IB_ACCESS_REMOTE_WRITE; 961 attr->port_num = ch->sport->port; 962 attr->pkey_index = 0; 963 964 ret = ib_modify_qp(qp, attr, 965 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 966 IB_QP_PKEY_INDEX); 967 968 kfree(attr); 969 return ret; 970 } 971 972 /** 973 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 974 * @ch: channel of the queue pair. 975 * @qp: queue pair to change the state of. 976 * 977 * Returns zero upon success and a negative value upon failure. 978 * 979 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 980 * If this structure ever becomes larger, it might be necessary to allocate 981 * it dynamically instead of on the stack. 982 */ 983 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 984 { 985 struct ib_qp_attr qp_attr; 986 int attr_mask; 987 int ret; 988 989 qp_attr.qp_state = IB_QPS_RTR; 990 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 991 if (ret) 992 goto out; 993 994 qp_attr.max_dest_rd_atomic = 4; 995 996 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 997 998 out: 999 return ret; 1000 } 1001 1002 /** 1003 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1004 * @ch: channel of the queue pair. 1005 * @qp: queue pair to change the state of. 1006 * 1007 * Returns zero upon success and a negative value upon failure. 1008 * 1009 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1010 * If this structure ever becomes larger, it might be necessary to allocate 1011 * it dynamically instead of on the stack. 1012 */ 1013 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1014 { 1015 struct ib_qp_attr qp_attr; 1016 int attr_mask; 1017 int ret; 1018 1019 qp_attr.qp_state = IB_QPS_RTS; 1020 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1021 if (ret) 1022 goto out; 1023 1024 qp_attr.max_rd_atomic = 4; 1025 1026 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1027 1028 out: 1029 return ret; 1030 } 1031 1032 /** 1033 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1034 */ 1035 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1036 { 1037 struct ib_qp_attr qp_attr; 1038 1039 qp_attr.qp_state = IB_QPS_ERR; 1040 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1041 } 1042 1043 /** 1044 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1045 */ 1046 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1047 struct srpt_send_ioctx *ioctx) 1048 { 1049 struct scatterlist *sg; 1050 enum dma_data_direction dir; 1051 1052 BUG_ON(!ch); 1053 BUG_ON(!ioctx); 1054 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1055 1056 while (ioctx->n_rdma) 1057 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1058 1059 kfree(ioctx->rdma_ius); 1060 ioctx->rdma_ius = NULL; 1061 1062 if (ioctx->mapped_sg_count) { 1063 sg = ioctx->sg; 1064 WARN_ON(!sg); 1065 dir = ioctx->cmd.data_direction; 1066 BUG_ON(dir == DMA_NONE); 1067 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1068 opposite_dma_dir(dir)); 1069 ioctx->mapped_sg_count = 0; 1070 } 1071 } 1072 1073 /** 1074 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1075 */ 1076 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1077 struct srpt_send_ioctx *ioctx) 1078 { 1079 struct ib_device *dev = ch->sport->sdev->device; 1080 struct se_cmd *cmd; 1081 struct scatterlist *sg, *sg_orig; 1082 int sg_cnt; 1083 enum dma_data_direction dir; 1084 struct rdma_iu *riu; 1085 struct srp_direct_buf *db; 1086 dma_addr_t dma_addr; 1087 struct ib_sge *sge; 1088 u64 raddr; 1089 u32 rsize; 1090 u32 tsize; 1091 u32 dma_len; 1092 int count, nrdma; 1093 int i, j, k; 1094 1095 BUG_ON(!ch); 1096 BUG_ON(!ioctx); 1097 cmd = &ioctx->cmd; 1098 dir = cmd->data_direction; 1099 BUG_ON(dir == DMA_NONE); 1100 1101 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1102 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1103 1104 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1105 opposite_dma_dir(dir)); 1106 if (unlikely(!count)) 1107 return -EAGAIN; 1108 1109 ioctx->mapped_sg_count = count; 1110 1111 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1112 nrdma = ioctx->n_rdma_ius; 1113 else { 1114 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1115 + ioctx->n_rbuf; 1116 1117 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1118 if (!ioctx->rdma_ius) 1119 goto free_mem; 1120 1121 ioctx->n_rdma_ius = nrdma; 1122 } 1123 1124 db = ioctx->rbufs; 1125 tsize = cmd->data_length; 1126 dma_len = ib_sg_dma_len(dev, &sg[0]); 1127 riu = ioctx->rdma_ius; 1128 1129 /* 1130 * For each remote desc - calculate the #ib_sge. 1131 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1132 * each remote desc rdma_iu is required a rdma wr; 1133 * else 1134 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1135 * another rdma wr 1136 */ 1137 for (i = 0, j = 0; 1138 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1139 rsize = be32_to_cpu(db->len); 1140 raddr = be64_to_cpu(db->va); 1141 riu->raddr = raddr; 1142 riu->rkey = be32_to_cpu(db->key); 1143 riu->sge_cnt = 0; 1144 1145 /* calculate how many sge required for this remote_buf */ 1146 while (rsize > 0 && tsize > 0) { 1147 1148 if (rsize >= dma_len) { 1149 tsize -= dma_len; 1150 rsize -= dma_len; 1151 raddr += dma_len; 1152 1153 if (tsize > 0) { 1154 ++j; 1155 if (j < count) { 1156 sg = sg_next(sg); 1157 dma_len = ib_sg_dma_len( 1158 dev, sg); 1159 } 1160 } 1161 } else { 1162 tsize -= rsize; 1163 dma_len -= rsize; 1164 rsize = 0; 1165 } 1166 1167 ++riu->sge_cnt; 1168 1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1170 ++ioctx->n_rdma; 1171 riu->sge = 1172 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1173 GFP_KERNEL); 1174 if (!riu->sge) 1175 goto free_mem; 1176 1177 ++riu; 1178 riu->sge_cnt = 0; 1179 riu->raddr = raddr; 1180 riu->rkey = be32_to_cpu(db->key); 1181 } 1182 } 1183 1184 ++ioctx->n_rdma; 1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1186 GFP_KERNEL); 1187 if (!riu->sge) 1188 goto free_mem; 1189 } 1190 1191 db = ioctx->rbufs; 1192 tsize = cmd->data_length; 1193 riu = ioctx->rdma_ius; 1194 sg = sg_orig; 1195 dma_len = ib_sg_dma_len(dev, &sg[0]); 1196 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1197 1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1199 for (i = 0, j = 0; 1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1201 rsize = be32_to_cpu(db->len); 1202 sge = riu->sge; 1203 k = 0; 1204 1205 while (rsize > 0 && tsize > 0) { 1206 sge->addr = dma_addr; 1207 sge->lkey = ch->sport->sdev->pd->local_dma_lkey; 1208 1209 if (rsize >= dma_len) { 1210 sge->length = 1211 (tsize < dma_len) ? tsize : dma_len; 1212 tsize -= dma_len; 1213 rsize -= dma_len; 1214 1215 if (tsize > 0) { 1216 ++j; 1217 if (j < count) { 1218 sg = sg_next(sg); 1219 dma_len = ib_sg_dma_len( 1220 dev, sg); 1221 dma_addr = ib_sg_dma_address( 1222 dev, sg); 1223 } 1224 } 1225 } else { 1226 sge->length = (tsize < rsize) ? tsize : rsize; 1227 tsize -= rsize; 1228 dma_len -= rsize; 1229 dma_addr += rsize; 1230 rsize = 0; 1231 } 1232 1233 ++k; 1234 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1235 ++riu; 1236 sge = riu->sge; 1237 k = 0; 1238 } else if (rsize > 0 && tsize > 0) 1239 ++sge; 1240 } 1241 } 1242 1243 return 0; 1244 1245 free_mem: 1246 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1247 1248 return -ENOMEM; 1249 } 1250 1251 /** 1252 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1253 */ 1254 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1255 { 1256 struct srpt_send_ioctx *ioctx; 1257 unsigned long flags; 1258 1259 BUG_ON(!ch); 1260 1261 ioctx = NULL; 1262 spin_lock_irqsave(&ch->spinlock, flags); 1263 if (!list_empty(&ch->free_list)) { 1264 ioctx = list_first_entry(&ch->free_list, 1265 struct srpt_send_ioctx, free_list); 1266 list_del(&ioctx->free_list); 1267 } 1268 spin_unlock_irqrestore(&ch->spinlock, flags); 1269 1270 if (!ioctx) 1271 return ioctx; 1272 1273 BUG_ON(ioctx->ch != ch); 1274 spin_lock_init(&ioctx->spinlock); 1275 ioctx->state = SRPT_STATE_NEW; 1276 ioctx->n_rbuf = 0; 1277 ioctx->rbufs = NULL; 1278 ioctx->n_rdma = 0; 1279 ioctx->n_rdma_ius = 0; 1280 ioctx->rdma_ius = NULL; 1281 ioctx->mapped_sg_count = 0; 1282 init_completion(&ioctx->tx_done); 1283 ioctx->queue_status_only = false; 1284 /* 1285 * transport_init_se_cmd() does not initialize all fields, so do it 1286 * here. 1287 */ 1288 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1289 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1290 1291 return ioctx; 1292 } 1293 1294 /** 1295 * srpt_abort_cmd() - Abort a SCSI command. 1296 * @ioctx: I/O context associated with the SCSI command. 1297 * @context: Preferred execution context. 1298 */ 1299 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1300 { 1301 enum srpt_command_state state; 1302 unsigned long flags; 1303 1304 BUG_ON(!ioctx); 1305 1306 /* 1307 * If the command is in a state where the target core is waiting for 1308 * the ib_srpt driver, change the state to the next state. Changing 1309 * the state of the command from SRPT_STATE_NEED_DATA to 1310 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1311 * function a second time. 1312 */ 1313 1314 spin_lock_irqsave(&ioctx->spinlock, flags); 1315 state = ioctx->state; 1316 switch (state) { 1317 case SRPT_STATE_NEED_DATA: 1318 ioctx->state = SRPT_STATE_DATA_IN; 1319 break; 1320 case SRPT_STATE_DATA_IN: 1321 case SRPT_STATE_CMD_RSP_SENT: 1322 case SRPT_STATE_MGMT_RSP_SENT: 1323 ioctx->state = SRPT_STATE_DONE; 1324 break; 1325 default: 1326 break; 1327 } 1328 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1329 1330 if (state == SRPT_STATE_DONE) { 1331 struct srpt_rdma_ch *ch = ioctx->ch; 1332 1333 BUG_ON(ch->sess == NULL); 1334 1335 target_put_sess_cmd(&ioctx->cmd); 1336 goto out; 1337 } 1338 1339 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1340 ioctx->cmd.tag); 1341 1342 switch (state) { 1343 case SRPT_STATE_NEW: 1344 case SRPT_STATE_DATA_IN: 1345 case SRPT_STATE_MGMT: 1346 /* 1347 * Do nothing - defer abort processing until 1348 * srpt_queue_response() is invoked. 1349 */ 1350 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1351 break; 1352 case SRPT_STATE_NEED_DATA: 1353 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1354 1355 /* XXX(hch): this is a horrible layering violation.. */ 1356 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1357 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1358 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1359 break; 1360 case SRPT_STATE_CMD_RSP_SENT: 1361 /* 1362 * SRP_RSP sending failed or the SRP_RSP send completion has 1363 * not been received in time. 1364 */ 1365 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1366 target_put_sess_cmd(&ioctx->cmd); 1367 break; 1368 case SRPT_STATE_MGMT_RSP_SENT: 1369 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1370 target_put_sess_cmd(&ioctx->cmd); 1371 break; 1372 default: 1373 WARN(1, "Unexpected command state (%d)", state); 1374 break; 1375 } 1376 1377 out: 1378 return state; 1379 } 1380 1381 /** 1382 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1383 */ 1384 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1385 { 1386 struct srpt_send_ioctx *ioctx; 1387 enum srpt_command_state state; 1388 u32 index; 1389 1390 atomic_inc(&ch->sq_wr_avail); 1391 1392 index = idx_from_wr_id(wr_id); 1393 ioctx = ch->ioctx_ring[index]; 1394 state = srpt_get_cmd_state(ioctx); 1395 1396 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1397 && state != SRPT_STATE_MGMT_RSP_SENT 1398 && state != SRPT_STATE_NEED_DATA 1399 && state != SRPT_STATE_DONE); 1400 1401 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1402 if (state == SRPT_STATE_CMD_RSP_SENT 1403 || state == SRPT_STATE_MGMT_RSP_SENT) 1404 atomic_dec(&ch->req_lim); 1405 1406 srpt_abort_cmd(ioctx); 1407 } 1408 1409 /** 1410 * srpt_handle_send_comp() - Process an IB send completion notification. 1411 */ 1412 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1413 struct srpt_send_ioctx *ioctx) 1414 { 1415 enum srpt_command_state state; 1416 1417 atomic_inc(&ch->sq_wr_avail); 1418 1419 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1420 1421 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1422 && state != SRPT_STATE_MGMT_RSP_SENT 1423 && state != SRPT_STATE_DONE)) 1424 pr_debug("state = %d\n", state); 1425 1426 if (state != SRPT_STATE_DONE) { 1427 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1428 transport_generic_free_cmd(&ioctx->cmd, 0); 1429 } else { 1430 pr_err("IB completion has been received too late for" 1431 " wr_id = %u.\n", ioctx->ioctx.index); 1432 } 1433 } 1434 1435 /** 1436 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1437 * 1438 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1439 * the data that has been transferred via IB RDMA had to be postponed until the 1440 * check_stop_free() callback. None of this is necessary anymore and needs to 1441 * be cleaned up. 1442 */ 1443 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1444 struct srpt_send_ioctx *ioctx, 1445 enum srpt_opcode opcode) 1446 { 1447 WARN_ON(ioctx->n_rdma <= 0); 1448 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1449 1450 if (opcode == SRPT_RDMA_READ_LAST) { 1451 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1452 SRPT_STATE_DATA_IN)) 1453 target_execute_cmd(&ioctx->cmd); 1454 else 1455 pr_err("%s[%d]: wrong state = %d\n", __func__, 1456 __LINE__, srpt_get_cmd_state(ioctx)); 1457 } else if (opcode == SRPT_RDMA_ABORT) { 1458 ioctx->rdma_aborted = true; 1459 } else { 1460 WARN(true, "unexpected opcode %d\n", opcode); 1461 } 1462 } 1463 1464 /** 1465 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1466 */ 1467 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1468 struct srpt_send_ioctx *ioctx, 1469 enum srpt_opcode opcode) 1470 { 1471 enum srpt_command_state state; 1472 1473 state = srpt_get_cmd_state(ioctx); 1474 switch (opcode) { 1475 case SRPT_RDMA_READ_LAST: 1476 if (ioctx->n_rdma <= 0) { 1477 pr_err("Received invalid RDMA read" 1478 " error completion with idx %d\n", 1479 ioctx->ioctx.index); 1480 break; 1481 } 1482 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1483 if (state == SRPT_STATE_NEED_DATA) 1484 srpt_abort_cmd(ioctx); 1485 else 1486 pr_err("%s[%d]: wrong state = %d\n", 1487 __func__, __LINE__, state); 1488 break; 1489 case SRPT_RDMA_WRITE_LAST: 1490 break; 1491 default: 1492 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode); 1493 break; 1494 } 1495 } 1496 1497 /** 1498 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1499 * @ch: RDMA channel through which the request has been received. 1500 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1501 * be built in the buffer ioctx->buf points at and hence this function will 1502 * overwrite the request data. 1503 * @tag: tag of the request for which this response is being generated. 1504 * @status: value for the STATUS field of the SRP_RSP information unit. 1505 * 1506 * Returns the size in bytes of the SRP_RSP response. 1507 * 1508 * An SRP_RSP response contains a SCSI status or service response. See also 1509 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1510 * response. See also SPC-2 for more information about sense data. 1511 */ 1512 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1513 struct srpt_send_ioctx *ioctx, u64 tag, 1514 int status) 1515 { 1516 struct srp_rsp *srp_rsp; 1517 const u8 *sense_data; 1518 int sense_data_len, max_sense_len; 1519 1520 /* 1521 * The lowest bit of all SAM-3 status codes is zero (see also 1522 * paragraph 5.3 in SAM-3). 1523 */ 1524 WARN_ON(status & 1); 1525 1526 srp_rsp = ioctx->ioctx.buf; 1527 BUG_ON(!srp_rsp); 1528 1529 sense_data = ioctx->sense_data; 1530 sense_data_len = ioctx->cmd.scsi_sense_length; 1531 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1532 1533 memset(srp_rsp, 0, sizeof *srp_rsp); 1534 srp_rsp->opcode = SRP_RSP; 1535 srp_rsp->req_lim_delta = 1536 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1537 srp_rsp->tag = tag; 1538 srp_rsp->status = status; 1539 1540 if (sense_data_len) { 1541 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1542 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1543 if (sense_data_len > max_sense_len) { 1544 pr_warn("truncated sense data from %d to %d" 1545 " bytes\n", sense_data_len, max_sense_len); 1546 sense_data_len = max_sense_len; 1547 } 1548 1549 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1550 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1551 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1552 } 1553 1554 return sizeof(*srp_rsp) + sense_data_len; 1555 } 1556 1557 /** 1558 * srpt_build_tskmgmt_rsp() - Build a task management response. 1559 * @ch: RDMA channel through which the request has been received. 1560 * @ioctx: I/O context in which the SRP_RSP response will be built. 1561 * @rsp_code: RSP_CODE that will be stored in the response. 1562 * @tag: Tag of the request for which this response is being generated. 1563 * 1564 * Returns the size in bytes of the SRP_RSP response. 1565 * 1566 * An SRP_RSP response contains a SCSI status or service response. See also 1567 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1568 * response. 1569 */ 1570 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1571 struct srpt_send_ioctx *ioctx, 1572 u8 rsp_code, u64 tag) 1573 { 1574 struct srp_rsp *srp_rsp; 1575 int resp_data_len; 1576 int resp_len; 1577 1578 resp_data_len = 4; 1579 resp_len = sizeof(*srp_rsp) + resp_data_len; 1580 1581 srp_rsp = ioctx->ioctx.buf; 1582 BUG_ON(!srp_rsp); 1583 memset(srp_rsp, 0, sizeof *srp_rsp); 1584 1585 srp_rsp->opcode = SRP_RSP; 1586 srp_rsp->req_lim_delta = 1587 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1588 srp_rsp->tag = tag; 1589 1590 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1591 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1592 srp_rsp->data[3] = rsp_code; 1593 1594 return resp_len; 1595 } 1596 1597 #define NO_SUCH_LUN ((uint64_t)-1LL) 1598 1599 /* 1600 * SCSI LUN addressing method. See also SAM-2 and the section about 1601 * eight byte LUNs. 1602 */ 1603 enum scsi_lun_addr_method { 1604 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1605 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1606 SCSI_LUN_ADDR_METHOD_LUN = 2, 1607 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1608 }; 1609 1610 /* 1611 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1612 * 1613 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1614 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1615 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1616 */ 1617 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1618 { 1619 uint64_t res = NO_SUCH_LUN; 1620 int addressing_method; 1621 1622 if (unlikely(len < 2)) { 1623 pr_err("Illegal LUN length %d, expected 2 bytes or more\n", 1624 len); 1625 goto out; 1626 } 1627 1628 switch (len) { 1629 case 8: 1630 if ((*((__be64 *)lun) & 1631 cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1632 goto out_err; 1633 break; 1634 case 4: 1635 if (*((__be16 *)&lun[2]) != 0) 1636 goto out_err; 1637 break; 1638 case 6: 1639 if (*((__be32 *)&lun[2]) != 0) 1640 goto out_err; 1641 break; 1642 case 2: 1643 break; 1644 default: 1645 goto out_err; 1646 } 1647 1648 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1649 switch (addressing_method) { 1650 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1651 case SCSI_LUN_ADDR_METHOD_FLAT: 1652 case SCSI_LUN_ADDR_METHOD_LUN: 1653 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1654 break; 1655 1656 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1657 default: 1658 pr_err("Unimplemented LUN addressing method %u\n", 1659 addressing_method); 1660 break; 1661 } 1662 1663 out: 1664 return res; 1665 1666 out_err: 1667 pr_err("Support for multi-level LUNs has not yet been implemented\n"); 1668 goto out; 1669 } 1670 1671 static int srpt_check_stop_free(struct se_cmd *cmd) 1672 { 1673 struct srpt_send_ioctx *ioctx = container_of(cmd, 1674 struct srpt_send_ioctx, cmd); 1675 1676 return target_put_sess_cmd(&ioctx->cmd); 1677 } 1678 1679 /** 1680 * srpt_handle_cmd() - Process SRP_CMD. 1681 */ 1682 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1683 struct srpt_recv_ioctx *recv_ioctx, 1684 struct srpt_send_ioctx *send_ioctx) 1685 { 1686 struct se_cmd *cmd; 1687 struct srp_cmd *srp_cmd; 1688 uint64_t unpacked_lun; 1689 u64 data_len; 1690 enum dma_data_direction dir; 1691 sense_reason_t ret; 1692 int rc; 1693 1694 BUG_ON(!send_ioctx); 1695 1696 srp_cmd = recv_ioctx->ioctx.buf; 1697 cmd = &send_ioctx->cmd; 1698 cmd->tag = srp_cmd->tag; 1699 1700 switch (srp_cmd->task_attr) { 1701 case SRP_CMD_SIMPLE_Q: 1702 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1703 break; 1704 case SRP_CMD_ORDERED_Q: 1705 default: 1706 cmd->sam_task_attr = TCM_ORDERED_TAG; 1707 break; 1708 case SRP_CMD_HEAD_OF_Q: 1709 cmd->sam_task_attr = TCM_HEAD_TAG; 1710 break; 1711 case SRP_CMD_ACA: 1712 cmd->sam_task_attr = TCM_ACA_TAG; 1713 break; 1714 } 1715 1716 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1717 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1718 srp_cmd->tag); 1719 ret = TCM_INVALID_CDB_FIELD; 1720 goto send_sense; 1721 } 1722 1723 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1724 sizeof(srp_cmd->lun)); 1725 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1726 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1727 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1728 if (rc != 0) { 1729 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1730 goto send_sense; 1731 } 1732 return 0; 1733 1734 send_sense: 1735 transport_send_check_condition_and_sense(cmd, ret, 0); 1736 return -1; 1737 } 1738 1739 /** 1740 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1741 * @ch: RDMA channel of the task management request. 1742 * @fn: Task management function to perform. 1743 * @req_tag: Tag of the SRP task management request. 1744 * @mgmt_ioctx: I/O context of the task management request. 1745 * 1746 * Returns zero if the target core will process the task management 1747 * request asynchronously. 1748 * 1749 * Note: It is assumed that the initiator serializes tag-based task management 1750 * requests. 1751 */ 1752 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1753 { 1754 struct srpt_device *sdev; 1755 struct srpt_rdma_ch *ch; 1756 struct srpt_send_ioctx *target; 1757 int ret, i; 1758 1759 ret = -EINVAL; 1760 ch = ioctx->ch; 1761 BUG_ON(!ch); 1762 BUG_ON(!ch->sport); 1763 sdev = ch->sport->sdev; 1764 BUG_ON(!sdev); 1765 spin_lock_irq(&sdev->spinlock); 1766 for (i = 0; i < ch->rq_size; ++i) { 1767 target = ch->ioctx_ring[i]; 1768 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1769 target->cmd.tag == tag && 1770 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1771 ret = 0; 1772 /* now let the target core abort &target->cmd; */ 1773 break; 1774 } 1775 } 1776 spin_unlock_irq(&sdev->spinlock); 1777 return ret; 1778 } 1779 1780 static int srp_tmr_to_tcm(int fn) 1781 { 1782 switch (fn) { 1783 case SRP_TSK_ABORT_TASK: 1784 return TMR_ABORT_TASK; 1785 case SRP_TSK_ABORT_TASK_SET: 1786 return TMR_ABORT_TASK_SET; 1787 case SRP_TSK_CLEAR_TASK_SET: 1788 return TMR_CLEAR_TASK_SET; 1789 case SRP_TSK_LUN_RESET: 1790 return TMR_LUN_RESET; 1791 case SRP_TSK_CLEAR_ACA: 1792 return TMR_CLEAR_ACA; 1793 default: 1794 return -1; 1795 } 1796 } 1797 1798 /** 1799 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1800 * 1801 * Returns 0 if and only if the request will be processed by the target core. 1802 * 1803 * For more information about SRP_TSK_MGMT information units, see also section 1804 * 6.7 in the SRP r16a document. 1805 */ 1806 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1807 struct srpt_recv_ioctx *recv_ioctx, 1808 struct srpt_send_ioctx *send_ioctx) 1809 { 1810 struct srp_tsk_mgmt *srp_tsk; 1811 struct se_cmd *cmd; 1812 struct se_session *sess = ch->sess; 1813 uint64_t unpacked_lun; 1814 uint32_t tag = 0; 1815 int tcm_tmr; 1816 int rc; 1817 1818 BUG_ON(!send_ioctx); 1819 1820 srp_tsk = recv_ioctx->ioctx.buf; 1821 cmd = &send_ioctx->cmd; 1822 1823 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1824 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1825 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1826 1827 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1828 send_ioctx->cmd.tag = srp_tsk->tag; 1829 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1830 if (tcm_tmr < 0) { 1831 send_ioctx->cmd.se_tmr_req->response = 1832 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1833 goto fail; 1834 } 1835 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1836 sizeof(srp_tsk->lun)); 1837 1838 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1839 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1840 if (rc < 0) { 1841 send_ioctx->cmd.se_tmr_req->response = 1842 TMR_TASK_DOES_NOT_EXIST; 1843 goto fail; 1844 } 1845 tag = srp_tsk->task_tag; 1846 } 1847 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1848 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1849 TARGET_SCF_ACK_KREF); 1850 if (rc != 0) { 1851 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1852 goto fail; 1853 } 1854 return; 1855 fail: 1856 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1857 } 1858 1859 /** 1860 * srpt_handle_new_iu() - Process a newly received information unit. 1861 * @ch: RDMA channel through which the information unit has been received. 1862 * @ioctx: SRPT I/O context associated with the information unit. 1863 */ 1864 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1865 struct srpt_recv_ioctx *recv_ioctx, 1866 struct srpt_send_ioctx *send_ioctx) 1867 { 1868 struct srp_cmd *srp_cmd; 1869 enum rdma_ch_state ch_state; 1870 1871 BUG_ON(!ch); 1872 BUG_ON(!recv_ioctx); 1873 1874 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1875 recv_ioctx->ioctx.dma, srp_max_req_size, 1876 DMA_FROM_DEVICE); 1877 1878 ch_state = srpt_get_ch_state(ch); 1879 if (unlikely(ch_state == CH_CONNECTING)) { 1880 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1881 goto out; 1882 } 1883 1884 if (unlikely(ch_state != CH_LIVE)) 1885 goto out; 1886 1887 srp_cmd = recv_ioctx->ioctx.buf; 1888 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1889 if (!send_ioctx) 1890 send_ioctx = srpt_get_send_ioctx(ch); 1891 if (unlikely(!send_ioctx)) { 1892 list_add_tail(&recv_ioctx->wait_list, 1893 &ch->cmd_wait_list); 1894 goto out; 1895 } 1896 } 1897 1898 switch (srp_cmd->opcode) { 1899 case SRP_CMD: 1900 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1901 break; 1902 case SRP_TSK_MGMT: 1903 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1904 break; 1905 case SRP_I_LOGOUT: 1906 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1907 break; 1908 case SRP_CRED_RSP: 1909 pr_debug("received SRP_CRED_RSP\n"); 1910 break; 1911 case SRP_AER_RSP: 1912 pr_debug("received SRP_AER_RSP\n"); 1913 break; 1914 case SRP_RSP: 1915 pr_err("Received SRP_RSP\n"); 1916 break; 1917 default: 1918 pr_err("received IU with unknown opcode 0x%x\n", 1919 srp_cmd->opcode); 1920 break; 1921 } 1922 1923 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1924 out: 1925 return; 1926 } 1927 1928 static void srpt_process_rcv_completion(struct ib_cq *cq, 1929 struct srpt_rdma_ch *ch, 1930 struct ib_wc *wc) 1931 { 1932 struct srpt_device *sdev = ch->sport->sdev; 1933 struct srpt_recv_ioctx *ioctx; 1934 u32 index; 1935 1936 index = idx_from_wr_id(wc->wr_id); 1937 if (wc->status == IB_WC_SUCCESS) { 1938 int req_lim; 1939 1940 req_lim = atomic_dec_return(&ch->req_lim); 1941 if (unlikely(req_lim < 0)) 1942 pr_err("req_lim = %d < 0\n", req_lim); 1943 ioctx = sdev->ioctx_ring[index]; 1944 srpt_handle_new_iu(ch, ioctx, NULL); 1945 } else { 1946 pr_info("receiving failed for idx %u with status %d\n", 1947 index, wc->status); 1948 } 1949 } 1950 1951 /** 1952 * srpt_process_send_completion() - Process an IB send completion. 1953 * 1954 * Note: Although this has not yet been observed during tests, at least in 1955 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1956 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1957 * value in each response is set to one, and it is possible that this response 1958 * makes the initiator send a new request before the send completion for that 1959 * response has been processed. This could e.g. happen if the call to 1960 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1961 * if IB retransmission causes generation of the send completion to be 1962 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1963 * are queued on cmd_wait_list. The code below processes these delayed 1964 * requests one at a time. 1965 */ 1966 static void srpt_process_send_completion(struct ib_cq *cq, 1967 struct srpt_rdma_ch *ch, 1968 struct ib_wc *wc) 1969 { 1970 struct srpt_send_ioctx *send_ioctx; 1971 uint32_t index; 1972 enum srpt_opcode opcode; 1973 1974 index = idx_from_wr_id(wc->wr_id); 1975 opcode = opcode_from_wr_id(wc->wr_id); 1976 send_ioctx = ch->ioctx_ring[index]; 1977 if (wc->status == IB_WC_SUCCESS) { 1978 if (opcode == SRPT_SEND) 1979 srpt_handle_send_comp(ch, send_ioctx); 1980 else { 1981 WARN_ON(opcode != SRPT_RDMA_ABORT && 1982 wc->opcode != IB_WC_RDMA_READ); 1983 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1984 } 1985 } else { 1986 if (opcode == SRPT_SEND) { 1987 pr_info("sending response for idx %u failed" 1988 " with status %d\n", index, wc->status); 1989 srpt_handle_send_err_comp(ch, wc->wr_id); 1990 } else if (opcode != SRPT_RDMA_MID) { 1991 pr_info("RDMA t %d for idx %u failed with" 1992 " status %d\n", opcode, index, wc->status); 1993 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 1994 } 1995 } 1996 1997 while (unlikely(opcode == SRPT_SEND 1998 && !list_empty(&ch->cmd_wait_list) 1999 && srpt_get_ch_state(ch) == CH_LIVE 2000 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2001 struct srpt_recv_ioctx *recv_ioctx; 2002 2003 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2004 struct srpt_recv_ioctx, 2005 wait_list); 2006 list_del(&recv_ioctx->wait_list); 2007 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2008 } 2009 } 2010 2011 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2012 { 2013 struct ib_wc *const wc = ch->wc; 2014 int i, n; 2015 2016 WARN_ON(cq != ch->cq); 2017 2018 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2019 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2020 for (i = 0; i < n; i++) { 2021 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2022 srpt_process_rcv_completion(cq, ch, &wc[i]); 2023 else 2024 srpt_process_send_completion(cq, ch, &wc[i]); 2025 } 2026 } 2027 } 2028 2029 /** 2030 * srpt_completion() - IB completion queue callback function. 2031 * 2032 * Notes: 2033 * - It is guaranteed that a completion handler will never be invoked 2034 * concurrently on two different CPUs for the same completion queue. See also 2035 * Documentation/infiniband/core_locking.txt and the implementation of 2036 * handle_edge_irq() in kernel/irq/chip.c. 2037 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2038 * context instead of interrupt context. 2039 */ 2040 static void srpt_completion(struct ib_cq *cq, void *ctx) 2041 { 2042 struct srpt_rdma_ch *ch = ctx; 2043 2044 wake_up_interruptible(&ch->wait_queue); 2045 } 2046 2047 static int srpt_compl_thread(void *arg) 2048 { 2049 struct srpt_rdma_ch *ch; 2050 2051 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2052 current->flags |= PF_NOFREEZE; 2053 2054 ch = arg; 2055 BUG_ON(!ch); 2056 pr_info("Session %s: kernel thread %s (PID %d) started\n", 2057 ch->sess_name, ch->thread->comm, current->pid); 2058 while (!kthread_should_stop()) { 2059 wait_event_interruptible(ch->wait_queue, 2060 (srpt_process_completion(ch->cq, ch), 2061 kthread_should_stop())); 2062 } 2063 pr_info("Session %s: kernel thread %s (PID %d) stopped\n", 2064 ch->sess_name, ch->thread->comm, current->pid); 2065 return 0; 2066 } 2067 2068 /** 2069 * srpt_create_ch_ib() - Create receive and send completion queues. 2070 */ 2071 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2072 { 2073 struct ib_qp_init_attr *qp_init; 2074 struct srpt_port *sport = ch->sport; 2075 struct srpt_device *sdev = sport->sdev; 2076 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2077 struct ib_cq_init_attr cq_attr = {}; 2078 int ret; 2079 2080 WARN_ON(ch->rq_size < 1); 2081 2082 ret = -ENOMEM; 2083 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2084 if (!qp_init) 2085 goto out; 2086 2087 retry: 2088 cq_attr.cqe = ch->rq_size + srp_sq_size; 2089 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2090 &cq_attr); 2091 if (IS_ERR(ch->cq)) { 2092 ret = PTR_ERR(ch->cq); 2093 pr_err("failed to create CQ cqe= %d ret= %d\n", 2094 ch->rq_size + srp_sq_size, ret); 2095 goto out; 2096 } 2097 2098 qp_init->qp_context = (void *)ch; 2099 qp_init->event_handler 2100 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2101 qp_init->send_cq = ch->cq; 2102 qp_init->recv_cq = ch->cq; 2103 qp_init->srq = sdev->srq; 2104 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2105 qp_init->qp_type = IB_QPT_RC; 2106 qp_init->cap.max_send_wr = srp_sq_size; 2107 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2108 2109 ch->qp = ib_create_qp(sdev->pd, qp_init); 2110 if (IS_ERR(ch->qp)) { 2111 ret = PTR_ERR(ch->qp); 2112 if (ret == -ENOMEM) { 2113 srp_sq_size /= 2; 2114 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 2115 ib_destroy_cq(ch->cq); 2116 goto retry; 2117 } 2118 } 2119 pr_err("failed to create_qp ret= %d\n", ret); 2120 goto err_destroy_cq; 2121 } 2122 2123 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2124 2125 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2126 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2127 qp_init->cap.max_send_wr, ch->cm_id); 2128 2129 ret = srpt_init_ch_qp(ch, ch->qp); 2130 if (ret) 2131 goto err_destroy_qp; 2132 2133 init_waitqueue_head(&ch->wait_queue); 2134 2135 pr_debug("creating thread for session %s\n", ch->sess_name); 2136 2137 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2138 if (IS_ERR(ch->thread)) { 2139 pr_err("failed to create kernel thread %ld\n", 2140 PTR_ERR(ch->thread)); 2141 ch->thread = NULL; 2142 goto err_destroy_qp; 2143 } 2144 2145 out: 2146 kfree(qp_init); 2147 return ret; 2148 2149 err_destroy_qp: 2150 ib_destroy_qp(ch->qp); 2151 err_destroy_cq: 2152 ib_destroy_cq(ch->cq); 2153 goto out; 2154 } 2155 2156 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2157 { 2158 if (ch->thread) 2159 kthread_stop(ch->thread); 2160 2161 ib_destroy_qp(ch->qp); 2162 ib_destroy_cq(ch->cq); 2163 } 2164 2165 /** 2166 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2167 * 2168 * Reset the QP and make sure all resources associated with the channel will 2169 * be deallocated at an appropriate time. 2170 * 2171 * Note: The caller must hold ch->sport->sdev->spinlock. 2172 */ 2173 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2174 { 2175 enum rdma_ch_state prev_state; 2176 unsigned long flags; 2177 2178 spin_lock_irqsave(&ch->spinlock, flags); 2179 prev_state = ch->state; 2180 switch (prev_state) { 2181 case CH_CONNECTING: 2182 case CH_LIVE: 2183 ch->state = CH_DISCONNECTING; 2184 break; 2185 default: 2186 break; 2187 } 2188 spin_unlock_irqrestore(&ch->spinlock, flags); 2189 2190 switch (prev_state) { 2191 case CH_CONNECTING: 2192 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2193 NULL, 0); 2194 /* fall through */ 2195 case CH_LIVE: 2196 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2197 pr_err("sending CM DREQ failed.\n"); 2198 break; 2199 case CH_DISCONNECTING: 2200 break; 2201 case CH_DRAINING: 2202 case CH_RELEASING: 2203 break; 2204 } 2205 } 2206 2207 /** 2208 * srpt_close_ch() - Close an RDMA channel. 2209 */ 2210 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2211 { 2212 struct srpt_device *sdev; 2213 2214 sdev = ch->sport->sdev; 2215 spin_lock_irq(&sdev->spinlock); 2216 __srpt_close_ch(ch); 2217 spin_unlock_irq(&sdev->spinlock); 2218 } 2219 2220 /** 2221 * srpt_shutdown_session() - Whether or not a session may be shut down. 2222 */ 2223 static int srpt_shutdown_session(struct se_session *se_sess) 2224 { 2225 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2226 unsigned long flags; 2227 2228 spin_lock_irqsave(&ch->spinlock, flags); 2229 if (ch->in_shutdown) { 2230 spin_unlock_irqrestore(&ch->spinlock, flags); 2231 return true; 2232 } 2233 2234 ch->in_shutdown = true; 2235 target_sess_cmd_list_set_waiting(se_sess); 2236 spin_unlock_irqrestore(&ch->spinlock, flags); 2237 2238 return true; 2239 } 2240 2241 /** 2242 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2243 * @cm_id: Pointer to the CM ID of the channel to be drained. 2244 * 2245 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2246 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2247 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2248 * waits until all target sessions for the associated IB device have been 2249 * unregistered and target session registration involves a call to 2250 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2251 * this function has finished). 2252 */ 2253 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2254 { 2255 struct srpt_device *sdev; 2256 struct srpt_rdma_ch *ch; 2257 int ret; 2258 bool do_reset = false; 2259 2260 WARN_ON_ONCE(irqs_disabled()); 2261 2262 sdev = cm_id->context; 2263 BUG_ON(!sdev); 2264 spin_lock_irq(&sdev->spinlock); 2265 list_for_each_entry(ch, &sdev->rch_list, list) { 2266 if (ch->cm_id == cm_id) { 2267 do_reset = srpt_test_and_set_ch_state(ch, 2268 CH_CONNECTING, CH_DRAINING) || 2269 srpt_test_and_set_ch_state(ch, 2270 CH_LIVE, CH_DRAINING) || 2271 srpt_test_and_set_ch_state(ch, 2272 CH_DISCONNECTING, CH_DRAINING); 2273 break; 2274 } 2275 } 2276 spin_unlock_irq(&sdev->spinlock); 2277 2278 if (do_reset) { 2279 if (ch->sess) 2280 srpt_shutdown_session(ch->sess); 2281 2282 ret = srpt_ch_qp_err(ch); 2283 if (ret < 0) 2284 pr_err("Setting queue pair in error state" 2285 " failed: %d\n", ret); 2286 } 2287 } 2288 2289 /** 2290 * srpt_find_channel() - Look up an RDMA channel. 2291 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2292 * 2293 * Return NULL if no matching RDMA channel has been found. 2294 */ 2295 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2296 struct ib_cm_id *cm_id) 2297 { 2298 struct srpt_rdma_ch *ch; 2299 bool found; 2300 2301 WARN_ON_ONCE(irqs_disabled()); 2302 BUG_ON(!sdev); 2303 2304 found = false; 2305 spin_lock_irq(&sdev->spinlock); 2306 list_for_each_entry(ch, &sdev->rch_list, list) { 2307 if (ch->cm_id == cm_id) { 2308 found = true; 2309 break; 2310 } 2311 } 2312 spin_unlock_irq(&sdev->spinlock); 2313 2314 return found ? ch : NULL; 2315 } 2316 2317 /** 2318 * srpt_release_channel() - Release channel resources. 2319 * 2320 * Schedules the actual release because: 2321 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2322 * trigger a deadlock. 2323 * - It is not safe to call TCM transport_* functions from interrupt context. 2324 */ 2325 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2326 { 2327 schedule_work(&ch->release_work); 2328 } 2329 2330 static void srpt_release_channel_work(struct work_struct *w) 2331 { 2332 struct srpt_rdma_ch *ch; 2333 struct srpt_device *sdev; 2334 struct se_session *se_sess; 2335 2336 ch = container_of(w, struct srpt_rdma_ch, release_work); 2337 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2338 ch->release_done); 2339 2340 sdev = ch->sport->sdev; 2341 BUG_ON(!sdev); 2342 2343 se_sess = ch->sess; 2344 BUG_ON(!se_sess); 2345 2346 target_wait_for_sess_cmds(se_sess); 2347 2348 transport_deregister_session_configfs(se_sess); 2349 transport_deregister_session(se_sess); 2350 ch->sess = NULL; 2351 2352 ib_destroy_cm_id(ch->cm_id); 2353 2354 srpt_destroy_ch_ib(ch); 2355 2356 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2357 ch->sport->sdev, ch->rq_size, 2358 ch->rsp_size, DMA_TO_DEVICE); 2359 2360 spin_lock_irq(&sdev->spinlock); 2361 list_del(&ch->list); 2362 spin_unlock_irq(&sdev->spinlock); 2363 2364 if (ch->release_done) 2365 complete(ch->release_done); 2366 2367 wake_up(&sdev->ch_releaseQ); 2368 2369 kfree(ch); 2370 } 2371 2372 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2373 u8 i_port_id[16]) 2374 { 2375 struct srpt_node_acl *nacl; 2376 2377 list_for_each_entry(nacl, &sport->port_acl_list, list) 2378 if (memcmp(nacl->i_port_id, i_port_id, 2379 sizeof(nacl->i_port_id)) == 0) 2380 return nacl; 2381 2382 return NULL; 2383 } 2384 2385 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2386 u8 i_port_id[16]) 2387 { 2388 struct srpt_node_acl *nacl; 2389 2390 spin_lock_irq(&sport->port_acl_lock); 2391 nacl = __srpt_lookup_acl(sport, i_port_id); 2392 spin_unlock_irq(&sport->port_acl_lock); 2393 2394 return nacl; 2395 } 2396 2397 /** 2398 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2399 * 2400 * Ownership of the cm_id is transferred to the target session if this 2401 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2402 */ 2403 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2404 struct ib_cm_req_event_param *param, 2405 void *private_data) 2406 { 2407 struct srpt_device *sdev = cm_id->context; 2408 struct srpt_port *sport = &sdev->port[param->port - 1]; 2409 struct srp_login_req *req; 2410 struct srp_login_rsp *rsp; 2411 struct srp_login_rej *rej; 2412 struct ib_cm_rep_param *rep_param; 2413 struct srpt_rdma_ch *ch, *tmp_ch; 2414 struct srpt_node_acl *nacl; 2415 u32 it_iu_len; 2416 int i; 2417 int ret = 0; 2418 2419 WARN_ON_ONCE(irqs_disabled()); 2420 2421 if (WARN_ON(!sdev || !private_data)) 2422 return -EINVAL; 2423 2424 req = (struct srp_login_req *)private_data; 2425 2426 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2427 2428 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2429 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2430 " (guid=0x%llx:0x%llx)\n", 2431 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2432 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2433 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2434 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2435 it_iu_len, 2436 param->port, 2437 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2438 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2439 2440 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2441 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2442 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2443 2444 if (!rsp || !rej || !rep_param) { 2445 ret = -ENOMEM; 2446 goto out; 2447 } 2448 2449 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2450 rej->reason = cpu_to_be32( 2451 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2452 ret = -EINVAL; 2453 pr_err("rejected SRP_LOGIN_REQ because its" 2454 " length (%d bytes) is out of range (%d .. %d)\n", 2455 it_iu_len, 64, srp_max_req_size); 2456 goto reject; 2457 } 2458 2459 if (!sport->enabled) { 2460 rej->reason = cpu_to_be32( 2461 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2462 ret = -EINVAL; 2463 pr_err("rejected SRP_LOGIN_REQ because the target port" 2464 " has not yet been enabled\n"); 2465 goto reject; 2466 } 2467 2468 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2469 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2470 2471 spin_lock_irq(&sdev->spinlock); 2472 2473 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2474 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2475 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2476 && param->port == ch->sport->port 2477 && param->listen_id == ch->sport->sdev->cm_id 2478 && ch->cm_id) { 2479 enum rdma_ch_state ch_state; 2480 2481 ch_state = srpt_get_ch_state(ch); 2482 if (ch_state != CH_CONNECTING 2483 && ch_state != CH_LIVE) 2484 continue; 2485 2486 /* found an existing channel */ 2487 pr_debug("Found existing channel %s" 2488 " cm_id= %p state= %d\n", 2489 ch->sess_name, ch->cm_id, ch_state); 2490 2491 __srpt_close_ch(ch); 2492 2493 rsp->rsp_flags = 2494 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2495 } 2496 } 2497 2498 spin_unlock_irq(&sdev->spinlock); 2499 2500 } else 2501 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2502 2503 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2504 || *(__be64 *)(req->target_port_id + 8) != 2505 cpu_to_be64(srpt_service_guid)) { 2506 rej->reason = cpu_to_be32( 2507 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2508 ret = -ENOMEM; 2509 pr_err("rejected SRP_LOGIN_REQ because it" 2510 " has an invalid target port identifier.\n"); 2511 goto reject; 2512 } 2513 2514 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2515 if (!ch) { 2516 rej->reason = cpu_to_be32( 2517 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2518 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2519 ret = -ENOMEM; 2520 goto reject; 2521 } 2522 2523 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2524 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2525 memcpy(ch->t_port_id, req->target_port_id, 16); 2526 ch->sport = &sdev->port[param->port - 1]; 2527 ch->cm_id = cm_id; 2528 /* 2529 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2530 * for the SRP protocol to the command queue size. 2531 */ 2532 ch->rq_size = SRPT_RQ_SIZE; 2533 spin_lock_init(&ch->spinlock); 2534 ch->state = CH_CONNECTING; 2535 INIT_LIST_HEAD(&ch->cmd_wait_list); 2536 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2537 2538 ch->ioctx_ring = (struct srpt_send_ioctx **) 2539 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2540 sizeof(*ch->ioctx_ring[0]), 2541 ch->rsp_size, DMA_TO_DEVICE); 2542 if (!ch->ioctx_ring) 2543 goto free_ch; 2544 2545 INIT_LIST_HEAD(&ch->free_list); 2546 for (i = 0; i < ch->rq_size; i++) { 2547 ch->ioctx_ring[i]->ch = ch; 2548 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2549 } 2550 2551 ret = srpt_create_ch_ib(ch); 2552 if (ret) { 2553 rej->reason = cpu_to_be32( 2554 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2555 pr_err("rejected SRP_LOGIN_REQ because creating" 2556 " a new RDMA channel failed.\n"); 2557 goto free_ring; 2558 } 2559 2560 ret = srpt_ch_qp_rtr(ch, ch->qp); 2561 if (ret) { 2562 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2563 pr_err("rejected SRP_LOGIN_REQ because enabling" 2564 " RTR failed (error code = %d)\n", ret); 2565 goto destroy_ib; 2566 } 2567 /* 2568 * Use the initator port identifier as the session name. 2569 */ 2570 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2571 be64_to_cpu(*(__be64 *)ch->i_port_id), 2572 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2573 2574 pr_debug("registering session %s\n", ch->sess_name); 2575 2576 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2577 if (!nacl) { 2578 pr_info("Rejected login because no ACL has been" 2579 " configured yet for initiator %s.\n", ch->sess_name); 2580 rej->reason = cpu_to_be32( 2581 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2582 goto destroy_ib; 2583 } 2584 2585 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2586 if (IS_ERR(ch->sess)) { 2587 rej->reason = cpu_to_be32( 2588 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2589 pr_debug("Failed to create session\n"); 2590 goto deregister_session; 2591 } 2592 ch->sess->se_node_acl = &nacl->nacl; 2593 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2594 2595 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2596 ch->sess_name, ch->cm_id); 2597 2598 /* create srp_login_response */ 2599 rsp->opcode = SRP_LOGIN_RSP; 2600 rsp->tag = req->tag; 2601 rsp->max_it_iu_len = req->req_it_iu_len; 2602 rsp->max_ti_iu_len = req->req_it_iu_len; 2603 ch->max_ti_iu_len = it_iu_len; 2604 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2605 | SRP_BUF_FORMAT_INDIRECT); 2606 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2607 atomic_set(&ch->req_lim, ch->rq_size); 2608 atomic_set(&ch->req_lim_delta, 0); 2609 2610 /* create cm reply */ 2611 rep_param->qp_num = ch->qp->qp_num; 2612 rep_param->private_data = (void *)rsp; 2613 rep_param->private_data_len = sizeof *rsp; 2614 rep_param->rnr_retry_count = 7; 2615 rep_param->flow_control = 1; 2616 rep_param->failover_accepted = 0; 2617 rep_param->srq = 1; 2618 rep_param->responder_resources = 4; 2619 rep_param->initiator_depth = 4; 2620 2621 ret = ib_send_cm_rep(cm_id, rep_param); 2622 if (ret) { 2623 pr_err("sending SRP_LOGIN_REQ response failed" 2624 " (error code = %d)\n", ret); 2625 goto release_channel; 2626 } 2627 2628 spin_lock_irq(&sdev->spinlock); 2629 list_add_tail(&ch->list, &sdev->rch_list); 2630 spin_unlock_irq(&sdev->spinlock); 2631 2632 goto out; 2633 2634 release_channel: 2635 srpt_set_ch_state(ch, CH_RELEASING); 2636 transport_deregister_session_configfs(ch->sess); 2637 2638 deregister_session: 2639 transport_deregister_session(ch->sess); 2640 ch->sess = NULL; 2641 2642 destroy_ib: 2643 srpt_destroy_ch_ib(ch); 2644 2645 free_ring: 2646 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2647 ch->sport->sdev, ch->rq_size, 2648 ch->rsp_size, DMA_TO_DEVICE); 2649 free_ch: 2650 kfree(ch); 2651 2652 reject: 2653 rej->opcode = SRP_LOGIN_REJ; 2654 rej->tag = req->tag; 2655 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2656 | SRP_BUF_FORMAT_INDIRECT); 2657 2658 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2659 (void *)rej, sizeof *rej); 2660 2661 out: 2662 kfree(rep_param); 2663 kfree(rsp); 2664 kfree(rej); 2665 2666 return ret; 2667 } 2668 2669 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2670 { 2671 pr_info("Received IB REJ for cm_id %p.\n", cm_id); 2672 srpt_drain_channel(cm_id); 2673 } 2674 2675 /** 2676 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2677 * 2678 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2679 * and that the recipient may begin transmitting (RTU = ready to use). 2680 */ 2681 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2682 { 2683 struct srpt_rdma_ch *ch; 2684 int ret; 2685 2686 ch = srpt_find_channel(cm_id->context, cm_id); 2687 BUG_ON(!ch); 2688 2689 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2690 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2691 2692 ret = srpt_ch_qp_rts(ch, ch->qp); 2693 2694 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2695 wait_list) { 2696 list_del(&ioctx->wait_list); 2697 srpt_handle_new_iu(ch, ioctx, NULL); 2698 } 2699 if (ret) 2700 srpt_close_ch(ch); 2701 } 2702 } 2703 2704 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2705 { 2706 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id); 2707 srpt_drain_channel(cm_id); 2708 } 2709 2710 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2711 { 2712 pr_info("Received IB REP error for cm_id %p.\n", cm_id); 2713 srpt_drain_channel(cm_id); 2714 } 2715 2716 /** 2717 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2718 */ 2719 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2720 { 2721 struct srpt_rdma_ch *ch; 2722 unsigned long flags; 2723 bool send_drep = false; 2724 2725 ch = srpt_find_channel(cm_id->context, cm_id); 2726 BUG_ON(!ch); 2727 2728 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2729 2730 spin_lock_irqsave(&ch->spinlock, flags); 2731 switch (ch->state) { 2732 case CH_CONNECTING: 2733 case CH_LIVE: 2734 send_drep = true; 2735 ch->state = CH_DISCONNECTING; 2736 break; 2737 case CH_DISCONNECTING: 2738 case CH_DRAINING: 2739 case CH_RELEASING: 2740 WARN(true, "unexpected channel state %d\n", ch->state); 2741 break; 2742 } 2743 spin_unlock_irqrestore(&ch->spinlock, flags); 2744 2745 if (send_drep) { 2746 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2747 pr_err("Sending IB DREP failed.\n"); 2748 pr_info("Received DREQ and sent DREP for session %s.\n", 2749 ch->sess_name); 2750 } 2751 } 2752 2753 /** 2754 * srpt_cm_drep_recv() - Process reception of a DREP message. 2755 */ 2756 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2757 { 2758 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id); 2759 srpt_drain_channel(cm_id); 2760 } 2761 2762 /** 2763 * srpt_cm_handler() - IB connection manager callback function. 2764 * 2765 * A non-zero return value will cause the caller destroy the CM ID. 2766 * 2767 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2768 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2769 * a non-zero value in any other case will trigger a race with the 2770 * ib_destroy_cm_id() call in srpt_release_channel(). 2771 */ 2772 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2773 { 2774 int ret; 2775 2776 ret = 0; 2777 switch (event->event) { 2778 case IB_CM_REQ_RECEIVED: 2779 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2780 event->private_data); 2781 break; 2782 case IB_CM_REJ_RECEIVED: 2783 srpt_cm_rej_recv(cm_id); 2784 break; 2785 case IB_CM_RTU_RECEIVED: 2786 case IB_CM_USER_ESTABLISHED: 2787 srpt_cm_rtu_recv(cm_id); 2788 break; 2789 case IB_CM_DREQ_RECEIVED: 2790 srpt_cm_dreq_recv(cm_id); 2791 break; 2792 case IB_CM_DREP_RECEIVED: 2793 srpt_cm_drep_recv(cm_id); 2794 break; 2795 case IB_CM_TIMEWAIT_EXIT: 2796 srpt_cm_timewait_exit(cm_id); 2797 break; 2798 case IB_CM_REP_ERROR: 2799 srpt_cm_rep_error(cm_id); 2800 break; 2801 case IB_CM_DREQ_ERROR: 2802 pr_info("Received IB DREQ ERROR event.\n"); 2803 break; 2804 case IB_CM_MRA_RECEIVED: 2805 pr_info("Received IB MRA event\n"); 2806 break; 2807 default: 2808 pr_err("received unrecognized IB CM event %d\n", event->event); 2809 break; 2810 } 2811 2812 return ret; 2813 } 2814 2815 /** 2816 * srpt_perform_rdmas() - Perform IB RDMA. 2817 * 2818 * Returns zero upon success or a negative number upon failure. 2819 */ 2820 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2821 struct srpt_send_ioctx *ioctx) 2822 { 2823 struct ib_send_wr wr; 2824 struct ib_send_wr *bad_wr; 2825 struct rdma_iu *riu; 2826 int i; 2827 int ret; 2828 int sq_wr_avail; 2829 enum dma_data_direction dir; 2830 const int n_rdma = ioctx->n_rdma; 2831 2832 dir = ioctx->cmd.data_direction; 2833 if (dir == DMA_TO_DEVICE) { 2834 /* write */ 2835 ret = -ENOMEM; 2836 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2837 if (sq_wr_avail < 0) { 2838 pr_warn("IB send queue full (needed %d)\n", 2839 n_rdma); 2840 goto out; 2841 } 2842 } 2843 2844 ioctx->rdma_aborted = false; 2845 ret = 0; 2846 riu = ioctx->rdma_ius; 2847 memset(&wr, 0, sizeof wr); 2848 2849 for (i = 0; i < n_rdma; ++i, ++riu) { 2850 if (dir == DMA_FROM_DEVICE) { 2851 wr.opcode = IB_WR_RDMA_WRITE; 2852 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2853 SRPT_RDMA_WRITE_LAST : 2854 SRPT_RDMA_MID, 2855 ioctx->ioctx.index); 2856 } else { 2857 wr.opcode = IB_WR_RDMA_READ; 2858 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2859 SRPT_RDMA_READ_LAST : 2860 SRPT_RDMA_MID, 2861 ioctx->ioctx.index); 2862 } 2863 wr.next = NULL; 2864 wr.wr.rdma.remote_addr = riu->raddr; 2865 wr.wr.rdma.rkey = riu->rkey; 2866 wr.num_sge = riu->sge_cnt; 2867 wr.sg_list = riu->sge; 2868 2869 /* only get completion event for the last rdma write */ 2870 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2871 wr.send_flags = IB_SEND_SIGNALED; 2872 2873 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2874 if (ret) 2875 break; 2876 } 2877 2878 if (ret) 2879 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2880 __func__, __LINE__, ret, i, n_rdma); 2881 if (ret && i > 0) { 2882 wr.num_sge = 0; 2883 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2884 wr.send_flags = IB_SEND_SIGNALED; 2885 while (ch->state == CH_LIVE && 2886 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2887 pr_info("Trying to abort failed RDMA transfer [%d]\n", 2888 ioctx->ioctx.index); 2889 msleep(1000); 2890 } 2891 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2892 pr_info("Waiting until RDMA abort finished [%d]\n", 2893 ioctx->ioctx.index); 2894 msleep(1000); 2895 } 2896 } 2897 out: 2898 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2899 atomic_add(n_rdma, &ch->sq_wr_avail); 2900 return ret; 2901 } 2902 2903 /** 2904 * srpt_xfer_data() - Start data transfer from initiator to target. 2905 */ 2906 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2907 struct srpt_send_ioctx *ioctx) 2908 { 2909 int ret; 2910 2911 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2912 if (ret) { 2913 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2914 goto out; 2915 } 2916 2917 ret = srpt_perform_rdmas(ch, ioctx); 2918 if (ret) { 2919 if (ret == -EAGAIN || ret == -ENOMEM) 2920 pr_info("%s[%d] queue full -- ret=%d\n", 2921 __func__, __LINE__, ret); 2922 else 2923 pr_err("%s[%d] fatal error -- ret=%d\n", 2924 __func__, __LINE__, ret); 2925 goto out_unmap; 2926 } 2927 2928 out: 2929 return ret; 2930 out_unmap: 2931 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2932 goto out; 2933 } 2934 2935 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2936 { 2937 struct srpt_send_ioctx *ioctx; 2938 2939 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2940 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2941 } 2942 2943 /* 2944 * srpt_write_pending() - Start data transfer from initiator to target (write). 2945 */ 2946 static int srpt_write_pending(struct se_cmd *se_cmd) 2947 { 2948 struct srpt_rdma_ch *ch; 2949 struct srpt_send_ioctx *ioctx; 2950 enum srpt_command_state new_state; 2951 enum rdma_ch_state ch_state; 2952 int ret; 2953 2954 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2955 2956 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2957 WARN_ON(new_state == SRPT_STATE_DONE); 2958 2959 ch = ioctx->ch; 2960 BUG_ON(!ch); 2961 2962 ch_state = srpt_get_ch_state(ch); 2963 switch (ch_state) { 2964 case CH_CONNECTING: 2965 WARN(true, "unexpected channel state %d\n", ch_state); 2966 ret = -EINVAL; 2967 goto out; 2968 case CH_LIVE: 2969 break; 2970 case CH_DISCONNECTING: 2971 case CH_DRAINING: 2972 case CH_RELEASING: 2973 pr_debug("cmd with tag %lld: channel disconnecting\n", 2974 ioctx->cmd.tag); 2975 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2976 ret = -EINVAL; 2977 goto out; 2978 } 2979 ret = srpt_xfer_data(ch, ioctx); 2980 2981 out: 2982 return ret; 2983 } 2984 2985 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2986 { 2987 switch (tcm_mgmt_status) { 2988 case TMR_FUNCTION_COMPLETE: 2989 return SRP_TSK_MGMT_SUCCESS; 2990 case TMR_FUNCTION_REJECTED: 2991 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2992 } 2993 return SRP_TSK_MGMT_FAILED; 2994 } 2995 2996 /** 2997 * srpt_queue_response() - Transmits the response to a SCSI command. 2998 * 2999 * Callback function called by the TCM core. Must not block since it can be 3000 * invoked on the context of the IB completion handler. 3001 */ 3002 static void srpt_queue_response(struct se_cmd *cmd) 3003 { 3004 struct srpt_rdma_ch *ch; 3005 struct srpt_send_ioctx *ioctx; 3006 enum srpt_command_state state; 3007 unsigned long flags; 3008 int ret; 3009 enum dma_data_direction dir; 3010 int resp_len; 3011 u8 srp_tm_status; 3012 3013 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3014 ch = ioctx->ch; 3015 BUG_ON(!ch); 3016 3017 spin_lock_irqsave(&ioctx->spinlock, flags); 3018 state = ioctx->state; 3019 switch (state) { 3020 case SRPT_STATE_NEW: 3021 case SRPT_STATE_DATA_IN: 3022 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3023 break; 3024 case SRPT_STATE_MGMT: 3025 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3026 break; 3027 default: 3028 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3029 ch, ioctx->ioctx.index, ioctx->state); 3030 break; 3031 } 3032 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3033 3034 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3035 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3036 atomic_inc(&ch->req_lim_delta); 3037 srpt_abort_cmd(ioctx); 3038 return; 3039 } 3040 3041 dir = ioctx->cmd.data_direction; 3042 3043 /* For read commands, transfer the data to the initiator. */ 3044 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3045 !ioctx->queue_status_only) { 3046 ret = srpt_xfer_data(ch, ioctx); 3047 if (ret) { 3048 pr_err("xfer_data failed for tag %llu\n", 3049 ioctx->cmd.tag); 3050 return; 3051 } 3052 } 3053 3054 if (state != SRPT_STATE_MGMT) 3055 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 3056 cmd->scsi_status); 3057 else { 3058 srp_tm_status 3059 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3060 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3061 ioctx->cmd.tag); 3062 } 3063 ret = srpt_post_send(ch, ioctx, resp_len); 3064 if (ret) { 3065 pr_err("sending cmd response failed for tag %llu\n", 3066 ioctx->cmd.tag); 3067 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3068 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3069 target_put_sess_cmd(&ioctx->cmd); 3070 } 3071 } 3072 3073 static int srpt_queue_data_in(struct se_cmd *cmd) 3074 { 3075 srpt_queue_response(cmd); 3076 return 0; 3077 } 3078 3079 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3080 { 3081 srpt_queue_response(cmd); 3082 } 3083 3084 static void srpt_aborted_task(struct se_cmd *cmd) 3085 { 3086 struct srpt_send_ioctx *ioctx = container_of(cmd, 3087 struct srpt_send_ioctx, cmd); 3088 3089 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3090 } 3091 3092 static int srpt_queue_status(struct se_cmd *cmd) 3093 { 3094 struct srpt_send_ioctx *ioctx; 3095 3096 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3097 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3098 if (cmd->se_cmd_flags & 3099 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3100 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3101 ioctx->queue_status_only = true; 3102 srpt_queue_response(cmd); 3103 return 0; 3104 } 3105 3106 static void srpt_refresh_port_work(struct work_struct *work) 3107 { 3108 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3109 3110 srpt_refresh_port(sport); 3111 } 3112 3113 static int srpt_ch_list_empty(struct srpt_device *sdev) 3114 { 3115 int res; 3116 3117 spin_lock_irq(&sdev->spinlock); 3118 res = list_empty(&sdev->rch_list); 3119 spin_unlock_irq(&sdev->spinlock); 3120 3121 return res; 3122 } 3123 3124 /** 3125 * srpt_release_sdev() - Free the channel resources associated with a target. 3126 */ 3127 static int srpt_release_sdev(struct srpt_device *sdev) 3128 { 3129 struct srpt_rdma_ch *ch, *tmp_ch; 3130 int res; 3131 3132 WARN_ON_ONCE(irqs_disabled()); 3133 3134 BUG_ON(!sdev); 3135 3136 spin_lock_irq(&sdev->spinlock); 3137 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3138 __srpt_close_ch(ch); 3139 spin_unlock_irq(&sdev->spinlock); 3140 3141 res = wait_event_interruptible(sdev->ch_releaseQ, 3142 srpt_ch_list_empty(sdev)); 3143 if (res) 3144 pr_err("%s: interrupted.\n", __func__); 3145 3146 return 0; 3147 } 3148 3149 static struct srpt_port *__srpt_lookup_port(const char *name) 3150 { 3151 struct ib_device *dev; 3152 struct srpt_device *sdev; 3153 struct srpt_port *sport; 3154 int i; 3155 3156 list_for_each_entry(sdev, &srpt_dev_list, list) { 3157 dev = sdev->device; 3158 if (!dev) 3159 continue; 3160 3161 for (i = 0; i < dev->phys_port_cnt; i++) { 3162 sport = &sdev->port[i]; 3163 3164 if (!strcmp(sport->port_guid, name)) 3165 return sport; 3166 } 3167 } 3168 3169 return NULL; 3170 } 3171 3172 static struct srpt_port *srpt_lookup_port(const char *name) 3173 { 3174 struct srpt_port *sport; 3175 3176 spin_lock(&srpt_dev_lock); 3177 sport = __srpt_lookup_port(name); 3178 spin_unlock(&srpt_dev_lock); 3179 3180 return sport; 3181 } 3182 3183 /** 3184 * srpt_add_one() - Infiniband device addition callback function. 3185 */ 3186 static void srpt_add_one(struct ib_device *device) 3187 { 3188 struct srpt_device *sdev; 3189 struct srpt_port *sport; 3190 struct ib_srq_init_attr srq_attr; 3191 int i; 3192 3193 pr_debug("device = %p, device->dma_ops = %p\n", device, 3194 device->dma_ops); 3195 3196 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3197 if (!sdev) 3198 goto err; 3199 3200 sdev->device = device; 3201 INIT_LIST_HEAD(&sdev->rch_list); 3202 init_waitqueue_head(&sdev->ch_releaseQ); 3203 spin_lock_init(&sdev->spinlock); 3204 3205 if (ib_query_device(device, &sdev->dev_attr)) 3206 goto free_dev; 3207 3208 sdev->pd = ib_alloc_pd(device); 3209 if (IS_ERR(sdev->pd)) 3210 goto free_dev; 3211 3212 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3213 3214 srq_attr.event_handler = srpt_srq_event; 3215 srq_attr.srq_context = (void *)sdev; 3216 srq_attr.attr.max_wr = sdev->srq_size; 3217 srq_attr.attr.max_sge = 1; 3218 srq_attr.attr.srq_limit = 0; 3219 srq_attr.srq_type = IB_SRQT_BASIC; 3220 3221 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3222 if (IS_ERR(sdev->srq)) 3223 goto err_pd; 3224 3225 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3226 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3227 device->name); 3228 3229 if (!srpt_service_guid) 3230 srpt_service_guid = be64_to_cpu(device->node_guid); 3231 3232 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3233 if (IS_ERR(sdev->cm_id)) 3234 goto err_srq; 3235 3236 /* print out target login information */ 3237 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3238 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3239 srpt_service_guid, srpt_service_guid); 3240 3241 /* 3242 * We do not have a consistent service_id (ie. also id_ext of target_id) 3243 * to identify this target. We currently use the guid of the first HCA 3244 * in the system as service_id; therefore, the target_id will change 3245 * if this HCA is gone bad and replaced by different HCA 3246 */ 3247 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 3248 goto err_cm; 3249 3250 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3251 srpt_event_handler); 3252 if (ib_register_event_handler(&sdev->event_handler)) 3253 goto err_cm; 3254 3255 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3256 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3257 sizeof(*sdev->ioctx_ring[0]), 3258 srp_max_req_size, DMA_FROM_DEVICE); 3259 if (!sdev->ioctx_ring) 3260 goto err_event; 3261 3262 for (i = 0; i < sdev->srq_size; ++i) 3263 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3264 3265 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3266 3267 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3268 sport = &sdev->port[i - 1]; 3269 sport->sdev = sdev; 3270 sport->port = i; 3271 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3272 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3273 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3274 INIT_WORK(&sport->work, srpt_refresh_port_work); 3275 INIT_LIST_HEAD(&sport->port_acl_list); 3276 spin_lock_init(&sport->port_acl_lock); 3277 3278 if (srpt_refresh_port(sport)) { 3279 pr_err("MAD registration failed for %s-%d.\n", 3280 srpt_sdev_name(sdev), i); 3281 goto err_ring; 3282 } 3283 snprintf(sport->port_guid, sizeof(sport->port_guid), 3284 "0x%016llx%016llx", 3285 be64_to_cpu(sport->gid.global.subnet_prefix), 3286 be64_to_cpu(sport->gid.global.interface_id)); 3287 } 3288 3289 spin_lock(&srpt_dev_lock); 3290 list_add_tail(&sdev->list, &srpt_dev_list); 3291 spin_unlock(&srpt_dev_lock); 3292 3293 out: 3294 ib_set_client_data(device, &srpt_client, sdev); 3295 pr_debug("added %s.\n", device->name); 3296 return; 3297 3298 err_ring: 3299 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3300 sdev->srq_size, srp_max_req_size, 3301 DMA_FROM_DEVICE); 3302 err_event: 3303 ib_unregister_event_handler(&sdev->event_handler); 3304 err_cm: 3305 ib_destroy_cm_id(sdev->cm_id); 3306 err_srq: 3307 ib_destroy_srq(sdev->srq); 3308 err_pd: 3309 ib_dealloc_pd(sdev->pd); 3310 free_dev: 3311 kfree(sdev); 3312 err: 3313 sdev = NULL; 3314 pr_info("%s(%s) failed.\n", __func__, device->name); 3315 goto out; 3316 } 3317 3318 /** 3319 * srpt_remove_one() - InfiniBand device removal callback function. 3320 */ 3321 static void srpt_remove_one(struct ib_device *device, void *client_data) 3322 { 3323 struct srpt_device *sdev = client_data; 3324 int i; 3325 3326 if (!sdev) { 3327 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3328 return; 3329 } 3330 3331 srpt_unregister_mad_agent(sdev); 3332 3333 ib_unregister_event_handler(&sdev->event_handler); 3334 3335 /* Cancel any work queued by the just unregistered IB event handler. */ 3336 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3337 cancel_work_sync(&sdev->port[i].work); 3338 3339 ib_destroy_cm_id(sdev->cm_id); 3340 3341 /* 3342 * Unregistering a target must happen after destroying sdev->cm_id 3343 * such that no new SRP_LOGIN_REQ information units can arrive while 3344 * destroying the target. 3345 */ 3346 spin_lock(&srpt_dev_lock); 3347 list_del(&sdev->list); 3348 spin_unlock(&srpt_dev_lock); 3349 srpt_release_sdev(sdev); 3350 3351 ib_destroy_srq(sdev->srq); 3352 ib_dealloc_pd(sdev->pd); 3353 3354 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3355 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3356 sdev->ioctx_ring = NULL; 3357 kfree(sdev); 3358 } 3359 3360 static struct ib_client srpt_client = { 3361 .name = DRV_NAME, 3362 .add = srpt_add_one, 3363 .remove = srpt_remove_one 3364 }; 3365 3366 static int srpt_check_true(struct se_portal_group *se_tpg) 3367 { 3368 return 1; 3369 } 3370 3371 static int srpt_check_false(struct se_portal_group *se_tpg) 3372 { 3373 return 0; 3374 } 3375 3376 static char *srpt_get_fabric_name(void) 3377 { 3378 return "srpt"; 3379 } 3380 3381 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3382 { 3383 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3384 3385 return sport->port_guid; 3386 } 3387 3388 static u16 srpt_get_tag(struct se_portal_group *tpg) 3389 { 3390 return 1; 3391 } 3392 3393 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3394 { 3395 return 1; 3396 } 3397 3398 static void srpt_release_cmd(struct se_cmd *se_cmd) 3399 { 3400 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3401 struct srpt_send_ioctx, cmd); 3402 struct srpt_rdma_ch *ch = ioctx->ch; 3403 unsigned long flags; 3404 3405 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3406 WARN_ON(ioctx->mapped_sg_count != 0); 3407 3408 if (ioctx->n_rbuf > 1) { 3409 kfree(ioctx->rbufs); 3410 ioctx->rbufs = NULL; 3411 ioctx->n_rbuf = 0; 3412 } 3413 3414 spin_lock_irqsave(&ch->spinlock, flags); 3415 list_add(&ioctx->free_list, &ch->free_list); 3416 spin_unlock_irqrestore(&ch->spinlock, flags); 3417 } 3418 3419 /** 3420 * srpt_close_session() - Forcibly close a session. 3421 * 3422 * Callback function invoked by the TCM core to clean up sessions associated 3423 * with a node ACL when the user invokes 3424 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3425 */ 3426 static void srpt_close_session(struct se_session *se_sess) 3427 { 3428 DECLARE_COMPLETION_ONSTACK(release_done); 3429 struct srpt_rdma_ch *ch; 3430 struct srpt_device *sdev; 3431 unsigned long res; 3432 3433 ch = se_sess->fabric_sess_ptr; 3434 WARN_ON(ch->sess != se_sess); 3435 3436 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3437 3438 sdev = ch->sport->sdev; 3439 spin_lock_irq(&sdev->spinlock); 3440 BUG_ON(ch->release_done); 3441 ch->release_done = &release_done; 3442 __srpt_close_ch(ch); 3443 spin_unlock_irq(&sdev->spinlock); 3444 3445 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3446 WARN_ON(res == 0); 3447 } 3448 3449 /** 3450 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3451 * 3452 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3453 * This object represents an arbitrary integer used to uniquely identify a 3454 * particular attached remote initiator port to a particular SCSI target port 3455 * within a particular SCSI target device within a particular SCSI instance. 3456 */ 3457 static u32 srpt_sess_get_index(struct se_session *se_sess) 3458 { 3459 return 0; 3460 } 3461 3462 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3463 { 3464 } 3465 3466 /* Note: only used from inside debug printk's by the TCM core. */ 3467 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3468 { 3469 struct srpt_send_ioctx *ioctx; 3470 3471 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3472 return srpt_get_cmd_state(ioctx); 3473 } 3474 3475 /** 3476 * srpt_parse_i_port_id() - Parse an initiator port ID. 3477 * @name: ASCII representation of a 128-bit initiator port ID. 3478 * @i_port_id: Binary 128-bit port ID. 3479 */ 3480 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3481 { 3482 const char *p; 3483 unsigned len, count, leading_zero_bytes; 3484 int ret, rc; 3485 3486 p = name; 3487 if (strncasecmp(p, "0x", 2) == 0) 3488 p += 2; 3489 ret = -EINVAL; 3490 len = strlen(p); 3491 if (len % 2) 3492 goto out; 3493 count = min(len / 2, 16U); 3494 leading_zero_bytes = 16 - count; 3495 memset(i_port_id, 0, leading_zero_bytes); 3496 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3497 if (rc < 0) 3498 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3499 ret = 0; 3500 out: 3501 return ret; 3502 } 3503 3504 /* 3505 * configfs callback function invoked for 3506 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3507 */ 3508 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 3509 { 3510 struct srpt_port *sport = 3511 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1); 3512 struct srpt_node_acl *nacl = 3513 container_of(se_nacl, struct srpt_node_acl, nacl); 3514 u8 i_port_id[16]; 3515 3516 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3517 pr_err("invalid initiator port ID %s\n", name); 3518 return -EINVAL; 3519 } 3520 3521 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3522 nacl->sport = sport; 3523 3524 spin_lock_irq(&sport->port_acl_lock); 3525 list_add_tail(&nacl->list, &sport->port_acl_list); 3526 spin_unlock_irq(&sport->port_acl_lock); 3527 3528 return 0; 3529 } 3530 3531 /* 3532 * configfs callback function invoked for 3533 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3534 */ 3535 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl) 3536 { 3537 struct srpt_node_acl *nacl = 3538 container_of(se_nacl, struct srpt_node_acl, nacl); 3539 struct srpt_port *sport = nacl->sport; 3540 3541 spin_lock_irq(&sport->port_acl_lock); 3542 list_del(&nacl->list); 3543 spin_unlock_irq(&sport->port_acl_lock); 3544 } 3545 3546 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3547 char *page) 3548 { 3549 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3550 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3551 3552 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3553 } 3554 3555 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3556 const char *page, size_t count) 3557 { 3558 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3559 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3560 unsigned long val; 3561 int ret; 3562 3563 ret = kstrtoul(page, 0, &val); 3564 if (ret < 0) { 3565 pr_err("kstrtoul() failed with ret: %d\n", ret); 3566 return -EINVAL; 3567 } 3568 if (val > MAX_SRPT_RDMA_SIZE) { 3569 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3570 MAX_SRPT_RDMA_SIZE); 3571 return -EINVAL; 3572 } 3573 if (val < DEFAULT_MAX_RDMA_SIZE) { 3574 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3575 val, DEFAULT_MAX_RDMA_SIZE); 3576 return -EINVAL; 3577 } 3578 sport->port_attrib.srp_max_rdma_size = val; 3579 3580 return count; 3581 } 3582 3583 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3584 char *page) 3585 { 3586 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3587 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3588 3589 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3590 } 3591 3592 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3593 const char *page, size_t count) 3594 { 3595 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3596 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3597 unsigned long val; 3598 int ret; 3599 3600 ret = kstrtoul(page, 0, &val); 3601 if (ret < 0) { 3602 pr_err("kstrtoul() failed with ret: %d\n", ret); 3603 return -EINVAL; 3604 } 3605 if (val > MAX_SRPT_RSP_SIZE) { 3606 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3607 MAX_SRPT_RSP_SIZE); 3608 return -EINVAL; 3609 } 3610 if (val < MIN_MAX_RSP_SIZE) { 3611 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3612 MIN_MAX_RSP_SIZE); 3613 return -EINVAL; 3614 } 3615 sport->port_attrib.srp_max_rsp_size = val; 3616 3617 return count; 3618 } 3619 3620 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3621 char *page) 3622 { 3623 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3624 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3625 3626 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3627 } 3628 3629 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3630 const char *page, size_t count) 3631 { 3632 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3633 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3634 unsigned long val; 3635 int ret; 3636 3637 ret = kstrtoul(page, 0, &val); 3638 if (ret < 0) { 3639 pr_err("kstrtoul() failed with ret: %d\n", ret); 3640 return -EINVAL; 3641 } 3642 if (val > MAX_SRPT_SRQ_SIZE) { 3643 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3644 MAX_SRPT_SRQ_SIZE); 3645 return -EINVAL; 3646 } 3647 if (val < MIN_SRPT_SRQ_SIZE) { 3648 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3649 MIN_SRPT_SRQ_SIZE); 3650 return -EINVAL; 3651 } 3652 sport->port_attrib.srp_sq_size = val; 3653 3654 return count; 3655 } 3656 3657 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3658 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3659 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3660 3661 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3662 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3663 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3664 &srpt_tpg_attrib_attr_srp_sq_size, 3665 NULL, 3666 }; 3667 3668 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3669 { 3670 struct se_portal_group *se_tpg = to_tpg(item); 3671 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3672 3673 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3674 } 3675 3676 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3677 const char *page, size_t count) 3678 { 3679 struct se_portal_group *se_tpg = to_tpg(item); 3680 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3681 unsigned long tmp; 3682 int ret; 3683 3684 ret = kstrtoul(page, 0, &tmp); 3685 if (ret < 0) { 3686 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3687 return -EINVAL; 3688 } 3689 3690 if ((tmp != 0) && (tmp != 1)) { 3691 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3692 return -EINVAL; 3693 } 3694 if (tmp == 1) 3695 sport->enabled = true; 3696 else 3697 sport->enabled = false; 3698 3699 return count; 3700 } 3701 3702 CONFIGFS_ATTR(srpt_tpg_, enable); 3703 3704 static struct configfs_attribute *srpt_tpg_attrs[] = { 3705 &srpt_tpg_attr_enable, 3706 NULL, 3707 }; 3708 3709 /** 3710 * configfs callback invoked for 3711 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3712 */ 3713 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3714 struct config_group *group, 3715 const char *name) 3716 { 3717 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3718 int res; 3719 3720 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3721 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 3722 if (res) 3723 return ERR_PTR(res); 3724 3725 return &sport->port_tpg_1; 3726 } 3727 3728 /** 3729 * configfs callback invoked for 3730 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3731 */ 3732 static void srpt_drop_tpg(struct se_portal_group *tpg) 3733 { 3734 struct srpt_port *sport = container_of(tpg, 3735 struct srpt_port, port_tpg_1); 3736 3737 sport->enabled = false; 3738 core_tpg_deregister(&sport->port_tpg_1); 3739 } 3740 3741 /** 3742 * configfs callback invoked for 3743 * mkdir /sys/kernel/config/target/$driver/$port 3744 */ 3745 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3746 struct config_group *group, 3747 const char *name) 3748 { 3749 struct srpt_port *sport; 3750 int ret; 3751 3752 sport = srpt_lookup_port(name); 3753 pr_debug("make_tport(%s)\n", name); 3754 ret = -EINVAL; 3755 if (!sport) 3756 goto err; 3757 3758 return &sport->port_wwn; 3759 3760 err: 3761 return ERR_PTR(ret); 3762 } 3763 3764 /** 3765 * configfs callback invoked for 3766 * rmdir /sys/kernel/config/target/$driver/$port 3767 */ 3768 static void srpt_drop_tport(struct se_wwn *wwn) 3769 { 3770 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3771 3772 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3773 } 3774 3775 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3776 { 3777 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3778 } 3779 3780 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3781 3782 static struct configfs_attribute *srpt_wwn_attrs[] = { 3783 &srpt_wwn_attr_version, 3784 NULL, 3785 }; 3786 3787 static const struct target_core_fabric_ops srpt_template = { 3788 .module = THIS_MODULE, 3789 .name = "srpt", 3790 .node_acl_size = sizeof(struct srpt_node_acl), 3791 .get_fabric_name = srpt_get_fabric_name, 3792 .tpg_get_wwn = srpt_get_fabric_wwn, 3793 .tpg_get_tag = srpt_get_tag, 3794 .tpg_check_demo_mode = srpt_check_false, 3795 .tpg_check_demo_mode_cache = srpt_check_true, 3796 .tpg_check_demo_mode_write_protect = srpt_check_true, 3797 .tpg_check_prod_mode_write_protect = srpt_check_false, 3798 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3799 .release_cmd = srpt_release_cmd, 3800 .check_stop_free = srpt_check_stop_free, 3801 .shutdown_session = srpt_shutdown_session, 3802 .close_session = srpt_close_session, 3803 .sess_get_index = srpt_sess_get_index, 3804 .sess_get_initiator_sid = NULL, 3805 .write_pending = srpt_write_pending, 3806 .write_pending_status = srpt_write_pending_status, 3807 .set_default_node_attributes = srpt_set_default_node_attrs, 3808 .get_cmd_state = srpt_get_tcm_cmd_state, 3809 .queue_data_in = srpt_queue_data_in, 3810 .queue_status = srpt_queue_status, 3811 .queue_tm_rsp = srpt_queue_tm_rsp, 3812 .aborted_task = srpt_aborted_task, 3813 /* 3814 * Setup function pointers for generic logic in 3815 * target_core_fabric_configfs.c 3816 */ 3817 .fabric_make_wwn = srpt_make_tport, 3818 .fabric_drop_wwn = srpt_drop_tport, 3819 .fabric_make_tpg = srpt_make_tpg, 3820 .fabric_drop_tpg = srpt_drop_tpg, 3821 .fabric_init_nodeacl = srpt_init_nodeacl, 3822 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl, 3823 3824 .tfc_wwn_attrs = srpt_wwn_attrs, 3825 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3826 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3827 }; 3828 3829 /** 3830 * srpt_init_module() - Kernel module initialization. 3831 * 3832 * Note: Since ib_register_client() registers callback functions, and since at 3833 * least one of these callback functions (srpt_add_one()) calls target core 3834 * functions, this driver must be registered with the target core before 3835 * ib_register_client() is called. 3836 */ 3837 static int __init srpt_init_module(void) 3838 { 3839 int ret; 3840 3841 ret = -EINVAL; 3842 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3843 pr_err("invalid value %d for kernel module parameter" 3844 " srp_max_req_size -- must be at least %d.\n", 3845 srp_max_req_size, MIN_MAX_REQ_SIZE); 3846 goto out; 3847 } 3848 3849 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3850 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3851 pr_err("invalid value %d for kernel module parameter" 3852 " srpt_srq_size -- must be in the range [%d..%d].\n", 3853 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3854 goto out; 3855 } 3856 3857 ret = target_register_template(&srpt_template); 3858 if (ret) 3859 goto out; 3860 3861 ret = ib_register_client(&srpt_client); 3862 if (ret) { 3863 pr_err("couldn't register IB client\n"); 3864 goto out_unregister_target; 3865 } 3866 3867 return 0; 3868 3869 out_unregister_target: 3870 target_unregister_template(&srpt_template); 3871 out: 3872 return ret; 3873 } 3874 3875 static void __exit srpt_cleanup_module(void) 3876 { 3877 ib_unregister_client(&srpt_client); 3878 target_unregister_template(&srpt_template); 3879 } 3880 3881 module_init(srpt_init_module); 3882 module_exit(srpt_cleanup_module); 3883