1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_tcq.h> 45 #include <target/configfs_macros.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric_configfs.h> 48 #include <target/target_core_fabric.h> 49 #include <target/target_core_configfs.h> 50 #include "ib_srpt.h" 51 52 /* Name of this kernel module. */ 53 #define DRV_NAME "ib_srpt" 54 #define DRV_VERSION "2.0.0" 55 #define DRV_RELDATE "2011-02-14" 56 57 #define SRPT_ID_STRING "Linux SRP target" 58 59 #undef pr_fmt 60 #define pr_fmt(fmt) DRV_NAME " " fmt 61 62 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65 MODULE_LICENSE("Dual BSD/GPL"); 66 67 /* 68 * Global Variables 69 */ 70 71 static u64 srpt_service_guid; 72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76 module_param(srp_max_req_size, int, 0444); 77 MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81 module_param(srpt_srq_size, int, 0444); 82 MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86 { 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88 } 89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91 MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95 static struct ib_client srpt_client; 96 static struct target_fabric_configfs *srpt_target; 97 static void srpt_release_channel(struct srpt_rdma_ch *ch); 98 static int srpt_queue_status(struct se_cmd *cmd); 99 100 /** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103 static inline 104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105 { 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111 } 112 113 /** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119 { 120 return sdev->device->name; 121 } 122 123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124 { 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132 } 133 134 static enum rdma_ch_state 135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136 { 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145 } 146 147 /** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152 static bool 153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155 { 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165 } 166 167 /** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175 static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177 { 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 case IB_EVENT_GID_CHANGE: 202 /* Refresh port data asynchronously. */ 203 if (event->element.port_num <= sdev->device->phys_port_cnt) { 204 sport = &sdev->port[event->element.port_num - 1]; 205 if (!sport->lid && !sport->sm_lid) 206 schedule_work(&sport->work); 207 } 208 break; 209 default: 210 printk(KERN_ERR "received unrecognized IB event %d\n", 211 event->event); 212 break; 213 } 214 } 215 216 /** 217 * srpt_srq_event() - SRQ event callback function. 218 */ 219 static void srpt_srq_event(struct ib_event *event, void *ctx) 220 { 221 printk(KERN_INFO "SRQ event %d\n", event->event); 222 } 223 224 /** 225 * srpt_qp_event() - QP event callback function. 226 */ 227 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 228 { 229 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 230 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 231 232 switch (event->event) { 233 case IB_EVENT_COMM_EST: 234 ib_cm_notify(ch->cm_id, event->event); 235 break; 236 case IB_EVENT_QP_LAST_WQE_REACHED: 237 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 238 CH_RELEASING)) 239 srpt_release_channel(ch); 240 else 241 pr_debug("%s: state %d - ignored LAST_WQE.\n", 242 ch->sess_name, srpt_get_ch_state(ch)); 243 break; 244 default: 245 printk(KERN_ERR "received unrecognized IB QP event %d\n", 246 event->event); 247 break; 248 } 249 } 250 251 /** 252 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 253 * 254 * @slot: one-based slot number. 255 * @value: four-bit value. 256 * 257 * Copies the lowest four bits of value in element slot of the array of four 258 * bit elements called c_list (controller list). The index slot is one-based. 259 */ 260 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 261 { 262 u16 id; 263 u8 tmp; 264 265 id = (slot - 1) / 2; 266 if (slot & 0x1) { 267 tmp = c_list[id] & 0xf; 268 c_list[id] = (value << 4) | tmp; 269 } else { 270 tmp = c_list[id] & 0xf0; 271 c_list[id] = (value & 0xf) | tmp; 272 } 273 } 274 275 /** 276 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 277 * 278 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 279 * Specification. 280 */ 281 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 282 { 283 struct ib_class_port_info *cif; 284 285 cif = (struct ib_class_port_info *)mad->data; 286 memset(cif, 0, sizeof *cif); 287 cif->base_version = 1; 288 cif->class_version = 1; 289 cif->resp_time_value = 20; 290 291 mad->mad_hdr.status = 0; 292 } 293 294 /** 295 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 296 * 297 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 298 * Specification. See also section B.7, table B.6 in the SRP r16a document. 299 */ 300 static void srpt_get_iou(struct ib_dm_mad *mad) 301 { 302 struct ib_dm_iou_info *ioui; 303 u8 slot; 304 int i; 305 306 ioui = (struct ib_dm_iou_info *)mad->data; 307 ioui->change_id = __constant_cpu_to_be16(1); 308 ioui->max_controllers = 16; 309 310 /* set present for slot 1 and empty for the rest */ 311 srpt_set_ioc(ioui->controller_list, 1, 1); 312 for (i = 1, slot = 2; i < 16; i++, slot++) 313 srpt_set_ioc(ioui->controller_list, slot, 0); 314 315 mad->mad_hdr.status = 0; 316 } 317 318 /** 319 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 320 * 321 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 322 * Architecture Specification. See also section B.7, table B.7 in the SRP 323 * r16a document. 324 */ 325 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 326 struct ib_dm_mad *mad) 327 { 328 struct srpt_device *sdev = sport->sdev; 329 struct ib_dm_ioc_profile *iocp; 330 331 iocp = (struct ib_dm_ioc_profile *)mad->data; 332 333 if (!slot || slot > 16) { 334 mad->mad_hdr.status 335 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 336 return; 337 } 338 339 if (slot > 2) { 340 mad->mad_hdr.status 341 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 342 return; 343 } 344 345 memset(iocp, 0, sizeof *iocp); 346 strcpy(iocp->id_string, SRPT_ID_STRING); 347 iocp->guid = cpu_to_be64(srpt_service_guid); 348 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 349 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 350 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 351 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 352 iocp->subsys_device_id = 0x0; 353 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 354 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 355 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 356 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 357 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 358 iocp->rdma_read_depth = 4; 359 iocp->send_size = cpu_to_be32(srp_max_req_size); 360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 361 1U << 24)); 362 iocp->num_svc_entries = 1; 363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 365 366 mad->mad_hdr.status = 0; 367 } 368 369 /** 370 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 371 * 372 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 373 * Specification. See also section B.7, table B.8 in the SRP r16a document. 374 */ 375 static void srpt_get_svc_entries(u64 ioc_guid, 376 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 377 { 378 struct ib_dm_svc_entries *svc_entries; 379 380 WARN_ON(!ioc_guid); 381 382 if (!slot || slot > 16) { 383 mad->mad_hdr.status 384 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 385 return; 386 } 387 388 if (slot > 2 || lo > hi || hi > 1) { 389 mad->mad_hdr.status 390 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 391 return; 392 } 393 394 svc_entries = (struct ib_dm_svc_entries *)mad->data; 395 memset(svc_entries, 0, sizeof *svc_entries); 396 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 397 snprintf(svc_entries->service_entries[0].name, 398 sizeof(svc_entries->service_entries[0].name), 399 "%s%016llx", 400 SRP_SERVICE_NAME_PREFIX, 401 ioc_guid); 402 403 mad->mad_hdr.status = 0; 404 } 405 406 /** 407 * srpt_mgmt_method_get() - Process a received management datagram. 408 * @sp: source port through which the MAD has been received. 409 * @rq_mad: received MAD. 410 * @rsp_mad: response MAD. 411 */ 412 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 413 struct ib_dm_mad *rsp_mad) 414 { 415 u16 attr_id; 416 u32 slot; 417 u8 hi, lo; 418 419 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 420 switch (attr_id) { 421 case DM_ATTR_CLASS_PORT_INFO: 422 srpt_get_class_port_info(rsp_mad); 423 break; 424 case DM_ATTR_IOU_INFO: 425 srpt_get_iou(rsp_mad); 426 break; 427 case DM_ATTR_IOC_PROFILE: 428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 429 srpt_get_ioc(sp, slot, rsp_mad); 430 break; 431 case DM_ATTR_SVC_ENTRIES: 432 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 433 hi = (u8) ((slot >> 8) & 0xff); 434 lo = (u8) (slot & 0xff); 435 slot = (u16) ((slot >> 16) & 0xffff); 436 srpt_get_svc_entries(srpt_service_guid, 437 slot, hi, lo, rsp_mad); 438 break; 439 default: 440 rsp_mad->mad_hdr.status = 441 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 442 break; 443 } 444 } 445 446 /** 447 * srpt_mad_send_handler() - Post MAD-send callback function. 448 */ 449 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 450 struct ib_mad_send_wc *mad_wc) 451 { 452 ib_destroy_ah(mad_wc->send_buf->ah); 453 ib_free_send_mad(mad_wc->send_buf); 454 } 455 456 /** 457 * srpt_mad_recv_handler() - MAD reception callback function. 458 */ 459 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 460 struct ib_mad_recv_wc *mad_wc) 461 { 462 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 463 struct ib_ah *ah; 464 struct ib_mad_send_buf *rsp; 465 struct ib_dm_mad *dm_mad; 466 467 if (!mad_wc || !mad_wc->recv_buf.mad) 468 return; 469 470 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 471 mad_wc->recv_buf.grh, mad_agent->port_num); 472 if (IS_ERR(ah)) 473 goto err; 474 475 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 476 477 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 478 mad_wc->wc->pkey_index, 0, 479 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 480 GFP_KERNEL); 481 if (IS_ERR(rsp)) 482 goto err_rsp; 483 484 rsp->ah = ah; 485 486 dm_mad = rsp->mad; 487 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 488 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 489 dm_mad->mad_hdr.status = 0; 490 491 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 492 case IB_MGMT_METHOD_GET: 493 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 494 break; 495 case IB_MGMT_METHOD_SET: 496 dm_mad->mad_hdr.status = 497 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 498 break; 499 default: 500 dm_mad->mad_hdr.status = 501 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 502 break; 503 } 504 505 if (!ib_post_send_mad(rsp, NULL)) { 506 ib_free_recv_mad(mad_wc); 507 /* will destroy_ah & free_send_mad in send completion */ 508 return; 509 } 510 511 ib_free_send_mad(rsp); 512 513 err_rsp: 514 ib_destroy_ah(ah); 515 err: 516 ib_free_recv_mad(mad_wc); 517 } 518 519 /** 520 * srpt_refresh_port() - Configure a HCA port. 521 * 522 * Enable InfiniBand management datagram processing, update the cached sm_lid, 523 * lid and gid values, and register a callback function for processing MADs 524 * on the specified port. 525 * 526 * Note: It is safe to call this function more than once for the same port. 527 */ 528 static int srpt_refresh_port(struct srpt_port *sport) 529 { 530 struct ib_mad_reg_req reg_req; 531 struct ib_port_modify port_modify; 532 struct ib_port_attr port_attr; 533 int ret; 534 535 memset(&port_modify, 0, sizeof port_modify); 536 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 537 port_modify.clr_port_cap_mask = 0; 538 539 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 540 if (ret) 541 goto err_mod_port; 542 543 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 544 if (ret) 545 goto err_query_port; 546 547 sport->sm_lid = port_attr.sm_lid; 548 sport->lid = port_attr.lid; 549 550 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 551 if (ret) 552 goto err_query_port; 553 554 if (!sport->mad_agent) { 555 memset(®_req, 0, sizeof reg_req); 556 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 557 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 558 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 559 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 560 561 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 562 sport->port, 563 IB_QPT_GSI, 564 ®_req, 0, 565 srpt_mad_send_handler, 566 srpt_mad_recv_handler, 567 sport, 0); 568 if (IS_ERR(sport->mad_agent)) { 569 ret = PTR_ERR(sport->mad_agent); 570 sport->mad_agent = NULL; 571 goto err_query_port; 572 } 573 } 574 575 return 0; 576 577 err_query_port: 578 579 port_modify.set_port_cap_mask = 0; 580 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 581 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 582 583 err_mod_port: 584 585 return ret; 586 } 587 588 /** 589 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 590 * 591 * Note: It is safe to call this function more than once for the same device. 592 */ 593 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 594 { 595 struct ib_port_modify port_modify = { 596 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 597 }; 598 struct srpt_port *sport; 599 int i; 600 601 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 602 sport = &sdev->port[i - 1]; 603 WARN_ON(sport->port != i); 604 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 605 printk(KERN_ERR "disabling MAD processing failed.\n"); 606 if (sport->mad_agent) { 607 ib_unregister_mad_agent(sport->mad_agent); 608 sport->mad_agent = NULL; 609 } 610 } 611 } 612 613 /** 614 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 615 */ 616 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 617 int ioctx_size, int dma_size, 618 enum dma_data_direction dir) 619 { 620 struct srpt_ioctx *ioctx; 621 622 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 623 if (!ioctx) 624 goto err; 625 626 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 627 if (!ioctx->buf) 628 goto err_free_ioctx; 629 630 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 631 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 632 goto err_free_buf; 633 634 return ioctx; 635 636 err_free_buf: 637 kfree(ioctx->buf); 638 err_free_ioctx: 639 kfree(ioctx); 640 err: 641 return NULL; 642 } 643 644 /** 645 * srpt_free_ioctx() - Free an SRPT I/O context structure. 646 */ 647 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 648 int dma_size, enum dma_data_direction dir) 649 { 650 if (!ioctx) 651 return; 652 653 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 654 kfree(ioctx->buf); 655 kfree(ioctx); 656 } 657 658 /** 659 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 660 * @sdev: Device to allocate the I/O context ring for. 661 * @ring_size: Number of elements in the I/O context ring. 662 * @ioctx_size: I/O context size. 663 * @dma_size: DMA buffer size. 664 * @dir: DMA data direction. 665 */ 666 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 667 int ring_size, int ioctx_size, 668 int dma_size, enum dma_data_direction dir) 669 { 670 struct srpt_ioctx **ring; 671 int i; 672 673 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 674 && ioctx_size != sizeof(struct srpt_send_ioctx)); 675 676 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 677 if (!ring) 678 goto out; 679 for (i = 0; i < ring_size; ++i) { 680 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 681 if (!ring[i]) 682 goto err; 683 ring[i]->index = i; 684 } 685 goto out; 686 687 err: 688 while (--i >= 0) 689 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 690 kfree(ring); 691 ring = NULL; 692 out: 693 return ring; 694 } 695 696 /** 697 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 698 */ 699 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 700 struct srpt_device *sdev, int ring_size, 701 int dma_size, enum dma_data_direction dir) 702 { 703 int i; 704 705 for (i = 0; i < ring_size; ++i) 706 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 707 kfree(ioctx_ring); 708 } 709 710 /** 711 * srpt_get_cmd_state() - Get the state of a SCSI command. 712 */ 713 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 714 { 715 enum srpt_command_state state; 716 unsigned long flags; 717 718 BUG_ON(!ioctx); 719 720 spin_lock_irqsave(&ioctx->spinlock, flags); 721 state = ioctx->state; 722 spin_unlock_irqrestore(&ioctx->spinlock, flags); 723 return state; 724 } 725 726 /** 727 * srpt_set_cmd_state() - Set the state of a SCSI command. 728 * 729 * Does not modify the state of aborted commands. Returns the previous command 730 * state. 731 */ 732 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 733 enum srpt_command_state new) 734 { 735 enum srpt_command_state previous; 736 unsigned long flags; 737 738 BUG_ON(!ioctx); 739 740 spin_lock_irqsave(&ioctx->spinlock, flags); 741 previous = ioctx->state; 742 if (previous != SRPT_STATE_DONE) 743 ioctx->state = new; 744 spin_unlock_irqrestore(&ioctx->spinlock, flags); 745 746 return previous; 747 } 748 749 /** 750 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 751 * 752 * Returns true if and only if the previous command state was equal to 'old'. 753 */ 754 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 755 enum srpt_command_state old, 756 enum srpt_command_state new) 757 { 758 enum srpt_command_state previous; 759 unsigned long flags; 760 761 WARN_ON(!ioctx); 762 WARN_ON(old == SRPT_STATE_DONE); 763 WARN_ON(new == SRPT_STATE_NEW); 764 765 spin_lock_irqsave(&ioctx->spinlock, flags); 766 previous = ioctx->state; 767 if (previous == old) 768 ioctx->state = new; 769 spin_unlock_irqrestore(&ioctx->spinlock, flags); 770 return previous == old; 771 } 772 773 /** 774 * srpt_post_recv() - Post an IB receive request. 775 */ 776 static int srpt_post_recv(struct srpt_device *sdev, 777 struct srpt_recv_ioctx *ioctx) 778 { 779 struct ib_sge list; 780 struct ib_recv_wr wr, *bad_wr; 781 782 BUG_ON(!sdev); 783 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 784 785 list.addr = ioctx->ioctx.dma; 786 list.length = srp_max_req_size; 787 list.lkey = sdev->mr->lkey; 788 789 wr.next = NULL; 790 wr.sg_list = &list; 791 wr.num_sge = 1; 792 793 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 794 } 795 796 /** 797 * srpt_post_send() - Post an IB send request. 798 * 799 * Returns zero upon success and a non-zero value upon failure. 800 */ 801 static int srpt_post_send(struct srpt_rdma_ch *ch, 802 struct srpt_send_ioctx *ioctx, int len) 803 { 804 struct ib_sge list; 805 struct ib_send_wr wr, *bad_wr; 806 struct srpt_device *sdev = ch->sport->sdev; 807 int ret; 808 809 atomic_inc(&ch->req_lim); 810 811 ret = -ENOMEM; 812 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 813 printk(KERN_WARNING "IB send queue full (needed 1)\n"); 814 goto out; 815 } 816 817 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 818 DMA_TO_DEVICE); 819 820 list.addr = ioctx->ioctx.dma; 821 list.length = len; 822 list.lkey = sdev->mr->lkey; 823 824 wr.next = NULL; 825 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 826 wr.sg_list = &list; 827 wr.num_sge = 1; 828 wr.opcode = IB_WR_SEND; 829 wr.send_flags = IB_SEND_SIGNALED; 830 831 ret = ib_post_send(ch->qp, &wr, &bad_wr); 832 833 out: 834 if (ret < 0) { 835 atomic_inc(&ch->sq_wr_avail); 836 atomic_dec(&ch->req_lim); 837 } 838 return ret; 839 } 840 841 /** 842 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 843 * @ioctx: Pointer to the I/O context associated with the request. 844 * @srp_cmd: Pointer to the SRP_CMD request data. 845 * @dir: Pointer to the variable to which the transfer direction will be 846 * written. 847 * @data_len: Pointer to the variable to which the total data length of all 848 * descriptors in the SRP_CMD request will be written. 849 * 850 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 851 * 852 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 853 * -ENOMEM when memory allocation fails and zero upon success. 854 */ 855 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 856 struct srp_cmd *srp_cmd, 857 enum dma_data_direction *dir, u64 *data_len) 858 { 859 struct srp_indirect_buf *idb; 860 struct srp_direct_buf *db; 861 unsigned add_cdb_offset; 862 int ret; 863 864 /* 865 * The pointer computations below will only be compiled correctly 866 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 867 * whether srp_cmd::add_data has been declared as a byte pointer. 868 */ 869 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 870 && !__same_type(srp_cmd->add_data[0], (u8)0)); 871 872 BUG_ON(!dir); 873 BUG_ON(!data_len); 874 875 ret = 0; 876 *data_len = 0; 877 878 /* 879 * The lower four bits of the buffer format field contain the DATA-IN 880 * buffer descriptor format, and the highest four bits contain the 881 * DATA-OUT buffer descriptor format. 882 */ 883 *dir = DMA_NONE; 884 if (srp_cmd->buf_fmt & 0xf) 885 /* DATA-IN: transfer data from target to initiator (read). */ 886 *dir = DMA_FROM_DEVICE; 887 else if (srp_cmd->buf_fmt >> 4) 888 /* DATA-OUT: transfer data from initiator to target (write). */ 889 *dir = DMA_TO_DEVICE; 890 891 /* 892 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 893 * CDB LENGTH' field are reserved and the size in bytes of this field 894 * is four times the value specified in bits 3..7. Hence the "& ~3". 895 */ 896 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 897 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 898 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 899 ioctx->n_rbuf = 1; 900 ioctx->rbufs = &ioctx->single_rbuf; 901 902 db = (struct srp_direct_buf *)(srp_cmd->add_data 903 + add_cdb_offset); 904 memcpy(ioctx->rbufs, db, sizeof *db); 905 *data_len = be32_to_cpu(db->len); 906 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 907 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 908 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 909 + add_cdb_offset); 910 911 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 912 913 if (ioctx->n_rbuf > 914 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 915 printk(KERN_ERR "received unsupported SRP_CMD request" 916 " type (%u out + %u in != %u / %zu)\n", 917 srp_cmd->data_out_desc_cnt, 918 srp_cmd->data_in_desc_cnt, 919 be32_to_cpu(idb->table_desc.len), 920 sizeof(*db)); 921 ioctx->n_rbuf = 0; 922 ret = -EINVAL; 923 goto out; 924 } 925 926 if (ioctx->n_rbuf == 1) 927 ioctx->rbufs = &ioctx->single_rbuf; 928 else { 929 ioctx->rbufs = 930 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 931 if (!ioctx->rbufs) { 932 ioctx->n_rbuf = 0; 933 ret = -ENOMEM; 934 goto out; 935 } 936 } 937 938 db = idb->desc_list; 939 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 940 *data_len = be32_to_cpu(idb->len); 941 } 942 out: 943 return ret; 944 } 945 946 /** 947 * srpt_init_ch_qp() - Initialize queue pair attributes. 948 * 949 * Initialized the attributes of queue pair 'qp' by allowing local write, 950 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 951 */ 952 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 953 { 954 struct ib_qp_attr *attr; 955 int ret; 956 957 attr = kzalloc(sizeof *attr, GFP_KERNEL); 958 if (!attr) 959 return -ENOMEM; 960 961 attr->qp_state = IB_QPS_INIT; 962 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 963 IB_ACCESS_REMOTE_WRITE; 964 attr->port_num = ch->sport->port; 965 attr->pkey_index = 0; 966 967 ret = ib_modify_qp(qp, attr, 968 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 969 IB_QP_PKEY_INDEX); 970 971 kfree(attr); 972 return ret; 973 } 974 975 /** 976 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 977 * @ch: channel of the queue pair. 978 * @qp: queue pair to change the state of. 979 * 980 * Returns zero upon success and a negative value upon failure. 981 * 982 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 983 * If this structure ever becomes larger, it might be necessary to allocate 984 * it dynamically instead of on the stack. 985 */ 986 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 987 { 988 struct ib_qp_attr qp_attr; 989 int attr_mask; 990 int ret; 991 992 qp_attr.qp_state = IB_QPS_RTR; 993 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 994 if (ret) 995 goto out; 996 997 qp_attr.max_dest_rd_atomic = 4; 998 999 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1000 1001 out: 1002 return ret; 1003 } 1004 1005 /** 1006 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1007 * @ch: channel of the queue pair. 1008 * @qp: queue pair to change the state of. 1009 * 1010 * Returns zero upon success and a negative value upon failure. 1011 * 1012 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1013 * If this structure ever becomes larger, it might be necessary to allocate 1014 * it dynamically instead of on the stack. 1015 */ 1016 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1017 { 1018 struct ib_qp_attr qp_attr; 1019 int attr_mask; 1020 int ret; 1021 1022 qp_attr.qp_state = IB_QPS_RTS; 1023 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1024 if (ret) 1025 goto out; 1026 1027 qp_attr.max_rd_atomic = 4; 1028 1029 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1030 1031 out: 1032 return ret; 1033 } 1034 1035 /** 1036 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1037 */ 1038 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1039 { 1040 struct ib_qp_attr qp_attr; 1041 1042 qp_attr.qp_state = IB_QPS_ERR; 1043 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1044 } 1045 1046 /** 1047 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1048 */ 1049 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1050 struct srpt_send_ioctx *ioctx) 1051 { 1052 struct scatterlist *sg; 1053 enum dma_data_direction dir; 1054 1055 BUG_ON(!ch); 1056 BUG_ON(!ioctx); 1057 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1058 1059 while (ioctx->n_rdma) 1060 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1061 1062 kfree(ioctx->rdma_ius); 1063 ioctx->rdma_ius = NULL; 1064 1065 if (ioctx->mapped_sg_count) { 1066 sg = ioctx->sg; 1067 WARN_ON(!sg); 1068 dir = ioctx->cmd.data_direction; 1069 BUG_ON(dir == DMA_NONE); 1070 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1071 opposite_dma_dir(dir)); 1072 ioctx->mapped_sg_count = 0; 1073 } 1074 } 1075 1076 /** 1077 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1078 */ 1079 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1080 struct srpt_send_ioctx *ioctx) 1081 { 1082 struct ib_device *dev = ch->sport->sdev->device; 1083 struct se_cmd *cmd; 1084 struct scatterlist *sg, *sg_orig; 1085 int sg_cnt; 1086 enum dma_data_direction dir; 1087 struct rdma_iu *riu; 1088 struct srp_direct_buf *db; 1089 dma_addr_t dma_addr; 1090 struct ib_sge *sge; 1091 u64 raddr; 1092 u32 rsize; 1093 u32 tsize; 1094 u32 dma_len; 1095 int count, nrdma; 1096 int i, j, k; 1097 1098 BUG_ON(!ch); 1099 BUG_ON(!ioctx); 1100 cmd = &ioctx->cmd; 1101 dir = cmd->data_direction; 1102 BUG_ON(dir == DMA_NONE); 1103 1104 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1105 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1106 1107 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1108 opposite_dma_dir(dir)); 1109 if (unlikely(!count)) 1110 return -EAGAIN; 1111 1112 ioctx->mapped_sg_count = count; 1113 1114 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1115 nrdma = ioctx->n_rdma_ius; 1116 else { 1117 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1118 + ioctx->n_rbuf; 1119 1120 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1121 if (!ioctx->rdma_ius) 1122 goto free_mem; 1123 1124 ioctx->n_rdma_ius = nrdma; 1125 } 1126 1127 db = ioctx->rbufs; 1128 tsize = cmd->data_length; 1129 dma_len = ib_sg_dma_len(dev, &sg[0]); 1130 riu = ioctx->rdma_ius; 1131 1132 /* 1133 * For each remote desc - calculate the #ib_sge. 1134 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1135 * each remote desc rdma_iu is required a rdma wr; 1136 * else 1137 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1138 * another rdma wr 1139 */ 1140 for (i = 0, j = 0; 1141 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1142 rsize = be32_to_cpu(db->len); 1143 raddr = be64_to_cpu(db->va); 1144 riu->raddr = raddr; 1145 riu->rkey = be32_to_cpu(db->key); 1146 riu->sge_cnt = 0; 1147 1148 /* calculate how many sge required for this remote_buf */ 1149 while (rsize > 0 && tsize > 0) { 1150 1151 if (rsize >= dma_len) { 1152 tsize -= dma_len; 1153 rsize -= dma_len; 1154 raddr += dma_len; 1155 1156 if (tsize > 0) { 1157 ++j; 1158 if (j < count) { 1159 sg = sg_next(sg); 1160 dma_len = ib_sg_dma_len( 1161 dev, sg); 1162 } 1163 } 1164 } else { 1165 tsize -= rsize; 1166 dma_len -= rsize; 1167 rsize = 0; 1168 } 1169 1170 ++riu->sge_cnt; 1171 1172 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1173 ++ioctx->n_rdma; 1174 riu->sge = 1175 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1176 GFP_KERNEL); 1177 if (!riu->sge) 1178 goto free_mem; 1179 1180 ++riu; 1181 riu->sge_cnt = 0; 1182 riu->raddr = raddr; 1183 riu->rkey = be32_to_cpu(db->key); 1184 } 1185 } 1186 1187 ++ioctx->n_rdma; 1188 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1189 GFP_KERNEL); 1190 if (!riu->sge) 1191 goto free_mem; 1192 } 1193 1194 db = ioctx->rbufs; 1195 tsize = cmd->data_length; 1196 riu = ioctx->rdma_ius; 1197 sg = sg_orig; 1198 dma_len = ib_sg_dma_len(dev, &sg[0]); 1199 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1200 1201 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1202 for (i = 0, j = 0; 1203 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1204 rsize = be32_to_cpu(db->len); 1205 sge = riu->sge; 1206 k = 0; 1207 1208 while (rsize > 0 && tsize > 0) { 1209 sge->addr = dma_addr; 1210 sge->lkey = ch->sport->sdev->mr->lkey; 1211 1212 if (rsize >= dma_len) { 1213 sge->length = 1214 (tsize < dma_len) ? tsize : dma_len; 1215 tsize -= dma_len; 1216 rsize -= dma_len; 1217 1218 if (tsize > 0) { 1219 ++j; 1220 if (j < count) { 1221 sg = sg_next(sg); 1222 dma_len = ib_sg_dma_len( 1223 dev, sg); 1224 dma_addr = ib_sg_dma_address( 1225 dev, sg); 1226 } 1227 } 1228 } else { 1229 sge->length = (tsize < rsize) ? tsize : rsize; 1230 tsize -= rsize; 1231 dma_len -= rsize; 1232 dma_addr += rsize; 1233 rsize = 0; 1234 } 1235 1236 ++k; 1237 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1238 ++riu; 1239 sge = riu->sge; 1240 k = 0; 1241 } else if (rsize > 0 && tsize > 0) 1242 ++sge; 1243 } 1244 } 1245 1246 return 0; 1247 1248 free_mem: 1249 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1250 1251 return -ENOMEM; 1252 } 1253 1254 /** 1255 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1256 */ 1257 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1258 { 1259 struct srpt_send_ioctx *ioctx; 1260 unsigned long flags; 1261 1262 BUG_ON(!ch); 1263 1264 ioctx = NULL; 1265 spin_lock_irqsave(&ch->spinlock, flags); 1266 if (!list_empty(&ch->free_list)) { 1267 ioctx = list_first_entry(&ch->free_list, 1268 struct srpt_send_ioctx, free_list); 1269 list_del(&ioctx->free_list); 1270 } 1271 spin_unlock_irqrestore(&ch->spinlock, flags); 1272 1273 if (!ioctx) 1274 return ioctx; 1275 1276 BUG_ON(ioctx->ch != ch); 1277 spin_lock_init(&ioctx->spinlock); 1278 ioctx->state = SRPT_STATE_NEW; 1279 ioctx->n_rbuf = 0; 1280 ioctx->rbufs = NULL; 1281 ioctx->n_rdma = 0; 1282 ioctx->n_rdma_ius = 0; 1283 ioctx->rdma_ius = NULL; 1284 ioctx->mapped_sg_count = 0; 1285 init_completion(&ioctx->tx_done); 1286 ioctx->queue_status_only = false; 1287 /* 1288 * transport_init_se_cmd() does not initialize all fields, so do it 1289 * here. 1290 */ 1291 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1292 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1293 1294 return ioctx; 1295 } 1296 1297 /** 1298 * srpt_abort_cmd() - Abort a SCSI command. 1299 * @ioctx: I/O context associated with the SCSI command. 1300 * @context: Preferred execution context. 1301 */ 1302 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1303 { 1304 enum srpt_command_state state; 1305 unsigned long flags; 1306 1307 BUG_ON(!ioctx); 1308 1309 /* 1310 * If the command is in a state where the target core is waiting for 1311 * the ib_srpt driver, change the state to the next state. Changing 1312 * the state of the command from SRPT_STATE_NEED_DATA to 1313 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1314 * function a second time. 1315 */ 1316 1317 spin_lock_irqsave(&ioctx->spinlock, flags); 1318 state = ioctx->state; 1319 switch (state) { 1320 case SRPT_STATE_NEED_DATA: 1321 ioctx->state = SRPT_STATE_DATA_IN; 1322 break; 1323 case SRPT_STATE_DATA_IN: 1324 case SRPT_STATE_CMD_RSP_SENT: 1325 case SRPT_STATE_MGMT_RSP_SENT: 1326 ioctx->state = SRPT_STATE_DONE; 1327 break; 1328 default: 1329 break; 1330 } 1331 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1332 1333 if (state == SRPT_STATE_DONE) { 1334 struct srpt_rdma_ch *ch = ioctx->ch; 1335 1336 BUG_ON(ch->sess == NULL); 1337 1338 target_put_sess_cmd(ch->sess, &ioctx->cmd); 1339 goto out; 1340 } 1341 1342 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1343 ioctx->tag); 1344 1345 switch (state) { 1346 case SRPT_STATE_NEW: 1347 case SRPT_STATE_DATA_IN: 1348 case SRPT_STATE_MGMT: 1349 /* 1350 * Do nothing - defer abort processing until 1351 * srpt_queue_response() is invoked. 1352 */ 1353 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1354 break; 1355 case SRPT_STATE_NEED_DATA: 1356 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1357 1358 /* XXX(hch): this is a horrible layering violation.. */ 1359 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1360 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1361 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1362 break; 1363 case SRPT_STATE_CMD_RSP_SENT: 1364 /* 1365 * SRP_RSP sending failed or the SRP_RSP send completion has 1366 * not been received in time. 1367 */ 1368 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1369 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1370 break; 1371 case SRPT_STATE_MGMT_RSP_SENT: 1372 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1373 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1374 break; 1375 default: 1376 WARN(1, "Unexpected command state (%d)", state); 1377 break; 1378 } 1379 1380 out: 1381 return state; 1382 } 1383 1384 /** 1385 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1386 */ 1387 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1388 { 1389 struct srpt_send_ioctx *ioctx; 1390 enum srpt_command_state state; 1391 struct se_cmd *cmd; 1392 u32 index; 1393 1394 atomic_inc(&ch->sq_wr_avail); 1395 1396 index = idx_from_wr_id(wr_id); 1397 ioctx = ch->ioctx_ring[index]; 1398 state = srpt_get_cmd_state(ioctx); 1399 cmd = &ioctx->cmd; 1400 1401 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1402 && state != SRPT_STATE_MGMT_RSP_SENT 1403 && state != SRPT_STATE_NEED_DATA 1404 && state != SRPT_STATE_DONE); 1405 1406 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1407 if (state == SRPT_STATE_CMD_RSP_SENT 1408 || state == SRPT_STATE_MGMT_RSP_SENT) 1409 atomic_dec(&ch->req_lim); 1410 1411 srpt_abort_cmd(ioctx); 1412 } 1413 1414 /** 1415 * srpt_handle_send_comp() - Process an IB send completion notification. 1416 */ 1417 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1418 struct srpt_send_ioctx *ioctx) 1419 { 1420 enum srpt_command_state state; 1421 1422 atomic_inc(&ch->sq_wr_avail); 1423 1424 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1425 1426 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1427 && state != SRPT_STATE_MGMT_RSP_SENT 1428 && state != SRPT_STATE_DONE)) 1429 pr_debug("state = %d\n", state); 1430 1431 if (state != SRPT_STATE_DONE) { 1432 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1433 transport_generic_free_cmd(&ioctx->cmd, 0); 1434 } else { 1435 printk(KERN_ERR "IB completion has been received too late for" 1436 " wr_id = %u.\n", ioctx->ioctx.index); 1437 } 1438 } 1439 1440 /** 1441 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1442 * 1443 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1444 * the data that has been transferred via IB RDMA had to be postponed until the 1445 * check_stop_free() callback. None of this is necessary anymore and needs to 1446 * be cleaned up. 1447 */ 1448 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1449 struct srpt_send_ioctx *ioctx, 1450 enum srpt_opcode opcode) 1451 { 1452 WARN_ON(ioctx->n_rdma <= 0); 1453 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1454 1455 if (opcode == SRPT_RDMA_READ_LAST) { 1456 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1457 SRPT_STATE_DATA_IN)) 1458 target_execute_cmd(&ioctx->cmd); 1459 else 1460 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, 1461 __LINE__, srpt_get_cmd_state(ioctx)); 1462 } else if (opcode == SRPT_RDMA_ABORT) { 1463 ioctx->rdma_aborted = true; 1464 } else { 1465 WARN(true, "unexpected opcode %d\n", opcode); 1466 } 1467 } 1468 1469 /** 1470 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1471 */ 1472 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1473 struct srpt_send_ioctx *ioctx, 1474 enum srpt_opcode opcode) 1475 { 1476 struct se_cmd *cmd; 1477 enum srpt_command_state state; 1478 1479 cmd = &ioctx->cmd; 1480 state = srpt_get_cmd_state(ioctx); 1481 switch (opcode) { 1482 case SRPT_RDMA_READ_LAST: 1483 if (ioctx->n_rdma <= 0) { 1484 printk(KERN_ERR "Received invalid RDMA read" 1485 " error completion with idx %d\n", 1486 ioctx->ioctx.index); 1487 break; 1488 } 1489 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1490 if (state == SRPT_STATE_NEED_DATA) 1491 srpt_abort_cmd(ioctx); 1492 else 1493 printk(KERN_ERR "%s[%d]: wrong state = %d\n", 1494 __func__, __LINE__, state); 1495 break; 1496 case SRPT_RDMA_WRITE_LAST: 1497 break; 1498 default: 1499 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, 1500 __LINE__, opcode); 1501 break; 1502 } 1503 } 1504 1505 /** 1506 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1507 * @ch: RDMA channel through which the request has been received. 1508 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1509 * be built in the buffer ioctx->buf points at and hence this function will 1510 * overwrite the request data. 1511 * @tag: tag of the request for which this response is being generated. 1512 * @status: value for the STATUS field of the SRP_RSP information unit. 1513 * 1514 * Returns the size in bytes of the SRP_RSP response. 1515 * 1516 * An SRP_RSP response contains a SCSI status or service response. See also 1517 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1518 * response. See also SPC-2 for more information about sense data. 1519 */ 1520 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1521 struct srpt_send_ioctx *ioctx, u64 tag, 1522 int status) 1523 { 1524 struct srp_rsp *srp_rsp; 1525 const u8 *sense_data; 1526 int sense_data_len, max_sense_len; 1527 1528 /* 1529 * The lowest bit of all SAM-3 status codes is zero (see also 1530 * paragraph 5.3 in SAM-3). 1531 */ 1532 WARN_ON(status & 1); 1533 1534 srp_rsp = ioctx->ioctx.buf; 1535 BUG_ON(!srp_rsp); 1536 1537 sense_data = ioctx->sense_data; 1538 sense_data_len = ioctx->cmd.scsi_sense_length; 1539 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1540 1541 memset(srp_rsp, 0, sizeof *srp_rsp); 1542 srp_rsp->opcode = SRP_RSP; 1543 srp_rsp->req_lim_delta = 1544 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1545 srp_rsp->tag = tag; 1546 srp_rsp->status = status; 1547 1548 if (sense_data_len) { 1549 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1550 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1551 if (sense_data_len > max_sense_len) { 1552 printk(KERN_WARNING "truncated sense data from %d to %d" 1553 " bytes\n", sense_data_len, max_sense_len); 1554 sense_data_len = max_sense_len; 1555 } 1556 1557 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1558 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1559 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1560 } 1561 1562 return sizeof(*srp_rsp) + sense_data_len; 1563 } 1564 1565 /** 1566 * srpt_build_tskmgmt_rsp() - Build a task management response. 1567 * @ch: RDMA channel through which the request has been received. 1568 * @ioctx: I/O context in which the SRP_RSP response will be built. 1569 * @rsp_code: RSP_CODE that will be stored in the response. 1570 * @tag: Tag of the request for which this response is being generated. 1571 * 1572 * Returns the size in bytes of the SRP_RSP response. 1573 * 1574 * An SRP_RSP response contains a SCSI status or service response. See also 1575 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1576 * response. 1577 */ 1578 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1579 struct srpt_send_ioctx *ioctx, 1580 u8 rsp_code, u64 tag) 1581 { 1582 struct srp_rsp *srp_rsp; 1583 int resp_data_len; 1584 int resp_len; 1585 1586 resp_data_len = 4; 1587 resp_len = sizeof(*srp_rsp) + resp_data_len; 1588 1589 srp_rsp = ioctx->ioctx.buf; 1590 BUG_ON(!srp_rsp); 1591 memset(srp_rsp, 0, sizeof *srp_rsp); 1592 1593 srp_rsp->opcode = SRP_RSP; 1594 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1595 + atomic_xchg(&ch->req_lim_delta, 0)); 1596 srp_rsp->tag = tag; 1597 1598 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1599 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1600 srp_rsp->data[3] = rsp_code; 1601 1602 return resp_len; 1603 } 1604 1605 #define NO_SUCH_LUN ((uint64_t)-1LL) 1606 1607 /* 1608 * SCSI LUN addressing method. See also SAM-2 and the section about 1609 * eight byte LUNs. 1610 */ 1611 enum scsi_lun_addr_method { 1612 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1613 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1614 SCSI_LUN_ADDR_METHOD_LUN = 2, 1615 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1616 }; 1617 1618 /* 1619 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1620 * 1621 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1622 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1623 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1624 */ 1625 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1626 { 1627 uint64_t res = NO_SUCH_LUN; 1628 int addressing_method; 1629 1630 if (unlikely(len < 2)) { 1631 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " 1632 "more", len); 1633 goto out; 1634 } 1635 1636 switch (len) { 1637 case 8: 1638 if ((*((__be64 *)lun) & 1639 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1640 goto out_err; 1641 break; 1642 case 4: 1643 if (*((__be16 *)&lun[2]) != 0) 1644 goto out_err; 1645 break; 1646 case 6: 1647 if (*((__be32 *)&lun[2]) != 0) 1648 goto out_err; 1649 break; 1650 case 2: 1651 break; 1652 default: 1653 goto out_err; 1654 } 1655 1656 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1657 switch (addressing_method) { 1658 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1659 case SCSI_LUN_ADDR_METHOD_FLAT: 1660 case SCSI_LUN_ADDR_METHOD_LUN: 1661 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1662 break; 1663 1664 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1665 default: 1666 printk(KERN_ERR "Unimplemented LUN addressing method %u", 1667 addressing_method); 1668 break; 1669 } 1670 1671 out: 1672 return res; 1673 1674 out_err: 1675 printk(KERN_ERR "Support for multi-level LUNs has not yet been" 1676 " implemented"); 1677 goto out; 1678 } 1679 1680 static int srpt_check_stop_free(struct se_cmd *cmd) 1681 { 1682 struct srpt_send_ioctx *ioctx = container_of(cmd, 1683 struct srpt_send_ioctx, cmd); 1684 1685 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1686 } 1687 1688 /** 1689 * srpt_handle_cmd() - Process SRP_CMD. 1690 */ 1691 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1692 struct srpt_recv_ioctx *recv_ioctx, 1693 struct srpt_send_ioctx *send_ioctx) 1694 { 1695 struct se_cmd *cmd; 1696 struct srp_cmd *srp_cmd; 1697 uint64_t unpacked_lun; 1698 u64 data_len; 1699 enum dma_data_direction dir; 1700 sense_reason_t ret; 1701 int rc; 1702 1703 BUG_ON(!send_ioctx); 1704 1705 srp_cmd = recv_ioctx->ioctx.buf; 1706 cmd = &send_ioctx->cmd; 1707 send_ioctx->tag = srp_cmd->tag; 1708 1709 switch (srp_cmd->task_attr) { 1710 case SRP_CMD_SIMPLE_Q: 1711 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1712 break; 1713 case SRP_CMD_ORDERED_Q: 1714 default: 1715 cmd->sam_task_attr = TCM_ORDERED_TAG; 1716 break; 1717 case SRP_CMD_HEAD_OF_Q: 1718 cmd->sam_task_attr = TCM_HEAD_TAG; 1719 break; 1720 case SRP_CMD_ACA: 1721 cmd->sam_task_attr = TCM_ACA_TAG; 1722 break; 1723 } 1724 1725 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1726 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", 1727 srp_cmd->tag); 1728 ret = TCM_INVALID_CDB_FIELD; 1729 goto send_sense; 1730 } 1731 1732 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1733 sizeof(srp_cmd->lun)); 1734 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1735 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1736 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1737 if (rc != 0) { 1738 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1739 goto send_sense; 1740 } 1741 return 0; 1742 1743 send_sense: 1744 transport_send_check_condition_and_sense(cmd, ret, 0); 1745 return -1; 1746 } 1747 1748 /** 1749 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1750 * @ch: RDMA channel of the task management request. 1751 * @fn: Task management function to perform. 1752 * @req_tag: Tag of the SRP task management request. 1753 * @mgmt_ioctx: I/O context of the task management request. 1754 * 1755 * Returns zero if the target core will process the task management 1756 * request asynchronously. 1757 * 1758 * Note: It is assumed that the initiator serializes tag-based task management 1759 * requests. 1760 */ 1761 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1762 { 1763 struct srpt_device *sdev; 1764 struct srpt_rdma_ch *ch; 1765 struct srpt_send_ioctx *target; 1766 int ret, i; 1767 1768 ret = -EINVAL; 1769 ch = ioctx->ch; 1770 BUG_ON(!ch); 1771 BUG_ON(!ch->sport); 1772 sdev = ch->sport->sdev; 1773 BUG_ON(!sdev); 1774 spin_lock_irq(&sdev->spinlock); 1775 for (i = 0; i < ch->rq_size; ++i) { 1776 target = ch->ioctx_ring[i]; 1777 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1778 target->tag == tag && 1779 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1780 ret = 0; 1781 /* now let the target core abort &target->cmd; */ 1782 break; 1783 } 1784 } 1785 spin_unlock_irq(&sdev->spinlock); 1786 return ret; 1787 } 1788 1789 static int srp_tmr_to_tcm(int fn) 1790 { 1791 switch (fn) { 1792 case SRP_TSK_ABORT_TASK: 1793 return TMR_ABORT_TASK; 1794 case SRP_TSK_ABORT_TASK_SET: 1795 return TMR_ABORT_TASK_SET; 1796 case SRP_TSK_CLEAR_TASK_SET: 1797 return TMR_CLEAR_TASK_SET; 1798 case SRP_TSK_LUN_RESET: 1799 return TMR_LUN_RESET; 1800 case SRP_TSK_CLEAR_ACA: 1801 return TMR_CLEAR_ACA; 1802 default: 1803 return -1; 1804 } 1805 } 1806 1807 /** 1808 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1809 * 1810 * Returns 0 if and only if the request will be processed by the target core. 1811 * 1812 * For more information about SRP_TSK_MGMT information units, see also section 1813 * 6.7 in the SRP r16a document. 1814 */ 1815 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1816 struct srpt_recv_ioctx *recv_ioctx, 1817 struct srpt_send_ioctx *send_ioctx) 1818 { 1819 struct srp_tsk_mgmt *srp_tsk; 1820 struct se_cmd *cmd; 1821 struct se_session *sess = ch->sess; 1822 uint64_t unpacked_lun; 1823 uint32_t tag = 0; 1824 int tcm_tmr; 1825 int rc; 1826 1827 BUG_ON(!send_ioctx); 1828 1829 srp_tsk = recv_ioctx->ioctx.buf; 1830 cmd = &send_ioctx->cmd; 1831 1832 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1833 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1834 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1835 1836 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1837 send_ioctx->tag = srp_tsk->tag; 1838 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1839 if (tcm_tmr < 0) { 1840 send_ioctx->cmd.se_tmr_req->response = 1841 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1842 goto fail; 1843 } 1844 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1845 sizeof(srp_tsk->lun)); 1846 1847 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1848 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1849 if (rc < 0) { 1850 send_ioctx->cmd.se_tmr_req->response = 1851 TMR_TASK_DOES_NOT_EXIST; 1852 goto fail; 1853 } 1854 tag = srp_tsk->task_tag; 1855 } 1856 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1857 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1858 TARGET_SCF_ACK_KREF); 1859 if (rc != 0) { 1860 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1861 goto fail; 1862 } 1863 return; 1864 fail: 1865 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1866 } 1867 1868 /** 1869 * srpt_handle_new_iu() - Process a newly received information unit. 1870 * @ch: RDMA channel through which the information unit has been received. 1871 * @ioctx: SRPT I/O context associated with the information unit. 1872 */ 1873 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1874 struct srpt_recv_ioctx *recv_ioctx, 1875 struct srpt_send_ioctx *send_ioctx) 1876 { 1877 struct srp_cmd *srp_cmd; 1878 enum rdma_ch_state ch_state; 1879 1880 BUG_ON(!ch); 1881 BUG_ON(!recv_ioctx); 1882 1883 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1884 recv_ioctx->ioctx.dma, srp_max_req_size, 1885 DMA_FROM_DEVICE); 1886 1887 ch_state = srpt_get_ch_state(ch); 1888 if (unlikely(ch_state == CH_CONNECTING)) { 1889 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1890 goto out; 1891 } 1892 1893 if (unlikely(ch_state != CH_LIVE)) 1894 goto out; 1895 1896 srp_cmd = recv_ioctx->ioctx.buf; 1897 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1898 if (!send_ioctx) 1899 send_ioctx = srpt_get_send_ioctx(ch); 1900 if (unlikely(!send_ioctx)) { 1901 list_add_tail(&recv_ioctx->wait_list, 1902 &ch->cmd_wait_list); 1903 goto out; 1904 } 1905 } 1906 1907 switch (srp_cmd->opcode) { 1908 case SRP_CMD: 1909 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1910 break; 1911 case SRP_TSK_MGMT: 1912 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1913 break; 1914 case SRP_I_LOGOUT: 1915 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); 1916 break; 1917 case SRP_CRED_RSP: 1918 pr_debug("received SRP_CRED_RSP\n"); 1919 break; 1920 case SRP_AER_RSP: 1921 pr_debug("received SRP_AER_RSP\n"); 1922 break; 1923 case SRP_RSP: 1924 printk(KERN_ERR "Received SRP_RSP\n"); 1925 break; 1926 default: 1927 printk(KERN_ERR "received IU with unknown opcode 0x%x\n", 1928 srp_cmd->opcode); 1929 break; 1930 } 1931 1932 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1933 out: 1934 return; 1935 } 1936 1937 static void srpt_process_rcv_completion(struct ib_cq *cq, 1938 struct srpt_rdma_ch *ch, 1939 struct ib_wc *wc) 1940 { 1941 struct srpt_device *sdev = ch->sport->sdev; 1942 struct srpt_recv_ioctx *ioctx; 1943 u32 index; 1944 1945 index = idx_from_wr_id(wc->wr_id); 1946 if (wc->status == IB_WC_SUCCESS) { 1947 int req_lim; 1948 1949 req_lim = atomic_dec_return(&ch->req_lim); 1950 if (unlikely(req_lim < 0)) 1951 printk(KERN_ERR "req_lim = %d < 0\n", req_lim); 1952 ioctx = sdev->ioctx_ring[index]; 1953 srpt_handle_new_iu(ch, ioctx, NULL); 1954 } else { 1955 printk(KERN_INFO "receiving failed for idx %u with status %d\n", 1956 index, wc->status); 1957 } 1958 } 1959 1960 /** 1961 * srpt_process_send_completion() - Process an IB send completion. 1962 * 1963 * Note: Although this has not yet been observed during tests, at least in 1964 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1965 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1966 * value in each response is set to one, and it is possible that this response 1967 * makes the initiator send a new request before the send completion for that 1968 * response has been processed. This could e.g. happen if the call to 1969 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1970 * if IB retransmission causes generation of the send completion to be 1971 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1972 * are queued on cmd_wait_list. The code below processes these delayed 1973 * requests one at a time. 1974 */ 1975 static void srpt_process_send_completion(struct ib_cq *cq, 1976 struct srpt_rdma_ch *ch, 1977 struct ib_wc *wc) 1978 { 1979 struct srpt_send_ioctx *send_ioctx; 1980 uint32_t index; 1981 enum srpt_opcode opcode; 1982 1983 index = idx_from_wr_id(wc->wr_id); 1984 opcode = opcode_from_wr_id(wc->wr_id); 1985 send_ioctx = ch->ioctx_ring[index]; 1986 if (wc->status == IB_WC_SUCCESS) { 1987 if (opcode == SRPT_SEND) 1988 srpt_handle_send_comp(ch, send_ioctx); 1989 else { 1990 WARN_ON(opcode != SRPT_RDMA_ABORT && 1991 wc->opcode != IB_WC_RDMA_READ); 1992 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1993 } 1994 } else { 1995 if (opcode == SRPT_SEND) { 1996 printk(KERN_INFO "sending response for idx %u failed" 1997 " with status %d\n", index, wc->status); 1998 srpt_handle_send_err_comp(ch, wc->wr_id); 1999 } else if (opcode != SRPT_RDMA_MID) { 2000 printk(KERN_INFO "RDMA t %d for idx %u failed with" 2001 " status %d", opcode, index, wc->status); 2002 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2003 } 2004 } 2005 2006 while (unlikely(opcode == SRPT_SEND 2007 && !list_empty(&ch->cmd_wait_list) 2008 && srpt_get_ch_state(ch) == CH_LIVE 2009 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2010 struct srpt_recv_ioctx *recv_ioctx; 2011 2012 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2013 struct srpt_recv_ioctx, 2014 wait_list); 2015 list_del(&recv_ioctx->wait_list); 2016 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2017 } 2018 } 2019 2020 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2021 { 2022 struct ib_wc *const wc = ch->wc; 2023 int i, n; 2024 2025 WARN_ON(cq != ch->cq); 2026 2027 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2028 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2029 for (i = 0; i < n; i++) { 2030 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2031 srpt_process_rcv_completion(cq, ch, &wc[i]); 2032 else 2033 srpt_process_send_completion(cq, ch, &wc[i]); 2034 } 2035 } 2036 } 2037 2038 /** 2039 * srpt_completion() - IB completion queue callback function. 2040 * 2041 * Notes: 2042 * - It is guaranteed that a completion handler will never be invoked 2043 * concurrently on two different CPUs for the same completion queue. See also 2044 * Documentation/infiniband/core_locking.txt and the implementation of 2045 * handle_edge_irq() in kernel/irq/chip.c. 2046 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2047 * context instead of interrupt context. 2048 */ 2049 static void srpt_completion(struct ib_cq *cq, void *ctx) 2050 { 2051 struct srpt_rdma_ch *ch = ctx; 2052 2053 wake_up_interruptible(&ch->wait_queue); 2054 } 2055 2056 static int srpt_compl_thread(void *arg) 2057 { 2058 struct srpt_rdma_ch *ch; 2059 2060 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2061 current->flags |= PF_NOFREEZE; 2062 2063 ch = arg; 2064 BUG_ON(!ch); 2065 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", 2066 ch->sess_name, ch->thread->comm, current->pid); 2067 while (!kthread_should_stop()) { 2068 wait_event_interruptible(ch->wait_queue, 2069 (srpt_process_completion(ch->cq, ch), 2070 kthread_should_stop())); 2071 } 2072 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", 2073 ch->sess_name, ch->thread->comm, current->pid); 2074 return 0; 2075 } 2076 2077 /** 2078 * srpt_create_ch_ib() - Create receive and send completion queues. 2079 */ 2080 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2081 { 2082 struct ib_qp_init_attr *qp_init; 2083 struct srpt_port *sport = ch->sport; 2084 struct srpt_device *sdev = sport->sdev; 2085 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2086 int ret; 2087 2088 WARN_ON(ch->rq_size < 1); 2089 2090 ret = -ENOMEM; 2091 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2092 if (!qp_init) 2093 goto out; 2094 2095 retry: 2096 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2097 ch->rq_size + srp_sq_size, 0); 2098 if (IS_ERR(ch->cq)) { 2099 ret = PTR_ERR(ch->cq); 2100 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", 2101 ch->rq_size + srp_sq_size, ret); 2102 goto out; 2103 } 2104 2105 qp_init->qp_context = (void *)ch; 2106 qp_init->event_handler 2107 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2108 qp_init->send_cq = ch->cq; 2109 qp_init->recv_cq = ch->cq; 2110 qp_init->srq = sdev->srq; 2111 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2112 qp_init->qp_type = IB_QPT_RC; 2113 qp_init->cap.max_send_wr = srp_sq_size; 2114 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2115 2116 ch->qp = ib_create_qp(sdev->pd, qp_init); 2117 if (IS_ERR(ch->qp)) { 2118 ret = PTR_ERR(ch->qp); 2119 if (ret == -ENOMEM) { 2120 srp_sq_size /= 2; 2121 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 2122 ib_destroy_cq(ch->cq); 2123 goto retry; 2124 } 2125 } 2126 printk(KERN_ERR "failed to create_qp ret= %d\n", ret); 2127 goto err_destroy_cq; 2128 } 2129 2130 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2131 2132 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2133 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2134 qp_init->cap.max_send_wr, ch->cm_id); 2135 2136 ret = srpt_init_ch_qp(ch, ch->qp); 2137 if (ret) 2138 goto err_destroy_qp; 2139 2140 init_waitqueue_head(&ch->wait_queue); 2141 2142 pr_debug("creating thread for session %s\n", ch->sess_name); 2143 2144 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2145 if (IS_ERR(ch->thread)) { 2146 printk(KERN_ERR "failed to create kernel thread %ld\n", 2147 PTR_ERR(ch->thread)); 2148 ch->thread = NULL; 2149 goto err_destroy_qp; 2150 } 2151 2152 out: 2153 kfree(qp_init); 2154 return ret; 2155 2156 err_destroy_qp: 2157 ib_destroy_qp(ch->qp); 2158 err_destroy_cq: 2159 ib_destroy_cq(ch->cq); 2160 goto out; 2161 } 2162 2163 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2164 { 2165 if (ch->thread) 2166 kthread_stop(ch->thread); 2167 2168 ib_destroy_qp(ch->qp); 2169 ib_destroy_cq(ch->cq); 2170 } 2171 2172 /** 2173 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2174 * 2175 * Reset the QP and make sure all resources associated with the channel will 2176 * be deallocated at an appropriate time. 2177 * 2178 * Note: The caller must hold ch->sport->sdev->spinlock. 2179 */ 2180 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2181 { 2182 struct srpt_device *sdev; 2183 enum rdma_ch_state prev_state; 2184 unsigned long flags; 2185 2186 sdev = ch->sport->sdev; 2187 2188 spin_lock_irqsave(&ch->spinlock, flags); 2189 prev_state = ch->state; 2190 switch (prev_state) { 2191 case CH_CONNECTING: 2192 case CH_LIVE: 2193 ch->state = CH_DISCONNECTING; 2194 break; 2195 default: 2196 break; 2197 } 2198 spin_unlock_irqrestore(&ch->spinlock, flags); 2199 2200 switch (prev_state) { 2201 case CH_CONNECTING: 2202 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2203 NULL, 0); 2204 /* fall through */ 2205 case CH_LIVE: 2206 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2207 printk(KERN_ERR "sending CM DREQ failed.\n"); 2208 break; 2209 case CH_DISCONNECTING: 2210 break; 2211 case CH_DRAINING: 2212 case CH_RELEASING: 2213 break; 2214 } 2215 } 2216 2217 /** 2218 * srpt_close_ch() - Close an RDMA channel. 2219 */ 2220 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2221 { 2222 struct srpt_device *sdev; 2223 2224 sdev = ch->sport->sdev; 2225 spin_lock_irq(&sdev->spinlock); 2226 __srpt_close_ch(ch); 2227 spin_unlock_irq(&sdev->spinlock); 2228 } 2229 2230 /** 2231 * srpt_shutdown_session() - Whether or not a session may be shut down. 2232 */ 2233 static int srpt_shutdown_session(struct se_session *se_sess) 2234 { 2235 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2236 unsigned long flags; 2237 2238 spin_lock_irqsave(&ch->spinlock, flags); 2239 if (ch->in_shutdown) { 2240 spin_unlock_irqrestore(&ch->spinlock, flags); 2241 return true; 2242 } 2243 2244 ch->in_shutdown = true; 2245 target_sess_cmd_list_set_waiting(se_sess); 2246 spin_unlock_irqrestore(&ch->spinlock, flags); 2247 2248 return true; 2249 } 2250 2251 /** 2252 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2253 * @cm_id: Pointer to the CM ID of the channel to be drained. 2254 * 2255 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2256 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2257 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2258 * waits until all target sessions for the associated IB device have been 2259 * unregistered and target session registration involves a call to 2260 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2261 * this function has finished). 2262 */ 2263 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2264 { 2265 struct srpt_device *sdev; 2266 struct srpt_rdma_ch *ch; 2267 int ret; 2268 bool do_reset = false; 2269 2270 WARN_ON_ONCE(irqs_disabled()); 2271 2272 sdev = cm_id->context; 2273 BUG_ON(!sdev); 2274 spin_lock_irq(&sdev->spinlock); 2275 list_for_each_entry(ch, &sdev->rch_list, list) { 2276 if (ch->cm_id == cm_id) { 2277 do_reset = srpt_test_and_set_ch_state(ch, 2278 CH_CONNECTING, CH_DRAINING) || 2279 srpt_test_and_set_ch_state(ch, 2280 CH_LIVE, CH_DRAINING) || 2281 srpt_test_and_set_ch_state(ch, 2282 CH_DISCONNECTING, CH_DRAINING); 2283 break; 2284 } 2285 } 2286 spin_unlock_irq(&sdev->spinlock); 2287 2288 if (do_reset) { 2289 if (ch->sess) 2290 srpt_shutdown_session(ch->sess); 2291 2292 ret = srpt_ch_qp_err(ch); 2293 if (ret < 0) 2294 printk(KERN_ERR "Setting queue pair in error state" 2295 " failed: %d\n", ret); 2296 } 2297 } 2298 2299 /** 2300 * srpt_find_channel() - Look up an RDMA channel. 2301 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2302 * 2303 * Return NULL if no matching RDMA channel has been found. 2304 */ 2305 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2306 struct ib_cm_id *cm_id) 2307 { 2308 struct srpt_rdma_ch *ch; 2309 bool found; 2310 2311 WARN_ON_ONCE(irqs_disabled()); 2312 BUG_ON(!sdev); 2313 2314 found = false; 2315 spin_lock_irq(&sdev->spinlock); 2316 list_for_each_entry(ch, &sdev->rch_list, list) { 2317 if (ch->cm_id == cm_id) { 2318 found = true; 2319 break; 2320 } 2321 } 2322 spin_unlock_irq(&sdev->spinlock); 2323 2324 return found ? ch : NULL; 2325 } 2326 2327 /** 2328 * srpt_release_channel() - Release channel resources. 2329 * 2330 * Schedules the actual release because: 2331 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2332 * trigger a deadlock. 2333 * - It is not safe to call TCM transport_* functions from interrupt context. 2334 */ 2335 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2336 { 2337 schedule_work(&ch->release_work); 2338 } 2339 2340 static void srpt_release_channel_work(struct work_struct *w) 2341 { 2342 struct srpt_rdma_ch *ch; 2343 struct srpt_device *sdev; 2344 struct se_session *se_sess; 2345 2346 ch = container_of(w, struct srpt_rdma_ch, release_work); 2347 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2348 ch->release_done); 2349 2350 sdev = ch->sport->sdev; 2351 BUG_ON(!sdev); 2352 2353 se_sess = ch->sess; 2354 BUG_ON(!se_sess); 2355 2356 target_wait_for_sess_cmds(se_sess); 2357 2358 transport_deregister_session_configfs(se_sess); 2359 transport_deregister_session(se_sess); 2360 ch->sess = NULL; 2361 2362 ib_destroy_cm_id(ch->cm_id); 2363 2364 srpt_destroy_ch_ib(ch); 2365 2366 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2367 ch->sport->sdev, ch->rq_size, 2368 ch->rsp_size, DMA_TO_DEVICE); 2369 2370 spin_lock_irq(&sdev->spinlock); 2371 list_del(&ch->list); 2372 spin_unlock_irq(&sdev->spinlock); 2373 2374 if (ch->release_done) 2375 complete(ch->release_done); 2376 2377 wake_up(&sdev->ch_releaseQ); 2378 2379 kfree(ch); 2380 } 2381 2382 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2383 u8 i_port_id[16]) 2384 { 2385 struct srpt_node_acl *nacl; 2386 2387 list_for_each_entry(nacl, &sport->port_acl_list, list) 2388 if (memcmp(nacl->i_port_id, i_port_id, 2389 sizeof(nacl->i_port_id)) == 0) 2390 return nacl; 2391 2392 return NULL; 2393 } 2394 2395 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2396 u8 i_port_id[16]) 2397 { 2398 struct srpt_node_acl *nacl; 2399 2400 spin_lock_irq(&sport->port_acl_lock); 2401 nacl = __srpt_lookup_acl(sport, i_port_id); 2402 spin_unlock_irq(&sport->port_acl_lock); 2403 2404 return nacl; 2405 } 2406 2407 /** 2408 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2409 * 2410 * Ownership of the cm_id is transferred to the target session if this 2411 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2412 */ 2413 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2414 struct ib_cm_req_event_param *param, 2415 void *private_data) 2416 { 2417 struct srpt_device *sdev = cm_id->context; 2418 struct srpt_port *sport = &sdev->port[param->port - 1]; 2419 struct srp_login_req *req; 2420 struct srp_login_rsp *rsp; 2421 struct srp_login_rej *rej; 2422 struct ib_cm_rep_param *rep_param; 2423 struct srpt_rdma_ch *ch, *tmp_ch; 2424 struct srpt_node_acl *nacl; 2425 u32 it_iu_len; 2426 int i; 2427 int ret = 0; 2428 2429 WARN_ON_ONCE(irqs_disabled()); 2430 2431 if (WARN_ON(!sdev || !private_data)) 2432 return -EINVAL; 2433 2434 req = (struct srp_login_req *)private_data; 2435 2436 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2437 2438 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2439 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2440 " (guid=0x%llx:0x%llx)\n", 2441 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2442 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2443 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2444 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2445 it_iu_len, 2446 param->port, 2447 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2448 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2449 2450 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2451 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2452 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2453 2454 if (!rsp || !rej || !rep_param) { 2455 ret = -ENOMEM; 2456 goto out; 2457 } 2458 2459 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2460 rej->reason = __constant_cpu_to_be32( 2461 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2462 ret = -EINVAL; 2463 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" 2464 " length (%d bytes) is out of range (%d .. %d)\n", 2465 it_iu_len, 64, srp_max_req_size); 2466 goto reject; 2467 } 2468 2469 if (!sport->enabled) { 2470 rej->reason = __constant_cpu_to_be32( 2471 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2472 ret = -EINVAL; 2473 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" 2474 " has not yet been enabled\n"); 2475 goto reject; 2476 } 2477 2478 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2479 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2480 2481 spin_lock_irq(&sdev->spinlock); 2482 2483 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2484 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2485 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2486 && param->port == ch->sport->port 2487 && param->listen_id == ch->sport->sdev->cm_id 2488 && ch->cm_id) { 2489 enum rdma_ch_state ch_state; 2490 2491 ch_state = srpt_get_ch_state(ch); 2492 if (ch_state != CH_CONNECTING 2493 && ch_state != CH_LIVE) 2494 continue; 2495 2496 /* found an existing channel */ 2497 pr_debug("Found existing channel %s" 2498 " cm_id= %p state= %d\n", 2499 ch->sess_name, ch->cm_id, ch_state); 2500 2501 __srpt_close_ch(ch); 2502 2503 rsp->rsp_flags = 2504 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2505 } 2506 } 2507 2508 spin_unlock_irq(&sdev->spinlock); 2509 2510 } else 2511 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2512 2513 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2514 || *(__be64 *)(req->target_port_id + 8) != 2515 cpu_to_be64(srpt_service_guid)) { 2516 rej->reason = __constant_cpu_to_be32( 2517 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2518 ret = -ENOMEM; 2519 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" 2520 " has an invalid target port identifier.\n"); 2521 goto reject; 2522 } 2523 2524 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2525 if (!ch) { 2526 rej->reason = __constant_cpu_to_be32( 2527 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2528 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); 2529 ret = -ENOMEM; 2530 goto reject; 2531 } 2532 2533 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2534 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2535 memcpy(ch->t_port_id, req->target_port_id, 16); 2536 ch->sport = &sdev->port[param->port - 1]; 2537 ch->cm_id = cm_id; 2538 /* 2539 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2540 * for the SRP protocol to the command queue size. 2541 */ 2542 ch->rq_size = SRPT_RQ_SIZE; 2543 spin_lock_init(&ch->spinlock); 2544 ch->state = CH_CONNECTING; 2545 INIT_LIST_HEAD(&ch->cmd_wait_list); 2546 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2547 2548 ch->ioctx_ring = (struct srpt_send_ioctx **) 2549 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2550 sizeof(*ch->ioctx_ring[0]), 2551 ch->rsp_size, DMA_TO_DEVICE); 2552 if (!ch->ioctx_ring) 2553 goto free_ch; 2554 2555 INIT_LIST_HEAD(&ch->free_list); 2556 for (i = 0; i < ch->rq_size; i++) { 2557 ch->ioctx_ring[i]->ch = ch; 2558 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2559 } 2560 2561 ret = srpt_create_ch_ib(ch); 2562 if (ret) { 2563 rej->reason = __constant_cpu_to_be32( 2564 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2565 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" 2566 " a new RDMA channel failed.\n"); 2567 goto free_ring; 2568 } 2569 2570 ret = srpt_ch_qp_rtr(ch, ch->qp); 2571 if (ret) { 2572 rej->reason = __constant_cpu_to_be32( 2573 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2574 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" 2575 " RTR failed (error code = %d)\n", ret); 2576 goto destroy_ib; 2577 } 2578 /* 2579 * Use the initator port identifier as the session name. 2580 */ 2581 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2582 be64_to_cpu(*(__be64 *)ch->i_port_id), 2583 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2584 2585 pr_debug("registering session %s\n", ch->sess_name); 2586 2587 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2588 if (!nacl) { 2589 printk(KERN_INFO "Rejected login because no ACL has been" 2590 " configured yet for initiator %s.\n", ch->sess_name); 2591 rej->reason = __constant_cpu_to_be32( 2592 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2593 goto destroy_ib; 2594 } 2595 2596 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2597 if (IS_ERR(ch->sess)) { 2598 rej->reason = __constant_cpu_to_be32( 2599 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2600 pr_debug("Failed to create session\n"); 2601 goto deregister_session; 2602 } 2603 ch->sess->se_node_acl = &nacl->nacl; 2604 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2605 2606 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2607 ch->sess_name, ch->cm_id); 2608 2609 /* create srp_login_response */ 2610 rsp->opcode = SRP_LOGIN_RSP; 2611 rsp->tag = req->tag; 2612 rsp->max_it_iu_len = req->req_it_iu_len; 2613 rsp->max_ti_iu_len = req->req_it_iu_len; 2614 ch->max_ti_iu_len = it_iu_len; 2615 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2616 | SRP_BUF_FORMAT_INDIRECT); 2617 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2618 atomic_set(&ch->req_lim, ch->rq_size); 2619 atomic_set(&ch->req_lim_delta, 0); 2620 2621 /* create cm reply */ 2622 rep_param->qp_num = ch->qp->qp_num; 2623 rep_param->private_data = (void *)rsp; 2624 rep_param->private_data_len = sizeof *rsp; 2625 rep_param->rnr_retry_count = 7; 2626 rep_param->flow_control = 1; 2627 rep_param->failover_accepted = 0; 2628 rep_param->srq = 1; 2629 rep_param->responder_resources = 4; 2630 rep_param->initiator_depth = 4; 2631 2632 ret = ib_send_cm_rep(cm_id, rep_param); 2633 if (ret) { 2634 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" 2635 " (error code = %d)\n", ret); 2636 goto release_channel; 2637 } 2638 2639 spin_lock_irq(&sdev->spinlock); 2640 list_add_tail(&ch->list, &sdev->rch_list); 2641 spin_unlock_irq(&sdev->spinlock); 2642 2643 goto out; 2644 2645 release_channel: 2646 srpt_set_ch_state(ch, CH_RELEASING); 2647 transport_deregister_session_configfs(ch->sess); 2648 2649 deregister_session: 2650 transport_deregister_session(ch->sess); 2651 ch->sess = NULL; 2652 2653 destroy_ib: 2654 srpt_destroy_ch_ib(ch); 2655 2656 free_ring: 2657 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2658 ch->sport->sdev, ch->rq_size, 2659 ch->rsp_size, DMA_TO_DEVICE); 2660 free_ch: 2661 kfree(ch); 2662 2663 reject: 2664 rej->opcode = SRP_LOGIN_REJ; 2665 rej->tag = req->tag; 2666 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2667 | SRP_BUF_FORMAT_INDIRECT); 2668 2669 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2670 (void *)rej, sizeof *rej); 2671 2672 out: 2673 kfree(rep_param); 2674 kfree(rsp); 2675 kfree(rej); 2676 2677 return ret; 2678 } 2679 2680 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2681 { 2682 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); 2683 srpt_drain_channel(cm_id); 2684 } 2685 2686 /** 2687 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2688 * 2689 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2690 * and that the recipient may begin transmitting (RTU = ready to use). 2691 */ 2692 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2693 { 2694 struct srpt_rdma_ch *ch; 2695 int ret; 2696 2697 ch = srpt_find_channel(cm_id->context, cm_id); 2698 BUG_ON(!ch); 2699 2700 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2701 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2702 2703 ret = srpt_ch_qp_rts(ch, ch->qp); 2704 2705 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2706 wait_list) { 2707 list_del(&ioctx->wait_list); 2708 srpt_handle_new_iu(ch, ioctx, NULL); 2709 } 2710 if (ret) 2711 srpt_close_ch(ch); 2712 } 2713 } 2714 2715 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2716 { 2717 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); 2718 srpt_drain_channel(cm_id); 2719 } 2720 2721 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2722 { 2723 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); 2724 srpt_drain_channel(cm_id); 2725 } 2726 2727 /** 2728 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2729 */ 2730 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2731 { 2732 struct srpt_rdma_ch *ch; 2733 unsigned long flags; 2734 bool send_drep = false; 2735 2736 ch = srpt_find_channel(cm_id->context, cm_id); 2737 BUG_ON(!ch); 2738 2739 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2740 2741 spin_lock_irqsave(&ch->spinlock, flags); 2742 switch (ch->state) { 2743 case CH_CONNECTING: 2744 case CH_LIVE: 2745 send_drep = true; 2746 ch->state = CH_DISCONNECTING; 2747 break; 2748 case CH_DISCONNECTING: 2749 case CH_DRAINING: 2750 case CH_RELEASING: 2751 WARN(true, "unexpected channel state %d\n", ch->state); 2752 break; 2753 } 2754 spin_unlock_irqrestore(&ch->spinlock, flags); 2755 2756 if (send_drep) { 2757 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2758 printk(KERN_ERR "Sending IB DREP failed.\n"); 2759 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", 2760 ch->sess_name); 2761 } 2762 } 2763 2764 /** 2765 * srpt_cm_drep_recv() - Process reception of a DREP message. 2766 */ 2767 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2768 { 2769 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", 2770 cm_id); 2771 srpt_drain_channel(cm_id); 2772 } 2773 2774 /** 2775 * srpt_cm_handler() - IB connection manager callback function. 2776 * 2777 * A non-zero return value will cause the caller destroy the CM ID. 2778 * 2779 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2780 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2781 * a non-zero value in any other case will trigger a race with the 2782 * ib_destroy_cm_id() call in srpt_release_channel(). 2783 */ 2784 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2785 { 2786 int ret; 2787 2788 ret = 0; 2789 switch (event->event) { 2790 case IB_CM_REQ_RECEIVED: 2791 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2792 event->private_data); 2793 break; 2794 case IB_CM_REJ_RECEIVED: 2795 srpt_cm_rej_recv(cm_id); 2796 break; 2797 case IB_CM_RTU_RECEIVED: 2798 case IB_CM_USER_ESTABLISHED: 2799 srpt_cm_rtu_recv(cm_id); 2800 break; 2801 case IB_CM_DREQ_RECEIVED: 2802 srpt_cm_dreq_recv(cm_id); 2803 break; 2804 case IB_CM_DREP_RECEIVED: 2805 srpt_cm_drep_recv(cm_id); 2806 break; 2807 case IB_CM_TIMEWAIT_EXIT: 2808 srpt_cm_timewait_exit(cm_id); 2809 break; 2810 case IB_CM_REP_ERROR: 2811 srpt_cm_rep_error(cm_id); 2812 break; 2813 case IB_CM_DREQ_ERROR: 2814 printk(KERN_INFO "Received IB DREQ ERROR event.\n"); 2815 break; 2816 case IB_CM_MRA_RECEIVED: 2817 printk(KERN_INFO "Received IB MRA event\n"); 2818 break; 2819 default: 2820 printk(KERN_ERR "received unrecognized IB CM event %d\n", 2821 event->event); 2822 break; 2823 } 2824 2825 return ret; 2826 } 2827 2828 /** 2829 * srpt_perform_rdmas() - Perform IB RDMA. 2830 * 2831 * Returns zero upon success or a negative number upon failure. 2832 */ 2833 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2834 struct srpt_send_ioctx *ioctx) 2835 { 2836 struct ib_send_wr wr; 2837 struct ib_send_wr *bad_wr; 2838 struct rdma_iu *riu; 2839 int i; 2840 int ret; 2841 int sq_wr_avail; 2842 enum dma_data_direction dir; 2843 const int n_rdma = ioctx->n_rdma; 2844 2845 dir = ioctx->cmd.data_direction; 2846 if (dir == DMA_TO_DEVICE) { 2847 /* write */ 2848 ret = -ENOMEM; 2849 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2850 if (sq_wr_avail < 0) { 2851 printk(KERN_WARNING "IB send queue full (needed %d)\n", 2852 n_rdma); 2853 goto out; 2854 } 2855 } 2856 2857 ioctx->rdma_aborted = false; 2858 ret = 0; 2859 riu = ioctx->rdma_ius; 2860 memset(&wr, 0, sizeof wr); 2861 2862 for (i = 0; i < n_rdma; ++i, ++riu) { 2863 if (dir == DMA_FROM_DEVICE) { 2864 wr.opcode = IB_WR_RDMA_WRITE; 2865 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2866 SRPT_RDMA_WRITE_LAST : 2867 SRPT_RDMA_MID, 2868 ioctx->ioctx.index); 2869 } else { 2870 wr.opcode = IB_WR_RDMA_READ; 2871 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2872 SRPT_RDMA_READ_LAST : 2873 SRPT_RDMA_MID, 2874 ioctx->ioctx.index); 2875 } 2876 wr.next = NULL; 2877 wr.wr.rdma.remote_addr = riu->raddr; 2878 wr.wr.rdma.rkey = riu->rkey; 2879 wr.num_sge = riu->sge_cnt; 2880 wr.sg_list = riu->sge; 2881 2882 /* only get completion event for the last rdma write */ 2883 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2884 wr.send_flags = IB_SEND_SIGNALED; 2885 2886 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2887 if (ret) 2888 break; 2889 } 2890 2891 if (ret) 2892 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", 2893 __func__, __LINE__, ret, i, n_rdma); 2894 if (ret && i > 0) { 2895 wr.num_sge = 0; 2896 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2897 wr.send_flags = IB_SEND_SIGNALED; 2898 while (ch->state == CH_LIVE && 2899 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2900 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", 2901 ioctx->ioctx.index); 2902 msleep(1000); 2903 } 2904 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2905 printk(KERN_INFO "Waiting until RDMA abort finished [%d]", 2906 ioctx->ioctx.index); 2907 msleep(1000); 2908 } 2909 } 2910 out: 2911 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2912 atomic_add(n_rdma, &ch->sq_wr_avail); 2913 return ret; 2914 } 2915 2916 /** 2917 * srpt_xfer_data() - Start data transfer from initiator to target. 2918 */ 2919 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2920 struct srpt_send_ioctx *ioctx) 2921 { 2922 int ret; 2923 2924 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2925 if (ret) { 2926 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); 2927 goto out; 2928 } 2929 2930 ret = srpt_perform_rdmas(ch, ioctx); 2931 if (ret) { 2932 if (ret == -EAGAIN || ret == -ENOMEM) 2933 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", 2934 __func__, __LINE__, ret); 2935 else 2936 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", 2937 __func__, __LINE__, ret); 2938 goto out_unmap; 2939 } 2940 2941 out: 2942 return ret; 2943 out_unmap: 2944 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2945 goto out; 2946 } 2947 2948 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2949 { 2950 struct srpt_send_ioctx *ioctx; 2951 2952 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2953 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2954 } 2955 2956 /* 2957 * srpt_write_pending() - Start data transfer from initiator to target (write). 2958 */ 2959 static int srpt_write_pending(struct se_cmd *se_cmd) 2960 { 2961 struct srpt_rdma_ch *ch; 2962 struct srpt_send_ioctx *ioctx; 2963 enum srpt_command_state new_state; 2964 enum rdma_ch_state ch_state; 2965 int ret; 2966 2967 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2968 2969 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2970 WARN_ON(new_state == SRPT_STATE_DONE); 2971 2972 ch = ioctx->ch; 2973 BUG_ON(!ch); 2974 2975 ch_state = srpt_get_ch_state(ch); 2976 switch (ch_state) { 2977 case CH_CONNECTING: 2978 WARN(true, "unexpected channel state %d\n", ch_state); 2979 ret = -EINVAL; 2980 goto out; 2981 case CH_LIVE: 2982 break; 2983 case CH_DISCONNECTING: 2984 case CH_DRAINING: 2985 case CH_RELEASING: 2986 pr_debug("cmd with tag %lld: channel disconnecting\n", 2987 ioctx->tag); 2988 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2989 ret = -EINVAL; 2990 goto out; 2991 } 2992 ret = srpt_xfer_data(ch, ioctx); 2993 2994 out: 2995 return ret; 2996 } 2997 2998 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2999 { 3000 switch (tcm_mgmt_status) { 3001 case TMR_FUNCTION_COMPLETE: 3002 return SRP_TSK_MGMT_SUCCESS; 3003 case TMR_FUNCTION_REJECTED: 3004 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3005 } 3006 return SRP_TSK_MGMT_FAILED; 3007 } 3008 3009 /** 3010 * srpt_queue_response() - Transmits the response to a SCSI command. 3011 * 3012 * Callback function called by the TCM core. Must not block since it can be 3013 * invoked on the context of the IB completion handler. 3014 */ 3015 static void srpt_queue_response(struct se_cmd *cmd) 3016 { 3017 struct srpt_rdma_ch *ch; 3018 struct srpt_send_ioctx *ioctx; 3019 enum srpt_command_state state; 3020 unsigned long flags; 3021 int ret; 3022 enum dma_data_direction dir; 3023 int resp_len; 3024 u8 srp_tm_status; 3025 3026 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3027 ch = ioctx->ch; 3028 BUG_ON(!ch); 3029 3030 spin_lock_irqsave(&ioctx->spinlock, flags); 3031 state = ioctx->state; 3032 switch (state) { 3033 case SRPT_STATE_NEW: 3034 case SRPT_STATE_DATA_IN: 3035 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3036 break; 3037 case SRPT_STATE_MGMT: 3038 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3039 break; 3040 default: 3041 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3042 ch, ioctx->ioctx.index, ioctx->state); 3043 break; 3044 } 3045 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3046 3047 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3048 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3049 atomic_inc(&ch->req_lim_delta); 3050 srpt_abort_cmd(ioctx); 3051 return; 3052 } 3053 3054 dir = ioctx->cmd.data_direction; 3055 3056 /* For read commands, transfer the data to the initiator. */ 3057 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3058 !ioctx->queue_status_only) { 3059 ret = srpt_xfer_data(ch, ioctx); 3060 if (ret) { 3061 printk(KERN_ERR "xfer_data failed for tag %llu\n", 3062 ioctx->tag); 3063 return; 3064 } 3065 } 3066 3067 if (state != SRPT_STATE_MGMT) 3068 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3069 cmd->scsi_status); 3070 else { 3071 srp_tm_status 3072 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3073 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3074 ioctx->tag); 3075 } 3076 ret = srpt_post_send(ch, ioctx, resp_len); 3077 if (ret) { 3078 printk(KERN_ERR "sending cmd response failed for tag %llu\n", 3079 ioctx->tag); 3080 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3081 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3082 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 3083 } 3084 } 3085 3086 static int srpt_queue_data_in(struct se_cmd *cmd) 3087 { 3088 srpt_queue_response(cmd); 3089 return 0; 3090 } 3091 3092 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3093 { 3094 srpt_queue_response(cmd); 3095 } 3096 3097 static void srpt_aborted_task(struct se_cmd *cmd) 3098 { 3099 struct srpt_send_ioctx *ioctx = container_of(cmd, 3100 struct srpt_send_ioctx, cmd); 3101 3102 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3103 } 3104 3105 static int srpt_queue_status(struct se_cmd *cmd) 3106 { 3107 struct srpt_send_ioctx *ioctx; 3108 3109 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3110 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3111 if (cmd->se_cmd_flags & 3112 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3113 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3114 ioctx->queue_status_only = true; 3115 srpt_queue_response(cmd); 3116 return 0; 3117 } 3118 3119 static void srpt_refresh_port_work(struct work_struct *work) 3120 { 3121 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3122 3123 srpt_refresh_port(sport); 3124 } 3125 3126 static int srpt_ch_list_empty(struct srpt_device *sdev) 3127 { 3128 int res; 3129 3130 spin_lock_irq(&sdev->spinlock); 3131 res = list_empty(&sdev->rch_list); 3132 spin_unlock_irq(&sdev->spinlock); 3133 3134 return res; 3135 } 3136 3137 /** 3138 * srpt_release_sdev() - Free the channel resources associated with a target. 3139 */ 3140 static int srpt_release_sdev(struct srpt_device *sdev) 3141 { 3142 struct srpt_rdma_ch *ch, *tmp_ch; 3143 int res; 3144 3145 WARN_ON_ONCE(irqs_disabled()); 3146 3147 BUG_ON(!sdev); 3148 3149 spin_lock_irq(&sdev->spinlock); 3150 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3151 __srpt_close_ch(ch); 3152 spin_unlock_irq(&sdev->spinlock); 3153 3154 res = wait_event_interruptible(sdev->ch_releaseQ, 3155 srpt_ch_list_empty(sdev)); 3156 if (res) 3157 printk(KERN_ERR "%s: interrupted.\n", __func__); 3158 3159 return 0; 3160 } 3161 3162 static struct srpt_port *__srpt_lookup_port(const char *name) 3163 { 3164 struct ib_device *dev; 3165 struct srpt_device *sdev; 3166 struct srpt_port *sport; 3167 int i; 3168 3169 list_for_each_entry(sdev, &srpt_dev_list, list) { 3170 dev = sdev->device; 3171 if (!dev) 3172 continue; 3173 3174 for (i = 0; i < dev->phys_port_cnt; i++) { 3175 sport = &sdev->port[i]; 3176 3177 if (!strcmp(sport->port_guid, name)) 3178 return sport; 3179 } 3180 } 3181 3182 return NULL; 3183 } 3184 3185 static struct srpt_port *srpt_lookup_port(const char *name) 3186 { 3187 struct srpt_port *sport; 3188 3189 spin_lock(&srpt_dev_lock); 3190 sport = __srpt_lookup_port(name); 3191 spin_unlock(&srpt_dev_lock); 3192 3193 return sport; 3194 } 3195 3196 /** 3197 * srpt_add_one() - Infiniband device addition callback function. 3198 */ 3199 static void srpt_add_one(struct ib_device *device) 3200 { 3201 struct srpt_device *sdev; 3202 struct srpt_port *sport; 3203 struct ib_srq_init_attr srq_attr; 3204 int i; 3205 3206 pr_debug("device = %p, device->dma_ops = %p\n", device, 3207 device->dma_ops); 3208 3209 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3210 if (!sdev) 3211 goto err; 3212 3213 sdev->device = device; 3214 INIT_LIST_HEAD(&sdev->rch_list); 3215 init_waitqueue_head(&sdev->ch_releaseQ); 3216 spin_lock_init(&sdev->spinlock); 3217 3218 if (ib_query_device(device, &sdev->dev_attr)) 3219 goto free_dev; 3220 3221 sdev->pd = ib_alloc_pd(device); 3222 if (IS_ERR(sdev->pd)) 3223 goto free_dev; 3224 3225 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3226 if (IS_ERR(sdev->mr)) 3227 goto err_pd; 3228 3229 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3230 3231 srq_attr.event_handler = srpt_srq_event; 3232 srq_attr.srq_context = (void *)sdev; 3233 srq_attr.attr.max_wr = sdev->srq_size; 3234 srq_attr.attr.max_sge = 1; 3235 srq_attr.attr.srq_limit = 0; 3236 srq_attr.srq_type = IB_SRQT_BASIC; 3237 3238 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3239 if (IS_ERR(sdev->srq)) 3240 goto err_mr; 3241 3242 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3243 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3244 device->name); 3245 3246 if (!srpt_service_guid) 3247 srpt_service_guid = be64_to_cpu(device->node_guid); 3248 3249 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3250 if (IS_ERR(sdev->cm_id)) 3251 goto err_srq; 3252 3253 /* print out target login information */ 3254 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3255 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3256 srpt_service_guid, srpt_service_guid); 3257 3258 /* 3259 * We do not have a consistent service_id (ie. also id_ext of target_id) 3260 * to identify this target. We currently use the guid of the first HCA 3261 * in the system as service_id; therefore, the target_id will change 3262 * if this HCA is gone bad and replaced by different HCA 3263 */ 3264 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3265 goto err_cm; 3266 3267 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3268 srpt_event_handler); 3269 if (ib_register_event_handler(&sdev->event_handler)) 3270 goto err_cm; 3271 3272 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3273 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3274 sizeof(*sdev->ioctx_ring[0]), 3275 srp_max_req_size, DMA_FROM_DEVICE); 3276 if (!sdev->ioctx_ring) 3277 goto err_event; 3278 3279 for (i = 0; i < sdev->srq_size; ++i) 3280 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3281 3282 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3283 3284 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3285 sport = &sdev->port[i - 1]; 3286 sport->sdev = sdev; 3287 sport->port = i; 3288 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3289 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3290 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3291 INIT_WORK(&sport->work, srpt_refresh_port_work); 3292 INIT_LIST_HEAD(&sport->port_acl_list); 3293 spin_lock_init(&sport->port_acl_lock); 3294 3295 if (srpt_refresh_port(sport)) { 3296 printk(KERN_ERR "MAD registration failed for %s-%d.\n", 3297 srpt_sdev_name(sdev), i); 3298 goto err_ring; 3299 } 3300 snprintf(sport->port_guid, sizeof(sport->port_guid), 3301 "0x%016llx%016llx", 3302 be64_to_cpu(sport->gid.global.subnet_prefix), 3303 be64_to_cpu(sport->gid.global.interface_id)); 3304 } 3305 3306 spin_lock(&srpt_dev_lock); 3307 list_add_tail(&sdev->list, &srpt_dev_list); 3308 spin_unlock(&srpt_dev_lock); 3309 3310 out: 3311 ib_set_client_data(device, &srpt_client, sdev); 3312 pr_debug("added %s.\n", device->name); 3313 return; 3314 3315 err_ring: 3316 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3317 sdev->srq_size, srp_max_req_size, 3318 DMA_FROM_DEVICE); 3319 err_event: 3320 ib_unregister_event_handler(&sdev->event_handler); 3321 err_cm: 3322 ib_destroy_cm_id(sdev->cm_id); 3323 err_srq: 3324 ib_destroy_srq(sdev->srq); 3325 err_mr: 3326 ib_dereg_mr(sdev->mr); 3327 err_pd: 3328 ib_dealloc_pd(sdev->pd); 3329 free_dev: 3330 kfree(sdev); 3331 err: 3332 sdev = NULL; 3333 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); 3334 goto out; 3335 } 3336 3337 /** 3338 * srpt_remove_one() - InfiniBand device removal callback function. 3339 */ 3340 static void srpt_remove_one(struct ib_device *device) 3341 { 3342 struct srpt_device *sdev; 3343 int i; 3344 3345 sdev = ib_get_client_data(device, &srpt_client); 3346 if (!sdev) { 3347 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, 3348 device->name); 3349 return; 3350 } 3351 3352 srpt_unregister_mad_agent(sdev); 3353 3354 ib_unregister_event_handler(&sdev->event_handler); 3355 3356 /* Cancel any work queued by the just unregistered IB event handler. */ 3357 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3358 cancel_work_sync(&sdev->port[i].work); 3359 3360 ib_destroy_cm_id(sdev->cm_id); 3361 3362 /* 3363 * Unregistering a target must happen after destroying sdev->cm_id 3364 * such that no new SRP_LOGIN_REQ information units can arrive while 3365 * destroying the target. 3366 */ 3367 spin_lock(&srpt_dev_lock); 3368 list_del(&sdev->list); 3369 spin_unlock(&srpt_dev_lock); 3370 srpt_release_sdev(sdev); 3371 3372 ib_destroy_srq(sdev->srq); 3373 ib_dereg_mr(sdev->mr); 3374 ib_dealloc_pd(sdev->pd); 3375 3376 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3377 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3378 sdev->ioctx_ring = NULL; 3379 kfree(sdev); 3380 } 3381 3382 static struct ib_client srpt_client = { 3383 .name = DRV_NAME, 3384 .add = srpt_add_one, 3385 .remove = srpt_remove_one 3386 }; 3387 3388 static int srpt_check_true(struct se_portal_group *se_tpg) 3389 { 3390 return 1; 3391 } 3392 3393 static int srpt_check_false(struct se_portal_group *se_tpg) 3394 { 3395 return 0; 3396 } 3397 3398 static char *srpt_get_fabric_name(void) 3399 { 3400 return "srpt"; 3401 } 3402 3403 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3404 { 3405 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3406 } 3407 3408 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3409 { 3410 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3411 3412 return sport->port_guid; 3413 } 3414 3415 static u16 srpt_get_tag(struct se_portal_group *tpg) 3416 { 3417 return 1; 3418 } 3419 3420 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3421 { 3422 return 1; 3423 } 3424 3425 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3426 struct se_node_acl *se_nacl, 3427 struct t10_pr_registration *pr_reg, 3428 int *format_code, unsigned char *buf) 3429 { 3430 struct srpt_node_acl *nacl; 3431 struct spc_rdma_transport_id *tr_id; 3432 3433 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3434 tr_id = (void *)buf; 3435 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3436 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3437 return sizeof(*tr_id); 3438 } 3439 3440 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3441 struct se_node_acl *se_nacl, 3442 struct t10_pr_registration *pr_reg, 3443 int *format_code) 3444 { 3445 *format_code = 0; 3446 return sizeof(struct spc_rdma_transport_id); 3447 } 3448 3449 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3450 const char *buf, u32 *out_tid_len, 3451 char **port_nexus_ptr) 3452 { 3453 struct spc_rdma_transport_id *tr_id; 3454 3455 *port_nexus_ptr = NULL; 3456 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3457 tr_id = (void *)buf; 3458 return (char *)tr_id->i_port_id; 3459 } 3460 3461 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3462 { 3463 struct srpt_node_acl *nacl; 3464 3465 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3466 if (!nacl) { 3467 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n"); 3468 return NULL; 3469 } 3470 3471 return &nacl->nacl; 3472 } 3473 3474 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3475 struct se_node_acl *se_nacl) 3476 { 3477 struct srpt_node_acl *nacl; 3478 3479 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3480 kfree(nacl); 3481 } 3482 3483 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3484 { 3485 return 1; 3486 } 3487 3488 static void srpt_release_cmd(struct se_cmd *se_cmd) 3489 { 3490 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3491 struct srpt_send_ioctx, cmd); 3492 struct srpt_rdma_ch *ch = ioctx->ch; 3493 unsigned long flags; 3494 3495 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3496 WARN_ON(ioctx->mapped_sg_count != 0); 3497 3498 if (ioctx->n_rbuf > 1) { 3499 kfree(ioctx->rbufs); 3500 ioctx->rbufs = NULL; 3501 ioctx->n_rbuf = 0; 3502 } 3503 3504 spin_lock_irqsave(&ch->spinlock, flags); 3505 list_add(&ioctx->free_list, &ch->free_list); 3506 spin_unlock_irqrestore(&ch->spinlock, flags); 3507 } 3508 3509 /** 3510 * srpt_close_session() - Forcibly close a session. 3511 * 3512 * Callback function invoked by the TCM core to clean up sessions associated 3513 * with a node ACL when the user invokes 3514 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3515 */ 3516 static void srpt_close_session(struct se_session *se_sess) 3517 { 3518 DECLARE_COMPLETION_ONSTACK(release_done); 3519 struct srpt_rdma_ch *ch; 3520 struct srpt_device *sdev; 3521 int res; 3522 3523 ch = se_sess->fabric_sess_ptr; 3524 WARN_ON(ch->sess != se_sess); 3525 3526 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3527 3528 sdev = ch->sport->sdev; 3529 spin_lock_irq(&sdev->spinlock); 3530 BUG_ON(ch->release_done); 3531 ch->release_done = &release_done; 3532 __srpt_close_ch(ch); 3533 spin_unlock_irq(&sdev->spinlock); 3534 3535 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3536 WARN_ON(res <= 0); 3537 } 3538 3539 /** 3540 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3541 * 3542 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3543 * This object represents an arbitrary integer used to uniquely identify a 3544 * particular attached remote initiator port to a particular SCSI target port 3545 * within a particular SCSI target device within a particular SCSI instance. 3546 */ 3547 static u32 srpt_sess_get_index(struct se_session *se_sess) 3548 { 3549 return 0; 3550 } 3551 3552 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3553 { 3554 } 3555 3556 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3557 { 3558 struct srpt_send_ioctx *ioctx; 3559 3560 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3561 return ioctx->tag; 3562 } 3563 3564 /* Note: only used from inside debug printk's by the TCM core. */ 3565 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3566 { 3567 struct srpt_send_ioctx *ioctx; 3568 3569 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3570 return srpt_get_cmd_state(ioctx); 3571 } 3572 3573 /** 3574 * srpt_parse_i_port_id() - Parse an initiator port ID. 3575 * @name: ASCII representation of a 128-bit initiator port ID. 3576 * @i_port_id: Binary 128-bit port ID. 3577 */ 3578 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3579 { 3580 const char *p; 3581 unsigned len, count, leading_zero_bytes; 3582 int ret, rc; 3583 3584 p = name; 3585 if (strncasecmp(p, "0x", 2) == 0) 3586 p += 2; 3587 ret = -EINVAL; 3588 len = strlen(p); 3589 if (len % 2) 3590 goto out; 3591 count = min(len / 2, 16U); 3592 leading_zero_bytes = 16 - count; 3593 memset(i_port_id, 0, leading_zero_bytes); 3594 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3595 if (rc < 0) 3596 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3597 ret = 0; 3598 out: 3599 return ret; 3600 } 3601 3602 /* 3603 * configfs callback function invoked for 3604 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3605 */ 3606 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3607 struct config_group *group, 3608 const char *name) 3609 { 3610 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3611 struct se_node_acl *se_nacl, *se_nacl_new; 3612 struct srpt_node_acl *nacl; 3613 int ret = 0; 3614 u32 nexus_depth = 1; 3615 u8 i_port_id[16]; 3616 3617 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3618 printk(KERN_ERR "invalid initiator port ID %s\n", name); 3619 ret = -EINVAL; 3620 goto err; 3621 } 3622 3623 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3624 if (!se_nacl_new) { 3625 ret = -ENOMEM; 3626 goto err; 3627 } 3628 /* 3629 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3630 * when converting a node ACL from demo mode to explict 3631 */ 3632 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3633 nexus_depth); 3634 if (IS_ERR(se_nacl)) { 3635 ret = PTR_ERR(se_nacl); 3636 goto err; 3637 } 3638 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3639 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3640 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3641 nacl->sport = sport; 3642 3643 spin_lock_irq(&sport->port_acl_lock); 3644 list_add_tail(&nacl->list, &sport->port_acl_list); 3645 spin_unlock_irq(&sport->port_acl_lock); 3646 3647 return se_nacl; 3648 err: 3649 return ERR_PTR(ret); 3650 } 3651 3652 /* 3653 * configfs callback function invoked for 3654 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3655 */ 3656 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3657 { 3658 struct srpt_node_acl *nacl; 3659 struct srpt_device *sdev; 3660 struct srpt_port *sport; 3661 3662 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3663 sport = nacl->sport; 3664 sdev = sport->sdev; 3665 spin_lock_irq(&sport->port_acl_lock); 3666 list_del(&nacl->list); 3667 spin_unlock_irq(&sport->port_acl_lock); 3668 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3669 srpt_release_fabric_acl(NULL, se_nacl); 3670 } 3671 3672 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3673 struct se_portal_group *se_tpg, 3674 char *page) 3675 { 3676 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3677 3678 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3679 } 3680 3681 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3682 struct se_portal_group *se_tpg, 3683 const char *page, 3684 size_t count) 3685 { 3686 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3687 unsigned long val; 3688 int ret; 3689 3690 ret = kstrtoul(page, 0, &val); 3691 if (ret < 0) { 3692 pr_err("kstrtoul() failed with ret: %d\n", ret); 3693 return -EINVAL; 3694 } 3695 if (val > MAX_SRPT_RDMA_SIZE) { 3696 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3697 MAX_SRPT_RDMA_SIZE); 3698 return -EINVAL; 3699 } 3700 if (val < DEFAULT_MAX_RDMA_SIZE) { 3701 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3702 val, DEFAULT_MAX_RDMA_SIZE); 3703 return -EINVAL; 3704 } 3705 sport->port_attrib.srp_max_rdma_size = val; 3706 3707 return count; 3708 } 3709 3710 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3711 3712 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3713 struct se_portal_group *se_tpg, 3714 char *page) 3715 { 3716 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3717 3718 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3719 } 3720 3721 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3722 struct se_portal_group *se_tpg, 3723 const char *page, 3724 size_t count) 3725 { 3726 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3727 unsigned long val; 3728 int ret; 3729 3730 ret = kstrtoul(page, 0, &val); 3731 if (ret < 0) { 3732 pr_err("kstrtoul() failed with ret: %d\n", ret); 3733 return -EINVAL; 3734 } 3735 if (val > MAX_SRPT_RSP_SIZE) { 3736 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3737 MAX_SRPT_RSP_SIZE); 3738 return -EINVAL; 3739 } 3740 if (val < MIN_MAX_RSP_SIZE) { 3741 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3742 MIN_MAX_RSP_SIZE); 3743 return -EINVAL; 3744 } 3745 sport->port_attrib.srp_max_rsp_size = val; 3746 3747 return count; 3748 } 3749 3750 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3751 3752 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3753 struct se_portal_group *se_tpg, 3754 char *page) 3755 { 3756 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3757 3758 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3759 } 3760 3761 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3762 struct se_portal_group *se_tpg, 3763 const char *page, 3764 size_t count) 3765 { 3766 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3767 unsigned long val; 3768 int ret; 3769 3770 ret = kstrtoul(page, 0, &val); 3771 if (ret < 0) { 3772 pr_err("kstrtoul() failed with ret: %d\n", ret); 3773 return -EINVAL; 3774 } 3775 if (val > MAX_SRPT_SRQ_SIZE) { 3776 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3777 MAX_SRPT_SRQ_SIZE); 3778 return -EINVAL; 3779 } 3780 if (val < MIN_SRPT_SRQ_SIZE) { 3781 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3782 MIN_SRPT_SRQ_SIZE); 3783 return -EINVAL; 3784 } 3785 sport->port_attrib.srp_sq_size = val; 3786 3787 return count; 3788 } 3789 3790 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3791 3792 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3793 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3794 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3795 &srpt_tpg_attrib_srp_sq_size.attr, 3796 NULL, 3797 }; 3798 3799 static ssize_t srpt_tpg_show_enable( 3800 struct se_portal_group *se_tpg, 3801 char *page) 3802 { 3803 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3804 3805 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3806 } 3807 3808 static ssize_t srpt_tpg_store_enable( 3809 struct se_portal_group *se_tpg, 3810 const char *page, 3811 size_t count) 3812 { 3813 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3814 unsigned long tmp; 3815 int ret; 3816 3817 ret = kstrtoul(page, 0, &tmp); 3818 if (ret < 0) { 3819 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); 3820 return -EINVAL; 3821 } 3822 3823 if ((tmp != 0) && (tmp != 1)) { 3824 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3825 return -EINVAL; 3826 } 3827 if (tmp == 1) 3828 sport->enabled = true; 3829 else 3830 sport->enabled = false; 3831 3832 return count; 3833 } 3834 3835 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3836 3837 static struct configfs_attribute *srpt_tpg_attrs[] = { 3838 &srpt_tpg_enable.attr, 3839 NULL, 3840 }; 3841 3842 /** 3843 * configfs callback invoked for 3844 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3845 */ 3846 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3847 struct config_group *group, 3848 const char *name) 3849 { 3850 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3851 int res; 3852 3853 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3854 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, 3855 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3856 if (res) 3857 return ERR_PTR(res); 3858 3859 return &sport->port_tpg_1; 3860 } 3861 3862 /** 3863 * configfs callback invoked for 3864 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3865 */ 3866 static void srpt_drop_tpg(struct se_portal_group *tpg) 3867 { 3868 struct srpt_port *sport = container_of(tpg, 3869 struct srpt_port, port_tpg_1); 3870 3871 sport->enabled = false; 3872 core_tpg_deregister(&sport->port_tpg_1); 3873 } 3874 3875 /** 3876 * configfs callback invoked for 3877 * mkdir /sys/kernel/config/target/$driver/$port 3878 */ 3879 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3880 struct config_group *group, 3881 const char *name) 3882 { 3883 struct srpt_port *sport; 3884 int ret; 3885 3886 sport = srpt_lookup_port(name); 3887 pr_debug("make_tport(%s)\n", name); 3888 ret = -EINVAL; 3889 if (!sport) 3890 goto err; 3891 3892 return &sport->port_wwn; 3893 3894 err: 3895 return ERR_PTR(ret); 3896 } 3897 3898 /** 3899 * configfs callback invoked for 3900 * rmdir /sys/kernel/config/target/$driver/$port 3901 */ 3902 static void srpt_drop_tport(struct se_wwn *wwn) 3903 { 3904 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3905 3906 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3907 } 3908 3909 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3910 char *buf) 3911 { 3912 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3913 } 3914 3915 TF_WWN_ATTR_RO(srpt, version); 3916 3917 static struct configfs_attribute *srpt_wwn_attrs[] = { 3918 &srpt_wwn_version.attr, 3919 NULL, 3920 }; 3921 3922 static struct target_core_fabric_ops srpt_template = { 3923 .get_fabric_name = srpt_get_fabric_name, 3924 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3925 .tpg_get_wwn = srpt_get_fabric_wwn, 3926 .tpg_get_tag = srpt_get_tag, 3927 .tpg_get_default_depth = srpt_get_default_depth, 3928 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3929 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3930 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3931 .tpg_check_demo_mode = srpt_check_false, 3932 .tpg_check_demo_mode_cache = srpt_check_true, 3933 .tpg_check_demo_mode_write_protect = srpt_check_true, 3934 .tpg_check_prod_mode_write_protect = srpt_check_false, 3935 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3936 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3937 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3938 .release_cmd = srpt_release_cmd, 3939 .check_stop_free = srpt_check_stop_free, 3940 .shutdown_session = srpt_shutdown_session, 3941 .close_session = srpt_close_session, 3942 .sess_get_index = srpt_sess_get_index, 3943 .sess_get_initiator_sid = NULL, 3944 .write_pending = srpt_write_pending, 3945 .write_pending_status = srpt_write_pending_status, 3946 .set_default_node_attributes = srpt_set_default_node_attrs, 3947 .get_task_tag = srpt_get_task_tag, 3948 .get_cmd_state = srpt_get_tcm_cmd_state, 3949 .queue_data_in = srpt_queue_data_in, 3950 .queue_status = srpt_queue_status, 3951 .queue_tm_rsp = srpt_queue_tm_rsp, 3952 .aborted_task = srpt_aborted_task, 3953 /* 3954 * Setup function pointers for generic logic in 3955 * target_core_fabric_configfs.c 3956 */ 3957 .fabric_make_wwn = srpt_make_tport, 3958 .fabric_drop_wwn = srpt_drop_tport, 3959 .fabric_make_tpg = srpt_make_tpg, 3960 .fabric_drop_tpg = srpt_drop_tpg, 3961 .fabric_post_link = NULL, 3962 .fabric_pre_unlink = NULL, 3963 .fabric_make_np = NULL, 3964 .fabric_drop_np = NULL, 3965 .fabric_make_nodeacl = srpt_make_nodeacl, 3966 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3967 }; 3968 3969 /** 3970 * srpt_init_module() - Kernel module initialization. 3971 * 3972 * Note: Since ib_register_client() registers callback functions, and since at 3973 * least one of these callback functions (srpt_add_one()) calls target core 3974 * functions, this driver must be registered with the target core before 3975 * ib_register_client() is called. 3976 */ 3977 static int __init srpt_init_module(void) 3978 { 3979 int ret; 3980 3981 ret = -EINVAL; 3982 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3983 printk(KERN_ERR "invalid value %d for kernel module parameter" 3984 " srp_max_req_size -- must be at least %d.\n", 3985 srp_max_req_size, MIN_MAX_REQ_SIZE); 3986 goto out; 3987 } 3988 3989 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3990 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3991 printk(KERN_ERR "invalid value %d for kernel module parameter" 3992 " srpt_srq_size -- must be in the range [%d..%d].\n", 3993 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3994 goto out; 3995 } 3996 3997 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); 3998 if (IS_ERR(srpt_target)) { 3999 printk(KERN_ERR "couldn't register\n"); 4000 ret = PTR_ERR(srpt_target); 4001 goto out; 4002 } 4003 4004 srpt_target->tf_ops = srpt_template; 4005 4006 /* 4007 * Set up default attribute lists. 4008 */ 4009 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; 4010 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; 4011 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; 4012 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; 4013 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; 4014 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; 4015 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; 4016 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; 4017 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; 4018 4019 ret = target_fabric_configfs_register(srpt_target); 4020 if (ret < 0) { 4021 printk(KERN_ERR "couldn't register\n"); 4022 goto out_free_target; 4023 } 4024 4025 ret = ib_register_client(&srpt_client); 4026 if (ret) { 4027 printk(KERN_ERR "couldn't register IB client\n"); 4028 goto out_unregister_target; 4029 } 4030 4031 return 0; 4032 4033 out_unregister_target: 4034 target_fabric_configfs_deregister(srpt_target); 4035 srpt_target = NULL; 4036 out_free_target: 4037 if (srpt_target) 4038 target_fabric_configfs_free(srpt_target); 4039 out: 4040 return ret; 4041 } 4042 4043 static void __exit srpt_cleanup_module(void) 4044 { 4045 ib_unregister_client(&srpt_client); 4046 target_fabric_configfs_deregister(srpt_target); 4047 srpt_target = NULL; 4048 } 4049 4050 module_init(srpt_init_module); 4051 module_exit(srpt_cleanup_module); 4052