xref: /linux/drivers/infiniband/ulp/srpt/ib_srpt.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_proto.h>
45 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric.h>
48 #include "ib_srpt.h"
49 
50 /* Name of this kernel module. */
51 #define DRV_NAME		"ib_srpt"
52 #define DRV_VERSION		"2.0.0"
53 #define DRV_RELDATE		"2011-02-14"
54 
55 #define SRPT_ID_STRING	"Linux SRP target"
56 
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59 
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
62 		   "v" DRV_VERSION " (" DRV_RELDATE ")");
63 MODULE_LICENSE("Dual BSD/GPL");
64 
65 /*
66  * Global Variables
67  */
68 
69 static u64 srpt_service_guid;
70 static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
71 static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 
73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
74 module_param(srp_max_req_size, int, 0444);
75 MODULE_PARM_DESC(srp_max_req_size,
76 		 "Maximum size of SRP request messages in bytes.");
77 
78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
79 module_param(srpt_srq_size, int, 0444);
80 MODULE_PARM_DESC(srpt_srq_size,
81 		 "Shared receive queue (SRQ) size.");
82 
83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
84 {
85 	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
86 }
87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
88 		  0444);
89 MODULE_PARM_DESC(srpt_service_guid,
90 		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
91 		 " instead of using the node_guid of the first HCA.");
92 
93 static struct ib_client srpt_client;
94 static void srpt_release_cmd(struct se_cmd *se_cmd);
95 static void srpt_free_ch(struct kref *kref);
96 static int srpt_queue_status(struct se_cmd *cmd);
97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
100 
101 /*
102  * The only allowed channel state changes are those that change the channel
103  * state into a state with a higher numerical value. Hence the new > prev test.
104  */
105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 {
107 	unsigned long flags;
108 	enum rdma_ch_state prev;
109 	bool changed = false;
110 
111 	spin_lock_irqsave(&ch->spinlock, flags);
112 	prev = ch->state;
113 	if (new > prev) {
114 		ch->state = new;
115 		changed = true;
116 	}
117 	spin_unlock_irqrestore(&ch->spinlock, flags);
118 
119 	return changed;
120 }
121 
122 /**
123  * srpt_event_handler() - Asynchronous IB event callback function.
124  *
125  * Callback function called by the InfiniBand core when an asynchronous IB
126  * event occurs. This callback may occur in interrupt context. See also
127  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
128  * Architecture Specification.
129  */
130 static void srpt_event_handler(struct ib_event_handler *handler,
131 			       struct ib_event *event)
132 {
133 	struct srpt_device *sdev;
134 	struct srpt_port *sport;
135 
136 	sdev = ib_get_client_data(event->device, &srpt_client);
137 	if (!sdev || sdev->device != event->device)
138 		return;
139 
140 	pr_debug("ASYNC event= %d on device= %s\n", event->event,
141 		 sdev->device->name);
142 
143 	switch (event->event) {
144 	case IB_EVENT_PORT_ERR:
145 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
146 			sport = &sdev->port[event->element.port_num - 1];
147 			sport->lid = 0;
148 			sport->sm_lid = 0;
149 		}
150 		break;
151 	case IB_EVENT_PORT_ACTIVE:
152 	case IB_EVENT_LID_CHANGE:
153 	case IB_EVENT_PKEY_CHANGE:
154 	case IB_EVENT_SM_CHANGE:
155 	case IB_EVENT_CLIENT_REREGISTER:
156 	case IB_EVENT_GID_CHANGE:
157 		/* Refresh port data asynchronously. */
158 		if (event->element.port_num <= sdev->device->phys_port_cnt) {
159 			sport = &sdev->port[event->element.port_num - 1];
160 			if (!sport->lid && !sport->sm_lid)
161 				schedule_work(&sport->work);
162 		}
163 		break;
164 	default:
165 		pr_err("received unrecognized IB event %d\n",
166 		       event->event);
167 		break;
168 	}
169 }
170 
171 /**
172  * srpt_srq_event() - SRQ event callback function.
173  */
174 static void srpt_srq_event(struct ib_event *event, void *ctx)
175 {
176 	pr_info("SRQ event %d\n", event->event);
177 }
178 
179 static const char *get_ch_state_name(enum rdma_ch_state s)
180 {
181 	switch (s) {
182 	case CH_CONNECTING:
183 		return "connecting";
184 	case CH_LIVE:
185 		return "live";
186 	case CH_DISCONNECTING:
187 		return "disconnecting";
188 	case CH_DRAINING:
189 		return "draining";
190 	case CH_DISCONNECTED:
191 		return "disconnected";
192 	}
193 	return "???";
194 }
195 
196 /**
197  * srpt_qp_event() - QP event callback function.
198  */
199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
200 {
201 	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
202 		 event->event, ch->cm_id, ch->sess_name, ch->state);
203 
204 	switch (event->event) {
205 	case IB_EVENT_COMM_EST:
206 		ib_cm_notify(ch->cm_id, event->event);
207 		break;
208 	case IB_EVENT_QP_LAST_WQE_REACHED:
209 		pr_debug("%s-%d, state %s: received Last WQE event.\n",
210 			 ch->sess_name, ch->qp->qp_num,
211 			 get_ch_state_name(ch->state));
212 		break;
213 	default:
214 		pr_err("received unrecognized IB QP event %d\n", event->event);
215 		break;
216 	}
217 }
218 
219 /**
220  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
221  *
222  * @slot: one-based slot number.
223  * @value: four-bit value.
224  *
225  * Copies the lowest four bits of value in element slot of the array of four
226  * bit elements called c_list (controller list). The index slot is one-based.
227  */
228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
229 {
230 	u16 id;
231 	u8 tmp;
232 
233 	id = (slot - 1) / 2;
234 	if (slot & 0x1) {
235 		tmp = c_list[id] & 0xf;
236 		c_list[id] = (value << 4) | tmp;
237 	} else {
238 		tmp = c_list[id] & 0xf0;
239 		c_list[id] = (value & 0xf) | tmp;
240 	}
241 }
242 
243 /**
244  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
245  *
246  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
247  * Specification.
248  */
249 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
250 {
251 	struct ib_class_port_info *cif;
252 
253 	cif = (struct ib_class_port_info *)mad->data;
254 	memset(cif, 0, sizeof(*cif));
255 	cif->base_version = 1;
256 	cif->class_version = 1;
257 
258 	ib_set_cpi_resp_time(cif, 20);
259 	mad->mad_hdr.status = 0;
260 }
261 
262 /**
263  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
264  *
265  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
266  * Specification. See also section B.7, table B.6 in the SRP r16a document.
267  */
268 static void srpt_get_iou(struct ib_dm_mad *mad)
269 {
270 	struct ib_dm_iou_info *ioui;
271 	u8 slot;
272 	int i;
273 
274 	ioui = (struct ib_dm_iou_info *)mad->data;
275 	ioui->change_id = cpu_to_be16(1);
276 	ioui->max_controllers = 16;
277 
278 	/* set present for slot 1 and empty for the rest */
279 	srpt_set_ioc(ioui->controller_list, 1, 1);
280 	for (i = 1, slot = 2; i < 16; i++, slot++)
281 		srpt_set_ioc(ioui->controller_list, slot, 0);
282 
283 	mad->mad_hdr.status = 0;
284 }
285 
286 /**
287  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
288  *
289  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
290  * Architecture Specification. See also section B.7, table B.7 in the SRP
291  * r16a document.
292  */
293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
294 			 struct ib_dm_mad *mad)
295 {
296 	struct srpt_device *sdev = sport->sdev;
297 	struct ib_dm_ioc_profile *iocp;
298 
299 	iocp = (struct ib_dm_ioc_profile *)mad->data;
300 
301 	if (!slot || slot > 16) {
302 		mad->mad_hdr.status
303 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
304 		return;
305 	}
306 
307 	if (slot > 2) {
308 		mad->mad_hdr.status
309 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
310 		return;
311 	}
312 
313 	memset(iocp, 0, sizeof(*iocp));
314 	strcpy(iocp->id_string, SRPT_ID_STRING);
315 	iocp->guid = cpu_to_be64(srpt_service_guid);
316 	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
317 	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
318 	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
319 	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
320 	iocp->subsys_device_id = 0x0;
321 	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
322 	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
323 	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
324 	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
325 	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
326 	iocp->rdma_read_depth = 4;
327 	iocp->send_size = cpu_to_be32(srp_max_req_size);
328 	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
329 					  1U << 24));
330 	iocp->num_svc_entries = 1;
331 	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
332 		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
333 
334 	mad->mad_hdr.status = 0;
335 }
336 
337 /**
338  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
339  *
340  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
341  * Specification. See also section B.7, table B.8 in the SRP r16a document.
342  */
343 static void srpt_get_svc_entries(u64 ioc_guid,
344 				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
345 {
346 	struct ib_dm_svc_entries *svc_entries;
347 
348 	WARN_ON(!ioc_guid);
349 
350 	if (!slot || slot > 16) {
351 		mad->mad_hdr.status
352 			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
353 		return;
354 	}
355 
356 	if (slot > 2 || lo > hi || hi > 1) {
357 		mad->mad_hdr.status
358 			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
359 		return;
360 	}
361 
362 	svc_entries = (struct ib_dm_svc_entries *)mad->data;
363 	memset(svc_entries, 0, sizeof(*svc_entries));
364 	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
365 	snprintf(svc_entries->service_entries[0].name,
366 		 sizeof(svc_entries->service_entries[0].name),
367 		 "%s%016llx",
368 		 SRP_SERVICE_NAME_PREFIX,
369 		 ioc_guid);
370 
371 	mad->mad_hdr.status = 0;
372 }
373 
374 /**
375  * srpt_mgmt_method_get() - Process a received management datagram.
376  * @sp:      source port through which the MAD has been received.
377  * @rq_mad:  received MAD.
378  * @rsp_mad: response MAD.
379  */
380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
381 				 struct ib_dm_mad *rsp_mad)
382 {
383 	u16 attr_id;
384 	u32 slot;
385 	u8 hi, lo;
386 
387 	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
388 	switch (attr_id) {
389 	case DM_ATTR_CLASS_PORT_INFO:
390 		srpt_get_class_port_info(rsp_mad);
391 		break;
392 	case DM_ATTR_IOU_INFO:
393 		srpt_get_iou(rsp_mad);
394 		break;
395 	case DM_ATTR_IOC_PROFILE:
396 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
397 		srpt_get_ioc(sp, slot, rsp_mad);
398 		break;
399 	case DM_ATTR_SVC_ENTRIES:
400 		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
401 		hi = (u8) ((slot >> 8) & 0xff);
402 		lo = (u8) (slot & 0xff);
403 		slot = (u16) ((slot >> 16) & 0xffff);
404 		srpt_get_svc_entries(srpt_service_guid,
405 				     slot, hi, lo, rsp_mad);
406 		break;
407 	default:
408 		rsp_mad->mad_hdr.status =
409 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
410 		break;
411 	}
412 }
413 
414 /**
415  * srpt_mad_send_handler() - Post MAD-send callback function.
416  */
417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
418 				  struct ib_mad_send_wc *mad_wc)
419 {
420 	ib_destroy_ah(mad_wc->send_buf->ah);
421 	ib_free_send_mad(mad_wc->send_buf);
422 }
423 
424 /**
425  * srpt_mad_recv_handler() - MAD reception callback function.
426  */
427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
428 				  struct ib_mad_send_buf *send_buf,
429 				  struct ib_mad_recv_wc *mad_wc)
430 {
431 	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
432 	struct ib_ah *ah;
433 	struct ib_mad_send_buf *rsp;
434 	struct ib_dm_mad *dm_mad;
435 
436 	if (!mad_wc || !mad_wc->recv_buf.mad)
437 		return;
438 
439 	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
440 				  mad_wc->recv_buf.grh, mad_agent->port_num);
441 	if (IS_ERR(ah))
442 		goto err;
443 
444 	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
445 
446 	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
447 				 mad_wc->wc->pkey_index, 0,
448 				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
449 				 GFP_KERNEL,
450 				 IB_MGMT_BASE_VERSION);
451 	if (IS_ERR(rsp))
452 		goto err_rsp;
453 
454 	rsp->ah = ah;
455 
456 	dm_mad = rsp->mad;
457 	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
458 	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
459 	dm_mad->mad_hdr.status = 0;
460 
461 	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
462 	case IB_MGMT_METHOD_GET:
463 		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
464 		break;
465 	case IB_MGMT_METHOD_SET:
466 		dm_mad->mad_hdr.status =
467 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
468 		break;
469 	default:
470 		dm_mad->mad_hdr.status =
471 		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
472 		break;
473 	}
474 
475 	if (!ib_post_send_mad(rsp, NULL)) {
476 		ib_free_recv_mad(mad_wc);
477 		/* will destroy_ah & free_send_mad in send completion */
478 		return;
479 	}
480 
481 	ib_free_send_mad(rsp);
482 
483 err_rsp:
484 	ib_destroy_ah(ah);
485 err:
486 	ib_free_recv_mad(mad_wc);
487 }
488 
489 /**
490  * srpt_refresh_port() - Configure a HCA port.
491  *
492  * Enable InfiniBand management datagram processing, update the cached sm_lid,
493  * lid and gid values, and register a callback function for processing MADs
494  * on the specified port.
495  *
496  * Note: It is safe to call this function more than once for the same port.
497  */
498 static int srpt_refresh_port(struct srpt_port *sport)
499 {
500 	struct ib_mad_reg_req reg_req;
501 	struct ib_port_modify port_modify;
502 	struct ib_port_attr port_attr;
503 	int ret;
504 
505 	memset(&port_modify, 0, sizeof(port_modify));
506 	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
507 	port_modify.clr_port_cap_mask = 0;
508 
509 	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
510 	if (ret)
511 		goto err_mod_port;
512 
513 	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
514 	if (ret)
515 		goto err_query_port;
516 
517 	sport->sm_lid = port_attr.sm_lid;
518 	sport->lid = port_attr.lid;
519 
520 	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
521 			   NULL);
522 	if (ret)
523 		goto err_query_port;
524 
525 	snprintf(sport->port_guid, sizeof(sport->port_guid),
526 		"0x%016llx%016llx",
527 		be64_to_cpu(sport->gid.global.subnet_prefix),
528 		be64_to_cpu(sport->gid.global.interface_id));
529 
530 	if (!sport->mad_agent) {
531 		memset(&reg_req, 0, sizeof(reg_req));
532 		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
533 		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
534 		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
535 		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
536 
537 		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
538 							 sport->port,
539 							 IB_QPT_GSI,
540 							 &reg_req, 0,
541 							 srpt_mad_send_handler,
542 							 srpt_mad_recv_handler,
543 							 sport, 0);
544 		if (IS_ERR(sport->mad_agent)) {
545 			ret = PTR_ERR(sport->mad_agent);
546 			sport->mad_agent = NULL;
547 			goto err_query_port;
548 		}
549 	}
550 
551 	return 0;
552 
553 err_query_port:
554 
555 	port_modify.set_port_cap_mask = 0;
556 	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
557 	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
558 
559 err_mod_port:
560 
561 	return ret;
562 }
563 
564 /**
565  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
566  *
567  * Note: It is safe to call this function more than once for the same device.
568  */
569 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
570 {
571 	struct ib_port_modify port_modify = {
572 		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
573 	};
574 	struct srpt_port *sport;
575 	int i;
576 
577 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
578 		sport = &sdev->port[i - 1];
579 		WARN_ON(sport->port != i);
580 		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
581 			pr_err("disabling MAD processing failed.\n");
582 		if (sport->mad_agent) {
583 			ib_unregister_mad_agent(sport->mad_agent);
584 			sport->mad_agent = NULL;
585 		}
586 	}
587 }
588 
589 /**
590  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
591  */
592 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
593 					   int ioctx_size, int dma_size,
594 					   enum dma_data_direction dir)
595 {
596 	struct srpt_ioctx *ioctx;
597 
598 	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
599 	if (!ioctx)
600 		goto err;
601 
602 	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
603 	if (!ioctx->buf)
604 		goto err_free_ioctx;
605 
606 	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
607 	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
608 		goto err_free_buf;
609 
610 	return ioctx;
611 
612 err_free_buf:
613 	kfree(ioctx->buf);
614 err_free_ioctx:
615 	kfree(ioctx);
616 err:
617 	return NULL;
618 }
619 
620 /**
621  * srpt_free_ioctx() - Free an SRPT I/O context structure.
622  */
623 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
624 			    int dma_size, enum dma_data_direction dir)
625 {
626 	if (!ioctx)
627 		return;
628 
629 	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
630 	kfree(ioctx->buf);
631 	kfree(ioctx);
632 }
633 
634 /**
635  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
636  * @sdev:       Device to allocate the I/O context ring for.
637  * @ring_size:  Number of elements in the I/O context ring.
638  * @ioctx_size: I/O context size.
639  * @dma_size:   DMA buffer size.
640  * @dir:        DMA data direction.
641  */
642 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
643 				int ring_size, int ioctx_size,
644 				int dma_size, enum dma_data_direction dir)
645 {
646 	struct srpt_ioctx **ring;
647 	int i;
648 
649 	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
650 		&& ioctx_size != sizeof(struct srpt_send_ioctx));
651 
652 	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
653 	if (!ring)
654 		goto out;
655 	for (i = 0; i < ring_size; ++i) {
656 		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
657 		if (!ring[i])
658 			goto err;
659 		ring[i]->index = i;
660 	}
661 	goto out;
662 
663 err:
664 	while (--i >= 0)
665 		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
666 	kfree(ring);
667 	ring = NULL;
668 out:
669 	return ring;
670 }
671 
672 /**
673  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
674  */
675 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
676 				 struct srpt_device *sdev, int ring_size,
677 				 int dma_size, enum dma_data_direction dir)
678 {
679 	int i;
680 
681 	for (i = 0; i < ring_size; ++i)
682 		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
683 	kfree(ioctx_ring);
684 }
685 
686 /**
687  * srpt_get_cmd_state() - Get the state of a SCSI command.
688  */
689 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
690 {
691 	enum srpt_command_state state;
692 	unsigned long flags;
693 
694 	BUG_ON(!ioctx);
695 
696 	spin_lock_irqsave(&ioctx->spinlock, flags);
697 	state = ioctx->state;
698 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
699 	return state;
700 }
701 
702 /**
703  * srpt_set_cmd_state() - Set the state of a SCSI command.
704  *
705  * Does not modify the state of aborted commands. Returns the previous command
706  * state.
707  */
708 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
709 						  enum srpt_command_state new)
710 {
711 	enum srpt_command_state previous;
712 	unsigned long flags;
713 
714 	BUG_ON(!ioctx);
715 
716 	spin_lock_irqsave(&ioctx->spinlock, flags);
717 	previous = ioctx->state;
718 	if (previous != SRPT_STATE_DONE)
719 		ioctx->state = new;
720 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 
722 	return previous;
723 }
724 
725 /**
726  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
727  *
728  * Returns true if and only if the previous command state was equal to 'old'.
729  */
730 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 					enum srpt_command_state old,
732 					enum srpt_command_state new)
733 {
734 	enum srpt_command_state previous;
735 	unsigned long flags;
736 
737 	WARN_ON(!ioctx);
738 	WARN_ON(old == SRPT_STATE_DONE);
739 	WARN_ON(new == SRPT_STATE_NEW);
740 
741 	spin_lock_irqsave(&ioctx->spinlock, flags);
742 	previous = ioctx->state;
743 	if (previous == old)
744 		ioctx->state = new;
745 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
746 	return previous == old;
747 }
748 
749 /**
750  * srpt_post_recv() - Post an IB receive request.
751  */
752 static int srpt_post_recv(struct srpt_device *sdev,
753 			  struct srpt_recv_ioctx *ioctx)
754 {
755 	struct ib_sge list;
756 	struct ib_recv_wr wr, *bad_wr;
757 
758 	BUG_ON(!sdev);
759 	list.addr = ioctx->ioctx.dma;
760 	list.length = srp_max_req_size;
761 	list.lkey = sdev->pd->local_dma_lkey;
762 
763 	ioctx->ioctx.cqe.done = srpt_recv_done;
764 	wr.wr_cqe = &ioctx->ioctx.cqe;
765 	wr.next = NULL;
766 	wr.sg_list = &list;
767 	wr.num_sge = 1;
768 
769 	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
770 }
771 
772 /**
773  * srpt_zerolength_write() - Perform a zero-length RDMA write.
774  *
775  * A quote from the InfiniBand specification: C9-88: For an HCA responder
776  * using Reliable Connection service, for each zero-length RDMA READ or WRITE
777  * request, the R_Key shall not be validated, even if the request includes
778  * Immediate data.
779  */
780 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
781 {
782 	struct ib_send_wr wr, *bad_wr;
783 
784 	memset(&wr, 0, sizeof(wr));
785 	wr.opcode = IB_WR_RDMA_WRITE;
786 	wr.wr_cqe = &ch->zw_cqe;
787 	wr.send_flags = IB_SEND_SIGNALED;
788 	return ib_post_send(ch->qp, &wr, &bad_wr);
789 }
790 
791 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
792 {
793 	struct srpt_rdma_ch *ch = cq->cq_context;
794 
795 	if (wc->status == IB_WC_SUCCESS) {
796 		srpt_process_wait_list(ch);
797 	} else {
798 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
799 			schedule_work(&ch->release_work);
800 		else
801 			WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num);
802 	}
803 }
804 
805 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
806 		struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
807 		unsigned *sg_cnt)
808 {
809 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
810 	struct srpt_rdma_ch *ch = ioctx->ch;
811 	struct scatterlist *prev = NULL;
812 	unsigned prev_nents;
813 	int ret, i;
814 
815 	if (nbufs == 1) {
816 		ioctx->rw_ctxs = &ioctx->s_rw_ctx;
817 	} else {
818 		ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
819 			GFP_KERNEL);
820 		if (!ioctx->rw_ctxs)
821 			return -ENOMEM;
822 	}
823 
824 	for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
825 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
826 		u64 remote_addr = be64_to_cpu(db->va);
827 		u32 size = be32_to_cpu(db->len);
828 		u32 rkey = be32_to_cpu(db->key);
829 
830 		ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
831 				i < nbufs - 1);
832 		if (ret)
833 			goto unwind;
834 
835 		ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
836 				ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
837 		if (ret < 0) {
838 			target_free_sgl(ctx->sg, ctx->nents);
839 			goto unwind;
840 		}
841 
842 		ioctx->n_rdma += ret;
843 		ioctx->n_rw_ctx++;
844 
845 		if (prev) {
846 			sg_unmark_end(&prev[prev_nents - 1]);
847 			sg_chain(prev, prev_nents + 1, ctx->sg);
848 		} else {
849 			*sg = ctx->sg;
850 		}
851 
852 		prev = ctx->sg;
853 		prev_nents = ctx->nents;
854 
855 		*sg_cnt += ctx->nents;
856 	}
857 
858 	return 0;
859 
860 unwind:
861 	while (--i >= 0) {
862 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
863 
864 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
865 				ctx->sg, ctx->nents, dir);
866 		target_free_sgl(ctx->sg, ctx->nents);
867 	}
868 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
869 		kfree(ioctx->rw_ctxs);
870 	return ret;
871 }
872 
873 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
874 				    struct srpt_send_ioctx *ioctx)
875 {
876 	enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
877 	int i;
878 
879 	for (i = 0; i < ioctx->n_rw_ctx; i++) {
880 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
881 
882 		rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
883 				ctx->sg, ctx->nents, dir);
884 		target_free_sgl(ctx->sg, ctx->nents);
885 	}
886 
887 	if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
888 		kfree(ioctx->rw_ctxs);
889 }
890 
891 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
892 {
893 	/*
894 	 * The pointer computations below will only be compiled correctly
895 	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
896 	 * whether srp_cmd::add_data has been declared as a byte pointer.
897 	 */
898 	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
899 		     !__same_type(srp_cmd->add_data[0], (u8)0));
900 
901 	/*
902 	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
903 	 * CDB LENGTH' field are reserved and the size in bytes of this field
904 	 * is four times the value specified in bits 3..7. Hence the "& ~3".
905 	 */
906 	return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
907 }
908 
909 /**
910  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
911  * @ioctx: Pointer to the I/O context associated with the request.
912  * @srp_cmd: Pointer to the SRP_CMD request data.
913  * @dir: Pointer to the variable to which the transfer direction will be
914  *   written.
915  * @data_len: Pointer to the variable to which the total data length of all
916  *   descriptors in the SRP_CMD request will be written.
917  *
918  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
919  *
920  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
921  * -ENOMEM when memory allocation fails and zero upon success.
922  */
923 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
924 		struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
925 		struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len)
926 {
927 	BUG_ON(!dir);
928 	BUG_ON(!data_len);
929 
930 	/*
931 	 * The lower four bits of the buffer format field contain the DATA-IN
932 	 * buffer descriptor format, and the highest four bits contain the
933 	 * DATA-OUT buffer descriptor format.
934 	 */
935 	if (srp_cmd->buf_fmt & 0xf)
936 		/* DATA-IN: transfer data from target to initiator (read). */
937 		*dir = DMA_FROM_DEVICE;
938 	else if (srp_cmd->buf_fmt >> 4)
939 		/* DATA-OUT: transfer data from initiator to target (write). */
940 		*dir = DMA_TO_DEVICE;
941 	else
942 		*dir = DMA_NONE;
943 
944 	/* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
945 	ioctx->cmd.data_direction = *dir;
946 
947 	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
948 	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
949 	    	struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
950 
951 		*data_len = be32_to_cpu(db->len);
952 		return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
953 	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
954 		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
955 		struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
956 		int nbufs = be32_to_cpu(idb->table_desc.len) /
957 				sizeof(struct srp_direct_buf);
958 
959 		if (nbufs >
960 		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
961 			pr_err("received unsupported SRP_CMD request"
962 			       " type (%u out + %u in != %u / %zu)\n",
963 			       srp_cmd->data_out_desc_cnt,
964 			       srp_cmd->data_in_desc_cnt,
965 			       be32_to_cpu(idb->table_desc.len),
966 			       sizeof(struct srp_direct_buf));
967 			return -EINVAL;
968 		}
969 
970 		*data_len = be32_to_cpu(idb->len);
971 		return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
972 				sg, sg_cnt);
973 	} else {
974 		*data_len = 0;
975 		return 0;
976 	}
977 }
978 
979 /**
980  * srpt_init_ch_qp() - Initialize queue pair attributes.
981  *
982  * Initialized the attributes of queue pair 'qp' by allowing local write,
983  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
984  */
985 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987 	struct ib_qp_attr *attr;
988 	int ret;
989 
990 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
991 	if (!attr)
992 		return -ENOMEM;
993 
994 	attr->qp_state = IB_QPS_INIT;
995 	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
996 	    IB_ACCESS_REMOTE_WRITE;
997 	attr->port_num = ch->sport->port;
998 	attr->pkey_index = 0;
999 
1000 	ret = ib_modify_qp(qp, attr,
1001 			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1002 			   IB_QP_PKEY_INDEX);
1003 
1004 	kfree(attr);
1005 	return ret;
1006 }
1007 
1008 /**
1009  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
1010  * @ch: channel of the queue pair.
1011  * @qp: queue pair to change the state of.
1012  *
1013  * Returns zero upon success and a negative value upon failure.
1014  *
1015  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1016  * If this structure ever becomes larger, it might be necessary to allocate
1017  * it dynamically instead of on the stack.
1018  */
1019 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1020 {
1021 	struct ib_qp_attr qp_attr;
1022 	int attr_mask;
1023 	int ret;
1024 
1025 	qp_attr.qp_state = IB_QPS_RTR;
1026 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1027 	if (ret)
1028 		goto out;
1029 
1030 	qp_attr.max_dest_rd_atomic = 4;
1031 
1032 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1033 
1034 out:
1035 	return ret;
1036 }
1037 
1038 /**
1039  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1040  * @ch: channel of the queue pair.
1041  * @qp: queue pair to change the state of.
1042  *
1043  * Returns zero upon success and a negative value upon failure.
1044  *
1045  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1046  * If this structure ever becomes larger, it might be necessary to allocate
1047  * it dynamically instead of on the stack.
1048  */
1049 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1050 {
1051 	struct ib_qp_attr qp_attr;
1052 	int attr_mask;
1053 	int ret;
1054 
1055 	qp_attr.qp_state = IB_QPS_RTS;
1056 	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1057 	if (ret)
1058 		goto out;
1059 
1060 	qp_attr.max_rd_atomic = 4;
1061 
1062 	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1063 
1064 out:
1065 	return ret;
1066 }
1067 
1068 /**
1069  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1070  */
1071 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1072 {
1073 	struct ib_qp_attr qp_attr;
1074 
1075 	qp_attr.qp_state = IB_QPS_ERR;
1076 	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1077 }
1078 
1079 /**
1080  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1081  */
1082 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1083 {
1084 	struct srpt_send_ioctx *ioctx;
1085 	unsigned long flags;
1086 
1087 	BUG_ON(!ch);
1088 
1089 	ioctx = NULL;
1090 	spin_lock_irqsave(&ch->spinlock, flags);
1091 	if (!list_empty(&ch->free_list)) {
1092 		ioctx = list_first_entry(&ch->free_list,
1093 					 struct srpt_send_ioctx, free_list);
1094 		list_del(&ioctx->free_list);
1095 	}
1096 	spin_unlock_irqrestore(&ch->spinlock, flags);
1097 
1098 	if (!ioctx)
1099 		return ioctx;
1100 
1101 	BUG_ON(ioctx->ch != ch);
1102 	spin_lock_init(&ioctx->spinlock);
1103 	ioctx->state = SRPT_STATE_NEW;
1104 	ioctx->n_rdma = 0;
1105 	ioctx->n_rw_ctx = 0;
1106 	init_completion(&ioctx->tx_done);
1107 	ioctx->queue_status_only = false;
1108 	/*
1109 	 * transport_init_se_cmd() does not initialize all fields, so do it
1110 	 * here.
1111 	 */
1112 	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1113 	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1114 
1115 	return ioctx;
1116 }
1117 
1118 /**
1119  * srpt_abort_cmd() - Abort a SCSI command.
1120  * @ioctx:   I/O context associated with the SCSI command.
1121  * @context: Preferred execution context.
1122  */
1123 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1124 {
1125 	enum srpt_command_state state;
1126 	unsigned long flags;
1127 
1128 	BUG_ON(!ioctx);
1129 
1130 	/*
1131 	 * If the command is in a state where the target core is waiting for
1132 	 * the ib_srpt driver, change the state to the next state.
1133 	 */
1134 
1135 	spin_lock_irqsave(&ioctx->spinlock, flags);
1136 	state = ioctx->state;
1137 	switch (state) {
1138 	case SRPT_STATE_NEED_DATA:
1139 		ioctx->state = SRPT_STATE_DATA_IN;
1140 		break;
1141 	case SRPT_STATE_CMD_RSP_SENT:
1142 	case SRPT_STATE_MGMT_RSP_SENT:
1143 		ioctx->state = SRPT_STATE_DONE;
1144 		break;
1145 	default:
1146 		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1147 			  __func__, state);
1148 		break;
1149 	}
1150 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1151 
1152 	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1153 		 ioctx->cmd.tag);
1154 
1155 	switch (state) {
1156 	case SRPT_STATE_NEW:
1157 	case SRPT_STATE_DATA_IN:
1158 	case SRPT_STATE_MGMT:
1159 	case SRPT_STATE_DONE:
1160 		/*
1161 		 * Do nothing - defer abort processing until
1162 		 * srpt_queue_response() is invoked.
1163 		 */
1164 		break;
1165 	case SRPT_STATE_NEED_DATA:
1166 		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1167 		transport_generic_request_failure(&ioctx->cmd,
1168 					TCM_CHECK_CONDITION_ABORT_CMD);
1169 		break;
1170 	case SRPT_STATE_CMD_RSP_SENT:
1171 		/*
1172 		 * SRP_RSP sending failed or the SRP_RSP send completion has
1173 		 * not been received in time.
1174 		 */
1175 		transport_generic_free_cmd(&ioctx->cmd, 0);
1176 		break;
1177 	case SRPT_STATE_MGMT_RSP_SENT:
1178 		transport_generic_free_cmd(&ioctx->cmd, 0);
1179 		break;
1180 	default:
1181 		WARN(1, "Unexpected command state (%d)", state);
1182 		break;
1183 	}
1184 
1185 	return state;
1186 }
1187 
1188 /**
1189  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1190  * the data that has been transferred via IB RDMA had to be postponed until the
1191  * check_stop_free() callback.  None of this is necessary anymore and needs to
1192  * be cleaned up.
1193  */
1194 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1195 {
1196 	struct srpt_rdma_ch *ch = cq->cq_context;
1197 	struct srpt_send_ioctx *ioctx =
1198 		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1199 
1200 	WARN_ON(ioctx->n_rdma <= 0);
1201 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1202 	ioctx->n_rdma = 0;
1203 
1204 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1205 		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1206 			ioctx, wc->status);
1207 		srpt_abort_cmd(ioctx);
1208 		return;
1209 	}
1210 
1211 	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1212 					SRPT_STATE_DATA_IN))
1213 		target_execute_cmd(&ioctx->cmd);
1214 	else
1215 		pr_err("%s[%d]: wrong state = %d\n", __func__,
1216 		       __LINE__, srpt_get_cmd_state(ioctx));
1217 }
1218 
1219 /**
1220  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1221  * @ch: RDMA channel through which the request has been received.
1222  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1223  *   be built in the buffer ioctx->buf points at and hence this function will
1224  *   overwrite the request data.
1225  * @tag: tag of the request for which this response is being generated.
1226  * @status: value for the STATUS field of the SRP_RSP information unit.
1227  *
1228  * Returns the size in bytes of the SRP_RSP response.
1229  *
1230  * An SRP_RSP response contains a SCSI status or service response. See also
1231  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1232  * response. See also SPC-2 for more information about sense data.
1233  */
1234 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1235 			      struct srpt_send_ioctx *ioctx, u64 tag,
1236 			      int status)
1237 {
1238 	struct srp_rsp *srp_rsp;
1239 	const u8 *sense_data;
1240 	int sense_data_len, max_sense_len;
1241 
1242 	/*
1243 	 * The lowest bit of all SAM-3 status codes is zero (see also
1244 	 * paragraph 5.3 in SAM-3).
1245 	 */
1246 	WARN_ON(status & 1);
1247 
1248 	srp_rsp = ioctx->ioctx.buf;
1249 	BUG_ON(!srp_rsp);
1250 
1251 	sense_data = ioctx->sense_data;
1252 	sense_data_len = ioctx->cmd.scsi_sense_length;
1253 	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1254 
1255 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1256 	srp_rsp->opcode = SRP_RSP;
1257 	srp_rsp->req_lim_delta =
1258 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1259 	srp_rsp->tag = tag;
1260 	srp_rsp->status = status;
1261 
1262 	if (sense_data_len) {
1263 		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1264 		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1265 		if (sense_data_len > max_sense_len) {
1266 			pr_warn("truncated sense data from %d to %d"
1267 				" bytes\n", sense_data_len, max_sense_len);
1268 			sense_data_len = max_sense_len;
1269 		}
1270 
1271 		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1272 		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1273 		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1274 	}
1275 
1276 	return sizeof(*srp_rsp) + sense_data_len;
1277 }
1278 
1279 /**
1280  * srpt_build_tskmgmt_rsp() - Build a task management response.
1281  * @ch:       RDMA channel through which the request has been received.
1282  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1283  * @rsp_code: RSP_CODE that will be stored in the response.
1284  * @tag:      Tag of the request for which this response is being generated.
1285  *
1286  * Returns the size in bytes of the SRP_RSP response.
1287  *
1288  * An SRP_RSP response contains a SCSI status or service response. See also
1289  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1290  * response.
1291  */
1292 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1293 				  struct srpt_send_ioctx *ioctx,
1294 				  u8 rsp_code, u64 tag)
1295 {
1296 	struct srp_rsp *srp_rsp;
1297 	int resp_data_len;
1298 	int resp_len;
1299 
1300 	resp_data_len = 4;
1301 	resp_len = sizeof(*srp_rsp) + resp_data_len;
1302 
1303 	srp_rsp = ioctx->ioctx.buf;
1304 	BUG_ON(!srp_rsp);
1305 	memset(srp_rsp, 0, sizeof(*srp_rsp));
1306 
1307 	srp_rsp->opcode = SRP_RSP;
1308 	srp_rsp->req_lim_delta =
1309 		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1310 	srp_rsp->tag = tag;
1311 
1312 	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1313 	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1314 	srp_rsp->data[3] = rsp_code;
1315 
1316 	return resp_len;
1317 }
1318 
1319 static int srpt_check_stop_free(struct se_cmd *cmd)
1320 {
1321 	struct srpt_send_ioctx *ioctx = container_of(cmd,
1322 				struct srpt_send_ioctx, cmd);
1323 
1324 	return target_put_sess_cmd(&ioctx->cmd);
1325 }
1326 
1327 /**
1328  * srpt_handle_cmd() - Process SRP_CMD.
1329  */
1330 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1331 			    struct srpt_recv_ioctx *recv_ioctx,
1332 			    struct srpt_send_ioctx *send_ioctx)
1333 {
1334 	struct se_cmd *cmd;
1335 	struct srp_cmd *srp_cmd;
1336 	struct scatterlist *sg = NULL;
1337 	unsigned sg_cnt = 0;
1338 	u64 data_len;
1339 	enum dma_data_direction dir;
1340 	int rc;
1341 
1342 	BUG_ON(!send_ioctx);
1343 
1344 	srp_cmd = recv_ioctx->ioctx.buf;
1345 	cmd = &send_ioctx->cmd;
1346 	cmd->tag = srp_cmd->tag;
1347 
1348 	switch (srp_cmd->task_attr) {
1349 	case SRP_CMD_SIMPLE_Q:
1350 		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1351 		break;
1352 	case SRP_CMD_ORDERED_Q:
1353 	default:
1354 		cmd->sam_task_attr = TCM_ORDERED_TAG;
1355 		break;
1356 	case SRP_CMD_HEAD_OF_Q:
1357 		cmd->sam_task_attr = TCM_HEAD_TAG;
1358 		break;
1359 	case SRP_CMD_ACA:
1360 		cmd->sam_task_attr = TCM_ACA_TAG;
1361 		break;
1362 	}
1363 
1364 	rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt,
1365 			&data_len);
1366 	if (rc) {
1367 		if (rc != -EAGAIN) {
1368 			pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1369 			       srp_cmd->tag);
1370 		}
1371 		goto release_ioctx;
1372 	}
1373 
1374 	rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb,
1375 			       &send_ioctx->sense_data[0],
1376 			       scsilun_to_int(&srp_cmd->lun), data_len,
1377 			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF,
1378 			       sg, sg_cnt, NULL, 0, NULL, 0);
1379 	if (rc != 0) {
1380 		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1381 			 srp_cmd->tag);
1382 		goto release_ioctx;
1383 	}
1384 	return;
1385 
1386 release_ioctx:
1387 	send_ioctx->state = SRPT_STATE_DONE;
1388 	srpt_release_cmd(cmd);
1389 }
1390 
1391 static int srp_tmr_to_tcm(int fn)
1392 {
1393 	switch (fn) {
1394 	case SRP_TSK_ABORT_TASK:
1395 		return TMR_ABORT_TASK;
1396 	case SRP_TSK_ABORT_TASK_SET:
1397 		return TMR_ABORT_TASK_SET;
1398 	case SRP_TSK_CLEAR_TASK_SET:
1399 		return TMR_CLEAR_TASK_SET;
1400 	case SRP_TSK_LUN_RESET:
1401 		return TMR_LUN_RESET;
1402 	case SRP_TSK_CLEAR_ACA:
1403 		return TMR_CLEAR_ACA;
1404 	default:
1405 		return -1;
1406 	}
1407 }
1408 
1409 /**
1410  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1411  *
1412  * Returns 0 if and only if the request will be processed by the target core.
1413  *
1414  * For more information about SRP_TSK_MGMT information units, see also section
1415  * 6.7 in the SRP r16a document.
1416  */
1417 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1418 				 struct srpt_recv_ioctx *recv_ioctx,
1419 				 struct srpt_send_ioctx *send_ioctx)
1420 {
1421 	struct srp_tsk_mgmt *srp_tsk;
1422 	struct se_cmd *cmd;
1423 	struct se_session *sess = ch->sess;
1424 	int tcm_tmr;
1425 	int rc;
1426 
1427 	BUG_ON(!send_ioctx);
1428 
1429 	srp_tsk = recv_ioctx->ioctx.buf;
1430 	cmd = &send_ioctx->cmd;
1431 
1432 	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1433 		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1434 		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1435 
1436 	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1437 	send_ioctx->cmd.tag = srp_tsk->tag;
1438 	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1439 	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1440 			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1441 			       GFP_KERNEL, srp_tsk->task_tag,
1442 			       TARGET_SCF_ACK_KREF);
1443 	if (rc != 0) {
1444 		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1445 		goto fail;
1446 	}
1447 	return;
1448 fail:
1449 	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1450 }
1451 
1452 /**
1453  * srpt_handle_new_iu() - Process a newly received information unit.
1454  * @ch:    RDMA channel through which the information unit has been received.
1455  * @ioctx: SRPT I/O context associated with the information unit.
1456  */
1457 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1458 			       struct srpt_recv_ioctx *recv_ioctx,
1459 			       struct srpt_send_ioctx *send_ioctx)
1460 {
1461 	struct srp_cmd *srp_cmd;
1462 
1463 	BUG_ON(!ch);
1464 	BUG_ON(!recv_ioctx);
1465 
1466 	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1467 				   recv_ioctx->ioctx.dma, srp_max_req_size,
1468 				   DMA_FROM_DEVICE);
1469 
1470 	if (unlikely(ch->state == CH_CONNECTING))
1471 		goto out_wait;
1472 
1473 	if (unlikely(ch->state != CH_LIVE))
1474 		return;
1475 
1476 	srp_cmd = recv_ioctx->ioctx.buf;
1477 	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1478 		if (!send_ioctx) {
1479 			if (!list_empty(&ch->cmd_wait_list))
1480 				goto out_wait;
1481 			send_ioctx = srpt_get_send_ioctx(ch);
1482 		}
1483 		if (unlikely(!send_ioctx))
1484 			goto out_wait;
1485 	}
1486 
1487 	switch (srp_cmd->opcode) {
1488 	case SRP_CMD:
1489 		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1490 		break;
1491 	case SRP_TSK_MGMT:
1492 		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1493 		break;
1494 	case SRP_I_LOGOUT:
1495 		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1496 		break;
1497 	case SRP_CRED_RSP:
1498 		pr_debug("received SRP_CRED_RSP\n");
1499 		break;
1500 	case SRP_AER_RSP:
1501 		pr_debug("received SRP_AER_RSP\n");
1502 		break;
1503 	case SRP_RSP:
1504 		pr_err("Received SRP_RSP\n");
1505 		break;
1506 	default:
1507 		pr_err("received IU with unknown opcode 0x%x\n",
1508 		       srp_cmd->opcode);
1509 		break;
1510 	}
1511 
1512 	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1513 	return;
1514 
1515 out_wait:
1516 	list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1517 }
1518 
1519 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1520 {
1521 	struct srpt_rdma_ch *ch = cq->cq_context;
1522 	struct srpt_recv_ioctx *ioctx =
1523 		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1524 
1525 	if (wc->status == IB_WC_SUCCESS) {
1526 		int req_lim;
1527 
1528 		req_lim = atomic_dec_return(&ch->req_lim);
1529 		if (unlikely(req_lim < 0))
1530 			pr_err("req_lim = %d < 0\n", req_lim);
1531 		srpt_handle_new_iu(ch, ioctx, NULL);
1532 	} else {
1533 		pr_info("receiving failed for ioctx %p with status %d\n",
1534 			ioctx, wc->status);
1535 	}
1536 }
1537 
1538 /*
1539  * This function must be called from the context in which RDMA completions are
1540  * processed because it accesses the wait list without protection against
1541  * access from other threads.
1542  */
1543 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1544 {
1545 	struct srpt_send_ioctx *ioctx;
1546 
1547 	while (!list_empty(&ch->cmd_wait_list) &&
1548 	       ch->state >= CH_LIVE &&
1549 	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
1550 		struct srpt_recv_ioctx *recv_ioctx;
1551 
1552 		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1553 					      struct srpt_recv_ioctx,
1554 					      wait_list);
1555 		list_del(&recv_ioctx->wait_list);
1556 		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
1557 	}
1558 }
1559 
1560 /**
1561  * Note: Although this has not yet been observed during tests, at least in
1562  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1563  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1564  * value in each response is set to one, and it is possible that this response
1565  * makes the initiator send a new request before the send completion for that
1566  * response has been processed. This could e.g. happen if the call to
1567  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1568  * if IB retransmission causes generation of the send completion to be
1569  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1570  * are queued on cmd_wait_list. The code below processes these delayed
1571  * requests one at a time.
1572  */
1573 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1574 {
1575 	struct srpt_rdma_ch *ch = cq->cq_context;
1576 	struct srpt_send_ioctx *ioctx =
1577 		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1578 	enum srpt_command_state state;
1579 
1580 	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1581 
1582 	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1583 		state != SRPT_STATE_MGMT_RSP_SENT);
1584 
1585 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1586 
1587 	if (wc->status != IB_WC_SUCCESS)
1588 		pr_info("sending response for ioctx 0x%p failed"
1589 			" with status %d\n", ioctx, wc->status);
1590 
1591 	if (state != SRPT_STATE_DONE) {
1592 		transport_generic_free_cmd(&ioctx->cmd, 0);
1593 	} else {
1594 		pr_err("IB completion has been received too late for"
1595 		       " wr_id = %u.\n", ioctx->ioctx.index);
1596 	}
1597 
1598 	srpt_process_wait_list(ch);
1599 }
1600 
1601 /**
1602  * srpt_create_ch_ib() - Create receive and send completion queues.
1603  */
1604 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1605 {
1606 	struct ib_qp_init_attr *qp_init;
1607 	struct srpt_port *sport = ch->sport;
1608 	struct srpt_device *sdev = sport->sdev;
1609 	const struct ib_device_attr *attrs = &sdev->device->attrs;
1610 	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
1611 	int ret;
1612 
1613 	WARN_ON(ch->rq_size < 1);
1614 
1615 	ret = -ENOMEM;
1616 	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1617 	if (!qp_init)
1618 		goto out;
1619 
1620 retry:
1621 	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
1622 			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1623 	if (IS_ERR(ch->cq)) {
1624 		ret = PTR_ERR(ch->cq);
1625 		pr_err("failed to create CQ cqe= %d ret= %d\n",
1626 		       ch->rq_size + srp_sq_size, ret);
1627 		goto out;
1628 	}
1629 
1630 	qp_init->qp_context = (void *)ch;
1631 	qp_init->event_handler
1632 		= (void(*)(struct ib_event *, void*))srpt_qp_event;
1633 	qp_init->send_cq = ch->cq;
1634 	qp_init->recv_cq = ch->cq;
1635 	qp_init->srq = sdev->srq;
1636 	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1637 	qp_init->qp_type = IB_QPT_RC;
1638 	/*
1639 	 * We divide up our send queue size into half SEND WRs to send the
1640 	 * completions, and half R/W contexts to actually do the RDMA
1641 	 * READ/WRITE transfers.  Note that we need to allocate CQ slots for
1642 	 * both both, as RDMA contexts will also post completions for the
1643 	 * RDMA READ case.
1644 	 */
1645 	qp_init->cap.max_send_wr = srp_sq_size / 2;
1646 	qp_init->cap.max_rdma_ctxs = srp_sq_size / 2;
1647 	qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE);
1648 	qp_init->port_num = ch->sport->port;
1649 
1650 	ch->qp = ib_create_qp(sdev->pd, qp_init);
1651 	if (IS_ERR(ch->qp)) {
1652 		ret = PTR_ERR(ch->qp);
1653 		if (ret == -ENOMEM) {
1654 			srp_sq_size /= 2;
1655 			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
1656 				ib_destroy_cq(ch->cq);
1657 				goto retry;
1658 			}
1659 		}
1660 		pr_err("failed to create_qp ret= %d\n", ret);
1661 		goto err_destroy_cq;
1662 	}
1663 
1664 	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1665 
1666 	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1667 		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1668 		 qp_init->cap.max_send_wr, ch->cm_id);
1669 
1670 	ret = srpt_init_ch_qp(ch, ch->qp);
1671 	if (ret)
1672 		goto err_destroy_qp;
1673 
1674 out:
1675 	kfree(qp_init);
1676 	return ret;
1677 
1678 err_destroy_qp:
1679 	ib_destroy_qp(ch->qp);
1680 err_destroy_cq:
1681 	ib_free_cq(ch->cq);
1682 	goto out;
1683 }
1684 
1685 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1686 {
1687 	ib_destroy_qp(ch->qp);
1688 	ib_free_cq(ch->cq);
1689 }
1690 
1691 /**
1692  * srpt_close_ch() - Close an RDMA channel.
1693  *
1694  * Make sure all resources associated with the channel will be deallocated at
1695  * an appropriate time.
1696  *
1697  * Returns true if and only if the channel state has been modified into
1698  * CH_DRAINING.
1699  */
1700 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1701 {
1702 	int ret;
1703 
1704 	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1705 		pr_debug("%s-%d: already closed\n", ch->sess_name,
1706 			 ch->qp->qp_num);
1707 		return false;
1708 	}
1709 
1710 	kref_get(&ch->kref);
1711 
1712 	ret = srpt_ch_qp_err(ch);
1713 	if (ret < 0)
1714 		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1715 		       ch->sess_name, ch->qp->qp_num, ret);
1716 
1717 	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
1718 		 ch->qp->qp_num);
1719 	ret = srpt_zerolength_write(ch);
1720 	if (ret < 0) {
1721 		pr_err("%s-%d: queuing zero-length write failed: %d\n",
1722 		       ch->sess_name, ch->qp->qp_num, ret);
1723 		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1724 			schedule_work(&ch->release_work);
1725 		else
1726 			WARN_ON_ONCE(true);
1727 	}
1728 
1729 	kref_put(&ch->kref, srpt_free_ch);
1730 
1731 	return true;
1732 }
1733 
1734 /*
1735  * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1736  * reached the connected state, close it. If a channel is in the connected
1737  * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1738  * the responsibility of the caller to ensure that this function is not
1739  * invoked concurrently with the code that accepts a connection. This means
1740  * that this function must either be invoked from inside a CM callback
1741  * function or that it must be invoked with the srpt_port.mutex held.
1742  */
1743 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1744 {
1745 	int ret;
1746 
1747 	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
1748 		return -ENOTCONN;
1749 
1750 	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
1751 	if (ret < 0)
1752 		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1753 
1754 	if (ret < 0 && srpt_close_ch(ch))
1755 		ret = 0;
1756 
1757 	return ret;
1758 }
1759 
1760 static void __srpt_close_all_ch(struct srpt_device *sdev)
1761 {
1762 	struct srpt_rdma_ch *ch;
1763 
1764 	lockdep_assert_held(&sdev->mutex);
1765 
1766 	list_for_each_entry(ch, &sdev->rch_list, list) {
1767 		if (srpt_disconnect_ch(ch) >= 0)
1768 			pr_info("Closing channel %s-%d because target %s has been disabled\n",
1769 				ch->sess_name, ch->qp->qp_num,
1770 				sdev->device->name);
1771 		srpt_close_ch(ch);
1772 	}
1773 }
1774 
1775 static void srpt_free_ch(struct kref *kref)
1776 {
1777 	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
1778 
1779 	kfree(ch);
1780 }
1781 
1782 static void srpt_release_channel_work(struct work_struct *w)
1783 {
1784 	struct srpt_rdma_ch *ch;
1785 	struct srpt_device *sdev;
1786 	struct se_session *se_sess;
1787 
1788 	ch = container_of(w, struct srpt_rdma_ch, release_work);
1789 	pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
1790 		 ch->qp->qp_num, ch->release_done);
1791 
1792 	sdev = ch->sport->sdev;
1793 	BUG_ON(!sdev);
1794 
1795 	se_sess = ch->sess;
1796 	BUG_ON(!se_sess);
1797 
1798 	target_sess_cmd_list_set_waiting(se_sess);
1799 	target_wait_for_sess_cmds(se_sess);
1800 
1801 	transport_deregister_session_configfs(se_sess);
1802 	transport_deregister_session(se_sess);
1803 	ch->sess = NULL;
1804 
1805 	ib_destroy_cm_id(ch->cm_id);
1806 
1807 	srpt_destroy_ch_ib(ch);
1808 
1809 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
1810 			     ch->sport->sdev, ch->rq_size,
1811 			     ch->rsp_size, DMA_TO_DEVICE);
1812 
1813 	mutex_lock(&sdev->mutex);
1814 	list_del_init(&ch->list);
1815 	if (ch->release_done)
1816 		complete(ch->release_done);
1817 	mutex_unlock(&sdev->mutex);
1818 
1819 	wake_up(&sdev->ch_releaseQ);
1820 
1821 	kref_put(&ch->kref, srpt_free_ch);
1822 }
1823 
1824 /**
1825  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
1826  *
1827  * Ownership of the cm_id is transferred to the target session if this
1828  * functions returns zero. Otherwise the caller remains the owner of cm_id.
1829  */
1830 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
1831 			    struct ib_cm_req_event_param *param,
1832 			    void *private_data)
1833 {
1834 	struct srpt_device *sdev = cm_id->context;
1835 	struct srpt_port *sport = &sdev->port[param->port - 1];
1836 	struct srp_login_req *req;
1837 	struct srp_login_rsp *rsp;
1838 	struct srp_login_rej *rej;
1839 	struct ib_cm_rep_param *rep_param;
1840 	struct srpt_rdma_ch *ch, *tmp_ch;
1841 	u32 it_iu_len;
1842 	int i, ret = 0;
1843 
1844 	WARN_ON_ONCE(irqs_disabled());
1845 
1846 	if (WARN_ON(!sdev || !private_data))
1847 		return -EINVAL;
1848 
1849 	req = (struct srp_login_req *)private_data;
1850 
1851 	it_iu_len = be32_to_cpu(req->req_it_iu_len);
1852 
1853 	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
1854 		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
1855 		" (guid=0x%llx:0x%llx)\n",
1856 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
1857 		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
1858 		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
1859 		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
1860 		it_iu_len,
1861 		param->port,
1862 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
1863 		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
1864 
1865 	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
1866 	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
1867 	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
1868 
1869 	if (!rsp || !rej || !rep_param) {
1870 		ret = -ENOMEM;
1871 		goto out;
1872 	}
1873 
1874 	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
1875 		rej->reason = cpu_to_be32(
1876 			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
1877 		ret = -EINVAL;
1878 		pr_err("rejected SRP_LOGIN_REQ because its"
1879 		       " length (%d bytes) is out of range (%d .. %d)\n",
1880 		       it_iu_len, 64, srp_max_req_size);
1881 		goto reject;
1882 	}
1883 
1884 	if (!sport->enabled) {
1885 		rej->reason = cpu_to_be32(
1886 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1887 		ret = -EINVAL;
1888 		pr_err("rejected SRP_LOGIN_REQ because the target port"
1889 		       " has not yet been enabled\n");
1890 		goto reject;
1891 	}
1892 
1893 	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
1894 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
1895 
1896 		mutex_lock(&sdev->mutex);
1897 
1898 		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
1899 			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
1900 			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
1901 			    && param->port == ch->sport->port
1902 			    && param->listen_id == ch->sport->sdev->cm_id
1903 			    && ch->cm_id) {
1904 				if (srpt_disconnect_ch(ch) < 0)
1905 					continue;
1906 				pr_info("Relogin - closed existing channel %s\n",
1907 					ch->sess_name);
1908 				rsp->rsp_flags =
1909 					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
1910 			}
1911 		}
1912 
1913 		mutex_unlock(&sdev->mutex);
1914 
1915 	} else
1916 		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
1917 
1918 	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
1919 	    || *(__be64 *)(req->target_port_id + 8) !=
1920 	       cpu_to_be64(srpt_service_guid)) {
1921 		rej->reason = cpu_to_be32(
1922 			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
1923 		ret = -ENOMEM;
1924 		pr_err("rejected SRP_LOGIN_REQ because it"
1925 		       " has an invalid target port identifier.\n");
1926 		goto reject;
1927 	}
1928 
1929 	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
1930 	if (!ch) {
1931 		rej->reason = cpu_to_be32(
1932 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1933 		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
1934 		ret = -ENOMEM;
1935 		goto reject;
1936 	}
1937 
1938 	kref_init(&ch->kref);
1939 	ch->zw_cqe.done = srpt_zerolength_write_done;
1940 	INIT_WORK(&ch->release_work, srpt_release_channel_work);
1941 	memcpy(ch->i_port_id, req->initiator_port_id, 16);
1942 	memcpy(ch->t_port_id, req->target_port_id, 16);
1943 	ch->sport = &sdev->port[param->port - 1];
1944 	ch->cm_id = cm_id;
1945 	cm_id->context = ch;
1946 	/*
1947 	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
1948 	 * for the SRP protocol to the command queue size.
1949 	 */
1950 	ch->rq_size = SRPT_RQ_SIZE;
1951 	spin_lock_init(&ch->spinlock);
1952 	ch->state = CH_CONNECTING;
1953 	INIT_LIST_HEAD(&ch->cmd_wait_list);
1954 	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
1955 
1956 	ch->ioctx_ring = (struct srpt_send_ioctx **)
1957 		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
1958 				      sizeof(*ch->ioctx_ring[0]),
1959 				      ch->rsp_size, DMA_TO_DEVICE);
1960 	if (!ch->ioctx_ring)
1961 		goto free_ch;
1962 
1963 	INIT_LIST_HEAD(&ch->free_list);
1964 	for (i = 0; i < ch->rq_size; i++) {
1965 		ch->ioctx_ring[i]->ch = ch;
1966 		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
1967 	}
1968 
1969 	ret = srpt_create_ch_ib(ch);
1970 	if (ret) {
1971 		rej->reason = cpu_to_be32(
1972 			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1973 		pr_err("rejected SRP_LOGIN_REQ because creating"
1974 		       " a new RDMA channel failed.\n");
1975 		goto free_ring;
1976 	}
1977 
1978 	ret = srpt_ch_qp_rtr(ch, ch->qp);
1979 	if (ret) {
1980 		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
1981 		pr_err("rejected SRP_LOGIN_REQ because enabling"
1982 		       " RTR failed (error code = %d)\n", ret);
1983 		goto destroy_ib;
1984 	}
1985 
1986 	/*
1987 	 * Use the initator port identifier as the session name, when
1988 	 * checking against se_node_acl->initiatorname[] this can be
1989 	 * with or without preceeding '0x'.
1990 	 */
1991 	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
1992 			be64_to_cpu(*(__be64 *)ch->i_port_id),
1993 			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
1994 
1995 	pr_debug("registering session %s\n", ch->sess_name);
1996 
1997 	ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0,
1998 					TARGET_PROT_NORMAL, ch->sess_name, ch,
1999 					NULL);
2000 	/* Retry without leading "0x" */
2001 	if (IS_ERR(ch->sess))
2002 		ch->sess = target_alloc_session(&sport->port_tpg_1, 0, 0,
2003 						TARGET_PROT_NORMAL,
2004 						ch->sess_name + 2, ch, NULL);
2005 	if (IS_ERR(ch->sess)) {
2006 		pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n",
2007 			ch->sess_name);
2008 		rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ?
2009 				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2010 				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2011 		goto destroy_ib;
2012 	}
2013 
2014 	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2015 		 ch->sess_name, ch->cm_id);
2016 
2017 	/* create srp_login_response */
2018 	rsp->opcode = SRP_LOGIN_RSP;
2019 	rsp->tag = req->tag;
2020 	rsp->max_it_iu_len = req->req_it_iu_len;
2021 	rsp->max_ti_iu_len = req->req_it_iu_len;
2022 	ch->max_ti_iu_len = it_iu_len;
2023 	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2024 				   | SRP_BUF_FORMAT_INDIRECT);
2025 	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2026 	atomic_set(&ch->req_lim, ch->rq_size);
2027 	atomic_set(&ch->req_lim_delta, 0);
2028 
2029 	/* create cm reply */
2030 	rep_param->qp_num = ch->qp->qp_num;
2031 	rep_param->private_data = (void *)rsp;
2032 	rep_param->private_data_len = sizeof(*rsp);
2033 	rep_param->rnr_retry_count = 7;
2034 	rep_param->flow_control = 1;
2035 	rep_param->failover_accepted = 0;
2036 	rep_param->srq = 1;
2037 	rep_param->responder_resources = 4;
2038 	rep_param->initiator_depth = 4;
2039 
2040 	ret = ib_send_cm_rep(cm_id, rep_param);
2041 	if (ret) {
2042 		pr_err("sending SRP_LOGIN_REQ response failed"
2043 		       " (error code = %d)\n", ret);
2044 		goto release_channel;
2045 	}
2046 
2047 	mutex_lock(&sdev->mutex);
2048 	list_add_tail(&ch->list, &sdev->rch_list);
2049 	mutex_unlock(&sdev->mutex);
2050 
2051 	goto out;
2052 
2053 release_channel:
2054 	srpt_disconnect_ch(ch);
2055 	transport_deregister_session_configfs(ch->sess);
2056 	transport_deregister_session(ch->sess);
2057 	ch->sess = NULL;
2058 
2059 destroy_ib:
2060 	srpt_destroy_ch_ib(ch);
2061 
2062 free_ring:
2063 	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2064 			     ch->sport->sdev, ch->rq_size,
2065 			     ch->rsp_size, DMA_TO_DEVICE);
2066 free_ch:
2067 	kfree(ch);
2068 
2069 reject:
2070 	rej->opcode = SRP_LOGIN_REJ;
2071 	rej->tag = req->tag;
2072 	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2073 				   | SRP_BUF_FORMAT_INDIRECT);
2074 
2075 	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2076 			     (void *)rej, sizeof(*rej));
2077 
2078 out:
2079 	kfree(rep_param);
2080 	kfree(rsp);
2081 	kfree(rej);
2082 
2083 	return ret;
2084 }
2085 
2086 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2087 			     enum ib_cm_rej_reason reason,
2088 			     const u8 *private_data,
2089 			     u8 private_data_len)
2090 {
2091 	char *priv = NULL;
2092 	int i;
2093 
2094 	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2095 						GFP_KERNEL))) {
2096 		for (i = 0; i < private_data_len; i++)
2097 			sprintf(priv + 3 * i, " %02x", private_data[i]);
2098 	}
2099 	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2100 		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2101 		"; private data" : "", priv ? priv : " (?)");
2102 	kfree(priv);
2103 }
2104 
2105 /**
2106  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2107  *
2108  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2109  * and that the recipient may begin transmitting (RTU = ready to use).
2110  */
2111 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2112 {
2113 	int ret;
2114 
2115 	if (srpt_set_ch_state(ch, CH_LIVE)) {
2116 		ret = srpt_ch_qp_rts(ch, ch->qp);
2117 
2118 		if (ret == 0) {
2119 			/* Trigger wait list processing. */
2120 			ret = srpt_zerolength_write(ch);
2121 			WARN_ONCE(ret < 0, "%d\n", ret);
2122 		} else {
2123 			srpt_close_ch(ch);
2124 		}
2125 	}
2126 }
2127 
2128 /**
2129  * srpt_cm_handler() - IB connection manager callback function.
2130  *
2131  * A non-zero return value will cause the caller destroy the CM ID.
2132  *
2133  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2134  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2135  * a non-zero value in any other case will trigger a race with the
2136  * ib_destroy_cm_id() call in srpt_release_channel().
2137  */
2138 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2139 {
2140 	struct srpt_rdma_ch *ch = cm_id->context;
2141 	int ret;
2142 
2143 	ret = 0;
2144 	switch (event->event) {
2145 	case IB_CM_REQ_RECEIVED:
2146 		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2147 				       event->private_data);
2148 		break;
2149 	case IB_CM_REJ_RECEIVED:
2150 		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2151 				 event->private_data,
2152 				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2153 		break;
2154 	case IB_CM_RTU_RECEIVED:
2155 	case IB_CM_USER_ESTABLISHED:
2156 		srpt_cm_rtu_recv(ch);
2157 		break;
2158 	case IB_CM_DREQ_RECEIVED:
2159 		srpt_disconnect_ch(ch);
2160 		break;
2161 	case IB_CM_DREP_RECEIVED:
2162 		pr_info("Received CM DREP message for ch %s-%d.\n",
2163 			ch->sess_name, ch->qp->qp_num);
2164 		srpt_close_ch(ch);
2165 		break;
2166 	case IB_CM_TIMEWAIT_EXIT:
2167 		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2168 			ch->sess_name, ch->qp->qp_num);
2169 		srpt_close_ch(ch);
2170 		break;
2171 	case IB_CM_REP_ERROR:
2172 		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2173 			ch->qp->qp_num);
2174 		break;
2175 	case IB_CM_DREQ_ERROR:
2176 		pr_info("Received CM DREQ ERROR event.\n");
2177 		break;
2178 	case IB_CM_MRA_RECEIVED:
2179 		pr_info("Received CM MRA event\n");
2180 		break;
2181 	default:
2182 		pr_err("received unrecognized CM event %d\n", event->event);
2183 		break;
2184 	}
2185 
2186 	return ret;
2187 }
2188 
2189 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2190 {
2191 	struct srpt_send_ioctx *ioctx;
2192 
2193 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2194 	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2195 }
2196 
2197 /*
2198  * srpt_write_pending() - Start data transfer from initiator to target (write).
2199  */
2200 static int srpt_write_pending(struct se_cmd *se_cmd)
2201 {
2202 	struct srpt_send_ioctx *ioctx =
2203 		container_of(se_cmd, struct srpt_send_ioctx, cmd);
2204 	struct srpt_rdma_ch *ch = ioctx->ch;
2205 	struct ib_send_wr *first_wr = NULL, *bad_wr;
2206 	struct ib_cqe *cqe = &ioctx->rdma_cqe;
2207 	enum srpt_command_state new_state;
2208 	int ret, i;
2209 
2210 	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2211 	WARN_ON(new_state == SRPT_STATE_DONE);
2212 
2213 	if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2214 		pr_warn("%s: IB send queue full (needed %d)\n",
2215 				__func__, ioctx->n_rdma);
2216 		ret = -ENOMEM;
2217 		goto out_undo;
2218 	}
2219 
2220 	cqe->done = srpt_rdma_read_done;
2221 	for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2222 		struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2223 
2224 		first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2225 				cqe, first_wr);
2226 		cqe = NULL;
2227 	}
2228 
2229 	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2230 	if (ret) {
2231 		pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2232 			 __func__, ret, ioctx->n_rdma,
2233 			 atomic_read(&ch->sq_wr_avail));
2234 		goto out_undo;
2235 	}
2236 
2237 	return 0;
2238 out_undo:
2239 	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2240 	return ret;
2241 }
2242 
2243 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2244 {
2245 	switch (tcm_mgmt_status) {
2246 	case TMR_FUNCTION_COMPLETE:
2247 		return SRP_TSK_MGMT_SUCCESS;
2248 	case TMR_FUNCTION_REJECTED:
2249 		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2250 	}
2251 	return SRP_TSK_MGMT_FAILED;
2252 }
2253 
2254 /**
2255  * srpt_queue_response() - Transmits the response to a SCSI command.
2256  *
2257  * Callback function called by the TCM core. Must not block since it can be
2258  * invoked on the context of the IB completion handler.
2259  */
2260 static void srpt_queue_response(struct se_cmd *cmd)
2261 {
2262 	struct srpt_send_ioctx *ioctx =
2263 		container_of(cmd, struct srpt_send_ioctx, cmd);
2264 	struct srpt_rdma_ch *ch = ioctx->ch;
2265 	struct srpt_device *sdev = ch->sport->sdev;
2266 	struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr;
2267 	struct ib_sge sge;
2268 	enum srpt_command_state state;
2269 	unsigned long flags;
2270 	int resp_len, ret, i;
2271 	u8 srp_tm_status;
2272 
2273 	BUG_ON(!ch);
2274 
2275 	spin_lock_irqsave(&ioctx->spinlock, flags);
2276 	state = ioctx->state;
2277 	switch (state) {
2278 	case SRPT_STATE_NEW:
2279 	case SRPT_STATE_DATA_IN:
2280 		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2281 		break;
2282 	case SRPT_STATE_MGMT:
2283 		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2284 		break;
2285 	default:
2286 		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2287 			ch, ioctx->ioctx.index, ioctx->state);
2288 		break;
2289 	}
2290 	spin_unlock_irqrestore(&ioctx->spinlock, flags);
2291 
2292 	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2293 		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2294 		atomic_inc(&ch->req_lim_delta);
2295 		srpt_abort_cmd(ioctx);
2296 		return;
2297 	}
2298 
2299 	/* For read commands, transfer the data to the initiator. */
2300 	if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2301 	    ioctx->cmd.data_length &&
2302 	    !ioctx->queue_status_only) {
2303 		for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2304 			struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2305 
2306 			first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2307 					ch->sport->port, NULL, first_wr);
2308 		}
2309 	}
2310 
2311 	if (state != SRPT_STATE_MGMT)
2312 		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2313 					      cmd->scsi_status);
2314 	else {
2315 		srp_tm_status
2316 			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2317 		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2318 						 ioctx->cmd.tag);
2319 	}
2320 
2321 	atomic_inc(&ch->req_lim);
2322 
2323 	if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2324 			&ch->sq_wr_avail) < 0)) {
2325 		pr_warn("%s: IB send queue full (needed %d)\n",
2326 				__func__, ioctx->n_rdma);
2327 		ret = -ENOMEM;
2328 		goto out;
2329 	}
2330 
2331 	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2332 				      DMA_TO_DEVICE);
2333 
2334 	sge.addr = ioctx->ioctx.dma;
2335 	sge.length = resp_len;
2336 	sge.lkey = sdev->pd->local_dma_lkey;
2337 
2338 	ioctx->ioctx.cqe.done = srpt_send_done;
2339 	send_wr.next = NULL;
2340 	send_wr.wr_cqe = &ioctx->ioctx.cqe;
2341 	send_wr.sg_list = &sge;
2342 	send_wr.num_sge = 1;
2343 	send_wr.opcode = IB_WR_SEND;
2344 	send_wr.send_flags = IB_SEND_SIGNALED;
2345 
2346 	ret = ib_post_send(ch->qp, first_wr, &bad_wr);
2347 	if (ret < 0) {
2348 		pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2349 			__func__, ioctx->cmd.tag, ret);
2350 		goto out;
2351 	}
2352 
2353 	return;
2354 
2355 out:
2356 	atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2357 	atomic_dec(&ch->req_lim);
2358 	srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2359 	target_put_sess_cmd(&ioctx->cmd);
2360 }
2361 
2362 static int srpt_queue_data_in(struct se_cmd *cmd)
2363 {
2364 	srpt_queue_response(cmd);
2365 	return 0;
2366 }
2367 
2368 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2369 {
2370 	srpt_queue_response(cmd);
2371 }
2372 
2373 static void srpt_aborted_task(struct se_cmd *cmd)
2374 {
2375 }
2376 
2377 static int srpt_queue_status(struct se_cmd *cmd)
2378 {
2379 	struct srpt_send_ioctx *ioctx;
2380 
2381 	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2382 	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2383 	if (cmd->se_cmd_flags &
2384 	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2385 		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2386 	ioctx->queue_status_only = true;
2387 	srpt_queue_response(cmd);
2388 	return 0;
2389 }
2390 
2391 static void srpt_refresh_port_work(struct work_struct *work)
2392 {
2393 	struct srpt_port *sport = container_of(work, struct srpt_port, work);
2394 
2395 	srpt_refresh_port(sport);
2396 }
2397 
2398 /**
2399  * srpt_release_sdev() - Free the channel resources associated with a target.
2400  */
2401 static int srpt_release_sdev(struct srpt_device *sdev)
2402 {
2403 	int i, res;
2404 
2405 	WARN_ON_ONCE(irqs_disabled());
2406 
2407 	BUG_ON(!sdev);
2408 
2409 	mutex_lock(&sdev->mutex);
2410 	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
2411 		sdev->port[i].enabled = false;
2412 	__srpt_close_all_ch(sdev);
2413 	mutex_unlock(&sdev->mutex);
2414 
2415 	res = wait_event_interruptible(sdev->ch_releaseQ,
2416 				       list_empty_careful(&sdev->rch_list));
2417 	if (res)
2418 		pr_err("%s: interrupted.\n", __func__);
2419 
2420 	return 0;
2421 }
2422 
2423 static struct srpt_port *__srpt_lookup_port(const char *name)
2424 {
2425 	struct ib_device *dev;
2426 	struct srpt_device *sdev;
2427 	struct srpt_port *sport;
2428 	int i;
2429 
2430 	list_for_each_entry(sdev, &srpt_dev_list, list) {
2431 		dev = sdev->device;
2432 		if (!dev)
2433 			continue;
2434 
2435 		for (i = 0; i < dev->phys_port_cnt; i++) {
2436 			sport = &sdev->port[i];
2437 
2438 			if (!strcmp(sport->port_guid, name))
2439 				return sport;
2440 		}
2441 	}
2442 
2443 	return NULL;
2444 }
2445 
2446 static struct srpt_port *srpt_lookup_port(const char *name)
2447 {
2448 	struct srpt_port *sport;
2449 
2450 	spin_lock(&srpt_dev_lock);
2451 	sport = __srpt_lookup_port(name);
2452 	spin_unlock(&srpt_dev_lock);
2453 
2454 	return sport;
2455 }
2456 
2457 /**
2458  * srpt_add_one() - Infiniband device addition callback function.
2459  */
2460 static void srpt_add_one(struct ib_device *device)
2461 {
2462 	struct srpt_device *sdev;
2463 	struct srpt_port *sport;
2464 	struct ib_srq_init_attr srq_attr;
2465 	int i;
2466 
2467 	pr_debug("device = %p, device->dma_ops = %p\n", device,
2468 		 device->dma_ops);
2469 
2470 	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2471 	if (!sdev)
2472 		goto err;
2473 
2474 	sdev->device = device;
2475 	INIT_LIST_HEAD(&sdev->rch_list);
2476 	init_waitqueue_head(&sdev->ch_releaseQ);
2477 	mutex_init(&sdev->mutex);
2478 
2479 	sdev->pd = ib_alloc_pd(device, 0);
2480 	if (IS_ERR(sdev->pd))
2481 		goto free_dev;
2482 
2483 	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2484 
2485 	srq_attr.event_handler = srpt_srq_event;
2486 	srq_attr.srq_context = (void *)sdev;
2487 	srq_attr.attr.max_wr = sdev->srq_size;
2488 	srq_attr.attr.max_sge = 1;
2489 	srq_attr.attr.srq_limit = 0;
2490 	srq_attr.srq_type = IB_SRQT_BASIC;
2491 
2492 	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
2493 	if (IS_ERR(sdev->srq))
2494 		goto err_pd;
2495 
2496 	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
2497 		 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr,
2498 		 device->name);
2499 
2500 	if (!srpt_service_guid)
2501 		srpt_service_guid = be64_to_cpu(device->node_guid);
2502 
2503 	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
2504 	if (IS_ERR(sdev->cm_id))
2505 		goto err_srq;
2506 
2507 	/* print out target login information */
2508 	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
2509 		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
2510 		 srpt_service_guid, srpt_service_guid);
2511 
2512 	/*
2513 	 * We do not have a consistent service_id (ie. also id_ext of target_id)
2514 	 * to identify this target. We currently use the guid of the first HCA
2515 	 * in the system as service_id; therefore, the target_id will change
2516 	 * if this HCA is gone bad and replaced by different HCA
2517 	 */
2518 	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2519 		goto err_cm;
2520 
2521 	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
2522 			      srpt_event_handler);
2523 	if (ib_register_event_handler(&sdev->event_handler))
2524 		goto err_cm;
2525 
2526 	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
2527 		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
2528 				      sizeof(*sdev->ioctx_ring[0]),
2529 				      srp_max_req_size, DMA_FROM_DEVICE);
2530 	if (!sdev->ioctx_ring)
2531 		goto err_event;
2532 
2533 	for (i = 0; i < sdev->srq_size; ++i)
2534 		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
2535 
2536 	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2537 
2538 	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
2539 		sport = &sdev->port[i - 1];
2540 		sport->sdev = sdev;
2541 		sport->port = i;
2542 		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
2543 		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
2544 		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
2545 		INIT_WORK(&sport->work, srpt_refresh_port_work);
2546 
2547 		if (srpt_refresh_port(sport)) {
2548 			pr_err("MAD registration failed for %s-%d.\n",
2549 			       sdev->device->name, i);
2550 			goto err_ring;
2551 		}
2552 	}
2553 
2554 	spin_lock(&srpt_dev_lock);
2555 	list_add_tail(&sdev->list, &srpt_dev_list);
2556 	spin_unlock(&srpt_dev_lock);
2557 
2558 out:
2559 	ib_set_client_data(device, &srpt_client, sdev);
2560 	pr_debug("added %s.\n", device->name);
2561 	return;
2562 
2563 err_ring:
2564 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2565 			     sdev->srq_size, srp_max_req_size,
2566 			     DMA_FROM_DEVICE);
2567 err_event:
2568 	ib_unregister_event_handler(&sdev->event_handler);
2569 err_cm:
2570 	ib_destroy_cm_id(sdev->cm_id);
2571 err_srq:
2572 	ib_destroy_srq(sdev->srq);
2573 err_pd:
2574 	ib_dealloc_pd(sdev->pd);
2575 free_dev:
2576 	kfree(sdev);
2577 err:
2578 	sdev = NULL;
2579 	pr_info("%s(%s) failed.\n", __func__, device->name);
2580 	goto out;
2581 }
2582 
2583 /**
2584  * srpt_remove_one() - InfiniBand device removal callback function.
2585  */
2586 static void srpt_remove_one(struct ib_device *device, void *client_data)
2587 {
2588 	struct srpt_device *sdev = client_data;
2589 	int i;
2590 
2591 	if (!sdev) {
2592 		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2593 		return;
2594 	}
2595 
2596 	srpt_unregister_mad_agent(sdev);
2597 
2598 	ib_unregister_event_handler(&sdev->event_handler);
2599 
2600 	/* Cancel any work queued by the just unregistered IB event handler. */
2601 	for (i = 0; i < sdev->device->phys_port_cnt; i++)
2602 		cancel_work_sync(&sdev->port[i].work);
2603 
2604 	ib_destroy_cm_id(sdev->cm_id);
2605 
2606 	/*
2607 	 * Unregistering a target must happen after destroying sdev->cm_id
2608 	 * such that no new SRP_LOGIN_REQ information units can arrive while
2609 	 * destroying the target.
2610 	 */
2611 	spin_lock(&srpt_dev_lock);
2612 	list_del(&sdev->list);
2613 	spin_unlock(&srpt_dev_lock);
2614 	srpt_release_sdev(sdev);
2615 
2616 	ib_destroy_srq(sdev->srq);
2617 	ib_dealloc_pd(sdev->pd);
2618 
2619 	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
2620 			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
2621 	sdev->ioctx_ring = NULL;
2622 	kfree(sdev);
2623 }
2624 
2625 static struct ib_client srpt_client = {
2626 	.name = DRV_NAME,
2627 	.add = srpt_add_one,
2628 	.remove = srpt_remove_one
2629 };
2630 
2631 static int srpt_check_true(struct se_portal_group *se_tpg)
2632 {
2633 	return 1;
2634 }
2635 
2636 static int srpt_check_false(struct se_portal_group *se_tpg)
2637 {
2638 	return 0;
2639 }
2640 
2641 static char *srpt_get_fabric_name(void)
2642 {
2643 	return "srpt";
2644 }
2645 
2646 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
2647 {
2648 	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
2649 
2650 	return sport->port_guid;
2651 }
2652 
2653 static u16 srpt_get_tag(struct se_portal_group *tpg)
2654 {
2655 	return 1;
2656 }
2657 
2658 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
2659 {
2660 	return 1;
2661 }
2662 
2663 static void srpt_release_cmd(struct se_cmd *se_cmd)
2664 {
2665 	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
2666 				struct srpt_send_ioctx, cmd);
2667 	struct srpt_rdma_ch *ch = ioctx->ch;
2668 	unsigned long flags;
2669 
2670 	WARN_ON(ioctx->state != SRPT_STATE_DONE);
2671 
2672 	if (ioctx->n_rw_ctx) {
2673 		srpt_free_rw_ctxs(ch, ioctx);
2674 		ioctx->n_rw_ctx = 0;
2675 	}
2676 
2677 	spin_lock_irqsave(&ch->spinlock, flags);
2678 	list_add(&ioctx->free_list, &ch->free_list);
2679 	spin_unlock_irqrestore(&ch->spinlock, flags);
2680 }
2681 
2682 /**
2683  * srpt_close_session() - Forcibly close a session.
2684  *
2685  * Callback function invoked by the TCM core to clean up sessions associated
2686  * with a node ACL when the user invokes
2687  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2688  */
2689 static void srpt_close_session(struct se_session *se_sess)
2690 {
2691 	DECLARE_COMPLETION_ONSTACK(release_done);
2692 	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2693 	struct srpt_device *sdev = ch->sport->sdev;
2694 	bool wait;
2695 
2696 	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
2697 		 ch->state);
2698 
2699 	mutex_lock(&sdev->mutex);
2700 	BUG_ON(ch->release_done);
2701 	ch->release_done = &release_done;
2702 	wait = !list_empty(&ch->list);
2703 	srpt_disconnect_ch(ch);
2704 	mutex_unlock(&sdev->mutex);
2705 
2706 	if (!wait)
2707 		return;
2708 
2709 	while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
2710 		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
2711 			ch->sess_name, ch->qp->qp_num, ch->state);
2712 }
2713 
2714 /**
2715  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
2716  *
2717  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
2718  * This object represents an arbitrary integer used to uniquely identify a
2719  * particular attached remote initiator port to a particular SCSI target port
2720  * within a particular SCSI target device within a particular SCSI instance.
2721  */
2722 static u32 srpt_sess_get_index(struct se_session *se_sess)
2723 {
2724 	return 0;
2725 }
2726 
2727 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
2728 {
2729 }
2730 
2731 /* Note: only used from inside debug printk's by the TCM core. */
2732 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
2733 {
2734 	struct srpt_send_ioctx *ioctx;
2735 
2736 	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2737 	return srpt_get_cmd_state(ioctx);
2738 }
2739 
2740 /**
2741  * srpt_parse_i_port_id() - Parse an initiator port ID.
2742  * @name: ASCII representation of a 128-bit initiator port ID.
2743  * @i_port_id: Binary 128-bit port ID.
2744  */
2745 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
2746 {
2747 	const char *p;
2748 	unsigned len, count, leading_zero_bytes;
2749 	int ret, rc;
2750 
2751 	p = name;
2752 	if (strncasecmp(p, "0x", 2) == 0)
2753 		p += 2;
2754 	ret = -EINVAL;
2755 	len = strlen(p);
2756 	if (len % 2)
2757 		goto out;
2758 	count = min(len / 2, 16U);
2759 	leading_zero_bytes = 16 - count;
2760 	memset(i_port_id, 0, leading_zero_bytes);
2761 	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
2762 	if (rc < 0)
2763 		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
2764 	ret = 0;
2765 out:
2766 	return ret;
2767 }
2768 
2769 /*
2770  * configfs callback function invoked for
2771  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
2772  */
2773 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
2774 {
2775 	u8 i_port_id[16];
2776 
2777 	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
2778 		pr_err("invalid initiator port ID %s\n", name);
2779 		return -EINVAL;
2780 	}
2781 	return 0;
2782 }
2783 
2784 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
2785 		char *page)
2786 {
2787 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2788 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2789 
2790 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
2791 }
2792 
2793 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
2794 		const char *page, size_t count)
2795 {
2796 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2797 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2798 	unsigned long val;
2799 	int ret;
2800 
2801 	ret = kstrtoul(page, 0, &val);
2802 	if (ret < 0) {
2803 		pr_err("kstrtoul() failed with ret: %d\n", ret);
2804 		return -EINVAL;
2805 	}
2806 	if (val > MAX_SRPT_RDMA_SIZE) {
2807 		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
2808 			MAX_SRPT_RDMA_SIZE);
2809 		return -EINVAL;
2810 	}
2811 	if (val < DEFAULT_MAX_RDMA_SIZE) {
2812 		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
2813 			val, DEFAULT_MAX_RDMA_SIZE);
2814 		return -EINVAL;
2815 	}
2816 	sport->port_attrib.srp_max_rdma_size = val;
2817 
2818 	return count;
2819 }
2820 
2821 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
2822 		char *page)
2823 {
2824 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2825 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2826 
2827 	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
2828 }
2829 
2830 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
2831 		const char *page, size_t count)
2832 {
2833 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2834 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2835 	unsigned long val;
2836 	int ret;
2837 
2838 	ret = kstrtoul(page, 0, &val);
2839 	if (ret < 0) {
2840 		pr_err("kstrtoul() failed with ret: %d\n", ret);
2841 		return -EINVAL;
2842 	}
2843 	if (val > MAX_SRPT_RSP_SIZE) {
2844 		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
2845 			MAX_SRPT_RSP_SIZE);
2846 		return -EINVAL;
2847 	}
2848 	if (val < MIN_MAX_RSP_SIZE) {
2849 		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
2850 			MIN_MAX_RSP_SIZE);
2851 		return -EINVAL;
2852 	}
2853 	sport->port_attrib.srp_max_rsp_size = val;
2854 
2855 	return count;
2856 }
2857 
2858 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
2859 		char *page)
2860 {
2861 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2862 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2863 
2864 	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
2865 }
2866 
2867 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
2868 		const char *page, size_t count)
2869 {
2870 	struct se_portal_group *se_tpg = attrib_to_tpg(item);
2871 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2872 	unsigned long val;
2873 	int ret;
2874 
2875 	ret = kstrtoul(page, 0, &val);
2876 	if (ret < 0) {
2877 		pr_err("kstrtoul() failed with ret: %d\n", ret);
2878 		return -EINVAL;
2879 	}
2880 	if (val > MAX_SRPT_SRQ_SIZE) {
2881 		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
2882 			MAX_SRPT_SRQ_SIZE);
2883 		return -EINVAL;
2884 	}
2885 	if (val < MIN_SRPT_SRQ_SIZE) {
2886 		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
2887 			MIN_SRPT_SRQ_SIZE);
2888 		return -EINVAL;
2889 	}
2890 	sport->port_attrib.srp_sq_size = val;
2891 
2892 	return count;
2893 }
2894 
2895 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
2896 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
2897 CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
2898 
2899 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
2900 	&srpt_tpg_attrib_attr_srp_max_rdma_size,
2901 	&srpt_tpg_attrib_attr_srp_max_rsp_size,
2902 	&srpt_tpg_attrib_attr_srp_sq_size,
2903 	NULL,
2904 };
2905 
2906 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
2907 {
2908 	struct se_portal_group *se_tpg = to_tpg(item);
2909 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2910 
2911 	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
2912 }
2913 
2914 static ssize_t srpt_tpg_enable_store(struct config_item *item,
2915 		const char *page, size_t count)
2916 {
2917 	struct se_portal_group *se_tpg = to_tpg(item);
2918 	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
2919 	struct srpt_device *sdev = sport->sdev;
2920 	struct srpt_rdma_ch *ch;
2921 	unsigned long tmp;
2922         int ret;
2923 
2924 	ret = kstrtoul(page, 0, &tmp);
2925 	if (ret < 0) {
2926 		pr_err("Unable to extract srpt_tpg_store_enable\n");
2927 		return -EINVAL;
2928 	}
2929 
2930 	if ((tmp != 0) && (tmp != 1)) {
2931 		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
2932 		return -EINVAL;
2933 	}
2934 	if (sport->enabled == tmp)
2935 		goto out;
2936 	sport->enabled = tmp;
2937 	if (sport->enabled)
2938 		goto out;
2939 
2940 	mutex_lock(&sdev->mutex);
2941 	list_for_each_entry(ch, &sdev->rch_list, list) {
2942 		if (ch->sport == sport) {
2943 			pr_debug("%s: ch %p %s-%d\n", __func__, ch,
2944 				 ch->sess_name, ch->qp->qp_num);
2945 			srpt_disconnect_ch(ch);
2946 			srpt_close_ch(ch);
2947 		}
2948 	}
2949 	mutex_unlock(&sdev->mutex);
2950 
2951 out:
2952 	return count;
2953 }
2954 
2955 CONFIGFS_ATTR(srpt_tpg_, enable);
2956 
2957 static struct configfs_attribute *srpt_tpg_attrs[] = {
2958 	&srpt_tpg_attr_enable,
2959 	NULL,
2960 };
2961 
2962 /**
2963  * configfs callback invoked for
2964  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
2965  */
2966 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
2967 					     struct config_group *group,
2968 					     const char *name)
2969 {
2970 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
2971 	int res;
2972 
2973 	/* Initialize sport->port_wwn and sport->port_tpg_1 */
2974 	res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
2975 	if (res)
2976 		return ERR_PTR(res);
2977 
2978 	return &sport->port_tpg_1;
2979 }
2980 
2981 /**
2982  * configfs callback invoked for
2983  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
2984  */
2985 static void srpt_drop_tpg(struct se_portal_group *tpg)
2986 {
2987 	struct srpt_port *sport = container_of(tpg,
2988 				struct srpt_port, port_tpg_1);
2989 
2990 	sport->enabled = false;
2991 	core_tpg_deregister(&sport->port_tpg_1);
2992 }
2993 
2994 /**
2995  * configfs callback invoked for
2996  * mkdir /sys/kernel/config/target/$driver/$port
2997  */
2998 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
2999 				      struct config_group *group,
3000 				      const char *name)
3001 {
3002 	struct srpt_port *sport;
3003 	int ret;
3004 
3005 	sport = srpt_lookup_port(name);
3006 	pr_debug("make_tport(%s)\n", name);
3007 	ret = -EINVAL;
3008 	if (!sport)
3009 		goto err;
3010 
3011 	return &sport->port_wwn;
3012 
3013 err:
3014 	return ERR_PTR(ret);
3015 }
3016 
3017 /**
3018  * configfs callback invoked for
3019  * rmdir /sys/kernel/config/target/$driver/$port
3020  */
3021 static void srpt_drop_tport(struct se_wwn *wwn)
3022 {
3023 	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3024 
3025 	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3026 }
3027 
3028 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3029 {
3030 	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3031 }
3032 
3033 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3034 
3035 static struct configfs_attribute *srpt_wwn_attrs[] = {
3036 	&srpt_wwn_attr_version,
3037 	NULL,
3038 };
3039 
3040 static const struct target_core_fabric_ops srpt_template = {
3041 	.module				= THIS_MODULE,
3042 	.name				= "srpt",
3043 	.get_fabric_name		= srpt_get_fabric_name,
3044 	.tpg_get_wwn			= srpt_get_fabric_wwn,
3045 	.tpg_get_tag			= srpt_get_tag,
3046 	.tpg_check_demo_mode		= srpt_check_false,
3047 	.tpg_check_demo_mode_cache	= srpt_check_true,
3048 	.tpg_check_demo_mode_write_protect = srpt_check_true,
3049 	.tpg_check_prod_mode_write_protect = srpt_check_false,
3050 	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3051 	.release_cmd			= srpt_release_cmd,
3052 	.check_stop_free		= srpt_check_stop_free,
3053 	.close_session			= srpt_close_session,
3054 	.sess_get_index			= srpt_sess_get_index,
3055 	.sess_get_initiator_sid		= NULL,
3056 	.write_pending			= srpt_write_pending,
3057 	.write_pending_status		= srpt_write_pending_status,
3058 	.set_default_node_attributes	= srpt_set_default_node_attrs,
3059 	.get_cmd_state			= srpt_get_tcm_cmd_state,
3060 	.queue_data_in			= srpt_queue_data_in,
3061 	.queue_status			= srpt_queue_status,
3062 	.queue_tm_rsp			= srpt_queue_tm_rsp,
3063 	.aborted_task			= srpt_aborted_task,
3064 	/*
3065 	 * Setup function pointers for generic logic in
3066 	 * target_core_fabric_configfs.c
3067 	 */
3068 	.fabric_make_wwn		= srpt_make_tport,
3069 	.fabric_drop_wwn		= srpt_drop_tport,
3070 	.fabric_make_tpg		= srpt_make_tpg,
3071 	.fabric_drop_tpg		= srpt_drop_tpg,
3072 	.fabric_init_nodeacl		= srpt_init_nodeacl,
3073 
3074 	.tfc_wwn_attrs			= srpt_wwn_attrs,
3075 	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3076 	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3077 };
3078 
3079 /**
3080  * srpt_init_module() - Kernel module initialization.
3081  *
3082  * Note: Since ib_register_client() registers callback functions, and since at
3083  * least one of these callback functions (srpt_add_one()) calls target core
3084  * functions, this driver must be registered with the target core before
3085  * ib_register_client() is called.
3086  */
3087 static int __init srpt_init_module(void)
3088 {
3089 	int ret;
3090 
3091 	ret = -EINVAL;
3092 	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3093 		pr_err("invalid value %d for kernel module parameter"
3094 		       " srp_max_req_size -- must be at least %d.\n",
3095 		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3096 		goto out;
3097 	}
3098 
3099 	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3100 	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3101 		pr_err("invalid value %d for kernel module parameter"
3102 		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3103 		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3104 		goto out;
3105 	}
3106 
3107 	ret = target_register_template(&srpt_template);
3108 	if (ret)
3109 		goto out;
3110 
3111 	ret = ib_register_client(&srpt_client);
3112 	if (ret) {
3113 		pr_err("couldn't register IB client\n");
3114 		goto out_unregister_target;
3115 	}
3116 
3117 	return 0;
3118 
3119 out_unregister_target:
3120 	target_unregister_template(&srpt_template);
3121 out:
3122 	return ret;
3123 }
3124 
3125 static void __exit srpt_cleanup_module(void)
3126 {
3127 	ib_unregister_client(&srpt_client);
3128 	target_unregister_template(&srpt_template);
3129 }
3130 
3131 module_init(srpt_init_module);
3132 module_exit(srpt_cleanup_module);
3133