1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_cmd(struct se_cmd *se_cmd); 95 static void srpt_free_ch(struct kref *kref); 96 static int srpt_queue_status(struct se_cmd *cmd); 97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 100 101 /* 102 * The only allowed channel state changes are those that change the channel 103 * state into a state with a higher numerical value. Hence the new > prev test. 104 */ 105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 106 { 107 unsigned long flags; 108 enum rdma_ch_state prev; 109 bool changed = false; 110 111 spin_lock_irqsave(&ch->spinlock, flags); 112 prev = ch->state; 113 if (new > prev) { 114 ch->state = new; 115 changed = true; 116 } 117 spin_unlock_irqrestore(&ch->spinlock, flags); 118 119 return changed; 120 } 121 122 /** 123 * srpt_event_handler() - Asynchronous IB event callback function. 124 * 125 * Callback function called by the InfiniBand core when an asynchronous IB 126 * event occurs. This callback may occur in interrupt context. See also 127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 128 * Architecture Specification. 129 */ 130 static void srpt_event_handler(struct ib_event_handler *handler, 131 struct ib_event *event) 132 { 133 struct srpt_device *sdev; 134 struct srpt_port *sport; 135 136 sdev = ib_get_client_data(event->device, &srpt_client); 137 if (!sdev || sdev->device != event->device) 138 return; 139 140 pr_debug("ASYNC event= %d on device= %s\n", event->event, 141 sdev->device->name); 142 143 switch (event->event) { 144 case IB_EVENT_PORT_ERR: 145 if (event->element.port_num <= sdev->device->phys_port_cnt) { 146 sport = &sdev->port[event->element.port_num - 1]; 147 sport->lid = 0; 148 sport->sm_lid = 0; 149 } 150 break; 151 case IB_EVENT_PORT_ACTIVE: 152 case IB_EVENT_LID_CHANGE: 153 case IB_EVENT_PKEY_CHANGE: 154 case IB_EVENT_SM_CHANGE: 155 case IB_EVENT_CLIENT_REREGISTER: 156 case IB_EVENT_GID_CHANGE: 157 /* Refresh port data asynchronously. */ 158 if (event->element.port_num <= sdev->device->phys_port_cnt) { 159 sport = &sdev->port[event->element.port_num - 1]; 160 if (!sport->lid && !sport->sm_lid) 161 schedule_work(&sport->work); 162 } 163 break; 164 default: 165 pr_err("received unrecognized IB event %d\n", 166 event->event); 167 break; 168 } 169 } 170 171 /** 172 * srpt_srq_event() - SRQ event callback function. 173 */ 174 static void srpt_srq_event(struct ib_event *event, void *ctx) 175 { 176 pr_info("SRQ event %d\n", event->event); 177 } 178 179 static const char *get_ch_state_name(enum rdma_ch_state s) 180 { 181 switch (s) { 182 case CH_CONNECTING: 183 return "connecting"; 184 case CH_LIVE: 185 return "live"; 186 case CH_DISCONNECTING: 187 return "disconnecting"; 188 case CH_DRAINING: 189 return "draining"; 190 case CH_DISCONNECTED: 191 return "disconnected"; 192 } 193 return "???"; 194 } 195 196 /** 197 * srpt_qp_event() - QP event callback function. 198 */ 199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 200 { 201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 202 event->event, ch->cm_id, ch->sess_name, ch->state); 203 204 switch (event->event) { 205 case IB_EVENT_COMM_EST: 206 ib_cm_notify(ch->cm_id, event->event); 207 break; 208 case IB_EVENT_QP_LAST_WQE_REACHED: 209 pr_debug("%s-%d, state %s: received Last WQE event.\n", 210 ch->sess_name, ch->qp->qp_num, 211 get_ch_state_name(ch->state)); 212 break; 213 default: 214 pr_err("received unrecognized IB QP event %d\n", event->event); 215 break; 216 } 217 } 218 219 /** 220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 221 * 222 * @slot: one-based slot number. 223 * @value: four-bit value. 224 * 225 * Copies the lowest four bits of value in element slot of the array of four 226 * bit elements called c_list (controller list). The index slot is one-based. 227 */ 228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 229 { 230 u16 id; 231 u8 tmp; 232 233 id = (slot - 1) / 2; 234 if (slot & 0x1) { 235 tmp = c_list[id] & 0xf; 236 c_list[id] = (value << 4) | tmp; 237 } else { 238 tmp = c_list[id] & 0xf0; 239 c_list[id] = (value & 0xf) | tmp; 240 } 241 } 242 243 /** 244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 245 * 246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 247 * Specification. 248 */ 249 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 250 { 251 struct ib_class_port_info *cif; 252 253 cif = (struct ib_class_port_info *)mad->data; 254 memset(cif, 0, sizeof(*cif)); 255 cif->base_version = 1; 256 cif->class_version = 1; 257 258 ib_set_cpi_resp_time(cif, 20); 259 mad->mad_hdr.status = 0; 260 } 261 262 /** 263 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 264 * 265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 266 * Specification. See also section B.7, table B.6 in the SRP r16a document. 267 */ 268 static void srpt_get_iou(struct ib_dm_mad *mad) 269 { 270 struct ib_dm_iou_info *ioui; 271 u8 slot; 272 int i; 273 274 ioui = (struct ib_dm_iou_info *)mad->data; 275 ioui->change_id = cpu_to_be16(1); 276 ioui->max_controllers = 16; 277 278 /* set present for slot 1 and empty for the rest */ 279 srpt_set_ioc(ioui->controller_list, 1, 1); 280 for (i = 1, slot = 2; i < 16; i++, slot++) 281 srpt_set_ioc(ioui->controller_list, slot, 0); 282 283 mad->mad_hdr.status = 0; 284 } 285 286 /** 287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 288 * 289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 290 * Architecture Specification. See also section B.7, table B.7 in the SRP 291 * r16a document. 292 */ 293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 294 struct ib_dm_mad *mad) 295 { 296 struct srpt_device *sdev = sport->sdev; 297 struct ib_dm_ioc_profile *iocp; 298 int send_queue_depth; 299 300 iocp = (struct ib_dm_ioc_profile *)mad->data; 301 302 if (!slot || slot > 16) { 303 mad->mad_hdr.status 304 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 305 return; 306 } 307 308 if (slot > 2) { 309 mad->mad_hdr.status 310 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 311 return; 312 } 313 314 if (sdev->use_srq) 315 send_queue_depth = sdev->srq_size; 316 else 317 send_queue_depth = min(SRPT_RQ_SIZE, 318 sdev->device->attrs.max_qp_wr); 319 320 memset(iocp, 0, sizeof(*iocp)); 321 strcpy(iocp->id_string, SRPT_ID_STRING); 322 iocp->guid = cpu_to_be64(srpt_service_guid); 323 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 324 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 325 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 326 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 327 iocp->subsys_device_id = 0x0; 328 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 329 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 330 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 331 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 332 iocp->send_queue_depth = cpu_to_be16(send_queue_depth); 333 iocp->rdma_read_depth = 4; 334 iocp->send_size = cpu_to_be32(srp_max_req_size); 335 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 336 1U << 24)); 337 iocp->num_svc_entries = 1; 338 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 339 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 340 341 mad->mad_hdr.status = 0; 342 } 343 344 /** 345 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 346 * 347 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 348 * Specification. See also section B.7, table B.8 in the SRP r16a document. 349 */ 350 static void srpt_get_svc_entries(u64 ioc_guid, 351 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 352 { 353 struct ib_dm_svc_entries *svc_entries; 354 355 WARN_ON(!ioc_guid); 356 357 if (!slot || slot > 16) { 358 mad->mad_hdr.status 359 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 360 return; 361 } 362 363 if (slot > 2 || lo > hi || hi > 1) { 364 mad->mad_hdr.status 365 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 366 return; 367 } 368 369 svc_entries = (struct ib_dm_svc_entries *)mad->data; 370 memset(svc_entries, 0, sizeof(*svc_entries)); 371 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 372 snprintf(svc_entries->service_entries[0].name, 373 sizeof(svc_entries->service_entries[0].name), 374 "%s%016llx", 375 SRP_SERVICE_NAME_PREFIX, 376 ioc_guid); 377 378 mad->mad_hdr.status = 0; 379 } 380 381 /** 382 * srpt_mgmt_method_get() - Process a received management datagram. 383 * @sp: source port through which the MAD has been received. 384 * @rq_mad: received MAD. 385 * @rsp_mad: response MAD. 386 */ 387 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 388 struct ib_dm_mad *rsp_mad) 389 { 390 u16 attr_id; 391 u32 slot; 392 u8 hi, lo; 393 394 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 395 switch (attr_id) { 396 case DM_ATTR_CLASS_PORT_INFO: 397 srpt_get_class_port_info(rsp_mad); 398 break; 399 case DM_ATTR_IOU_INFO: 400 srpt_get_iou(rsp_mad); 401 break; 402 case DM_ATTR_IOC_PROFILE: 403 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 404 srpt_get_ioc(sp, slot, rsp_mad); 405 break; 406 case DM_ATTR_SVC_ENTRIES: 407 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 408 hi = (u8) ((slot >> 8) & 0xff); 409 lo = (u8) (slot & 0xff); 410 slot = (u16) ((slot >> 16) & 0xffff); 411 srpt_get_svc_entries(srpt_service_guid, 412 slot, hi, lo, rsp_mad); 413 break; 414 default: 415 rsp_mad->mad_hdr.status = 416 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 417 break; 418 } 419 } 420 421 /** 422 * srpt_mad_send_handler() - Post MAD-send callback function. 423 */ 424 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 425 struct ib_mad_send_wc *mad_wc) 426 { 427 rdma_destroy_ah(mad_wc->send_buf->ah); 428 ib_free_send_mad(mad_wc->send_buf); 429 } 430 431 /** 432 * srpt_mad_recv_handler() - MAD reception callback function. 433 */ 434 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 435 struct ib_mad_send_buf *send_buf, 436 struct ib_mad_recv_wc *mad_wc) 437 { 438 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 439 struct ib_ah *ah; 440 struct ib_mad_send_buf *rsp; 441 struct ib_dm_mad *dm_mad; 442 443 if (!mad_wc || !mad_wc->recv_buf.mad) 444 return; 445 446 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 447 mad_wc->recv_buf.grh, mad_agent->port_num); 448 if (IS_ERR(ah)) 449 goto err; 450 451 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 452 453 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 454 mad_wc->wc->pkey_index, 0, 455 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 456 GFP_KERNEL, 457 IB_MGMT_BASE_VERSION); 458 if (IS_ERR(rsp)) 459 goto err_rsp; 460 461 rsp->ah = ah; 462 463 dm_mad = rsp->mad; 464 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 465 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 466 dm_mad->mad_hdr.status = 0; 467 468 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 469 case IB_MGMT_METHOD_GET: 470 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 471 break; 472 case IB_MGMT_METHOD_SET: 473 dm_mad->mad_hdr.status = 474 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 475 break; 476 default: 477 dm_mad->mad_hdr.status = 478 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 479 break; 480 } 481 482 if (!ib_post_send_mad(rsp, NULL)) { 483 ib_free_recv_mad(mad_wc); 484 /* will destroy_ah & free_send_mad in send completion */ 485 return; 486 } 487 488 ib_free_send_mad(rsp); 489 490 err_rsp: 491 rdma_destroy_ah(ah); 492 err: 493 ib_free_recv_mad(mad_wc); 494 } 495 496 /** 497 * srpt_refresh_port() - Configure a HCA port. 498 * 499 * Enable InfiniBand management datagram processing, update the cached sm_lid, 500 * lid and gid values, and register a callback function for processing MADs 501 * on the specified port. 502 * 503 * Note: It is safe to call this function more than once for the same port. 504 */ 505 static int srpt_refresh_port(struct srpt_port *sport) 506 { 507 struct ib_mad_reg_req reg_req; 508 struct ib_port_modify port_modify; 509 struct ib_port_attr port_attr; 510 __be16 *guid; 511 int ret; 512 513 memset(&port_modify, 0, sizeof(port_modify)); 514 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 515 port_modify.clr_port_cap_mask = 0; 516 517 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 518 if (ret) 519 goto err_mod_port; 520 521 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 522 if (ret) 523 goto err_query_port; 524 525 sport->sm_lid = port_attr.sm_lid; 526 sport->lid = port_attr.lid; 527 528 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 529 NULL); 530 if (ret) 531 goto err_query_port; 532 533 sport->port_guid_wwn.priv = sport; 534 guid = (__be16 *)&sport->gid.global.interface_id; 535 snprintf(sport->port_guid, sizeof(sport->port_guid), 536 "%04x:%04x:%04x:%04x", 537 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]), 538 be16_to_cpu(guid[2]), be16_to_cpu(guid[3])); 539 sport->port_gid_wwn.priv = sport; 540 snprintf(sport->port_gid, sizeof(sport->port_gid), 541 "0x%016llx%016llx", 542 be64_to_cpu(sport->gid.global.subnet_prefix), 543 be64_to_cpu(sport->gid.global.interface_id)); 544 545 if (!sport->mad_agent) { 546 memset(®_req, 0, sizeof(reg_req)); 547 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 548 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 549 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 550 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 551 552 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 553 sport->port, 554 IB_QPT_GSI, 555 ®_req, 0, 556 srpt_mad_send_handler, 557 srpt_mad_recv_handler, 558 sport, 0); 559 if (IS_ERR(sport->mad_agent)) { 560 ret = PTR_ERR(sport->mad_agent); 561 sport->mad_agent = NULL; 562 goto err_query_port; 563 } 564 } 565 566 return 0; 567 568 err_query_port: 569 570 port_modify.set_port_cap_mask = 0; 571 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 572 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 573 574 err_mod_port: 575 576 return ret; 577 } 578 579 /** 580 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 581 * 582 * Note: It is safe to call this function more than once for the same device. 583 */ 584 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 585 { 586 struct ib_port_modify port_modify = { 587 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 588 }; 589 struct srpt_port *sport; 590 int i; 591 592 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 593 sport = &sdev->port[i - 1]; 594 WARN_ON(sport->port != i); 595 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 596 pr_err("disabling MAD processing failed.\n"); 597 if (sport->mad_agent) { 598 ib_unregister_mad_agent(sport->mad_agent); 599 sport->mad_agent = NULL; 600 } 601 } 602 } 603 604 /** 605 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 606 */ 607 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 608 int ioctx_size, int dma_size, 609 enum dma_data_direction dir) 610 { 611 struct srpt_ioctx *ioctx; 612 613 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 614 if (!ioctx) 615 goto err; 616 617 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 618 if (!ioctx->buf) 619 goto err_free_ioctx; 620 621 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 622 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 623 goto err_free_buf; 624 625 return ioctx; 626 627 err_free_buf: 628 kfree(ioctx->buf); 629 err_free_ioctx: 630 kfree(ioctx); 631 err: 632 return NULL; 633 } 634 635 /** 636 * srpt_free_ioctx() - Free an SRPT I/O context structure. 637 */ 638 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 639 int dma_size, enum dma_data_direction dir) 640 { 641 if (!ioctx) 642 return; 643 644 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 645 kfree(ioctx->buf); 646 kfree(ioctx); 647 } 648 649 /** 650 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 651 * @sdev: Device to allocate the I/O context ring for. 652 * @ring_size: Number of elements in the I/O context ring. 653 * @ioctx_size: I/O context size. 654 * @dma_size: DMA buffer size. 655 * @dir: DMA data direction. 656 */ 657 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 658 int ring_size, int ioctx_size, 659 int dma_size, enum dma_data_direction dir) 660 { 661 struct srpt_ioctx **ring; 662 int i; 663 664 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 665 && ioctx_size != sizeof(struct srpt_send_ioctx)); 666 667 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 668 if (!ring) 669 goto out; 670 for (i = 0; i < ring_size; ++i) { 671 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 672 if (!ring[i]) 673 goto err; 674 ring[i]->index = i; 675 } 676 goto out; 677 678 err: 679 while (--i >= 0) 680 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 681 kfree(ring); 682 ring = NULL; 683 out: 684 return ring; 685 } 686 687 /** 688 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 689 */ 690 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 691 struct srpt_device *sdev, int ring_size, 692 int dma_size, enum dma_data_direction dir) 693 { 694 int i; 695 696 if (!ioctx_ring) 697 return; 698 699 for (i = 0; i < ring_size; ++i) 700 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 701 kfree(ioctx_ring); 702 } 703 704 /** 705 * srpt_get_cmd_state() - Get the state of a SCSI command. 706 */ 707 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 708 { 709 enum srpt_command_state state; 710 unsigned long flags; 711 712 BUG_ON(!ioctx); 713 714 spin_lock_irqsave(&ioctx->spinlock, flags); 715 state = ioctx->state; 716 spin_unlock_irqrestore(&ioctx->spinlock, flags); 717 return state; 718 } 719 720 /** 721 * srpt_set_cmd_state() - Set the state of a SCSI command. 722 * 723 * Does not modify the state of aborted commands. Returns the previous command 724 * state. 725 */ 726 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 727 enum srpt_command_state new) 728 { 729 enum srpt_command_state previous; 730 unsigned long flags; 731 732 BUG_ON(!ioctx); 733 734 spin_lock_irqsave(&ioctx->spinlock, flags); 735 previous = ioctx->state; 736 if (previous != SRPT_STATE_DONE) 737 ioctx->state = new; 738 spin_unlock_irqrestore(&ioctx->spinlock, flags); 739 740 return previous; 741 } 742 743 /** 744 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 745 * 746 * Returns true if and only if the previous command state was equal to 'old'. 747 */ 748 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 749 enum srpt_command_state old, 750 enum srpt_command_state new) 751 { 752 enum srpt_command_state previous; 753 unsigned long flags; 754 755 WARN_ON(!ioctx); 756 WARN_ON(old == SRPT_STATE_DONE); 757 WARN_ON(new == SRPT_STATE_NEW); 758 759 spin_lock_irqsave(&ioctx->spinlock, flags); 760 previous = ioctx->state; 761 if (previous == old) 762 ioctx->state = new; 763 spin_unlock_irqrestore(&ioctx->spinlock, flags); 764 return previous == old; 765 } 766 767 /** 768 * srpt_post_recv() - Post an IB receive request. 769 */ 770 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch, 771 struct srpt_recv_ioctx *ioctx) 772 { 773 struct ib_sge list; 774 struct ib_recv_wr wr, *bad_wr; 775 776 BUG_ON(!sdev); 777 list.addr = ioctx->ioctx.dma; 778 list.length = srp_max_req_size; 779 list.lkey = sdev->lkey; 780 781 ioctx->ioctx.cqe.done = srpt_recv_done; 782 wr.wr_cqe = &ioctx->ioctx.cqe; 783 wr.next = NULL; 784 wr.sg_list = &list; 785 wr.num_sge = 1; 786 787 if (sdev->use_srq) 788 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 789 else 790 return ib_post_recv(ch->qp, &wr, &bad_wr); 791 } 792 793 /** 794 * srpt_zerolength_write() - Perform a zero-length RDMA write. 795 * 796 * A quote from the InfiniBand specification: C9-88: For an HCA responder 797 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 798 * request, the R_Key shall not be validated, even if the request includes 799 * Immediate data. 800 */ 801 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 802 { 803 struct ib_send_wr wr, *bad_wr; 804 805 memset(&wr, 0, sizeof(wr)); 806 wr.opcode = IB_WR_RDMA_WRITE; 807 wr.wr_cqe = &ch->zw_cqe; 808 wr.send_flags = IB_SEND_SIGNALED; 809 return ib_post_send(ch->qp, &wr, &bad_wr); 810 } 811 812 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 813 { 814 struct srpt_rdma_ch *ch = cq->cq_context; 815 816 if (wc->status == IB_WC_SUCCESS) { 817 srpt_process_wait_list(ch); 818 } else { 819 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 820 schedule_work(&ch->release_work); 821 else 822 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num); 823 } 824 } 825 826 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx, 827 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg, 828 unsigned *sg_cnt) 829 { 830 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 831 struct srpt_rdma_ch *ch = ioctx->ch; 832 struct scatterlist *prev = NULL; 833 unsigned prev_nents; 834 int ret, i; 835 836 if (nbufs == 1) { 837 ioctx->rw_ctxs = &ioctx->s_rw_ctx; 838 } else { 839 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs), 840 GFP_KERNEL); 841 if (!ioctx->rw_ctxs) 842 return -ENOMEM; 843 } 844 845 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) { 846 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 847 u64 remote_addr = be64_to_cpu(db->va); 848 u32 size = be32_to_cpu(db->len); 849 u32 rkey = be32_to_cpu(db->key); 850 851 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false, 852 i < nbufs - 1); 853 if (ret) 854 goto unwind; 855 856 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port, 857 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir); 858 if (ret < 0) { 859 target_free_sgl(ctx->sg, ctx->nents); 860 goto unwind; 861 } 862 863 ioctx->n_rdma += ret; 864 ioctx->n_rw_ctx++; 865 866 if (prev) { 867 sg_unmark_end(&prev[prev_nents - 1]); 868 sg_chain(prev, prev_nents + 1, ctx->sg); 869 } else { 870 *sg = ctx->sg; 871 } 872 873 prev = ctx->sg; 874 prev_nents = ctx->nents; 875 876 *sg_cnt += ctx->nents; 877 } 878 879 return 0; 880 881 unwind: 882 while (--i >= 0) { 883 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 884 885 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 886 ctx->sg, ctx->nents, dir); 887 target_free_sgl(ctx->sg, ctx->nents); 888 } 889 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 890 kfree(ioctx->rw_ctxs); 891 return ret; 892 } 893 894 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch, 895 struct srpt_send_ioctx *ioctx) 896 { 897 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd); 898 int i; 899 900 for (i = 0; i < ioctx->n_rw_ctx; i++) { 901 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 902 903 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port, 904 ctx->sg, ctx->nents, dir); 905 target_free_sgl(ctx->sg, ctx->nents); 906 } 907 908 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx) 909 kfree(ioctx->rw_ctxs); 910 } 911 912 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd) 913 { 914 /* 915 * The pointer computations below will only be compiled correctly 916 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 917 * whether srp_cmd::add_data has been declared as a byte pointer. 918 */ 919 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && 920 !__same_type(srp_cmd->add_data[0], (u8)0)); 921 922 /* 923 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 924 * CDB LENGTH' field are reserved and the size in bytes of this field 925 * is four times the value specified in bits 3..7. Hence the "& ~3". 926 */ 927 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3); 928 } 929 930 /** 931 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 932 * @ioctx: Pointer to the I/O context associated with the request. 933 * @srp_cmd: Pointer to the SRP_CMD request data. 934 * @dir: Pointer to the variable to which the transfer direction will be 935 * written. 936 * @data_len: Pointer to the variable to which the total data length of all 937 * descriptors in the SRP_CMD request will be written. 938 * 939 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 940 * 941 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 942 * -ENOMEM when memory allocation fails and zero upon success. 943 */ 944 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 945 struct srp_cmd *srp_cmd, enum dma_data_direction *dir, 946 struct scatterlist **sg, unsigned *sg_cnt, u64 *data_len) 947 { 948 BUG_ON(!dir); 949 BUG_ON(!data_len); 950 951 /* 952 * The lower four bits of the buffer format field contain the DATA-IN 953 * buffer descriptor format, and the highest four bits contain the 954 * DATA-OUT buffer descriptor format. 955 */ 956 if (srp_cmd->buf_fmt & 0xf) 957 /* DATA-IN: transfer data from target to initiator (read). */ 958 *dir = DMA_FROM_DEVICE; 959 else if (srp_cmd->buf_fmt >> 4) 960 /* DATA-OUT: transfer data from initiator to target (write). */ 961 *dir = DMA_TO_DEVICE; 962 else 963 *dir = DMA_NONE; 964 965 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */ 966 ioctx->cmd.data_direction = *dir; 967 968 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 969 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 970 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd); 971 972 *data_len = be32_to_cpu(db->len); 973 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt); 974 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 975 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 976 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd); 977 int nbufs = be32_to_cpu(idb->table_desc.len) / 978 sizeof(struct srp_direct_buf); 979 980 if (nbufs > 981 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 982 pr_err("received unsupported SRP_CMD request" 983 " type (%u out + %u in != %u / %zu)\n", 984 srp_cmd->data_out_desc_cnt, 985 srp_cmd->data_in_desc_cnt, 986 be32_to_cpu(idb->table_desc.len), 987 sizeof(struct srp_direct_buf)); 988 return -EINVAL; 989 } 990 991 *data_len = be32_to_cpu(idb->len); 992 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs, 993 sg, sg_cnt); 994 } else { 995 *data_len = 0; 996 return 0; 997 } 998 } 999 1000 /** 1001 * srpt_init_ch_qp() - Initialize queue pair attributes. 1002 * 1003 * Initialized the attributes of queue pair 'qp' by allowing local write, 1004 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 1005 */ 1006 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1007 { 1008 struct ib_qp_attr *attr; 1009 int ret; 1010 1011 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1012 if (!attr) 1013 return -ENOMEM; 1014 1015 attr->qp_state = IB_QPS_INIT; 1016 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE; 1017 attr->port_num = ch->sport->port; 1018 attr->pkey_index = 0; 1019 1020 ret = ib_modify_qp(qp, attr, 1021 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 1022 IB_QP_PKEY_INDEX); 1023 1024 kfree(attr); 1025 return ret; 1026 } 1027 1028 /** 1029 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 1030 * @ch: channel of the queue pair. 1031 * @qp: queue pair to change the state of. 1032 * 1033 * Returns zero upon success and a negative value upon failure. 1034 * 1035 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1036 * If this structure ever becomes larger, it might be necessary to allocate 1037 * it dynamically instead of on the stack. 1038 */ 1039 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1040 { 1041 struct ib_qp_attr qp_attr; 1042 int attr_mask; 1043 int ret; 1044 1045 qp_attr.qp_state = IB_QPS_RTR; 1046 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1047 if (ret) 1048 goto out; 1049 1050 qp_attr.max_dest_rd_atomic = 4; 1051 1052 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1053 1054 out: 1055 return ret; 1056 } 1057 1058 /** 1059 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1060 * @ch: channel of the queue pair. 1061 * @qp: queue pair to change the state of. 1062 * 1063 * Returns zero upon success and a negative value upon failure. 1064 * 1065 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1066 * If this structure ever becomes larger, it might be necessary to allocate 1067 * it dynamically instead of on the stack. 1068 */ 1069 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1070 { 1071 struct ib_qp_attr qp_attr; 1072 int attr_mask; 1073 int ret; 1074 1075 qp_attr.qp_state = IB_QPS_RTS; 1076 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1077 if (ret) 1078 goto out; 1079 1080 qp_attr.max_rd_atomic = 4; 1081 1082 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1083 1084 out: 1085 return ret; 1086 } 1087 1088 /** 1089 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1090 */ 1091 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1092 { 1093 struct ib_qp_attr qp_attr; 1094 1095 qp_attr.qp_state = IB_QPS_ERR; 1096 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1097 } 1098 1099 /** 1100 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1101 */ 1102 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1103 { 1104 struct srpt_send_ioctx *ioctx; 1105 unsigned long flags; 1106 1107 BUG_ON(!ch); 1108 1109 ioctx = NULL; 1110 spin_lock_irqsave(&ch->spinlock, flags); 1111 if (!list_empty(&ch->free_list)) { 1112 ioctx = list_first_entry(&ch->free_list, 1113 struct srpt_send_ioctx, free_list); 1114 list_del(&ioctx->free_list); 1115 } 1116 spin_unlock_irqrestore(&ch->spinlock, flags); 1117 1118 if (!ioctx) 1119 return ioctx; 1120 1121 BUG_ON(ioctx->ch != ch); 1122 spin_lock_init(&ioctx->spinlock); 1123 ioctx->state = SRPT_STATE_NEW; 1124 ioctx->n_rdma = 0; 1125 ioctx->n_rw_ctx = 0; 1126 init_completion(&ioctx->tx_done); 1127 ioctx->queue_status_only = false; 1128 /* 1129 * transport_init_se_cmd() does not initialize all fields, so do it 1130 * here. 1131 */ 1132 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1133 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1134 1135 return ioctx; 1136 } 1137 1138 /** 1139 * srpt_abort_cmd() - Abort a SCSI command. 1140 * @ioctx: I/O context associated with the SCSI command. 1141 * @context: Preferred execution context. 1142 */ 1143 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1144 { 1145 enum srpt_command_state state; 1146 unsigned long flags; 1147 1148 BUG_ON(!ioctx); 1149 1150 /* 1151 * If the command is in a state where the target core is waiting for 1152 * the ib_srpt driver, change the state to the next state. 1153 */ 1154 1155 spin_lock_irqsave(&ioctx->spinlock, flags); 1156 state = ioctx->state; 1157 switch (state) { 1158 case SRPT_STATE_NEED_DATA: 1159 ioctx->state = SRPT_STATE_DATA_IN; 1160 break; 1161 case SRPT_STATE_CMD_RSP_SENT: 1162 case SRPT_STATE_MGMT_RSP_SENT: 1163 ioctx->state = SRPT_STATE_DONE; 1164 break; 1165 default: 1166 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1167 __func__, state); 1168 break; 1169 } 1170 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1171 1172 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state, 1173 ioctx->state, ioctx->cmd.tag); 1174 1175 switch (state) { 1176 case SRPT_STATE_NEW: 1177 case SRPT_STATE_DATA_IN: 1178 case SRPT_STATE_MGMT: 1179 case SRPT_STATE_DONE: 1180 /* 1181 * Do nothing - defer abort processing until 1182 * srpt_queue_response() is invoked. 1183 */ 1184 break; 1185 case SRPT_STATE_NEED_DATA: 1186 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1187 transport_generic_request_failure(&ioctx->cmd, 1188 TCM_CHECK_CONDITION_ABORT_CMD); 1189 break; 1190 case SRPT_STATE_CMD_RSP_SENT: 1191 /* 1192 * SRP_RSP sending failed or the SRP_RSP send completion has 1193 * not been received in time. 1194 */ 1195 transport_generic_free_cmd(&ioctx->cmd, 0); 1196 break; 1197 case SRPT_STATE_MGMT_RSP_SENT: 1198 transport_generic_free_cmd(&ioctx->cmd, 0); 1199 break; 1200 default: 1201 WARN(1, "Unexpected command state (%d)", state); 1202 break; 1203 } 1204 1205 return state; 1206 } 1207 1208 /** 1209 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1210 * the data that has been transferred via IB RDMA had to be postponed until the 1211 * check_stop_free() callback. None of this is necessary anymore and needs to 1212 * be cleaned up. 1213 */ 1214 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1215 { 1216 struct srpt_rdma_ch *ch = cq->cq_context; 1217 struct srpt_send_ioctx *ioctx = 1218 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1219 1220 WARN_ON(ioctx->n_rdma <= 0); 1221 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1222 ioctx->n_rdma = 0; 1223 1224 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1225 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1226 ioctx, wc->status); 1227 srpt_abort_cmd(ioctx); 1228 return; 1229 } 1230 1231 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1232 SRPT_STATE_DATA_IN)) 1233 target_execute_cmd(&ioctx->cmd); 1234 else 1235 pr_err("%s[%d]: wrong state = %d\n", __func__, 1236 __LINE__, srpt_get_cmd_state(ioctx)); 1237 } 1238 1239 /** 1240 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1241 * @ch: RDMA channel through which the request has been received. 1242 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1243 * be built in the buffer ioctx->buf points at and hence this function will 1244 * overwrite the request data. 1245 * @tag: tag of the request for which this response is being generated. 1246 * @status: value for the STATUS field of the SRP_RSP information unit. 1247 * 1248 * Returns the size in bytes of the SRP_RSP response. 1249 * 1250 * An SRP_RSP response contains a SCSI status or service response. See also 1251 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1252 * response. See also SPC-2 for more information about sense data. 1253 */ 1254 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1255 struct srpt_send_ioctx *ioctx, u64 tag, 1256 int status) 1257 { 1258 struct srp_rsp *srp_rsp; 1259 const u8 *sense_data; 1260 int sense_data_len, max_sense_len; 1261 1262 /* 1263 * The lowest bit of all SAM-3 status codes is zero (see also 1264 * paragraph 5.3 in SAM-3). 1265 */ 1266 WARN_ON(status & 1); 1267 1268 srp_rsp = ioctx->ioctx.buf; 1269 BUG_ON(!srp_rsp); 1270 1271 sense_data = ioctx->sense_data; 1272 sense_data_len = ioctx->cmd.scsi_sense_length; 1273 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1274 1275 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1276 srp_rsp->opcode = SRP_RSP; 1277 srp_rsp->req_lim_delta = 1278 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1279 srp_rsp->tag = tag; 1280 srp_rsp->status = status; 1281 1282 if (sense_data_len) { 1283 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1284 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1285 if (sense_data_len > max_sense_len) { 1286 pr_warn("truncated sense data from %d to %d" 1287 " bytes\n", sense_data_len, max_sense_len); 1288 sense_data_len = max_sense_len; 1289 } 1290 1291 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1292 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1293 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1294 } 1295 1296 return sizeof(*srp_rsp) + sense_data_len; 1297 } 1298 1299 /** 1300 * srpt_build_tskmgmt_rsp() - Build a task management response. 1301 * @ch: RDMA channel through which the request has been received. 1302 * @ioctx: I/O context in which the SRP_RSP response will be built. 1303 * @rsp_code: RSP_CODE that will be stored in the response. 1304 * @tag: Tag of the request for which this response is being generated. 1305 * 1306 * Returns the size in bytes of the SRP_RSP response. 1307 * 1308 * An SRP_RSP response contains a SCSI status or service response. See also 1309 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1310 * response. 1311 */ 1312 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1313 struct srpt_send_ioctx *ioctx, 1314 u8 rsp_code, u64 tag) 1315 { 1316 struct srp_rsp *srp_rsp; 1317 int resp_data_len; 1318 int resp_len; 1319 1320 resp_data_len = 4; 1321 resp_len = sizeof(*srp_rsp) + resp_data_len; 1322 1323 srp_rsp = ioctx->ioctx.buf; 1324 BUG_ON(!srp_rsp); 1325 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1326 1327 srp_rsp->opcode = SRP_RSP; 1328 srp_rsp->req_lim_delta = 1329 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1330 srp_rsp->tag = tag; 1331 1332 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1333 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1334 srp_rsp->data[3] = rsp_code; 1335 1336 return resp_len; 1337 } 1338 1339 static int srpt_check_stop_free(struct se_cmd *cmd) 1340 { 1341 struct srpt_send_ioctx *ioctx = container_of(cmd, 1342 struct srpt_send_ioctx, cmd); 1343 1344 return target_put_sess_cmd(&ioctx->cmd); 1345 } 1346 1347 /** 1348 * srpt_handle_cmd() - Process SRP_CMD. 1349 */ 1350 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1351 struct srpt_recv_ioctx *recv_ioctx, 1352 struct srpt_send_ioctx *send_ioctx) 1353 { 1354 struct se_cmd *cmd; 1355 struct srp_cmd *srp_cmd; 1356 struct scatterlist *sg = NULL; 1357 unsigned sg_cnt = 0; 1358 u64 data_len; 1359 enum dma_data_direction dir; 1360 int rc; 1361 1362 BUG_ON(!send_ioctx); 1363 1364 srp_cmd = recv_ioctx->ioctx.buf; 1365 cmd = &send_ioctx->cmd; 1366 cmd->tag = srp_cmd->tag; 1367 1368 switch (srp_cmd->task_attr) { 1369 case SRP_CMD_SIMPLE_Q: 1370 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1371 break; 1372 case SRP_CMD_ORDERED_Q: 1373 default: 1374 cmd->sam_task_attr = TCM_ORDERED_TAG; 1375 break; 1376 case SRP_CMD_HEAD_OF_Q: 1377 cmd->sam_task_attr = TCM_HEAD_TAG; 1378 break; 1379 case SRP_CMD_ACA: 1380 cmd->sam_task_attr = TCM_ACA_TAG; 1381 break; 1382 } 1383 1384 rc = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &sg, &sg_cnt, 1385 &data_len); 1386 if (rc) { 1387 if (rc != -EAGAIN) { 1388 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1389 srp_cmd->tag); 1390 } 1391 goto release_ioctx; 1392 } 1393 1394 rc = target_submit_cmd_map_sgls(cmd, ch->sess, srp_cmd->cdb, 1395 &send_ioctx->sense_data[0], 1396 scsilun_to_int(&srp_cmd->lun), data_len, 1397 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF, 1398 sg, sg_cnt, NULL, 0, NULL, 0); 1399 if (rc != 0) { 1400 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1401 srp_cmd->tag); 1402 goto release_ioctx; 1403 } 1404 return; 1405 1406 release_ioctx: 1407 send_ioctx->state = SRPT_STATE_DONE; 1408 srpt_release_cmd(cmd); 1409 } 1410 1411 static int srp_tmr_to_tcm(int fn) 1412 { 1413 switch (fn) { 1414 case SRP_TSK_ABORT_TASK: 1415 return TMR_ABORT_TASK; 1416 case SRP_TSK_ABORT_TASK_SET: 1417 return TMR_ABORT_TASK_SET; 1418 case SRP_TSK_CLEAR_TASK_SET: 1419 return TMR_CLEAR_TASK_SET; 1420 case SRP_TSK_LUN_RESET: 1421 return TMR_LUN_RESET; 1422 case SRP_TSK_CLEAR_ACA: 1423 return TMR_CLEAR_ACA; 1424 default: 1425 return -1; 1426 } 1427 } 1428 1429 /** 1430 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1431 * 1432 * Returns 0 if and only if the request will be processed by the target core. 1433 * 1434 * For more information about SRP_TSK_MGMT information units, see also section 1435 * 6.7 in the SRP r16a document. 1436 */ 1437 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1438 struct srpt_recv_ioctx *recv_ioctx, 1439 struct srpt_send_ioctx *send_ioctx) 1440 { 1441 struct srp_tsk_mgmt *srp_tsk; 1442 struct se_cmd *cmd; 1443 struct se_session *sess = ch->sess; 1444 int tcm_tmr; 1445 int rc; 1446 1447 BUG_ON(!send_ioctx); 1448 1449 srp_tsk = recv_ioctx->ioctx.buf; 1450 cmd = &send_ioctx->cmd; 1451 1452 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1453 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1454 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1455 1456 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1457 send_ioctx->cmd.tag = srp_tsk->tag; 1458 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1459 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1460 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1461 GFP_KERNEL, srp_tsk->task_tag, 1462 TARGET_SCF_ACK_KREF); 1463 if (rc != 0) { 1464 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1465 goto fail; 1466 } 1467 return; 1468 fail: 1469 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1470 } 1471 1472 /** 1473 * srpt_handle_new_iu() - Process a newly received information unit. 1474 * @ch: RDMA channel through which the information unit has been received. 1475 * @ioctx: SRPT I/O context associated with the information unit. 1476 */ 1477 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1478 struct srpt_recv_ioctx *recv_ioctx, 1479 struct srpt_send_ioctx *send_ioctx) 1480 { 1481 struct srp_cmd *srp_cmd; 1482 1483 BUG_ON(!ch); 1484 BUG_ON(!recv_ioctx); 1485 1486 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1487 recv_ioctx->ioctx.dma, srp_max_req_size, 1488 DMA_FROM_DEVICE); 1489 1490 if (unlikely(ch->state == CH_CONNECTING)) 1491 goto out_wait; 1492 1493 if (unlikely(ch->state != CH_LIVE)) 1494 return; 1495 1496 srp_cmd = recv_ioctx->ioctx.buf; 1497 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1498 if (!send_ioctx) { 1499 if (!list_empty(&ch->cmd_wait_list)) 1500 goto out_wait; 1501 send_ioctx = srpt_get_send_ioctx(ch); 1502 } 1503 if (unlikely(!send_ioctx)) 1504 goto out_wait; 1505 } 1506 1507 switch (srp_cmd->opcode) { 1508 case SRP_CMD: 1509 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1510 break; 1511 case SRP_TSK_MGMT: 1512 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1513 break; 1514 case SRP_I_LOGOUT: 1515 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1516 break; 1517 case SRP_CRED_RSP: 1518 pr_debug("received SRP_CRED_RSP\n"); 1519 break; 1520 case SRP_AER_RSP: 1521 pr_debug("received SRP_AER_RSP\n"); 1522 break; 1523 case SRP_RSP: 1524 pr_err("Received SRP_RSP\n"); 1525 break; 1526 default: 1527 pr_err("received IU with unknown opcode 0x%x\n", 1528 srp_cmd->opcode); 1529 break; 1530 } 1531 1532 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx); 1533 return; 1534 1535 out_wait: 1536 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1537 } 1538 1539 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1540 { 1541 struct srpt_rdma_ch *ch = cq->cq_context; 1542 struct srpt_recv_ioctx *ioctx = 1543 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1544 1545 if (wc->status == IB_WC_SUCCESS) { 1546 int req_lim; 1547 1548 req_lim = atomic_dec_return(&ch->req_lim); 1549 if (unlikely(req_lim < 0)) 1550 pr_err("req_lim = %d < 0\n", req_lim); 1551 srpt_handle_new_iu(ch, ioctx, NULL); 1552 } else { 1553 pr_info("receiving failed for ioctx %p with status %d\n", 1554 ioctx, wc->status); 1555 } 1556 } 1557 1558 /* 1559 * This function must be called from the context in which RDMA completions are 1560 * processed because it accesses the wait list without protection against 1561 * access from other threads. 1562 */ 1563 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1564 { 1565 struct srpt_send_ioctx *ioctx; 1566 1567 while (!list_empty(&ch->cmd_wait_list) && 1568 ch->state >= CH_LIVE && 1569 (ioctx = srpt_get_send_ioctx(ch)) != NULL) { 1570 struct srpt_recv_ioctx *recv_ioctx; 1571 1572 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1573 struct srpt_recv_ioctx, 1574 wait_list); 1575 list_del(&recv_ioctx->wait_list); 1576 srpt_handle_new_iu(ch, recv_ioctx, ioctx); 1577 } 1578 } 1579 1580 /** 1581 * Note: Although this has not yet been observed during tests, at least in 1582 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1583 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1584 * value in each response is set to one, and it is possible that this response 1585 * makes the initiator send a new request before the send completion for that 1586 * response has been processed. This could e.g. happen if the call to 1587 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1588 * if IB retransmission causes generation of the send completion to be 1589 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1590 * are queued on cmd_wait_list. The code below processes these delayed 1591 * requests one at a time. 1592 */ 1593 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1594 { 1595 struct srpt_rdma_ch *ch = cq->cq_context; 1596 struct srpt_send_ioctx *ioctx = 1597 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1598 enum srpt_command_state state; 1599 1600 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1601 1602 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1603 state != SRPT_STATE_MGMT_RSP_SENT); 1604 1605 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 1606 1607 if (wc->status != IB_WC_SUCCESS) 1608 pr_info("sending response for ioctx 0x%p failed" 1609 " with status %d\n", ioctx, wc->status); 1610 1611 if (state != SRPT_STATE_DONE) { 1612 transport_generic_free_cmd(&ioctx->cmd, 0); 1613 } else { 1614 pr_err("IB completion has been received too late for" 1615 " wr_id = %u.\n", ioctx->ioctx.index); 1616 } 1617 1618 srpt_process_wait_list(ch); 1619 } 1620 1621 /** 1622 * srpt_create_ch_ib() - Create receive and send completion queues. 1623 */ 1624 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1625 { 1626 struct ib_qp_init_attr *qp_init; 1627 struct srpt_port *sport = ch->sport; 1628 struct srpt_device *sdev = sport->sdev; 1629 const struct ib_device_attr *attrs = &sdev->device->attrs; 1630 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 1631 int i, ret; 1632 1633 WARN_ON(ch->rq_size < 1); 1634 1635 ret = -ENOMEM; 1636 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1637 if (!qp_init) 1638 goto out; 1639 1640 retry: 1641 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size, 1642 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1643 if (IS_ERR(ch->cq)) { 1644 ret = PTR_ERR(ch->cq); 1645 pr_err("failed to create CQ cqe= %d ret= %d\n", 1646 ch->rq_size + srp_sq_size, ret); 1647 goto out; 1648 } 1649 1650 qp_init->qp_context = (void *)ch; 1651 qp_init->event_handler 1652 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1653 qp_init->send_cq = ch->cq; 1654 qp_init->recv_cq = ch->cq; 1655 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1656 qp_init->qp_type = IB_QPT_RC; 1657 /* 1658 * We divide up our send queue size into half SEND WRs to send the 1659 * completions, and half R/W contexts to actually do the RDMA 1660 * READ/WRITE transfers. Note that we need to allocate CQ slots for 1661 * both both, as RDMA contexts will also post completions for the 1662 * RDMA READ case. 1663 */ 1664 qp_init->cap.max_send_wr = min(srp_sq_size / 2, attrs->max_qp_wr + 0U); 1665 qp_init->cap.max_rdma_ctxs = srp_sq_size / 2; 1666 qp_init->cap.max_send_sge = min(attrs->max_sge, SRPT_MAX_SG_PER_WQE); 1667 qp_init->port_num = ch->sport->port; 1668 if (sdev->use_srq) { 1669 qp_init->srq = sdev->srq; 1670 } else { 1671 qp_init->cap.max_recv_wr = ch->rq_size; 1672 qp_init->cap.max_recv_sge = qp_init->cap.max_send_sge; 1673 } 1674 1675 ch->qp = ib_create_qp(sdev->pd, qp_init); 1676 if (IS_ERR(ch->qp)) { 1677 ret = PTR_ERR(ch->qp); 1678 if (ret == -ENOMEM) { 1679 srp_sq_size /= 2; 1680 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 1681 ib_destroy_cq(ch->cq); 1682 goto retry; 1683 } 1684 } 1685 pr_err("failed to create_qp ret= %d\n", ret); 1686 goto err_destroy_cq; 1687 } 1688 1689 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1690 1691 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1692 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1693 qp_init->cap.max_send_wr, ch->cm_id); 1694 1695 ret = srpt_init_ch_qp(ch, ch->qp); 1696 if (ret) 1697 goto err_destroy_qp; 1698 1699 if (!sdev->use_srq) 1700 for (i = 0; i < ch->rq_size; i++) 1701 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]); 1702 1703 out: 1704 kfree(qp_init); 1705 return ret; 1706 1707 err_destroy_qp: 1708 ib_destroy_qp(ch->qp); 1709 err_destroy_cq: 1710 ib_free_cq(ch->cq); 1711 goto out; 1712 } 1713 1714 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1715 { 1716 ib_destroy_qp(ch->qp); 1717 ib_free_cq(ch->cq); 1718 } 1719 1720 /** 1721 * srpt_close_ch() - Close an RDMA channel. 1722 * 1723 * Make sure all resources associated with the channel will be deallocated at 1724 * an appropriate time. 1725 * 1726 * Returns true if and only if the channel state has been modified into 1727 * CH_DRAINING. 1728 */ 1729 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1730 { 1731 int ret; 1732 1733 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1734 pr_debug("%s-%d: already closed\n", ch->sess_name, 1735 ch->qp->qp_num); 1736 return false; 1737 } 1738 1739 kref_get(&ch->kref); 1740 1741 ret = srpt_ch_qp_err(ch); 1742 if (ret < 0) 1743 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1744 ch->sess_name, ch->qp->qp_num, ret); 1745 1746 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 1747 ch->qp->qp_num); 1748 ret = srpt_zerolength_write(ch); 1749 if (ret < 0) { 1750 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1751 ch->sess_name, ch->qp->qp_num, ret); 1752 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1753 schedule_work(&ch->release_work); 1754 else 1755 WARN_ON_ONCE(true); 1756 } 1757 1758 kref_put(&ch->kref, srpt_free_ch); 1759 1760 return true; 1761 } 1762 1763 /* 1764 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1765 * reached the connected state, close it. If a channel is in the connected 1766 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1767 * the responsibility of the caller to ensure that this function is not 1768 * invoked concurrently with the code that accepts a connection. This means 1769 * that this function must either be invoked from inside a CM callback 1770 * function or that it must be invoked with the srpt_port.mutex held. 1771 */ 1772 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1773 { 1774 int ret; 1775 1776 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1777 return -ENOTCONN; 1778 1779 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0); 1780 if (ret < 0) 1781 ret = ib_send_cm_drep(ch->cm_id, NULL, 0); 1782 1783 if (ret < 0 && srpt_close_ch(ch)) 1784 ret = 0; 1785 1786 return ret; 1787 } 1788 1789 /* 1790 * Send DREQ and wait for DREP. Return true if and only if this function 1791 * changed the state of @ch. 1792 */ 1793 static bool srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch) 1794 __must_hold(&sdev->mutex) 1795 { 1796 DECLARE_COMPLETION_ONSTACK(release_done); 1797 struct srpt_device *sdev = ch->sport->sdev; 1798 bool wait; 1799 1800 lockdep_assert_held(&sdev->mutex); 1801 1802 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 1803 ch->state); 1804 1805 WARN_ON(ch->release_done); 1806 ch->release_done = &release_done; 1807 wait = !list_empty(&ch->list); 1808 srpt_disconnect_ch(ch); 1809 mutex_unlock(&sdev->mutex); 1810 1811 if (!wait) 1812 goto out; 1813 1814 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0) 1815 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 1816 ch->sess_name, ch->qp->qp_num, ch->state); 1817 1818 out: 1819 mutex_lock(&sdev->mutex); 1820 return wait; 1821 } 1822 1823 static void srpt_set_enabled(struct srpt_port *sport, bool enabled) 1824 __must_hold(&sdev->mutex) 1825 { 1826 struct srpt_device *sdev = sport->sdev; 1827 struct srpt_rdma_ch *ch; 1828 1829 lockdep_assert_held(&sdev->mutex); 1830 1831 if (sport->enabled == enabled) 1832 return; 1833 sport->enabled = enabled; 1834 if (sport->enabled) 1835 return; 1836 1837 again: 1838 list_for_each_entry(ch, &sdev->rch_list, list) { 1839 if (ch->sport == sport) { 1840 pr_info("%s: closing channel %s-%d\n", 1841 sdev->device->name, ch->sess_name, 1842 ch->qp->qp_num); 1843 if (srpt_disconnect_ch_sync(ch)) 1844 goto again; 1845 } 1846 } 1847 1848 } 1849 1850 static void srpt_free_ch(struct kref *kref) 1851 { 1852 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 1853 1854 kfree(ch); 1855 } 1856 1857 static void srpt_release_channel_work(struct work_struct *w) 1858 { 1859 struct srpt_rdma_ch *ch; 1860 struct srpt_device *sdev; 1861 struct se_session *se_sess; 1862 1863 ch = container_of(w, struct srpt_rdma_ch, release_work); 1864 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name, 1865 ch->qp->qp_num, ch->release_done); 1866 1867 sdev = ch->sport->sdev; 1868 BUG_ON(!sdev); 1869 1870 se_sess = ch->sess; 1871 BUG_ON(!se_sess); 1872 1873 target_sess_cmd_list_set_waiting(se_sess); 1874 target_wait_for_sess_cmds(se_sess); 1875 1876 transport_deregister_session_configfs(se_sess); 1877 transport_deregister_session(se_sess); 1878 ch->sess = NULL; 1879 1880 ib_destroy_cm_id(ch->cm_id); 1881 1882 srpt_destroy_ch_ib(ch); 1883 1884 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 1885 ch->sport->sdev, ch->rq_size, 1886 ch->rsp_size, DMA_TO_DEVICE); 1887 1888 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 1889 sdev, ch->rq_size, 1890 srp_max_req_size, DMA_FROM_DEVICE); 1891 1892 mutex_lock(&sdev->mutex); 1893 list_del_init(&ch->list); 1894 if (ch->release_done) 1895 complete(ch->release_done); 1896 mutex_unlock(&sdev->mutex); 1897 1898 wake_up(&sdev->ch_releaseQ); 1899 1900 kref_put(&ch->kref, srpt_free_ch); 1901 } 1902 1903 /** 1904 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 1905 * 1906 * Ownership of the cm_id is transferred to the target session if this 1907 * functions returns zero. Otherwise the caller remains the owner of cm_id. 1908 */ 1909 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 1910 struct ib_cm_req_event_param *param, 1911 void *private_data) 1912 { 1913 struct srpt_device *sdev = cm_id->context; 1914 struct srpt_port *sport = &sdev->port[param->port - 1]; 1915 struct srp_login_req *req; 1916 struct srp_login_rsp *rsp; 1917 struct srp_login_rej *rej; 1918 struct ib_cm_rep_param *rep_param; 1919 struct srpt_rdma_ch *ch, *tmp_ch; 1920 __be16 *guid; 1921 u32 it_iu_len; 1922 int i, ret = 0; 1923 1924 WARN_ON_ONCE(irqs_disabled()); 1925 1926 if (WARN_ON(!sdev || !private_data)) 1927 return -EINVAL; 1928 1929 req = (struct srp_login_req *)private_data; 1930 1931 it_iu_len = be32_to_cpu(req->req_it_iu_len); 1932 1933 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 1934 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 1935 " (guid=0x%llx:0x%llx)\n", 1936 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 1937 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 1938 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 1939 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 1940 it_iu_len, 1941 param->port, 1942 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 1943 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 1944 1945 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 1946 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 1947 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 1948 1949 if (!rsp || !rej || !rep_param) { 1950 ret = -ENOMEM; 1951 goto out; 1952 } 1953 1954 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 1955 rej->reason = cpu_to_be32( 1956 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 1957 ret = -EINVAL; 1958 pr_err("rejected SRP_LOGIN_REQ because its" 1959 " length (%d bytes) is out of range (%d .. %d)\n", 1960 it_iu_len, 64, srp_max_req_size); 1961 goto reject; 1962 } 1963 1964 if (!sport->enabled) { 1965 rej->reason = cpu_to_be32( 1966 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 1967 ret = -EINVAL; 1968 pr_err("rejected SRP_LOGIN_REQ because the target port" 1969 " has not yet been enabled\n"); 1970 goto reject; 1971 } 1972 1973 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 1974 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 1975 1976 mutex_lock(&sdev->mutex); 1977 1978 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 1979 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 1980 && !memcmp(ch->t_port_id, req->target_port_id, 16) 1981 && param->port == ch->sport->port 1982 && param->listen_id == ch->sport->sdev->cm_id 1983 && ch->cm_id) { 1984 if (srpt_disconnect_ch(ch) < 0) 1985 continue; 1986 pr_info("Relogin - closed existing channel %s\n", 1987 ch->sess_name); 1988 rsp->rsp_flags = 1989 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 1990 } 1991 } 1992 1993 mutex_unlock(&sdev->mutex); 1994 1995 } else 1996 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 1997 1998 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 1999 || *(__be64 *)(req->target_port_id + 8) != 2000 cpu_to_be64(srpt_service_guid)) { 2001 rej->reason = cpu_to_be32( 2002 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2003 ret = -ENOMEM; 2004 pr_err("rejected SRP_LOGIN_REQ because it" 2005 " has an invalid target port identifier.\n"); 2006 goto reject; 2007 } 2008 2009 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2010 if (!ch) { 2011 rej->reason = cpu_to_be32( 2012 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2013 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2014 ret = -ENOMEM; 2015 goto reject; 2016 } 2017 2018 kref_init(&ch->kref); 2019 ch->zw_cqe.done = srpt_zerolength_write_done; 2020 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2021 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2022 memcpy(ch->t_port_id, req->target_port_id, 16); 2023 ch->sport = &sdev->port[param->port - 1]; 2024 ch->cm_id = cm_id; 2025 cm_id->context = ch; 2026 /* 2027 * ch->rq_size should be at least as large as the initiator queue 2028 * depth to avoid that the initiator driver has to report QUEUE_FULL 2029 * to the SCSI mid-layer. 2030 */ 2031 ch->rq_size = min(SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr); 2032 spin_lock_init(&ch->spinlock); 2033 ch->state = CH_CONNECTING; 2034 INIT_LIST_HEAD(&ch->cmd_wait_list); 2035 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2036 2037 ch->ioctx_ring = (struct srpt_send_ioctx **) 2038 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2039 sizeof(*ch->ioctx_ring[0]), 2040 ch->rsp_size, DMA_TO_DEVICE); 2041 if (!ch->ioctx_ring) 2042 goto free_ch; 2043 2044 INIT_LIST_HEAD(&ch->free_list); 2045 for (i = 0; i < ch->rq_size; i++) { 2046 ch->ioctx_ring[i]->ch = ch; 2047 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2048 } 2049 if (!sdev->use_srq) { 2050 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **) 2051 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2052 sizeof(*ch->ioctx_recv_ring[0]), 2053 srp_max_req_size, 2054 DMA_FROM_DEVICE); 2055 if (!ch->ioctx_recv_ring) { 2056 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n"); 2057 rej->reason = 2058 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2059 goto free_ring; 2060 } 2061 } 2062 2063 ret = srpt_create_ch_ib(ch); 2064 if (ret) { 2065 rej->reason = cpu_to_be32( 2066 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2067 pr_err("rejected SRP_LOGIN_REQ because creating" 2068 " a new RDMA channel failed.\n"); 2069 goto free_recv_ring; 2070 } 2071 2072 ret = srpt_ch_qp_rtr(ch, ch->qp); 2073 if (ret) { 2074 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2075 pr_err("rejected SRP_LOGIN_REQ because enabling" 2076 " RTR failed (error code = %d)\n", ret); 2077 goto destroy_ib; 2078 } 2079 2080 guid = (__be16 *)¶m->primary_path->dgid.global.interface_id; 2081 snprintf(ch->ini_guid, sizeof(ch->ini_guid), "%04x:%04x:%04x:%04x", 2082 be16_to_cpu(guid[0]), be16_to_cpu(guid[1]), 2083 be16_to_cpu(guid[2]), be16_to_cpu(guid[3])); 2084 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2085 be64_to_cpu(*(__be64 *)ch->i_port_id), 2086 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2087 2088 pr_debug("registering session %s\n", ch->sess_name); 2089 2090 if (sport->port_guid_tpg.se_tpg_wwn) 2091 ch->sess = target_alloc_session(&sport->port_guid_tpg, 0, 0, 2092 TARGET_PROT_NORMAL, 2093 ch->ini_guid, ch, NULL); 2094 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2095 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0, 2096 TARGET_PROT_NORMAL, ch->sess_name, ch, 2097 NULL); 2098 /* Retry without leading "0x" */ 2099 if (sport->port_gid_tpg.se_tpg_wwn && IS_ERR_OR_NULL(ch->sess)) 2100 ch->sess = target_alloc_session(&sport->port_gid_tpg, 0, 0, 2101 TARGET_PROT_NORMAL, 2102 ch->sess_name + 2, ch, NULL); 2103 if (IS_ERR_OR_NULL(ch->sess)) { 2104 pr_info("Rejected login because no ACL has been configured yet for initiator %s.\n", 2105 ch->sess_name); 2106 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ? 2107 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2108 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2109 goto destroy_ib; 2110 } 2111 2112 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2113 ch->sess_name, ch->cm_id); 2114 2115 /* create srp_login_response */ 2116 rsp->opcode = SRP_LOGIN_RSP; 2117 rsp->tag = req->tag; 2118 rsp->max_it_iu_len = req->req_it_iu_len; 2119 rsp->max_ti_iu_len = req->req_it_iu_len; 2120 ch->max_ti_iu_len = it_iu_len; 2121 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2122 | SRP_BUF_FORMAT_INDIRECT); 2123 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2124 atomic_set(&ch->req_lim, ch->rq_size); 2125 atomic_set(&ch->req_lim_delta, 0); 2126 2127 /* create cm reply */ 2128 rep_param->qp_num = ch->qp->qp_num; 2129 rep_param->private_data = (void *)rsp; 2130 rep_param->private_data_len = sizeof(*rsp); 2131 rep_param->rnr_retry_count = 7; 2132 rep_param->flow_control = 1; 2133 rep_param->failover_accepted = 0; 2134 rep_param->srq = 1; 2135 rep_param->responder_resources = 4; 2136 rep_param->initiator_depth = 4; 2137 2138 ret = ib_send_cm_rep(cm_id, rep_param); 2139 if (ret) { 2140 pr_err("sending SRP_LOGIN_REQ response failed" 2141 " (error code = %d)\n", ret); 2142 goto release_channel; 2143 } 2144 2145 mutex_lock(&sdev->mutex); 2146 list_add_tail(&ch->list, &sdev->rch_list); 2147 mutex_unlock(&sdev->mutex); 2148 2149 goto out; 2150 2151 release_channel: 2152 srpt_disconnect_ch(ch); 2153 transport_deregister_session_configfs(ch->sess); 2154 transport_deregister_session(ch->sess); 2155 ch->sess = NULL; 2156 2157 destroy_ib: 2158 srpt_destroy_ch_ib(ch); 2159 2160 free_recv_ring: 2161 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring, 2162 ch->sport->sdev, ch->rq_size, 2163 srp_max_req_size, DMA_FROM_DEVICE); 2164 2165 free_ring: 2166 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2167 ch->sport->sdev, ch->rq_size, 2168 ch->rsp_size, DMA_TO_DEVICE); 2169 free_ch: 2170 kfree(ch); 2171 2172 reject: 2173 rej->opcode = SRP_LOGIN_REJ; 2174 rej->tag = req->tag; 2175 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2176 | SRP_BUF_FORMAT_INDIRECT); 2177 2178 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2179 (void *)rej, sizeof(*rej)); 2180 2181 out: 2182 kfree(rep_param); 2183 kfree(rsp); 2184 kfree(rej); 2185 2186 return ret; 2187 } 2188 2189 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2190 enum ib_cm_rej_reason reason, 2191 const u8 *private_data, 2192 u8 private_data_len) 2193 { 2194 char *priv = NULL; 2195 int i; 2196 2197 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2198 GFP_KERNEL))) { 2199 for (i = 0; i < private_data_len; i++) 2200 sprintf(priv + 3 * i, " %02x", private_data[i]); 2201 } 2202 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2203 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2204 "; private data" : "", priv ? priv : " (?)"); 2205 kfree(priv); 2206 } 2207 2208 /** 2209 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2210 * 2211 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2212 * and that the recipient may begin transmitting (RTU = ready to use). 2213 */ 2214 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2215 { 2216 int ret; 2217 2218 if (srpt_set_ch_state(ch, CH_LIVE)) { 2219 ret = srpt_ch_qp_rts(ch, ch->qp); 2220 2221 if (ret == 0) { 2222 /* Trigger wait list processing. */ 2223 ret = srpt_zerolength_write(ch); 2224 WARN_ONCE(ret < 0, "%d\n", ret); 2225 } else { 2226 srpt_close_ch(ch); 2227 } 2228 } 2229 } 2230 2231 /** 2232 * srpt_cm_handler() - IB connection manager callback function. 2233 * 2234 * A non-zero return value will cause the caller destroy the CM ID. 2235 * 2236 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2237 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2238 * a non-zero value in any other case will trigger a race with the 2239 * ib_destroy_cm_id() call in srpt_release_channel(). 2240 */ 2241 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2242 { 2243 struct srpt_rdma_ch *ch = cm_id->context; 2244 int ret; 2245 2246 ret = 0; 2247 switch (event->event) { 2248 case IB_CM_REQ_RECEIVED: 2249 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2250 event->private_data); 2251 break; 2252 case IB_CM_REJ_RECEIVED: 2253 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2254 event->private_data, 2255 IB_CM_REJ_PRIVATE_DATA_SIZE); 2256 break; 2257 case IB_CM_RTU_RECEIVED: 2258 case IB_CM_USER_ESTABLISHED: 2259 srpt_cm_rtu_recv(ch); 2260 break; 2261 case IB_CM_DREQ_RECEIVED: 2262 srpt_disconnect_ch(ch); 2263 break; 2264 case IB_CM_DREP_RECEIVED: 2265 pr_info("Received CM DREP message for ch %s-%d.\n", 2266 ch->sess_name, ch->qp->qp_num); 2267 srpt_close_ch(ch); 2268 break; 2269 case IB_CM_TIMEWAIT_EXIT: 2270 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2271 ch->sess_name, ch->qp->qp_num); 2272 srpt_close_ch(ch); 2273 break; 2274 case IB_CM_REP_ERROR: 2275 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2276 ch->qp->qp_num); 2277 break; 2278 case IB_CM_DREQ_ERROR: 2279 pr_info("Received CM DREQ ERROR event.\n"); 2280 break; 2281 case IB_CM_MRA_RECEIVED: 2282 pr_info("Received CM MRA event\n"); 2283 break; 2284 default: 2285 pr_err("received unrecognized CM event %d\n", event->event); 2286 break; 2287 } 2288 2289 return ret; 2290 } 2291 2292 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2293 { 2294 struct srpt_send_ioctx *ioctx; 2295 2296 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2297 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2298 } 2299 2300 /* 2301 * srpt_write_pending() - Start data transfer from initiator to target (write). 2302 */ 2303 static int srpt_write_pending(struct se_cmd *se_cmd) 2304 { 2305 struct srpt_send_ioctx *ioctx = 2306 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2307 struct srpt_rdma_ch *ch = ioctx->ch; 2308 struct ib_send_wr *first_wr = NULL, *bad_wr; 2309 struct ib_cqe *cqe = &ioctx->rdma_cqe; 2310 enum srpt_command_state new_state; 2311 int ret, i; 2312 2313 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2314 WARN_ON(new_state == SRPT_STATE_DONE); 2315 2316 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) { 2317 pr_warn("%s: IB send queue full (needed %d)\n", 2318 __func__, ioctx->n_rdma); 2319 ret = -ENOMEM; 2320 goto out_undo; 2321 } 2322 2323 cqe->done = srpt_rdma_read_done; 2324 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2325 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2326 2327 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port, 2328 cqe, first_wr); 2329 cqe = NULL; 2330 } 2331 2332 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2333 if (ret) { 2334 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n", 2335 __func__, ret, ioctx->n_rdma, 2336 atomic_read(&ch->sq_wr_avail)); 2337 goto out_undo; 2338 } 2339 2340 return 0; 2341 out_undo: 2342 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 2343 return ret; 2344 } 2345 2346 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2347 { 2348 switch (tcm_mgmt_status) { 2349 case TMR_FUNCTION_COMPLETE: 2350 return SRP_TSK_MGMT_SUCCESS; 2351 case TMR_FUNCTION_REJECTED: 2352 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2353 } 2354 return SRP_TSK_MGMT_FAILED; 2355 } 2356 2357 /** 2358 * srpt_queue_response() - Transmits the response to a SCSI command. 2359 * 2360 * Callback function called by the TCM core. Must not block since it can be 2361 * invoked on the context of the IB completion handler. 2362 */ 2363 static void srpt_queue_response(struct se_cmd *cmd) 2364 { 2365 struct srpt_send_ioctx *ioctx = 2366 container_of(cmd, struct srpt_send_ioctx, cmd); 2367 struct srpt_rdma_ch *ch = ioctx->ch; 2368 struct srpt_device *sdev = ch->sport->sdev; 2369 struct ib_send_wr send_wr, *first_wr = &send_wr, *bad_wr; 2370 struct ib_sge sge; 2371 enum srpt_command_state state; 2372 unsigned long flags; 2373 int resp_len, ret, i; 2374 u8 srp_tm_status; 2375 2376 BUG_ON(!ch); 2377 2378 spin_lock_irqsave(&ioctx->spinlock, flags); 2379 state = ioctx->state; 2380 switch (state) { 2381 case SRPT_STATE_NEW: 2382 case SRPT_STATE_DATA_IN: 2383 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2384 break; 2385 case SRPT_STATE_MGMT: 2386 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2387 break; 2388 default: 2389 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2390 ch, ioctx->ioctx.index, ioctx->state); 2391 break; 2392 } 2393 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2394 2395 if (unlikely(WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) 2396 return; 2397 2398 /* For read commands, transfer the data to the initiator. */ 2399 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE && 2400 ioctx->cmd.data_length && 2401 !ioctx->queue_status_only) { 2402 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) { 2403 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i]; 2404 2405 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, 2406 ch->sport->port, NULL, first_wr); 2407 } 2408 } 2409 2410 if (state != SRPT_STATE_MGMT) 2411 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2412 cmd->scsi_status); 2413 else { 2414 srp_tm_status 2415 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2416 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2417 ioctx->cmd.tag); 2418 } 2419 2420 atomic_inc(&ch->req_lim); 2421 2422 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma, 2423 &ch->sq_wr_avail) < 0)) { 2424 pr_warn("%s: IB send queue full (needed %d)\n", 2425 __func__, ioctx->n_rdma); 2426 ret = -ENOMEM; 2427 goto out; 2428 } 2429 2430 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len, 2431 DMA_TO_DEVICE); 2432 2433 sge.addr = ioctx->ioctx.dma; 2434 sge.length = resp_len; 2435 sge.lkey = sdev->lkey; 2436 2437 ioctx->ioctx.cqe.done = srpt_send_done; 2438 send_wr.next = NULL; 2439 send_wr.wr_cqe = &ioctx->ioctx.cqe; 2440 send_wr.sg_list = &sge; 2441 send_wr.num_sge = 1; 2442 send_wr.opcode = IB_WR_SEND; 2443 send_wr.send_flags = IB_SEND_SIGNALED; 2444 2445 ret = ib_post_send(ch->qp, first_wr, &bad_wr); 2446 if (ret < 0) { 2447 pr_err("%s: sending cmd response failed for tag %llu (%d)\n", 2448 __func__, ioctx->cmd.tag, ret); 2449 goto out; 2450 } 2451 2452 return; 2453 2454 out: 2455 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail); 2456 atomic_dec(&ch->req_lim); 2457 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2458 target_put_sess_cmd(&ioctx->cmd); 2459 } 2460 2461 static int srpt_queue_data_in(struct se_cmd *cmd) 2462 { 2463 srpt_queue_response(cmd); 2464 return 0; 2465 } 2466 2467 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2468 { 2469 srpt_queue_response(cmd); 2470 } 2471 2472 static void srpt_aborted_task(struct se_cmd *cmd) 2473 { 2474 } 2475 2476 static int srpt_queue_status(struct se_cmd *cmd) 2477 { 2478 struct srpt_send_ioctx *ioctx; 2479 2480 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2481 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2482 if (cmd->se_cmd_flags & 2483 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2484 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2485 ioctx->queue_status_only = true; 2486 srpt_queue_response(cmd); 2487 return 0; 2488 } 2489 2490 static void srpt_refresh_port_work(struct work_struct *work) 2491 { 2492 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2493 2494 srpt_refresh_port(sport); 2495 } 2496 2497 /** 2498 * srpt_release_sdev() - Free the channel resources associated with a target. 2499 */ 2500 static int srpt_release_sdev(struct srpt_device *sdev) 2501 { 2502 int i, res; 2503 2504 WARN_ON_ONCE(irqs_disabled()); 2505 2506 BUG_ON(!sdev); 2507 2508 mutex_lock(&sdev->mutex); 2509 for (i = 0; i < ARRAY_SIZE(sdev->port); i++) 2510 srpt_set_enabled(&sdev->port[i], false); 2511 mutex_unlock(&sdev->mutex); 2512 2513 res = wait_event_interruptible(sdev->ch_releaseQ, 2514 list_empty_careful(&sdev->rch_list)); 2515 if (res) 2516 pr_err("%s: interrupted.\n", __func__); 2517 2518 return 0; 2519 } 2520 2521 static struct se_wwn *__srpt_lookup_wwn(const char *name) 2522 { 2523 struct ib_device *dev; 2524 struct srpt_device *sdev; 2525 struct srpt_port *sport; 2526 int i; 2527 2528 list_for_each_entry(sdev, &srpt_dev_list, list) { 2529 dev = sdev->device; 2530 if (!dev) 2531 continue; 2532 2533 for (i = 0; i < dev->phys_port_cnt; i++) { 2534 sport = &sdev->port[i]; 2535 2536 if (strcmp(sport->port_guid, name) == 0) 2537 return &sport->port_guid_wwn; 2538 if (strcmp(sport->port_gid, name) == 0) 2539 return &sport->port_gid_wwn; 2540 } 2541 } 2542 2543 return NULL; 2544 } 2545 2546 static struct se_wwn *srpt_lookup_wwn(const char *name) 2547 { 2548 struct se_wwn *wwn; 2549 2550 spin_lock(&srpt_dev_lock); 2551 wwn = __srpt_lookup_wwn(name); 2552 spin_unlock(&srpt_dev_lock); 2553 2554 return wwn; 2555 } 2556 2557 static void srpt_free_srq(struct srpt_device *sdev) 2558 { 2559 if (!sdev->srq) 2560 return; 2561 2562 ib_destroy_srq(sdev->srq); 2563 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2564 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2565 sdev->srq = NULL; 2566 } 2567 2568 static int srpt_alloc_srq(struct srpt_device *sdev) 2569 { 2570 struct ib_srq_init_attr srq_attr = { 2571 .event_handler = srpt_srq_event, 2572 .srq_context = (void *)sdev, 2573 .attr.max_wr = sdev->srq_size, 2574 .attr.max_sge = 1, 2575 .srq_type = IB_SRQT_BASIC, 2576 }; 2577 struct ib_device *device = sdev->device; 2578 struct ib_srq *srq; 2579 int i; 2580 2581 WARN_ON_ONCE(sdev->srq); 2582 srq = ib_create_srq(sdev->pd, &srq_attr); 2583 if (IS_ERR(srq)) { 2584 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq)); 2585 return PTR_ERR(srq); 2586 } 2587 2588 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size, 2589 sdev->device->attrs.max_srq_wr, device->name); 2590 2591 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2592 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2593 sizeof(*sdev->ioctx_ring[0]), 2594 srp_max_req_size, DMA_FROM_DEVICE); 2595 if (!sdev->ioctx_ring) { 2596 ib_destroy_srq(srq); 2597 return -ENOMEM; 2598 } 2599 2600 sdev->use_srq = true; 2601 sdev->srq = srq; 2602 2603 for (i = 0; i < sdev->srq_size; ++i) 2604 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]); 2605 2606 return 0; 2607 } 2608 2609 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq) 2610 { 2611 struct ib_device *device = sdev->device; 2612 int ret = 0; 2613 2614 if (!use_srq) { 2615 srpt_free_srq(sdev); 2616 sdev->use_srq = false; 2617 } else if (use_srq && !sdev->srq) { 2618 ret = srpt_alloc_srq(sdev); 2619 } 2620 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__, device->name, 2621 sdev->use_srq, ret); 2622 return ret; 2623 } 2624 2625 /** 2626 * srpt_add_one() - Infiniband device addition callback function. 2627 */ 2628 static void srpt_add_one(struct ib_device *device) 2629 { 2630 struct srpt_device *sdev; 2631 struct srpt_port *sport; 2632 int i; 2633 2634 pr_debug("device = %p\n", device); 2635 2636 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 2637 if (!sdev) 2638 goto err; 2639 2640 sdev->device = device; 2641 INIT_LIST_HEAD(&sdev->rch_list); 2642 init_waitqueue_head(&sdev->ch_releaseQ); 2643 mutex_init(&sdev->mutex); 2644 2645 sdev->pd = ib_alloc_pd(device, 0); 2646 if (IS_ERR(sdev->pd)) 2647 goto free_dev; 2648 2649 sdev->lkey = sdev->pd->local_dma_lkey; 2650 2651 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 2652 2653 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq); 2654 2655 if (!srpt_service_guid) 2656 srpt_service_guid = be64_to_cpu(device->node_guid); 2657 2658 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 2659 if (IS_ERR(sdev->cm_id)) 2660 goto err_ring; 2661 2662 /* print out target login information */ 2663 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 2664 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 2665 srpt_service_guid, srpt_service_guid); 2666 2667 /* 2668 * We do not have a consistent service_id (ie. also id_ext of target_id) 2669 * to identify this target. We currently use the guid of the first HCA 2670 * in the system as service_id; therefore, the target_id will change 2671 * if this HCA is gone bad and replaced by different HCA 2672 */ 2673 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 2674 goto err_cm; 2675 2676 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 2677 srpt_event_handler); 2678 ib_register_event_handler(&sdev->event_handler); 2679 2680 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 2681 2682 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 2683 sport = &sdev->port[i - 1]; 2684 sport->sdev = sdev; 2685 sport->port = i; 2686 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 2687 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 2688 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 2689 sport->port_attrib.use_srq = false; 2690 INIT_WORK(&sport->work, srpt_refresh_port_work); 2691 2692 if (srpt_refresh_port(sport)) { 2693 pr_err("MAD registration failed for %s-%d.\n", 2694 sdev->device->name, i); 2695 goto err_event; 2696 } 2697 } 2698 2699 spin_lock(&srpt_dev_lock); 2700 list_add_tail(&sdev->list, &srpt_dev_list); 2701 spin_unlock(&srpt_dev_lock); 2702 2703 out: 2704 ib_set_client_data(device, &srpt_client, sdev); 2705 pr_debug("added %s.\n", device->name); 2706 return; 2707 2708 err_event: 2709 ib_unregister_event_handler(&sdev->event_handler); 2710 err_cm: 2711 ib_destroy_cm_id(sdev->cm_id); 2712 err_ring: 2713 srpt_free_srq(sdev); 2714 ib_dealloc_pd(sdev->pd); 2715 free_dev: 2716 kfree(sdev); 2717 err: 2718 sdev = NULL; 2719 pr_info("%s(%s) failed.\n", __func__, device->name); 2720 goto out; 2721 } 2722 2723 /** 2724 * srpt_remove_one() - InfiniBand device removal callback function. 2725 */ 2726 static void srpt_remove_one(struct ib_device *device, void *client_data) 2727 { 2728 struct srpt_device *sdev = client_data; 2729 int i; 2730 2731 if (!sdev) { 2732 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 2733 return; 2734 } 2735 2736 srpt_unregister_mad_agent(sdev); 2737 2738 ib_unregister_event_handler(&sdev->event_handler); 2739 2740 /* Cancel any work queued by the just unregistered IB event handler. */ 2741 for (i = 0; i < sdev->device->phys_port_cnt; i++) 2742 cancel_work_sync(&sdev->port[i].work); 2743 2744 ib_destroy_cm_id(sdev->cm_id); 2745 2746 /* 2747 * Unregistering a target must happen after destroying sdev->cm_id 2748 * such that no new SRP_LOGIN_REQ information units can arrive while 2749 * destroying the target. 2750 */ 2751 spin_lock(&srpt_dev_lock); 2752 list_del(&sdev->list); 2753 spin_unlock(&srpt_dev_lock); 2754 srpt_release_sdev(sdev); 2755 2756 srpt_free_srq(sdev); 2757 2758 ib_dealloc_pd(sdev->pd); 2759 2760 kfree(sdev); 2761 } 2762 2763 static struct ib_client srpt_client = { 2764 .name = DRV_NAME, 2765 .add = srpt_add_one, 2766 .remove = srpt_remove_one 2767 }; 2768 2769 static int srpt_check_true(struct se_portal_group *se_tpg) 2770 { 2771 return 1; 2772 } 2773 2774 static int srpt_check_false(struct se_portal_group *se_tpg) 2775 { 2776 return 0; 2777 } 2778 2779 static char *srpt_get_fabric_name(void) 2780 { 2781 return "srpt"; 2782 } 2783 2784 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg) 2785 { 2786 return tpg->se_tpg_wwn->priv; 2787 } 2788 2789 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 2790 { 2791 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 2792 2793 WARN_ON_ONCE(tpg != &sport->port_guid_tpg && 2794 tpg != &sport->port_gid_tpg); 2795 return tpg == &sport->port_guid_tpg ? sport->port_guid : 2796 sport->port_gid; 2797 } 2798 2799 static u16 srpt_get_tag(struct se_portal_group *tpg) 2800 { 2801 return 1; 2802 } 2803 2804 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 2805 { 2806 return 1; 2807 } 2808 2809 static void srpt_release_cmd(struct se_cmd *se_cmd) 2810 { 2811 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 2812 struct srpt_send_ioctx, cmd); 2813 struct srpt_rdma_ch *ch = ioctx->ch; 2814 unsigned long flags; 2815 2816 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE && 2817 !(ioctx->cmd.transport_state & CMD_T_ABORTED)); 2818 2819 if (ioctx->n_rw_ctx) { 2820 srpt_free_rw_ctxs(ch, ioctx); 2821 ioctx->n_rw_ctx = 0; 2822 } 2823 2824 spin_lock_irqsave(&ch->spinlock, flags); 2825 list_add(&ioctx->free_list, &ch->free_list); 2826 spin_unlock_irqrestore(&ch->spinlock, flags); 2827 } 2828 2829 /** 2830 * srpt_close_session() - Forcibly close a session. 2831 * 2832 * Callback function invoked by the TCM core to clean up sessions associated 2833 * with a node ACL when the user invokes 2834 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2835 */ 2836 static void srpt_close_session(struct se_session *se_sess) 2837 { 2838 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2839 struct srpt_device *sdev = ch->sport->sdev; 2840 2841 mutex_lock(&sdev->mutex); 2842 srpt_disconnect_ch_sync(ch); 2843 mutex_unlock(&sdev->mutex); 2844 } 2845 2846 /** 2847 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 2848 * 2849 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 2850 * This object represents an arbitrary integer used to uniquely identify a 2851 * particular attached remote initiator port to a particular SCSI target port 2852 * within a particular SCSI target device within a particular SCSI instance. 2853 */ 2854 static u32 srpt_sess_get_index(struct se_session *se_sess) 2855 { 2856 return 0; 2857 } 2858 2859 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 2860 { 2861 } 2862 2863 /* Note: only used from inside debug printk's by the TCM core. */ 2864 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 2865 { 2866 struct srpt_send_ioctx *ioctx; 2867 2868 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2869 return srpt_get_cmd_state(ioctx); 2870 } 2871 2872 static int srpt_parse_guid(u64 *guid, const char *name) 2873 { 2874 u16 w[4]; 2875 int ret = -EINVAL; 2876 2877 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4) 2878 goto out; 2879 *guid = get_unaligned_be64(w); 2880 ret = 0; 2881 out: 2882 return ret; 2883 } 2884 2885 /** 2886 * srpt_parse_i_port_id() - Parse an initiator port ID. 2887 * @name: ASCII representation of a 128-bit initiator port ID. 2888 * @i_port_id: Binary 128-bit port ID. 2889 */ 2890 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 2891 { 2892 const char *p; 2893 unsigned len, count, leading_zero_bytes; 2894 int ret; 2895 2896 p = name; 2897 if (strncasecmp(p, "0x", 2) == 0) 2898 p += 2; 2899 ret = -EINVAL; 2900 len = strlen(p); 2901 if (len % 2) 2902 goto out; 2903 count = min(len / 2, 16U); 2904 leading_zero_bytes = 16 - count; 2905 memset(i_port_id, 0, leading_zero_bytes); 2906 ret = hex2bin(i_port_id + leading_zero_bytes, p, count); 2907 if (ret < 0) 2908 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", ret); 2909 out: 2910 return ret; 2911 } 2912 2913 /* 2914 * configfs callback function invoked for 2915 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2916 */ 2917 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 2918 { 2919 u64 guid; 2920 u8 i_port_id[16]; 2921 int ret; 2922 2923 ret = srpt_parse_guid(&guid, name); 2924 if (ret < 0) 2925 ret = srpt_parse_i_port_id(i_port_id, name); 2926 if (ret < 0) 2927 pr_err("invalid initiator port ID %s\n", name); 2928 return ret; 2929 } 2930 2931 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 2932 char *page) 2933 { 2934 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2935 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2936 2937 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 2938 } 2939 2940 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 2941 const char *page, size_t count) 2942 { 2943 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2944 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2945 unsigned long val; 2946 int ret; 2947 2948 ret = kstrtoul(page, 0, &val); 2949 if (ret < 0) { 2950 pr_err("kstrtoul() failed with ret: %d\n", ret); 2951 return -EINVAL; 2952 } 2953 if (val > MAX_SRPT_RDMA_SIZE) { 2954 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 2955 MAX_SRPT_RDMA_SIZE); 2956 return -EINVAL; 2957 } 2958 if (val < DEFAULT_MAX_RDMA_SIZE) { 2959 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 2960 val, DEFAULT_MAX_RDMA_SIZE); 2961 return -EINVAL; 2962 } 2963 sport->port_attrib.srp_max_rdma_size = val; 2964 2965 return count; 2966 } 2967 2968 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 2969 char *page) 2970 { 2971 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2972 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2973 2974 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 2975 } 2976 2977 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 2978 const char *page, size_t count) 2979 { 2980 struct se_portal_group *se_tpg = attrib_to_tpg(item); 2981 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 2982 unsigned long val; 2983 int ret; 2984 2985 ret = kstrtoul(page, 0, &val); 2986 if (ret < 0) { 2987 pr_err("kstrtoul() failed with ret: %d\n", ret); 2988 return -EINVAL; 2989 } 2990 if (val > MAX_SRPT_RSP_SIZE) { 2991 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 2992 MAX_SRPT_RSP_SIZE); 2993 return -EINVAL; 2994 } 2995 if (val < MIN_MAX_RSP_SIZE) { 2996 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 2997 MIN_MAX_RSP_SIZE); 2998 return -EINVAL; 2999 } 3000 sport->port_attrib.srp_max_rsp_size = val; 3001 3002 return count; 3003 } 3004 3005 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3006 char *page) 3007 { 3008 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3009 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3010 3011 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3012 } 3013 3014 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3015 const char *page, size_t count) 3016 { 3017 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3018 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3019 unsigned long val; 3020 int ret; 3021 3022 ret = kstrtoul(page, 0, &val); 3023 if (ret < 0) { 3024 pr_err("kstrtoul() failed with ret: %d\n", ret); 3025 return -EINVAL; 3026 } 3027 if (val > MAX_SRPT_SRQ_SIZE) { 3028 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3029 MAX_SRPT_SRQ_SIZE); 3030 return -EINVAL; 3031 } 3032 if (val < MIN_SRPT_SRQ_SIZE) { 3033 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3034 MIN_SRPT_SRQ_SIZE); 3035 return -EINVAL; 3036 } 3037 sport->port_attrib.srp_sq_size = val; 3038 3039 return count; 3040 } 3041 3042 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item, 3043 char *page) 3044 { 3045 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3046 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3047 3048 return sprintf(page, "%d\n", sport->port_attrib.use_srq); 3049 } 3050 3051 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item, 3052 const char *page, size_t count) 3053 { 3054 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3055 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3056 struct srpt_device *sdev = sport->sdev; 3057 unsigned long val; 3058 bool enabled; 3059 int ret; 3060 3061 ret = kstrtoul(page, 0, &val); 3062 if (ret < 0) 3063 return ret; 3064 if (val != !!val) 3065 return -EINVAL; 3066 3067 ret = mutex_lock_interruptible(&sdev->mutex); 3068 if (ret < 0) 3069 return ret; 3070 enabled = sport->enabled; 3071 /* Log out all initiator systems before changing 'use_srq'. */ 3072 srpt_set_enabled(sport, false); 3073 sport->port_attrib.use_srq = val; 3074 srpt_use_srq(sdev, sport->port_attrib.use_srq); 3075 srpt_set_enabled(sport, enabled); 3076 mutex_unlock(&sdev->mutex); 3077 3078 return count; 3079 } 3080 3081 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3082 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3083 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3084 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq); 3085 3086 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3087 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3088 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3089 &srpt_tpg_attrib_attr_srp_sq_size, 3090 &srpt_tpg_attrib_attr_use_srq, 3091 NULL, 3092 }; 3093 3094 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3095 { 3096 struct se_portal_group *se_tpg = to_tpg(item); 3097 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3098 3099 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3100 } 3101 3102 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3103 const char *page, size_t count) 3104 { 3105 struct se_portal_group *se_tpg = to_tpg(item); 3106 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg); 3107 struct srpt_device *sdev = sport->sdev; 3108 unsigned long tmp; 3109 int ret; 3110 3111 ret = kstrtoul(page, 0, &tmp); 3112 if (ret < 0) { 3113 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3114 return -EINVAL; 3115 } 3116 3117 if ((tmp != 0) && (tmp != 1)) { 3118 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3119 return -EINVAL; 3120 } 3121 3122 mutex_lock(&sdev->mutex); 3123 srpt_set_enabled(sport, tmp); 3124 mutex_unlock(&sdev->mutex); 3125 3126 return count; 3127 } 3128 3129 CONFIGFS_ATTR(srpt_tpg_, enable); 3130 3131 static struct configfs_attribute *srpt_tpg_attrs[] = { 3132 &srpt_tpg_attr_enable, 3133 NULL, 3134 }; 3135 3136 /** 3137 * configfs callback invoked for 3138 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3139 */ 3140 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3141 struct config_group *group, 3142 const char *name) 3143 { 3144 struct srpt_port *sport = wwn->priv; 3145 static struct se_portal_group *tpg; 3146 int res; 3147 3148 WARN_ON_ONCE(wwn != &sport->port_guid_wwn && 3149 wwn != &sport->port_gid_wwn); 3150 tpg = wwn == &sport->port_guid_wwn ? &sport->port_guid_tpg : 3151 &sport->port_gid_tpg; 3152 res = core_tpg_register(wwn, tpg, SCSI_PROTOCOL_SRP); 3153 if (res) 3154 return ERR_PTR(res); 3155 3156 return tpg; 3157 } 3158 3159 /** 3160 * configfs callback invoked for 3161 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3162 */ 3163 static void srpt_drop_tpg(struct se_portal_group *tpg) 3164 { 3165 struct srpt_port *sport = srpt_tpg_to_sport(tpg); 3166 3167 sport->enabled = false; 3168 core_tpg_deregister(tpg); 3169 } 3170 3171 /** 3172 * configfs callback invoked for 3173 * mkdir /sys/kernel/config/target/$driver/$port 3174 */ 3175 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3176 struct config_group *group, 3177 const char *name) 3178 { 3179 return srpt_lookup_wwn(name) ? : ERR_PTR(-EINVAL); 3180 } 3181 3182 /** 3183 * configfs callback invoked for 3184 * rmdir /sys/kernel/config/target/$driver/$port 3185 */ 3186 static void srpt_drop_tport(struct se_wwn *wwn) 3187 { 3188 } 3189 3190 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3191 { 3192 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3193 } 3194 3195 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3196 3197 static struct configfs_attribute *srpt_wwn_attrs[] = { 3198 &srpt_wwn_attr_version, 3199 NULL, 3200 }; 3201 3202 static const struct target_core_fabric_ops srpt_template = { 3203 .module = THIS_MODULE, 3204 .name = "srpt", 3205 .get_fabric_name = srpt_get_fabric_name, 3206 .tpg_get_wwn = srpt_get_fabric_wwn, 3207 .tpg_get_tag = srpt_get_tag, 3208 .tpg_check_demo_mode = srpt_check_false, 3209 .tpg_check_demo_mode_cache = srpt_check_true, 3210 .tpg_check_demo_mode_write_protect = srpt_check_true, 3211 .tpg_check_prod_mode_write_protect = srpt_check_false, 3212 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3213 .release_cmd = srpt_release_cmd, 3214 .check_stop_free = srpt_check_stop_free, 3215 .close_session = srpt_close_session, 3216 .sess_get_index = srpt_sess_get_index, 3217 .sess_get_initiator_sid = NULL, 3218 .write_pending = srpt_write_pending, 3219 .write_pending_status = srpt_write_pending_status, 3220 .set_default_node_attributes = srpt_set_default_node_attrs, 3221 .get_cmd_state = srpt_get_tcm_cmd_state, 3222 .queue_data_in = srpt_queue_data_in, 3223 .queue_status = srpt_queue_status, 3224 .queue_tm_rsp = srpt_queue_tm_rsp, 3225 .aborted_task = srpt_aborted_task, 3226 /* 3227 * Setup function pointers for generic logic in 3228 * target_core_fabric_configfs.c 3229 */ 3230 .fabric_make_wwn = srpt_make_tport, 3231 .fabric_drop_wwn = srpt_drop_tport, 3232 .fabric_make_tpg = srpt_make_tpg, 3233 .fabric_drop_tpg = srpt_drop_tpg, 3234 .fabric_init_nodeacl = srpt_init_nodeacl, 3235 3236 .tfc_wwn_attrs = srpt_wwn_attrs, 3237 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3238 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3239 }; 3240 3241 /** 3242 * srpt_init_module() - Kernel module initialization. 3243 * 3244 * Note: Since ib_register_client() registers callback functions, and since at 3245 * least one of these callback functions (srpt_add_one()) calls target core 3246 * functions, this driver must be registered with the target core before 3247 * ib_register_client() is called. 3248 */ 3249 static int __init srpt_init_module(void) 3250 { 3251 int ret; 3252 3253 ret = -EINVAL; 3254 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3255 pr_err("invalid value %d for kernel module parameter" 3256 " srp_max_req_size -- must be at least %d.\n", 3257 srp_max_req_size, MIN_MAX_REQ_SIZE); 3258 goto out; 3259 } 3260 3261 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3262 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3263 pr_err("invalid value %d for kernel module parameter" 3264 " srpt_srq_size -- must be in the range [%d..%d].\n", 3265 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3266 goto out; 3267 } 3268 3269 ret = target_register_template(&srpt_template); 3270 if (ret) 3271 goto out; 3272 3273 ret = ib_register_client(&srpt_client); 3274 if (ret) { 3275 pr_err("couldn't register IB client\n"); 3276 goto out_unregister_target; 3277 } 3278 3279 return 0; 3280 3281 out_unregister_target: 3282 target_unregister_template(&srpt_template); 3283 out: 3284 return ret; 3285 } 3286 3287 static void __exit srpt_cleanup_module(void) 3288 { 3289 ib_unregister_client(&srpt_client); 3290 target_unregister_template(&srpt_template); 3291 } 3292 3293 module_init(srpt_init_module); 3294 module_exit(srpt_cleanup_module); 3295