1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/target_core_base.h> 47 #include <target/target_core_fabric.h> 48 #include "ib_srpt.h" 49 50 /* Name of this kernel module. */ 51 #define DRV_NAME "ib_srpt" 52 #define DRV_VERSION "2.0.0" 53 #define DRV_RELDATE "2011-02-14" 54 55 #define SRPT_ID_STRING "Linux SRP target" 56 57 #undef pr_fmt 58 #define pr_fmt(fmt) DRV_NAME " " fmt 59 60 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 61 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 62 "v" DRV_VERSION " (" DRV_RELDATE ")"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 65 /* 66 * Global Variables 67 */ 68 69 static u64 srpt_service_guid; 70 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 71 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 72 73 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 74 module_param(srp_max_req_size, int, 0444); 75 MODULE_PARM_DESC(srp_max_req_size, 76 "Maximum size of SRP request messages in bytes."); 77 78 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 79 module_param(srpt_srq_size, int, 0444); 80 MODULE_PARM_DESC(srpt_srq_size, 81 "Shared receive queue (SRQ) size."); 82 83 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 84 { 85 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 86 } 87 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 88 0444); 89 MODULE_PARM_DESC(srpt_service_guid, 90 "Using this value for ioc_guid, id_ext, and cm_listen_id" 91 " instead of using the node_guid of the first HCA."); 92 93 static struct ib_client srpt_client; 94 static void srpt_release_cmd(struct se_cmd *se_cmd); 95 static void srpt_free_ch(struct kref *kref); 96 static int srpt_queue_status(struct se_cmd *cmd); 97 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc); 98 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc); 99 static void srpt_process_wait_list(struct srpt_rdma_ch *ch); 100 101 /* 102 * The only allowed channel state changes are those that change the channel 103 * state into a state with a higher numerical value. Hence the new > prev test. 104 */ 105 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new) 106 { 107 unsigned long flags; 108 enum rdma_ch_state prev; 109 bool changed = false; 110 111 spin_lock_irqsave(&ch->spinlock, flags); 112 prev = ch->state; 113 if (new > prev) { 114 ch->state = new; 115 changed = true; 116 } 117 spin_unlock_irqrestore(&ch->spinlock, flags); 118 119 return changed; 120 } 121 122 /** 123 * srpt_event_handler() - Asynchronous IB event callback function. 124 * 125 * Callback function called by the InfiniBand core when an asynchronous IB 126 * event occurs. This callback may occur in interrupt context. See also 127 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 128 * Architecture Specification. 129 */ 130 static void srpt_event_handler(struct ib_event_handler *handler, 131 struct ib_event *event) 132 { 133 struct srpt_device *sdev; 134 struct srpt_port *sport; 135 136 sdev = ib_get_client_data(event->device, &srpt_client); 137 if (!sdev || sdev->device != event->device) 138 return; 139 140 pr_debug("ASYNC event= %d on device= %s\n", event->event, 141 sdev->device->name); 142 143 switch (event->event) { 144 case IB_EVENT_PORT_ERR: 145 if (event->element.port_num <= sdev->device->phys_port_cnt) { 146 sport = &sdev->port[event->element.port_num - 1]; 147 sport->lid = 0; 148 sport->sm_lid = 0; 149 } 150 break; 151 case IB_EVENT_PORT_ACTIVE: 152 case IB_EVENT_LID_CHANGE: 153 case IB_EVENT_PKEY_CHANGE: 154 case IB_EVENT_SM_CHANGE: 155 case IB_EVENT_CLIENT_REREGISTER: 156 case IB_EVENT_GID_CHANGE: 157 /* Refresh port data asynchronously. */ 158 if (event->element.port_num <= sdev->device->phys_port_cnt) { 159 sport = &sdev->port[event->element.port_num - 1]; 160 if (!sport->lid && !sport->sm_lid) 161 schedule_work(&sport->work); 162 } 163 break; 164 default: 165 pr_err("received unrecognized IB event %d\n", 166 event->event); 167 break; 168 } 169 } 170 171 /** 172 * srpt_srq_event() - SRQ event callback function. 173 */ 174 static void srpt_srq_event(struct ib_event *event, void *ctx) 175 { 176 pr_info("SRQ event %d\n", event->event); 177 } 178 179 static const char *get_ch_state_name(enum rdma_ch_state s) 180 { 181 switch (s) { 182 case CH_CONNECTING: 183 return "connecting"; 184 case CH_LIVE: 185 return "live"; 186 case CH_DISCONNECTING: 187 return "disconnecting"; 188 case CH_DRAINING: 189 return "draining"; 190 case CH_DISCONNECTED: 191 return "disconnected"; 192 } 193 return "???"; 194 } 195 196 /** 197 * srpt_qp_event() - QP event callback function. 198 */ 199 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 200 { 201 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 202 event->event, ch->cm_id, ch->sess_name, ch->state); 203 204 switch (event->event) { 205 case IB_EVENT_COMM_EST: 206 ib_cm_notify(ch->cm_id, event->event); 207 break; 208 case IB_EVENT_QP_LAST_WQE_REACHED: 209 pr_debug("%s-%d, state %s: received Last WQE event.\n", 210 ch->sess_name, ch->qp->qp_num, 211 get_ch_state_name(ch->state)); 212 break; 213 default: 214 pr_err("received unrecognized IB QP event %d\n", event->event); 215 break; 216 } 217 } 218 219 /** 220 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 221 * 222 * @slot: one-based slot number. 223 * @value: four-bit value. 224 * 225 * Copies the lowest four bits of value in element slot of the array of four 226 * bit elements called c_list (controller list). The index slot is one-based. 227 */ 228 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 229 { 230 u16 id; 231 u8 tmp; 232 233 id = (slot - 1) / 2; 234 if (slot & 0x1) { 235 tmp = c_list[id] & 0xf; 236 c_list[id] = (value << 4) | tmp; 237 } else { 238 tmp = c_list[id] & 0xf0; 239 c_list[id] = (value & 0xf) | tmp; 240 } 241 } 242 243 /** 244 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 245 * 246 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 247 * Specification. 248 */ 249 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 250 { 251 struct ib_class_port_info *cif; 252 253 cif = (struct ib_class_port_info *)mad->data; 254 memset(cif, 0, sizeof(*cif)); 255 cif->base_version = 1; 256 cif->class_version = 1; 257 cif->resp_time_value = 20; 258 259 mad->mad_hdr.status = 0; 260 } 261 262 /** 263 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 264 * 265 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 266 * Specification. See also section B.7, table B.6 in the SRP r16a document. 267 */ 268 static void srpt_get_iou(struct ib_dm_mad *mad) 269 { 270 struct ib_dm_iou_info *ioui; 271 u8 slot; 272 int i; 273 274 ioui = (struct ib_dm_iou_info *)mad->data; 275 ioui->change_id = cpu_to_be16(1); 276 ioui->max_controllers = 16; 277 278 /* set present for slot 1 and empty for the rest */ 279 srpt_set_ioc(ioui->controller_list, 1, 1); 280 for (i = 1, slot = 2; i < 16; i++, slot++) 281 srpt_set_ioc(ioui->controller_list, slot, 0); 282 283 mad->mad_hdr.status = 0; 284 } 285 286 /** 287 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 288 * 289 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 290 * Architecture Specification. See also section B.7, table B.7 in the SRP 291 * r16a document. 292 */ 293 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 294 struct ib_dm_mad *mad) 295 { 296 struct srpt_device *sdev = sport->sdev; 297 struct ib_dm_ioc_profile *iocp; 298 299 iocp = (struct ib_dm_ioc_profile *)mad->data; 300 301 if (!slot || slot > 16) { 302 mad->mad_hdr.status 303 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 304 return; 305 } 306 307 if (slot > 2) { 308 mad->mad_hdr.status 309 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 310 return; 311 } 312 313 memset(iocp, 0, sizeof(*iocp)); 314 strcpy(iocp->id_string, SRPT_ID_STRING); 315 iocp->guid = cpu_to_be64(srpt_service_guid); 316 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 317 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id); 318 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver); 319 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id); 320 iocp->subsys_device_id = 0x0; 321 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 322 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS); 323 iocp->protocol = cpu_to_be16(SRP_PROTOCOL); 324 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION); 325 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 326 iocp->rdma_read_depth = 4; 327 iocp->send_size = cpu_to_be32(srp_max_req_size); 328 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 329 1U << 24)); 330 iocp->num_svc_entries = 1; 331 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 332 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 333 334 mad->mad_hdr.status = 0; 335 } 336 337 /** 338 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 339 * 340 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 341 * Specification. See also section B.7, table B.8 in the SRP r16a document. 342 */ 343 static void srpt_get_svc_entries(u64 ioc_guid, 344 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 345 { 346 struct ib_dm_svc_entries *svc_entries; 347 348 WARN_ON(!ioc_guid); 349 350 if (!slot || slot > 16) { 351 mad->mad_hdr.status 352 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 353 return; 354 } 355 356 if (slot > 2 || lo > hi || hi > 1) { 357 mad->mad_hdr.status 358 = cpu_to_be16(DM_MAD_STATUS_NO_IOC); 359 return; 360 } 361 362 svc_entries = (struct ib_dm_svc_entries *)mad->data; 363 memset(svc_entries, 0, sizeof(*svc_entries)); 364 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 365 snprintf(svc_entries->service_entries[0].name, 366 sizeof(svc_entries->service_entries[0].name), 367 "%s%016llx", 368 SRP_SERVICE_NAME_PREFIX, 369 ioc_guid); 370 371 mad->mad_hdr.status = 0; 372 } 373 374 /** 375 * srpt_mgmt_method_get() - Process a received management datagram. 376 * @sp: source port through which the MAD has been received. 377 * @rq_mad: received MAD. 378 * @rsp_mad: response MAD. 379 */ 380 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 381 struct ib_dm_mad *rsp_mad) 382 { 383 u16 attr_id; 384 u32 slot; 385 u8 hi, lo; 386 387 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 388 switch (attr_id) { 389 case DM_ATTR_CLASS_PORT_INFO: 390 srpt_get_class_port_info(rsp_mad); 391 break; 392 case DM_ATTR_IOU_INFO: 393 srpt_get_iou(rsp_mad); 394 break; 395 case DM_ATTR_IOC_PROFILE: 396 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 397 srpt_get_ioc(sp, slot, rsp_mad); 398 break; 399 case DM_ATTR_SVC_ENTRIES: 400 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 401 hi = (u8) ((slot >> 8) & 0xff); 402 lo = (u8) (slot & 0xff); 403 slot = (u16) ((slot >> 16) & 0xffff); 404 srpt_get_svc_entries(srpt_service_guid, 405 slot, hi, lo, rsp_mad); 406 break; 407 default: 408 rsp_mad->mad_hdr.status = 409 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 410 break; 411 } 412 } 413 414 /** 415 * srpt_mad_send_handler() - Post MAD-send callback function. 416 */ 417 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 418 struct ib_mad_send_wc *mad_wc) 419 { 420 ib_destroy_ah(mad_wc->send_buf->ah); 421 ib_free_send_mad(mad_wc->send_buf); 422 } 423 424 /** 425 * srpt_mad_recv_handler() - MAD reception callback function. 426 */ 427 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 428 struct ib_mad_send_buf *send_buf, 429 struct ib_mad_recv_wc *mad_wc) 430 { 431 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 432 struct ib_ah *ah; 433 struct ib_mad_send_buf *rsp; 434 struct ib_dm_mad *dm_mad; 435 436 if (!mad_wc || !mad_wc->recv_buf.mad) 437 return; 438 439 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 440 mad_wc->recv_buf.grh, mad_agent->port_num); 441 if (IS_ERR(ah)) 442 goto err; 443 444 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 445 446 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 447 mad_wc->wc->pkey_index, 0, 448 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 449 GFP_KERNEL, 450 IB_MGMT_BASE_VERSION); 451 if (IS_ERR(rsp)) 452 goto err_rsp; 453 454 rsp->ah = ah; 455 456 dm_mad = rsp->mad; 457 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad)); 458 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 459 dm_mad->mad_hdr.status = 0; 460 461 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 462 case IB_MGMT_METHOD_GET: 463 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 464 break; 465 case IB_MGMT_METHOD_SET: 466 dm_mad->mad_hdr.status = 467 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 468 break; 469 default: 470 dm_mad->mad_hdr.status = 471 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 472 break; 473 } 474 475 if (!ib_post_send_mad(rsp, NULL)) { 476 ib_free_recv_mad(mad_wc); 477 /* will destroy_ah & free_send_mad in send completion */ 478 return; 479 } 480 481 ib_free_send_mad(rsp); 482 483 err_rsp: 484 ib_destroy_ah(ah); 485 err: 486 ib_free_recv_mad(mad_wc); 487 } 488 489 /** 490 * srpt_refresh_port() - Configure a HCA port. 491 * 492 * Enable InfiniBand management datagram processing, update the cached sm_lid, 493 * lid and gid values, and register a callback function for processing MADs 494 * on the specified port. 495 * 496 * Note: It is safe to call this function more than once for the same port. 497 */ 498 static int srpt_refresh_port(struct srpt_port *sport) 499 { 500 struct ib_mad_reg_req reg_req; 501 struct ib_port_modify port_modify; 502 struct ib_port_attr port_attr; 503 int ret; 504 505 memset(&port_modify, 0, sizeof(port_modify)); 506 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 507 port_modify.clr_port_cap_mask = 0; 508 509 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 510 if (ret) 511 goto err_mod_port; 512 513 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 514 if (ret) 515 goto err_query_port; 516 517 sport->sm_lid = port_attr.sm_lid; 518 sport->lid = port_attr.lid; 519 520 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid, 521 NULL); 522 if (ret) 523 goto err_query_port; 524 525 if (!sport->mad_agent) { 526 memset(®_req, 0, sizeof(reg_req)); 527 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 528 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 529 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 530 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 531 532 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 533 sport->port, 534 IB_QPT_GSI, 535 ®_req, 0, 536 srpt_mad_send_handler, 537 srpt_mad_recv_handler, 538 sport, 0); 539 if (IS_ERR(sport->mad_agent)) { 540 ret = PTR_ERR(sport->mad_agent); 541 sport->mad_agent = NULL; 542 goto err_query_port; 543 } 544 } 545 546 return 0; 547 548 err_query_port: 549 550 port_modify.set_port_cap_mask = 0; 551 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 552 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 553 554 err_mod_port: 555 556 return ret; 557 } 558 559 /** 560 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 561 * 562 * Note: It is safe to call this function more than once for the same device. 563 */ 564 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 565 { 566 struct ib_port_modify port_modify = { 567 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 568 }; 569 struct srpt_port *sport; 570 int i; 571 572 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 573 sport = &sdev->port[i - 1]; 574 WARN_ON(sport->port != i); 575 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 576 pr_err("disabling MAD processing failed.\n"); 577 if (sport->mad_agent) { 578 ib_unregister_mad_agent(sport->mad_agent); 579 sport->mad_agent = NULL; 580 } 581 } 582 } 583 584 /** 585 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 586 */ 587 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 588 int ioctx_size, int dma_size, 589 enum dma_data_direction dir) 590 { 591 struct srpt_ioctx *ioctx; 592 593 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 594 if (!ioctx) 595 goto err; 596 597 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 598 if (!ioctx->buf) 599 goto err_free_ioctx; 600 601 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 602 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 603 goto err_free_buf; 604 605 return ioctx; 606 607 err_free_buf: 608 kfree(ioctx->buf); 609 err_free_ioctx: 610 kfree(ioctx); 611 err: 612 return NULL; 613 } 614 615 /** 616 * srpt_free_ioctx() - Free an SRPT I/O context structure. 617 */ 618 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 619 int dma_size, enum dma_data_direction dir) 620 { 621 if (!ioctx) 622 return; 623 624 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 625 kfree(ioctx->buf); 626 kfree(ioctx); 627 } 628 629 /** 630 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 631 * @sdev: Device to allocate the I/O context ring for. 632 * @ring_size: Number of elements in the I/O context ring. 633 * @ioctx_size: I/O context size. 634 * @dma_size: DMA buffer size. 635 * @dir: DMA data direction. 636 */ 637 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 638 int ring_size, int ioctx_size, 639 int dma_size, enum dma_data_direction dir) 640 { 641 struct srpt_ioctx **ring; 642 int i; 643 644 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 645 && ioctx_size != sizeof(struct srpt_send_ioctx)); 646 647 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 648 if (!ring) 649 goto out; 650 for (i = 0; i < ring_size; ++i) { 651 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 652 if (!ring[i]) 653 goto err; 654 ring[i]->index = i; 655 } 656 goto out; 657 658 err: 659 while (--i >= 0) 660 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 661 kfree(ring); 662 ring = NULL; 663 out: 664 return ring; 665 } 666 667 /** 668 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 669 */ 670 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 671 struct srpt_device *sdev, int ring_size, 672 int dma_size, enum dma_data_direction dir) 673 { 674 int i; 675 676 for (i = 0; i < ring_size; ++i) 677 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 678 kfree(ioctx_ring); 679 } 680 681 /** 682 * srpt_get_cmd_state() - Get the state of a SCSI command. 683 */ 684 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 685 { 686 enum srpt_command_state state; 687 unsigned long flags; 688 689 BUG_ON(!ioctx); 690 691 spin_lock_irqsave(&ioctx->spinlock, flags); 692 state = ioctx->state; 693 spin_unlock_irqrestore(&ioctx->spinlock, flags); 694 return state; 695 } 696 697 /** 698 * srpt_set_cmd_state() - Set the state of a SCSI command. 699 * 700 * Does not modify the state of aborted commands. Returns the previous command 701 * state. 702 */ 703 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 704 enum srpt_command_state new) 705 { 706 enum srpt_command_state previous; 707 unsigned long flags; 708 709 BUG_ON(!ioctx); 710 711 spin_lock_irqsave(&ioctx->spinlock, flags); 712 previous = ioctx->state; 713 if (previous != SRPT_STATE_DONE) 714 ioctx->state = new; 715 spin_unlock_irqrestore(&ioctx->spinlock, flags); 716 717 return previous; 718 } 719 720 /** 721 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 722 * 723 * Returns true if and only if the previous command state was equal to 'old'. 724 */ 725 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 726 enum srpt_command_state old, 727 enum srpt_command_state new) 728 { 729 enum srpt_command_state previous; 730 unsigned long flags; 731 732 WARN_ON(!ioctx); 733 WARN_ON(old == SRPT_STATE_DONE); 734 WARN_ON(new == SRPT_STATE_NEW); 735 736 spin_lock_irqsave(&ioctx->spinlock, flags); 737 previous = ioctx->state; 738 if (previous == old) 739 ioctx->state = new; 740 spin_unlock_irqrestore(&ioctx->spinlock, flags); 741 return previous == old; 742 } 743 744 /** 745 * srpt_post_recv() - Post an IB receive request. 746 */ 747 static int srpt_post_recv(struct srpt_device *sdev, 748 struct srpt_recv_ioctx *ioctx) 749 { 750 struct ib_sge list; 751 struct ib_recv_wr wr, *bad_wr; 752 753 BUG_ON(!sdev); 754 list.addr = ioctx->ioctx.dma; 755 list.length = srp_max_req_size; 756 list.lkey = sdev->pd->local_dma_lkey; 757 758 ioctx->ioctx.cqe.done = srpt_recv_done; 759 wr.wr_cqe = &ioctx->ioctx.cqe; 760 wr.next = NULL; 761 wr.sg_list = &list; 762 wr.num_sge = 1; 763 764 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 765 } 766 767 /** 768 * srpt_post_send() - Post an IB send request. 769 * 770 * Returns zero upon success and a non-zero value upon failure. 771 */ 772 static int srpt_post_send(struct srpt_rdma_ch *ch, 773 struct srpt_send_ioctx *ioctx, int len) 774 { 775 struct ib_sge list; 776 struct ib_send_wr wr, *bad_wr; 777 struct srpt_device *sdev = ch->sport->sdev; 778 int ret; 779 780 atomic_inc(&ch->req_lim); 781 782 ret = -ENOMEM; 783 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 784 pr_warn("IB send queue full (needed 1)\n"); 785 goto out; 786 } 787 788 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 789 DMA_TO_DEVICE); 790 791 list.addr = ioctx->ioctx.dma; 792 list.length = len; 793 list.lkey = sdev->pd->local_dma_lkey; 794 795 ioctx->ioctx.cqe.done = srpt_send_done; 796 wr.next = NULL; 797 wr.wr_cqe = &ioctx->ioctx.cqe; 798 wr.sg_list = &list; 799 wr.num_sge = 1; 800 wr.opcode = IB_WR_SEND; 801 wr.send_flags = IB_SEND_SIGNALED; 802 803 ret = ib_post_send(ch->qp, &wr, &bad_wr); 804 805 out: 806 if (ret < 0) { 807 atomic_inc(&ch->sq_wr_avail); 808 atomic_dec(&ch->req_lim); 809 } 810 return ret; 811 } 812 813 /** 814 * srpt_zerolength_write() - Perform a zero-length RDMA write. 815 * 816 * A quote from the InfiniBand specification: C9-88: For an HCA responder 817 * using Reliable Connection service, for each zero-length RDMA READ or WRITE 818 * request, the R_Key shall not be validated, even if the request includes 819 * Immediate data. 820 */ 821 static int srpt_zerolength_write(struct srpt_rdma_ch *ch) 822 { 823 struct ib_send_wr wr, *bad_wr; 824 825 memset(&wr, 0, sizeof(wr)); 826 wr.opcode = IB_WR_RDMA_WRITE; 827 wr.wr_cqe = &ch->zw_cqe; 828 wr.send_flags = IB_SEND_SIGNALED; 829 return ib_post_send(ch->qp, &wr, &bad_wr); 830 } 831 832 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc) 833 { 834 struct srpt_rdma_ch *ch = cq->cq_context; 835 836 if (wc->status == IB_WC_SUCCESS) { 837 srpt_process_wait_list(ch); 838 } else { 839 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 840 schedule_work(&ch->release_work); 841 else 842 WARN_ONCE(1, "%s-%d\n", ch->sess_name, ch->qp->qp_num); 843 } 844 } 845 846 /** 847 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 848 * @ioctx: Pointer to the I/O context associated with the request. 849 * @srp_cmd: Pointer to the SRP_CMD request data. 850 * @dir: Pointer to the variable to which the transfer direction will be 851 * written. 852 * @data_len: Pointer to the variable to which the total data length of all 853 * descriptors in the SRP_CMD request will be written. 854 * 855 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 856 * 857 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 858 * -ENOMEM when memory allocation fails and zero upon success. 859 */ 860 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 861 struct srp_cmd *srp_cmd, 862 enum dma_data_direction *dir, u64 *data_len) 863 { 864 struct srp_indirect_buf *idb; 865 struct srp_direct_buf *db; 866 unsigned add_cdb_offset; 867 int ret; 868 869 /* 870 * The pointer computations below will only be compiled correctly 871 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 872 * whether srp_cmd::add_data has been declared as a byte pointer. 873 */ 874 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 875 && !__same_type(srp_cmd->add_data[0], (u8)0)); 876 877 BUG_ON(!dir); 878 BUG_ON(!data_len); 879 880 ret = 0; 881 *data_len = 0; 882 883 /* 884 * The lower four bits of the buffer format field contain the DATA-IN 885 * buffer descriptor format, and the highest four bits contain the 886 * DATA-OUT buffer descriptor format. 887 */ 888 *dir = DMA_NONE; 889 if (srp_cmd->buf_fmt & 0xf) 890 /* DATA-IN: transfer data from target to initiator (read). */ 891 *dir = DMA_FROM_DEVICE; 892 else if (srp_cmd->buf_fmt >> 4) 893 /* DATA-OUT: transfer data from initiator to target (write). */ 894 *dir = DMA_TO_DEVICE; 895 896 /* 897 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 898 * CDB LENGTH' field are reserved and the size in bytes of this field 899 * is four times the value specified in bits 3..7. Hence the "& ~3". 900 */ 901 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 902 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 903 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 904 ioctx->n_rbuf = 1; 905 ioctx->rbufs = &ioctx->single_rbuf; 906 907 db = (struct srp_direct_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 memcpy(ioctx->rbufs, db, sizeof(*db)); 910 *data_len = be32_to_cpu(db->len); 911 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 912 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 913 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 914 + add_cdb_offset); 915 916 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof(*db); 917 918 if (ioctx->n_rbuf > 919 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 920 pr_err("received unsupported SRP_CMD request" 921 " type (%u out + %u in != %u / %zu)\n", 922 srp_cmd->data_out_desc_cnt, 923 srp_cmd->data_in_desc_cnt, 924 be32_to_cpu(idb->table_desc.len), 925 sizeof(*db)); 926 ioctx->n_rbuf = 0; 927 ret = -EINVAL; 928 goto out; 929 } 930 931 if (ioctx->n_rbuf == 1) 932 ioctx->rbufs = &ioctx->single_rbuf; 933 else { 934 ioctx->rbufs = 935 kmalloc(ioctx->n_rbuf * sizeof(*db), GFP_ATOMIC); 936 if (!ioctx->rbufs) { 937 ioctx->n_rbuf = 0; 938 ret = -ENOMEM; 939 goto out; 940 } 941 } 942 943 db = idb->desc_list; 944 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof(*db)); 945 *data_len = be32_to_cpu(idb->len); 946 } 947 out: 948 return ret; 949 } 950 951 /** 952 * srpt_init_ch_qp() - Initialize queue pair attributes. 953 * 954 * Initialized the attributes of queue pair 'qp' by allowing local write, 955 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 956 */ 957 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 958 { 959 struct ib_qp_attr *attr; 960 int ret; 961 962 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 963 if (!attr) 964 return -ENOMEM; 965 966 attr->qp_state = IB_QPS_INIT; 967 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 968 IB_ACCESS_REMOTE_WRITE; 969 attr->port_num = ch->sport->port; 970 attr->pkey_index = 0; 971 972 ret = ib_modify_qp(qp, attr, 973 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 974 IB_QP_PKEY_INDEX); 975 976 kfree(attr); 977 return ret; 978 } 979 980 /** 981 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 982 * @ch: channel of the queue pair. 983 * @qp: queue pair to change the state of. 984 * 985 * Returns zero upon success and a negative value upon failure. 986 * 987 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 988 * If this structure ever becomes larger, it might be necessary to allocate 989 * it dynamically instead of on the stack. 990 */ 991 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 992 { 993 struct ib_qp_attr qp_attr; 994 int attr_mask; 995 int ret; 996 997 qp_attr.qp_state = IB_QPS_RTR; 998 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 999 if (ret) 1000 goto out; 1001 1002 qp_attr.max_dest_rd_atomic = 4; 1003 1004 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1005 1006 out: 1007 return ret; 1008 } 1009 1010 /** 1011 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1012 * @ch: channel of the queue pair. 1013 * @qp: queue pair to change the state of. 1014 * 1015 * Returns zero upon success and a negative value upon failure. 1016 * 1017 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1018 * If this structure ever becomes larger, it might be necessary to allocate 1019 * it dynamically instead of on the stack. 1020 */ 1021 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1022 { 1023 struct ib_qp_attr qp_attr; 1024 int attr_mask; 1025 int ret; 1026 1027 qp_attr.qp_state = IB_QPS_RTS; 1028 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1029 if (ret) 1030 goto out; 1031 1032 qp_attr.max_rd_atomic = 4; 1033 1034 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1035 1036 out: 1037 return ret; 1038 } 1039 1040 /** 1041 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1042 */ 1043 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1044 { 1045 struct ib_qp_attr qp_attr; 1046 1047 qp_attr.qp_state = IB_QPS_ERR; 1048 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1049 } 1050 1051 /** 1052 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1053 */ 1054 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1055 struct srpt_send_ioctx *ioctx) 1056 { 1057 struct scatterlist *sg; 1058 enum dma_data_direction dir; 1059 1060 BUG_ON(!ch); 1061 BUG_ON(!ioctx); 1062 BUG_ON(ioctx->n_rdma && !ioctx->rdma_wrs); 1063 1064 while (ioctx->n_rdma) 1065 kfree(ioctx->rdma_wrs[--ioctx->n_rdma].wr.sg_list); 1066 1067 kfree(ioctx->rdma_wrs); 1068 ioctx->rdma_wrs = NULL; 1069 1070 if (ioctx->mapped_sg_count) { 1071 sg = ioctx->sg; 1072 WARN_ON(!sg); 1073 dir = ioctx->cmd.data_direction; 1074 BUG_ON(dir == DMA_NONE); 1075 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1076 target_reverse_dma_direction(&ioctx->cmd)); 1077 ioctx->mapped_sg_count = 0; 1078 } 1079 } 1080 1081 /** 1082 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1083 */ 1084 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1085 struct srpt_send_ioctx *ioctx) 1086 { 1087 struct ib_device *dev = ch->sport->sdev->device; 1088 struct se_cmd *cmd; 1089 struct scatterlist *sg, *sg_orig; 1090 int sg_cnt; 1091 enum dma_data_direction dir; 1092 struct ib_rdma_wr *riu; 1093 struct srp_direct_buf *db; 1094 dma_addr_t dma_addr; 1095 struct ib_sge *sge; 1096 u64 raddr; 1097 u32 rsize; 1098 u32 tsize; 1099 u32 dma_len; 1100 int count, nrdma; 1101 int i, j, k; 1102 1103 BUG_ON(!ch); 1104 BUG_ON(!ioctx); 1105 cmd = &ioctx->cmd; 1106 dir = cmd->data_direction; 1107 BUG_ON(dir == DMA_NONE); 1108 1109 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1110 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1111 1112 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1113 target_reverse_dma_direction(cmd)); 1114 if (unlikely(!count)) 1115 return -EAGAIN; 1116 1117 ioctx->mapped_sg_count = count; 1118 1119 if (ioctx->rdma_wrs && ioctx->n_rdma_wrs) 1120 nrdma = ioctx->n_rdma_wrs; 1121 else { 1122 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1123 + ioctx->n_rbuf; 1124 1125 ioctx->rdma_wrs = kcalloc(nrdma, sizeof(*ioctx->rdma_wrs), 1126 GFP_KERNEL); 1127 if (!ioctx->rdma_wrs) 1128 goto free_mem; 1129 1130 ioctx->n_rdma_wrs = nrdma; 1131 } 1132 1133 db = ioctx->rbufs; 1134 tsize = cmd->data_length; 1135 dma_len = ib_sg_dma_len(dev, &sg[0]); 1136 riu = ioctx->rdma_wrs; 1137 1138 /* 1139 * For each remote desc - calculate the #ib_sge. 1140 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1141 * each remote desc rdma_iu is required a rdma wr; 1142 * else 1143 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1144 * another rdma wr 1145 */ 1146 for (i = 0, j = 0; 1147 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1148 rsize = be32_to_cpu(db->len); 1149 raddr = be64_to_cpu(db->va); 1150 riu->remote_addr = raddr; 1151 riu->rkey = be32_to_cpu(db->key); 1152 riu->wr.num_sge = 0; 1153 1154 /* calculate how many sge required for this remote_buf */ 1155 while (rsize > 0 && tsize > 0) { 1156 1157 if (rsize >= dma_len) { 1158 tsize -= dma_len; 1159 rsize -= dma_len; 1160 raddr += dma_len; 1161 1162 if (tsize > 0) { 1163 ++j; 1164 if (j < count) { 1165 sg = sg_next(sg); 1166 dma_len = ib_sg_dma_len( 1167 dev, sg); 1168 } 1169 } 1170 } else { 1171 tsize -= rsize; 1172 dma_len -= rsize; 1173 rsize = 0; 1174 } 1175 1176 ++riu->wr.num_sge; 1177 1178 if (rsize > 0 && 1179 riu->wr.num_sge == SRPT_DEF_SG_PER_WQE) { 1180 ++ioctx->n_rdma; 1181 riu->wr.sg_list = kmalloc_array(riu->wr.num_sge, 1182 sizeof(*riu->wr.sg_list), 1183 GFP_KERNEL); 1184 if (!riu->wr.sg_list) 1185 goto free_mem; 1186 1187 ++riu; 1188 riu->wr.num_sge = 0; 1189 riu->remote_addr = raddr; 1190 riu->rkey = be32_to_cpu(db->key); 1191 } 1192 } 1193 1194 ++ioctx->n_rdma; 1195 riu->wr.sg_list = kmalloc_array(riu->wr.num_sge, 1196 sizeof(*riu->wr.sg_list), 1197 GFP_KERNEL); 1198 if (!riu->wr.sg_list) 1199 goto free_mem; 1200 } 1201 1202 db = ioctx->rbufs; 1203 tsize = cmd->data_length; 1204 riu = ioctx->rdma_wrs; 1205 sg = sg_orig; 1206 dma_len = ib_sg_dma_len(dev, &sg[0]); 1207 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1208 1209 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1210 for (i = 0, j = 0; 1211 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1212 rsize = be32_to_cpu(db->len); 1213 sge = riu->wr.sg_list; 1214 k = 0; 1215 1216 while (rsize > 0 && tsize > 0) { 1217 sge->addr = dma_addr; 1218 sge->lkey = ch->sport->sdev->pd->local_dma_lkey; 1219 1220 if (rsize >= dma_len) { 1221 sge->length = 1222 (tsize < dma_len) ? tsize : dma_len; 1223 tsize -= dma_len; 1224 rsize -= dma_len; 1225 1226 if (tsize > 0) { 1227 ++j; 1228 if (j < count) { 1229 sg = sg_next(sg); 1230 dma_len = ib_sg_dma_len( 1231 dev, sg); 1232 dma_addr = ib_sg_dma_address( 1233 dev, sg); 1234 } 1235 } 1236 } else { 1237 sge->length = (tsize < rsize) ? tsize : rsize; 1238 tsize -= rsize; 1239 dma_len -= rsize; 1240 dma_addr += rsize; 1241 rsize = 0; 1242 } 1243 1244 ++k; 1245 if (k == riu->wr.num_sge && rsize > 0 && tsize > 0) { 1246 ++riu; 1247 sge = riu->wr.sg_list; 1248 k = 0; 1249 } else if (rsize > 0 && tsize > 0) 1250 ++sge; 1251 } 1252 } 1253 1254 return 0; 1255 1256 free_mem: 1257 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1258 1259 return -ENOMEM; 1260 } 1261 1262 /** 1263 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1264 */ 1265 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1266 { 1267 struct se_session *se_sess; 1268 struct srpt_send_ioctx *ioctx; 1269 int tag; 1270 1271 BUG_ON(!ch); 1272 se_sess = ch->sess; 1273 1274 tag = percpu_ida_alloc(&se_sess->sess_tag_pool, TASK_RUNNING); 1275 if (tag < 0) { 1276 pr_err("Unable to obtain tag for srpt_send_ioctx\n"); 1277 return NULL; 1278 } 1279 ioctx = &((struct srpt_send_ioctx *)se_sess->sess_cmd_map)[tag]; 1280 memset(ioctx, 0, sizeof(struct srpt_send_ioctx)); 1281 ioctx->ch = ch; 1282 spin_lock_init(&ioctx->spinlock); 1283 ioctx->state = SRPT_STATE_NEW; 1284 init_completion(&ioctx->tx_done); 1285 1286 ioctx->cmd.map_tag = tag; 1287 1288 return ioctx; 1289 } 1290 1291 /** 1292 * srpt_abort_cmd() - Abort a SCSI command. 1293 * @ioctx: I/O context associated with the SCSI command. 1294 * @context: Preferred execution context. 1295 */ 1296 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1297 { 1298 enum srpt_command_state state; 1299 unsigned long flags; 1300 1301 BUG_ON(!ioctx); 1302 1303 /* 1304 * If the command is in a state where the target core is waiting for 1305 * the ib_srpt driver, change the state to the next state. 1306 */ 1307 1308 spin_lock_irqsave(&ioctx->spinlock, flags); 1309 state = ioctx->state; 1310 switch (state) { 1311 case SRPT_STATE_NEED_DATA: 1312 ioctx->state = SRPT_STATE_DATA_IN; 1313 break; 1314 case SRPT_STATE_CMD_RSP_SENT: 1315 case SRPT_STATE_MGMT_RSP_SENT: 1316 ioctx->state = SRPT_STATE_DONE; 1317 break; 1318 default: 1319 WARN_ONCE(true, "%s: unexpected I/O context state %d\n", 1320 __func__, state); 1321 break; 1322 } 1323 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1324 1325 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1326 ioctx->cmd.tag); 1327 1328 switch (state) { 1329 case SRPT_STATE_NEW: 1330 case SRPT_STATE_DATA_IN: 1331 case SRPT_STATE_MGMT: 1332 case SRPT_STATE_DONE: 1333 /* 1334 * Do nothing - defer abort processing until 1335 * srpt_queue_response() is invoked. 1336 */ 1337 break; 1338 case SRPT_STATE_NEED_DATA: 1339 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag); 1340 transport_generic_request_failure(&ioctx->cmd, 1341 TCM_CHECK_CONDITION_ABORT_CMD); 1342 break; 1343 case SRPT_STATE_CMD_RSP_SENT: 1344 /* 1345 * SRP_RSP sending failed or the SRP_RSP send completion has 1346 * not been received in time. 1347 */ 1348 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1349 transport_generic_free_cmd(&ioctx->cmd, 0); 1350 break; 1351 case SRPT_STATE_MGMT_RSP_SENT: 1352 transport_generic_free_cmd(&ioctx->cmd, 0); 1353 break; 1354 default: 1355 WARN(1, "Unexpected command state (%d)", state); 1356 break; 1357 } 1358 1359 return state; 1360 } 1361 1362 /** 1363 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1364 * the data that has been transferred via IB RDMA had to be postponed until the 1365 * check_stop_free() callback. None of this is necessary anymore and needs to 1366 * be cleaned up. 1367 */ 1368 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc) 1369 { 1370 struct srpt_rdma_ch *ch = cq->cq_context; 1371 struct srpt_send_ioctx *ioctx = 1372 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1373 1374 WARN_ON(ioctx->n_rdma <= 0); 1375 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1376 1377 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1378 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n", 1379 ioctx, wc->status); 1380 srpt_abort_cmd(ioctx); 1381 return; 1382 } 1383 1384 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1385 SRPT_STATE_DATA_IN)) 1386 target_execute_cmd(&ioctx->cmd); 1387 else 1388 pr_err("%s[%d]: wrong state = %d\n", __func__, 1389 __LINE__, srpt_get_cmd_state(ioctx)); 1390 } 1391 1392 static void srpt_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc) 1393 { 1394 struct srpt_send_ioctx *ioctx = 1395 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe); 1396 1397 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1398 /* 1399 * Note: if an RDMA write error completion is received that 1400 * means that a SEND also has been posted. Defer further 1401 * processing of the associated command until the send error 1402 * completion has been received. 1403 */ 1404 pr_info("RDMA_WRITE for ioctx 0x%p failed with status %d\n", 1405 ioctx, wc->status); 1406 } 1407 } 1408 1409 /** 1410 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1411 * @ch: RDMA channel through which the request has been received. 1412 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1413 * be built in the buffer ioctx->buf points at and hence this function will 1414 * overwrite the request data. 1415 * @tag: tag of the request for which this response is being generated. 1416 * @status: value for the STATUS field of the SRP_RSP information unit. 1417 * 1418 * Returns the size in bytes of the SRP_RSP response. 1419 * 1420 * An SRP_RSP response contains a SCSI status or service response. See also 1421 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1422 * response. See also SPC-2 for more information about sense data. 1423 */ 1424 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1425 struct srpt_send_ioctx *ioctx, u64 tag, 1426 int status) 1427 { 1428 struct srp_rsp *srp_rsp; 1429 const u8 *sense_data; 1430 int sense_data_len, max_sense_len; 1431 1432 /* 1433 * The lowest bit of all SAM-3 status codes is zero (see also 1434 * paragraph 5.3 in SAM-3). 1435 */ 1436 WARN_ON(status & 1); 1437 1438 srp_rsp = ioctx->ioctx.buf; 1439 BUG_ON(!srp_rsp); 1440 1441 sense_data = ioctx->sense_data; 1442 sense_data_len = ioctx->cmd.scsi_sense_length; 1443 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1444 1445 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1446 srp_rsp->opcode = SRP_RSP; 1447 srp_rsp->req_lim_delta = 1448 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1449 srp_rsp->tag = tag; 1450 srp_rsp->status = status; 1451 1452 if (sense_data_len) { 1453 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1454 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1455 if (sense_data_len > max_sense_len) { 1456 pr_warn("truncated sense data from %d to %d" 1457 " bytes\n", sense_data_len, max_sense_len); 1458 sense_data_len = max_sense_len; 1459 } 1460 1461 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1462 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1463 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1464 } 1465 1466 return sizeof(*srp_rsp) + sense_data_len; 1467 } 1468 1469 /** 1470 * srpt_build_tskmgmt_rsp() - Build a task management response. 1471 * @ch: RDMA channel through which the request has been received. 1472 * @ioctx: I/O context in which the SRP_RSP response will be built. 1473 * @rsp_code: RSP_CODE that will be stored in the response. 1474 * @tag: Tag of the request for which this response is being generated. 1475 * 1476 * Returns the size in bytes of the SRP_RSP response. 1477 * 1478 * An SRP_RSP response contains a SCSI status or service response. See also 1479 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1480 * response. 1481 */ 1482 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1483 struct srpt_send_ioctx *ioctx, 1484 u8 rsp_code, u64 tag) 1485 { 1486 struct srp_rsp *srp_rsp; 1487 int resp_data_len; 1488 int resp_len; 1489 1490 resp_data_len = 4; 1491 resp_len = sizeof(*srp_rsp) + resp_data_len; 1492 1493 srp_rsp = ioctx->ioctx.buf; 1494 BUG_ON(!srp_rsp); 1495 memset(srp_rsp, 0, sizeof(*srp_rsp)); 1496 1497 srp_rsp->opcode = SRP_RSP; 1498 srp_rsp->req_lim_delta = 1499 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1500 srp_rsp->tag = tag; 1501 1502 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1503 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1504 srp_rsp->data[3] = rsp_code; 1505 1506 return resp_len; 1507 } 1508 1509 static int srpt_check_stop_free(struct se_cmd *cmd) 1510 { 1511 struct srpt_send_ioctx *ioctx = container_of(cmd, 1512 struct srpt_send_ioctx, cmd); 1513 1514 return target_put_sess_cmd(&ioctx->cmd); 1515 } 1516 1517 /** 1518 * srpt_handle_cmd() - Process SRP_CMD. 1519 */ 1520 static void srpt_handle_cmd(struct srpt_rdma_ch *ch, 1521 struct srpt_recv_ioctx *recv_ioctx, 1522 struct srpt_send_ioctx *send_ioctx) 1523 { 1524 struct se_cmd *cmd; 1525 struct srp_cmd *srp_cmd; 1526 u64 data_len; 1527 enum dma_data_direction dir; 1528 int rc; 1529 1530 BUG_ON(!send_ioctx); 1531 1532 srp_cmd = recv_ioctx->ioctx.buf; 1533 cmd = &send_ioctx->cmd; 1534 cmd->tag = srp_cmd->tag; 1535 1536 switch (srp_cmd->task_attr) { 1537 case SRP_CMD_SIMPLE_Q: 1538 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1539 break; 1540 case SRP_CMD_ORDERED_Q: 1541 default: 1542 cmd->sam_task_attr = TCM_ORDERED_TAG; 1543 break; 1544 case SRP_CMD_HEAD_OF_Q: 1545 cmd->sam_task_attr = TCM_HEAD_TAG; 1546 break; 1547 case SRP_CMD_ACA: 1548 cmd->sam_task_attr = TCM_ACA_TAG; 1549 break; 1550 } 1551 1552 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1553 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1554 srp_cmd->tag); 1555 goto release_ioctx; 1556 } 1557 1558 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1559 &send_ioctx->sense_data[0], 1560 scsilun_to_int(&srp_cmd->lun), data_len, 1561 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1562 if (rc != 0) { 1563 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc, 1564 srp_cmd->tag); 1565 goto release_ioctx; 1566 } 1567 return; 1568 1569 release_ioctx: 1570 send_ioctx->state = SRPT_STATE_DONE; 1571 srpt_release_cmd(cmd); 1572 } 1573 1574 static int srp_tmr_to_tcm(int fn) 1575 { 1576 switch (fn) { 1577 case SRP_TSK_ABORT_TASK: 1578 return TMR_ABORT_TASK; 1579 case SRP_TSK_ABORT_TASK_SET: 1580 return TMR_ABORT_TASK_SET; 1581 case SRP_TSK_CLEAR_TASK_SET: 1582 return TMR_CLEAR_TASK_SET; 1583 case SRP_TSK_LUN_RESET: 1584 return TMR_LUN_RESET; 1585 case SRP_TSK_CLEAR_ACA: 1586 return TMR_CLEAR_ACA; 1587 default: 1588 return -1; 1589 } 1590 } 1591 1592 /** 1593 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1594 * 1595 * Returns 0 if and only if the request will be processed by the target core. 1596 * 1597 * For more information about SRP_TSK_MGMT information units, see also section 1598 * 6.7 in the SRP r16a document. 1599 */ 1600 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1601 struct srpt_recv_ioctx *recv_ioctx, 1602 struct srpt_send_ioctx *send_ioctx) 1603 { 1604 struct srp_tsk_mgmt *srp_tsk; 1605 struct se_cmd *cmd; 1606 struct se_session *sess = ch->sess; 1607 int tcm_tmr; 1608 int rc; 1609 1610 BUG_ON(!send_ioctx); 1611 1612 srp_tsk = recv_ioctx->ioctx.buf; 1613 cmd = &send_ioctx->cmd; 1614 1615 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1616 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1617 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1618 1619 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1620 send_ioctx->cmd.tag = srp_tsk->tag; 1621 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1622 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, 1623 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr, 1624 GFP_KERNEL, srp_tsk->task_tag, 1625 TARGET_SCF_ACK_KREF); 1626 if (rc != 0) { 1627 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1628 goto fail; 1629 } 1630 return; 1631 fail: 1632 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1633 } 1634 1635 /** 1636 * srpt_handle_new_iu() - Process a newly received information unit. 1637 * @ch: RDMA channel through which the information unit has been received. 1638 * @ioctx: SRPT I/O context associated with the information unit. 1639 */ 1640 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1641 struct srpt_recv_ioctx *recv_ioctx, 1642 struct srpt_send_ioctx *send_ioctx) 1643 { 1644 struct srp_cmd *srp_cmd; 1645 1646 BUG_ON(!ch); 1647 BUG_ON(!recv_ioctx); 1648 1649 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1650 recv_ioctx->ioctx.dma, srp_max_req_size, 1651 DMA_FROM_DEVICE); 1652 1653 if (unlikely(ch->state == CH_CONNECTING)) { 1654 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1655 goto out; 1656 } 1657 1658 if (unlikely(ch->state != CH_LIVE)) 1659 goto out; 1660 1661 srp_cmd = recv_ioctx->ioctx.buf; 1662 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1663 if (!send_ioctx) 1664 send_ioctx = srpt_get_send_ioctx(ch); 1665 if (unlikely(!send_ioctx)) { 1666 list_add_tail(&recv_ioctx->wait_list, 1667 &ch->cmd_wait_list); 1668 goto out; 1669 } 1670 } 1671 1672 switch (srp_cmd->opcode) { 1673 case SRP_CMD: 1674 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1675 break; 1676 case SRP_TSK_MGMT: 1677 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1678 break; 1679 case SRP_I_LOGOUT: 1680 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1681 break; 1682 case SRP_CRED_RSP: 1683 pr_debug("received SRP_CRED_RSP\n"); 1684 break; 1685 case SRP_AER_RSP: 1686 pr_debug("received SRP_AER_RSP\n"); 1687 break; 1688 case SRP_RSP: 1689 pr_err("Received SRP_RSP\n"); 1690 break; 1691 default: 1692 pr_err("received IU with unknown opcode 0x%x\n", 1693 srp_cmd->opcode); 1694 break; 1695 } 1696 1697 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1698 out: 1699 return; 1700 } 1701 1702 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1703 { 1704 struct srpt_rdma_ch *ch = cq->cq_context; 1705 struct srpt_recv_ioctx *ioctx = 1706 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe); 1707 1708 if (wc->status == IB_WC_SUCCESS) { 1709 int req_lim; 1710 1711 req_lim = atomic_dec_return(&ch->req_lim); 1712 if (unlikely(req_lim < 0)) 1713 pr_err("req_lim = %d < 0\n", req_lim); 1714 srpt_handle_new_iu(ch, ioctx, NULL); 1715 } else { 1716 pr_info("receiving failed for ioctx %p with status %d\n", 1717 ioctx, wc->status); 1718 } 1719 } 1720 1721 /* 1722 * This function must be called from the context in which RDMA completions are 1723 * processed because it accesses the wait list without protection against 1724 * access from other threads. 1725 */ 1726 static void srpt_process_wait_list(struct srpt_rdma_ch *ch) 1727 { 1728 struct srpt_send_ioctx *ioctx; 1729 1730 while (!list_empty(&ch->cmd_wait_list) && 1731 ch->state >= CH_LIVE && 1732 (ioctx = srpt_get_send_ioctx(ch)) != NULL) { 1733 struct srpt_recv_ioctx *recv_ioctx; 1734 1735 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1736 struct srpt_recv_ioctx, 1737 wait_list); 1738 list_del(&recv_ioctx->wait_list); 1739 srpt_handle_new_iu(ch, recv_ioctx, ioctx); 1740 } 1741 } 1742 1743 /** 1744 * Note: Although this has not yet been observed during tests, at least in 1745 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1746 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1747 * value in each response is set to one, and it is possible that this response 1748 * makes the initiator send a new request before the send completion for that 1749 * response has been processed. This could e.g. happen if the call to 1750 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1751 * if IB retransmission causes generation of the send completion to be 1752 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1753 * are queued on cmd_wait_list. The code below processes these delayed 1754 * requests one at a time. 1755 */ 1756 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc) 1757 { 1758 struct srpt_rdma_ch *ch = cq->cq_context; 1759 struct srpt_send_ioctx *ioctx = 1760 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe); 1761 enum srpt_command_state state; 1762 1763 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1764 1765 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && 1766 state != SRPT_STATE_MGMT_RSP_SENT); 1767 1768 atomic_inc(&ch->sq_wr_avail); 1769 1770 if (wc->status != IB_WC_SUCCESS) 1771 pr_info("sending response for ioctx 0x%p failed" 1772 " with status %d\n", ioctx, wc->status); 1773 1774 if (state != SRPT_STATE_DONE) { 1775 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1776 transport_generic_free_cmd(&ioctx->cmd, 0); 1777 } else { 1778 pr_err("IB completion has been received too late for" 1779 " wr_id = %u.\n", ioctx->ioctx.index); 1780 } 1781 1782 srpt_process_wait_list(ch); 1783 } 1784 1785 /** 1786 * srpt_create_ch_ib() - Create receive and send completion queues. 1787 */ 1788 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 1789 { 1790 struct ib_qp_init_attr *qp_init; 1791 struct srpt_port *sport = ch->sport; 1792 struct srpt_device *sdev = sport->sdev; 1793 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 1794 int ret; 1795 1796 WARN_ON(ch->rq_size < 1); 1797 1798 ret = -ENOMEM; 1799 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL); 1800 if (!qp_init) 1801 goto out; 1802 1803 retry: 1804 ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size, 1805 0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE); 1806 if (IS_ERR(ch->cq)) { 1807 ret = PTR_ERR(ch->cq); 1808 pr_err("failed to create CQ cqe= %d ret= %d\n", 1809 ch->rq_size + srp_sq_size, ret); 1810 goto out; 1811 } 1812 1813 qp_init->qp_context = (void *)ch; 1814 qp_init->event_handler 1815 = (void(*)(struct ib_event *, void*))srpt_qp_event; 1816 qp_init->send_cq = ch->cq; 1817 qp_init->recv_cq = ch->cq; 1818 qp_init->srq = sdev->srq; 1819 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 1820 qp_init->qp_type = IB_QPT_RC; 1821 qp_init->cap.max_send_wr = srp_sq_size; 1822 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 1823 1824 ch->qp = ib_create_qp(sdev->pd, qp_init); 1825 if (IS_ERR(ch->qp)) { 1826 ret = PTR_ERR(ch->qp); 1827 if (ret == -ENOMEM) { 1828 srp_sq_size /= 2; 1829 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 1830 ib_destroy_cq(ch->cq); 1831 goto retry; 1832 } 1833 } 1834 pr_err("failed to create_qp ret= %d\n", ret); 1835 goto err_destroy_cq; 1836 } 1837 1838 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 1839 1840 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1841 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 1842 qp_init->cap.max_send_wr, ch->cm_id); 1843 1844 ret = srpt_init_ch_qp(ch, ch->qp); 1845 if (ret) 1846 goto err_destroy_qp; 1847 1848 out: 1849 kfree(qp_init); 1850 return ret; 1851 1852 err_destroy_qp: 1853 ib_destroy_qp(ch->qp); 1854 err_destroy_cq: 1855 ib_free_cq(ch->cq); 1856 goto out; 1857 } 1858 1859 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 1860 { 1861 ib_destroy_qp(ch->qp); 1862 ib_free_cq(ch->cq); 1863 } 1864 1865 /** 1866 * srpt_close_ch() - Close an RDMA channel. 1867 * 1868 * Make sure all resources associated with the channel will be deallocated at 1869 * an appropriate time. 1870 * 1871 * Returns true if and only if the channel state has been modified into 1872 * CH_DRAINING. 1873 */ 1874 static bool srpt_close_ch(struct srpt_rdma_ch *ch) 1875 { 1876 int ret; 1877 1878 if (!srpt_set_ch_state(ch, CH_DRAINING)) { 1879 pr_debug("%s-%d: already closed\n", ch->sess_name, 1880 ch->qp->qp_num); 1881 return false; 1882 } 1883 1884 kref_get(&ch->kref); 1885 1886 ret = srpt_ch_qp_err(ch); 1887 if (ret < 0) 1888 pr_err("%s-%d: changing queue pair into error state failed: %d\n", 1889 ch->sess_name, ch->qp->qp_num, ret); 1890 1891 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name, 1892 ch->qp->qp_num); 1893 ret = srpt_zerolength_write(ch); 1894 if (ret < 0) { 1895 pr_err("%s-%d: queuing zero-length write failed: %d\n", 1896 ch->sess_name, ch->qp->qp_num, ret); 1897 if (srpt_set_ch_state(ch, CH_DISCONNECTED)) 1898 schedule_work(&ch->release_work); 1899 else 1900 WARN_ON_ONCE(true); 1901 } 1902 1903 kref_put(&ch->kref, srpt_free_ch); 1904 1905 return true; 1906 } 1907 1908 /* 1909 * Change the channel state into CH_DISCONNECTING. If a channel has not yet 1910 * reached the connected state, close it. If a channel is in the connected 1911 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is 1912 * the responsibility of the caller to ensure that this function is not 1913 * invoked concurrently with the code that accepts a connection. This means 1914 * that this function must either be invoked from inside a CM callback 1915 * function or that it must be invoked with the srpt_port.mutex held. 1916 */ 1917 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch) 1918 { 1919 int ret; 1920 1921 if (!srpt_set_ch_state(ch, CH_DISCONNECTING)) 1922 return -ENOTCONN; 1923 1924 ret = ib_send_cm_dreq(ch->cm_id, NULL, 0); 1925 if (ret < 0) 1926 ret = ib_send_cm_drep(ch->cm_id, NULL, 0); 1927 1928 if (ret < 0 && srpt_close_ch(ch)) 1929 ret = 0; 1930 1931 return ret; 1932 } 1933 1934 static void __srpt_close_all_ch(struct srpt_device *sdev) 1935 { 1936 struct srpt_rdma_ch *ch; 1937 1938 lockdep_assert_held(&sdev->mutex); 1939 1940 list_for_each_entry(ch, &sdev->rch_list, list) { 1941 if (srpt_disconnect_ch(ch) >= 0) 1942 pr_info("Closing channel %s-%d because target %s has been disabled\n", 1943 ch->sess_name, ch->qp->qp_num, 1944 sdev->device->name); 1945 srpt_close_ch(ch); 1946 } 1947 } 1948 1949 /** 1950 * srpt_shutdown_session() - Whether or not a session may be shut down. 1951 */ 1952 static int srpt_shutdown_session(struct se_session *se_sess) 1953 { 1954 return 1; 1955 } 1956 1957 static void srpt_free_ch(struct kref *kref) 1958 { 1959 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref); 1960 1961 kfree(ch); 1962 } 1963 1964 static void srpt_release_channel_work(struct work_struct *w) 1965 { 1966 struct srpt_rdma_ch *ch; 1967 struct srpt_device *sdev; 1968 struct se_session *se_sess; 1969 1970 ch = container_of(w, struct srpt_rdma_ch, release_work); 1971 pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name, 1972 ch->qp->qp_num, ch->release_done); 1973 1974 sdev = ch->sport->sdev; 1975 BUG_ON(!sdev); 1976 1977 se_sess = ch->sess; 1978 BUG_ON(!se_sess); 1979 1980 target_sess_cmd_list_set_waiting(se_sess); 1981 target_wait_for_sess_cmds(se_sess); 1982 1983 transport_deregister_session_configfs(se_sess); 1984 transport_deregister_session(se_sess); 1985 ch->sess = NULL; 1986 1987 ib_destroy_cm_id(ch->cm_id); 1988 1989 srpt_destroy_ch_ib(ch); 1990 1991 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 1992 ch->sport->sdev, ch->rq_size, 1993 ch->rsp_size, DMA_TO_DEVICE); 1994 1995 mutex_lock(&sdev->mutex); 1996 list_del_init(&ch->list); 1997 if (ch->release_done) 1998 complete(ch->release_done); 1999 mutex_unlock(&sdev->mutex); 2000 2001 wake_up(&sdev->ch_releaseQ); 2002 2003 kref_put(&ch->kref, srpt_free_ch); 2004 } 2005 2006 /** 2007 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2008 * 2009 * Ownership of the cm_id is transferred to the target session if this 2010 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2011 */ 2012 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2013 struct ib_cm_req_event_param *param, 2014 void *private_data) 2015 { 2016 struct srpt_device *sdev = cm_id->context; 2017 struct srpt_port *sport = &sdev->port[param->port - 1]; 2018 struct srp_login_req *req; 2019 struct srp_login_rsp *rsp; 2020 struct srp_login_rej *rej; 2021 struct ib_cm_rep_param *rep_param; 2022 struct srpt_rdma_ch *ch, *tmp_ch; 2023 u32 it_iu_len; 2024 int ret = 0; 2025 unsigned char *p; 2026 2027 WARN_ON_ONCE(irqs_disabled()); 2028 2029 if (WARN_ON(!sdev || !private_data)) 2030 return -EINVAL; 2031 2032 req = (struct srp_login_req *)private_data; 2033 2034 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2035 2036 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2037 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2038 " (guid=0x%llx:0x%llx)\n", 2039 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2040 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2041 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2042 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2043 it_iu_len, 2044 param->port, 2045 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2046 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2047 2048 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 2049 rej = kzalloc(sizeof(*rej), GFP_KERNEL); 2050 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL); 2051 2052 if (!rsp || !rej || !rep_param) { 2053 ret = -ENOMEM; 2054 goto out; 2055 } 2056 2057 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2058 rej->reason = cpu_to_be32( 2059 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2060 ret = -EINVAL; 2061 pr_err("rejected SRP_LOGIN_REQ because its" 2062 " length (%d bytes) is out of range (%d .. %d)\n", 2063 it_iu_len, 64, srp_max_req_size); 2064 goto reject; 2065 } 2066 2067 if (!sport->enabled) { 2068 rej->reason = cpu_to_be32( 2069 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2070 ret = -EINVAL; 2071 pr_err("rejected SRP_LOGIN_REQ because the target port" 2072 " has not yet been enabled\n"); 2073 goto reject; 2074 } 2075 2076 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2077 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2078 2079 mutex_lock(&sdev->mutex); 2080 2081 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2082 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2083 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2084 && param->port == ch->sport->port 2085 && param->listen_id == ch->sport->sdev->cm_id 2086 && ch->cm_id) { 2087 if (srpt_disconnect_ch(ch) < 0) 2088 continue; 2089 pr_info("Relogin - closed existing channel %s\n", 2090 ch->sess_name); 2091 rsp->rsp_flags = 2092 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2093 } 2094 } 2095 2096 mutex_unlock(&sdev->mutex); 2097 2098 } else 2099 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2100 2101 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2102 || *(__be64 *)(req->target_port_id + 8) != 2103 cpu_to_be64(srpt_service_guid)) { 2104 rej->reason = cpu_to_be32( 2105 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2106 ret = -ENOMEM; 2107 pr_err("rejected SRP_LOGIN_REQ because it" 2108 " has an invalid target port identifier.\n"); 2109 goto reject; 2110 } 2111 2112 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 2113 if (!ch) { 2114 rej->reason = cpu_to_be32( 2115 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2116 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2117 ret = -ENOMEM; 2118 goto reject; 2119 } 2120 2121 kref_init(&ch->kref); 2122 ch->zw_cqe.done = srpt_zerolength_write_done; 2123 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2124 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2125 memcpy(ch->t_port_id, req->target_port_id, 16); 2126 ch->sport = &sdev->port[param->port - 1]; 2127 ch->cm_id = cm_id; 2128 cm_id->context = ch; 2129 /* 2130 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2131 * for the SRP protocol to the command queue size. 2132 */ 2133 ch->rq_size = SRPT_RQ_SIZE; 2134 spin_lock_init(&ch->spinlock); 2135 ch->state = CH_CONNECTING; 2136 INIT_LIST_HEAD(&ch->cmd_wait_list); 2137 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2138 2139 ch->ioctx_ring = (struct srpt_send_ioctx **) 2140 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2141 sizeof(*ch->ioctx_ring[0]), 2142 ch->rsp_size, DMA_TO_DEVICE); 2143 if (!ch->ioctx_ring) 2144 goto free_ch; 2145 2146 ret = srpt_create_ch_ib(ch); 2147 if (ret) { 2148 rej->reason = cpu_to_be32( 2149 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2150 pr_err("rejected SRP_LOGIN_REQ because creating" 2151 " a new RDMA channel failed.\n"); 2152 goto free_ring; 2153 } 2154 2155 ret = srpt_ch_qp_rtr(ch, ch->qp); 2156 if (ret) { 2157 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2158 pr_err("rejected SRP_LOGIN_REQ because enabling" 2159 " RTR failed (error code = %d)\n", ret); 2160 goto destroy_ib; 2161 } 2162 2163 /* 2164 * Use the initator port identifier as the session name, when 2165 * checking against se_node_acl->initiatorname[] this can be 2166 * with or without preceeding '0x'. 2167 */ 2168 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2169 be64_to_cpu(*(__be64 *)ch->i_port_id), 2170 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2171 2172 pr_debug("registering session %s\n", ch->sess_name); 2173 p = &ch->sess_name[0]; 2174 2175 try_again: 2176 ch->sess = target_alloc_session(&sport->port_tpg_1, ch->rq_size, 2177 sizeof(struct srpt_send_ioctx), 2178 TARGET_PROT_NORMAL, p, ch, NULL); 2179 if (IS_ERR(ch->sess)) { 2180 pr_info("Rejected login because no ACL has been" 2181 " configured yet for initiator %s.\n", p); 2182 /* 2183 * XXX: Hack to retry of ch->i_port_id without leading '0x' 2184 */ 2185 if (p == &ch->sess_name[0]) { 2186 p += 2; 2187 goto try_again; 2188 } 2189 rej->reason = cpu_to_be32((PTR_ERR(ch->sess) == -ENOMEM) ? 2190 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES : 2191 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2192 goto destroy_ib; 2193 } 2194 2195 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2196 ch->sess_name, ch->cm_id); 2197 2198 /* create srp_login_response */ 2199 rsp->opcode = SRP_LOGIN_RSP; 2200 rsp->tag = req->tag; 2201 rsp->max_it_iu_len = req->req_it_iu_len; 2202 rsp->max_ti_iu_len = req->req_it_iu_len; 2203 ch->max_ti_iu_len = it_iu_len; 2204 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2205 | SRP_BUF_FORMAT_INDIRECT); 2206 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2207 atomic_set(&ch->req_lim, ch->rq_size); 2208 atomic_set(&ch->req_lim_delta, 0); 2209 2210 /* create cm reply */ 2211 rep_param->qp_num = ch->qp->qp_num; 2212 rep_param->private_data = (void *)rsp; 2213 rep_param->private_data_len = sizeof(*rsp); 2214 rep_param->rnr_retry_count = 7; 2215 rep_param->flow_control = 1; 2216 rep_param->failover_accepted = 0; 2217 rep_param->srq = 1; 2218 rep_param->responder_resources = 4; 2219 rep_param->initiator_depth = 4; 2220 2221 ret = ib_send_cm_rep(cm_id, rep_param); 2222 if (ret) { 2223 pr_err("sending SRP_LOGIN_REQ response failed" 2224 " (error code = %d)\n", ret); 2225 goto release_channel; 2226 } 2227 2228 mutex_lock(&sdev->mutex); 2229 list_add_tail(&ch->list, &sdev->rch_list); 2230 mutex_unlock(&sdev->mutex); 2231 2232 goto out; 2233 2234 release_channel: 2235 srpt_disconnect_ch(ch); 2236 transport_deregister_session_configfs(ch->sess); 2237 transport_deregister_session(ch->sess); 2238 ch->sess = NULL; 2239 2240 destroy_ib: 2241 srpt_destroy_ch_ib(ch); 2242 2243 free_ring: 2244 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2245 ch->sport->sdev, ch->rq_size, 2246 ch->rsp_size, DMA_TO_DEVICE); 2247 free_ch: 2248 kfree(ch); 2249 2250 reject: 2251 rej->opcode = SRP_LOGIN_REJ; 2252 rej->tag = req->tag; 2253 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2254 | SRP_BUF_FORMAT_INDIRECT); 2255 2256 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2257 (void *)rej, sizeof(*rej)); 2258 2259 out: 2260 kfree(rep_param); 2261 kfree(rsp); 2262 kfree(rej); 2263 2264 return ret; 2265 } 2266 2267 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch, 2268 enum ib_cm_rej_reason reason, 2269 const u8 *private_data, 2270 u8 private_data_len) 2271 { 2272 char *priv = NULL; 2273 int i; 2274 2275 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1, 2276 GFP_KERNEL))) { 2277 for (i = 0; i < private_data_len; i++) 2278 sprintf(priv + 3 * i, " %02x", private_data[i]); 2279 } 2280 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n", 2281 ch->sess_name, ch->qp->qp_num, reason, private_data_len ? 2282 "; private data" : "", priv ? priv : " (?)"); 2283 kfree(priv); 2284 } 2285 2286 /** 2287 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2288 * 2289 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2290 * and that the recipient may begin transmitting (RTU = ready to use). 2291 */ 2292 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch) 2293 { 2294 int ret; 2295 2296 if (srpt_set_ch_state(ch, CH_LIVE)) { 2297 ret = srpt_ch_qp_rts(ch, ch->qp); 2298 2299 if (ret == 0) { 2300 /* Trigger wait list processing. */ 2301 ret = srpt_zerolength_write(ch); 2302 WARN_ONCE(ret < 0, "%d\n", ret); 2303 } else { 2304 srpt_close_ch(ch); 2305 } 2306 } 2307 } 2308 2309 /** 2310 * srpt_cm_handler() - IB connection manager callback function. 2311 * 2312 * A non-zero return value will cause the caller destroy the CM ID. 2313 * 2314 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2315 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2316 * a non-zero value in any other case will trigger a race with the 2317 * ib_destroy_cm_id() call in srpt_release_channel(). 2318 */ 2319 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2320 { 2321 struct srpt_rdma_ch *ch = cm_id->context; 2322 int ret; 2323 2324 ret = 0; 2325 switch (event->event) { 2326 case IB_CM_REQ_RECEIVED: 2327 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2328 event->private_data); 2329 break; 2330 case IB_CM_REJ_RECEIVED: 2331 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason, 2332 event->private_data, 2333 IB_CM_REJ_PRIVATE_DATA_SIZE); 2334 break; 2335 case IB_CM_RTU_RECEIVED: 2336 case IB_CM_USER_ESTABLISHED: 2337 srpt_cm_rtu_recv(ch); 2338 break; 2339 case IB_CM_DREQ_RECEIVED: 2340 srpt_disconnect_ch(ch); 2341 break; 2342 case IB_CM_DREP_RECEIVED: 2343 pr_info("Received CM DREP message for ch %s-%d.\n", 2344 ch->sess_name, ch->qp->qp_num); 2345 srpt_close_ch(ch); 2346 break; 2347 case IB_CM_TIMEWAIT_EXIT: 2348 pr_info("Received CM TimeWait exit for ch %s-%d.\n", 2349 ch->sess_name, ch->qp->qp_num); 2350 srpt_close_ch(ch); 2351 break; 2352 case IB_CM_REP_ERROR: 2353 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name, 2354 ch->qp->qp_num); 2355 break; 2356 case IB_CM_DREQ_ERROR: 2357 pr_info("Received CM DREQ ERROR event.\n"); 2358 break; 2359 case IB_CM_MRA_RECEIVED: 2360 pr_info("Received CM MRA event\n"); 2361 break; 2362 default: 2363 pr_err("received unrecognized CM event %d\n", event->event); 2364 break; 2365 } 2366 2367 return ret; 2368 } 2369 2370 /** 2371 * srpt_perform_rdmas() - Perform IB RDMA. 2372 * 2373 * Returns zero upon success or a negative number upon failure. 2374 */ 2375 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2376 struct srpt_send_ioctx *ioctx) 2377 { 2378 struct ib_send_wr *bad_wr; 2379 int sq_wr_avail, ret, i; 2380 enum dma_data_direction dir; 2381 const int n_rdma = ioctx->n_rdma; 2382 2383 dir = ioctx->cmd.data_direction; 2384 if (dir == DMA_TO_DEVICE) { 2385 /* write */ 2386 ret = -ENOMEM; 2387 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2388 if (sq_wr_avail < 0) { 2389 pr_warn("IB send queue full (needed %d)\n", 2390 n_rdma); 2391 goto out; 2392 } 2393 } 2394 2395 for (i = 0; i < n_rdma; i++) { 2396 struct ib_send_wr *wr = &ioctx->rdma_wrs[i].wr; 2397 2398 wr->opcode = (dir == DMA_FROM_DEVICE) ? 2399 IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; 2400 2401 if (i == n_rdma - 1) { 2402 /* only get completion event for the last rdma read */ 2403 if (dir == DMA_TO_DEVICE) { 2404 wr->send_flags = IB_SEND_SIGNALED; 2405 ioctx->rdma_cqe.done = srpt_rdma_read_done; 2406 } else { 2407 ioctx->rdma_cqe.done = srpt_rdma_write_done; 2408 } 2409 wr->wr_cqe = &ioctx->rdma_cqe; 2410 wr->next = NULL; 2411 } else { 2412 wr->wr_cqe = NULL; 2413 wr->next = &ioctx->rdma_wrs[i + 1].wr; 2414 } 2415 } 2416 2417 ret = ib_post_send(ch->qp, &ioctx->rdma_wrs->wr, &bad_wr); 2418 if (ret) 2419 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2420 __func__, __LINE__, ret, i, n_rdma); 2421 out: 2422 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2423 atomic_add(n_rdma, &ch->sq_wr_avail); 2424 return ret; 2425 } 2426 2427 /** 2428 * srpt_xfer_data() - Start data transfer from initiator to target. 2429 */ 2430 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2431 struct srpt_send_ioctx *ioctx) 2432 { 2433 int ret; 2434 2435 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2436 if (ret) { 2437 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2438 goto out; 2439 } 2440 2441 ret = srpt_perform_rdmas(ch, ioctx); 2442 if (ret) { 2443 if (ret == -EAGAIN || ret == -ENOMEM) 2444 pr_info("%s[%d] queue full -- ret=%d\n", 2445 __func__, __LINE__, ret); 2446 else 2447 pr_err("%s[%d] fatal error -- ret=%d\n", 2448 __func__, __LINE__, ret); 2449 goto out_unmap; 2450 } 2451 2452 out: 2453 return ret; 2454 out_unmap: 2455 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2456 goto out; 2457 } 2458 2459 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2460 { 2461 struct srpt_send_ioctx *ioctx; 2462 2463 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2464 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2465 } 2466 2467 /* 2468 * srpt_write_pending() - Start data transfer from initiator to target (write). 2469 */ 2470 static int srpt_write_pending(struct se_cmd *se_cmd) 2471 { 2472 struct srpt_send_ioctx *ioctx = 2473 container_of(se_cmd, struct srpt_send_ioctx, cmd); 2474 struct srpt_rdma_ch *ch = ioctx->ch; 2475 enum srpt_command_state new_state; 2476 2477 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2478 WARN_ON(new_state == SRPT_STATE_DONE); 2479 return srpt_xfer_data(ch, ioctx); 2480 } 2481 2482 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2483 { 2484 switch (tcm_mgmt_status) { 2485 case TMR_FUNCTION_COMPLETE: 2486 return SRP_TSK_MGMT_SUCCESS; 2487 case TMR_FUNCTION_REJECTED: 2488 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2489 } 2490 return SRP_TSK_MGMT_FAILED; 2491 } 2492 2493 /** 2494 * srpt_queue_response() - Transmits the response to a SCSI command. 2495 * 2496 * Callback function called by the TCM core. Must not block since it can be 2497 * invoked on the context of the IB completion handler. 2498 */ 2499 static void srpt_queue_response(struct se_cmd *cmd) 2500 { 2501 struct srpt_rdma_ch *ch; 2502 struct srpt_send_ioctx *ioctx; 2503 enum srpt_command_state state; 2504 unsigned long flags; 2505 int ret; 2506 enum dma_data_direction dir; 2507 int resp_len; 2508 u8 srp_tm_status; 2509 2510 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2511 ch = ioctx->ch; 2512 BUG_ON(!ch); 2513 2514 spin_lock_irqsave(&ioctx->spinlock, flags); 2515 state = ioctx->state; 2516 switch (state) { 2517 case SRPT_STATE_NEW: 2518 case SRPT_STATE_DATA_IN: 2519 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2520 break; 2521 case SRPT_STATE_MGMT: 2522 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2523 break; 2524 default: 2525 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2526 ch, ioctx->ioctx.index, ioctx->state); 2527 break; 2528 } 2529 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2530 2531 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 2532 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 2533 atomic_inc(&ch->req_lim_delta); 2534 srpt_abort_cmd(ioctx); 2535 return; 2536 } 2537 2538 dir = ioctx->cmd.data_direction; 2539 2540 /* For read commands, transfer the data to the initiator. */ 2541 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 2542 !ioctx->queue_status_only) { 2543 ret = srpt_xfer_data(ch, ioctx); 2544 if (ret) { 2545 pr_err("xfer_data failed for tag %llu\n", 2546 ioctx->cmd.tag); 2547 return; 2548 } 2549 } 2550 2551 if (state != SRPT_STATE_MGMT) 2552 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag, 2553 cmd->scsi_status); 2554 else { 2555 srp_tm_status 2556 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 2557 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 2558 ioctx->cmd.tag); 2559 } 2560 ret = srpt_post_send(ch, ioctx, resp_len); 2561 if (ret) { 2562 pr_err("sending cmd response failed for tag %llu\n", 2563 ioctx->cmd.tag); 2564 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2565 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 2566 target_put_sess_cmd(&ioctx->cmd); 2567 } 2568 } 2569 2570 static int srpt_queue_data_in(struct se_cmd *cmd) 2571 { 2572 srpt_queue_response(cmd); 2573 return 0; 2574 } 2575 2576 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 2577 { 2578 srpt_queue_response(cmd); 2579 } 2580 2581 static void srpt_aborted_task(struct se_cmd *cmd) 2582 { 2583 struct srpt_send_ioctx *ioctx = container_of(cmd, 2584 struct srpt_send_ioctx, cmd); 2585 2586 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 2587 } 2588 2589 static int srpt_queue_status(struct se_cmd *cmd) 2590 { 2591 struct srpt_send_ioctx *ioctx; 2592 2593 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2594 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 2595 if (cmd->se_cmd_flags & 2596 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 2597 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 2598 ioctx->queue_status_only = true; 2599 srpt_queue_response(cmd); 2600 return 0; 2601 } 2602 2603 static void srpt_refresh_port_work(struct work_struct *work) 2604 { 2605 struct srpt_port *sport = container_of(work, struct srpt_port, work); 2606 2607 srpt_refresh_port(sport); 2608 } 2609 2610 /** 2611 * srpt_release_sdev() - Free the channel resources associated with a target. 2612 */ 2613 static int srpt_release_sdev(struct srpt_device *sdev) 2614 { 2615 int i, res; 2616 2617 WARN_ON_ONCE(irqs_disabled()); 2618 2619 BUG_ON(!sdev); 2620 2621 mutex_lock(&sdev->mutex); 2622 for (i = 0; i < ARRAY_SIZE(sdev->port); i++) 2623 sdev->port[i].enabled = false; 2624 __srpt_close_all_ch(sdev); 2625 mutex_unlock(&sdev->mutex); 2626 2627 res = wait_event_interruptible(sdev->ch_releaseQ, 2628 list_empty_careful(&sdev->rch_list)); 2629 if (res) 2630 pr_err("%s: interrupted.\n", __func__); 2631 2632 return 0; 2633 } 2634 2635 static struct srpt_port *__srpt_lookup_port(const char *name) 2636 { 2637 struct ib_device *dev; 2638 struct srpt_device *sdev; 2639 struct srpt_port *sport; 2640 int i; 2641 2642 list_for_each_entry(sdev, &srpt_dev_list, list) { 2643 dev = sdev->device; 2644 if (!dev) 2645 continue; 2646 2647 for (i = 0; i < dev->phys_port_cnt; i++) { 2648 sport = &sdev->port[i]; 2649 2650 if (!strcmp(sport->port_guid, name)) 2651 return sport; 2652 } 2653 } 2654 2655 return NULL; 2656 } 2657 2658 static struct srpt_port *srpt_lookup_port(const char *name) 2659 { 2660 struct srpt_port *sport; 2661 2662 spin_lock(&srpt_dev_lock); 2663 sport = __srpt_lookup_port(name); 2664 spin_unlock(&srpt_dev_lock); 2665 2666 return sport; 2667 } 2668 2669 /** 2670 * srpt_add_one() - Infiniband device addition callback function. 2671 */ 2672 static void srpt_add_one(struct ib_device *device) 2673 { 2674 struct srpt_device *sdev; 2675 struct srpt_port *sport; 2676 struct ib_srq_init_attr srq_attr; 2677 int i; 2678 2679 pr_debug("device = %p, device->dma_ops = %p\n", device, 2680 device->dma_ops); 2681 2682 sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); 2683 if (!sdev) 2684 goto err; 2685 2686 sdev->device = device; 2687 INIT_LIST_HEAD(&sdev->rch_list); 2688 init_waitqueue_head(&sdev->ch_releaseQ); 2689 mutex_init(&sdev->mutex); 2690 2691 sdev->pd = ib_alloc_pd(device); 2692 if (IS_ERR(sdev->pd)) 2693 goto free_dev; 2694 2695 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr); 2696 2697 srq_attr.event_handler = srpt_srq_event; 2698 srq_attr.srq_context = (void *)sdev; 2699 srq_attr.attr.max_wr = sdev->srq_size; 2700 srq_attr.attr.max_sge = 1; 2701 srq_attr.attr.srq_limit = 0; 2702 srq_attr.srq_type = IB_SRQT_BASIC; 2703 2704 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 2705 if (IS_ERR(sdev->srq)) 2706 goto err_pd; 2707 2708 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 2709 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr, 2710 device->name); 2711 2712 if (!srpt_service_guid) 2713 srpt_service_guid = be64_to_cpu(device->node_guid); 2714 2715 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 2716 if (IS_ERR(sdev->cm_id)) 2717 goto err_srq; 2718 2719 /* print out target login information */ 2720 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 2721 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 2722 srpt_service_guid, srpt_service_guid); 2723 2724 /* 2725 * We do not have a consistent service_id (ie. also id_ext of target_id) 2726 * to identify this target. We currently use the guid of the first HCA 2727 * in the system as service_id; therefore, the target_id will change 2728 * if this HCA is gone bad and replaced by different HCA 2729 */ 2730 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0)) 2731 goto err_cm; 2732 2733 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 2734 srpt_event_handler); 2735 if (ib_register_event_handler(&sdev->event_handler)) 2736 goto err_cm; 2737 2738 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 2739 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 2740 sizeof(*sdev->ioctx_ring[0]), 2741 srp_max_req_size, DMA_FROM_DEVICE); 2742 if (!sdev->ioctx_ring) 2743 goto err_event; 2744 2745 for (i = 0; i < sdev->srq_size; ++i) 2746 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 2747 2748 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 2749 2750 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 2751 sport = &sdev->port[i - 1]; 2752 sport->sdev = sdev; 2753 sport->port = i; 2754 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 2755 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 2756 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 2757 INIT_WORK(&sport->work, srpt_refresh_port_work); 2758 2759 if (srpt_refresh_port(sport)) { 2760 pr_err("MAD registration failed for %s-%d.\n", 2761 sdev->device->name, i); 2762 goto err_ring; 2763 } 2764 snprintf(sport->port_guid, sizeof(sport->port_guid), 2765 "0x%016llx%016llx", 2766 be64_to_cpu(sport->gid.global.subnet_prefix), 2767 be64_to_cpu(sport->gid.global.interface_id)); 2768 } 2769 2770 spin_lock(&srpt_dev_lock); 2771 list_add_tail(&sdev->list, &srpt_dev_list); 2772 spin_unlock(&srpt_dev_lock); 2773 2774 out: 2775 ib_set_client_data(device, &srpt_client, sdev); 2776 pr_debug("added %s.\n", device->name); 2777 return; 2778 2779 err_ring: 2780 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2781 sdev->srq_size, srp_max_req_size, 2782 DMA_FROM_DEVICE); 2783 err_event: 2784 ib_unregister_event_handler(&sdev->event_handler); 2785 err_cm: 2786 ib_destroy_cm_id(sdev->cm_id); 2787 err_srq: 2788 ib_destroy_srq(sdev->srq); 2789 err_pd: 2790 ib_dealloc_pd(sdev->pd); 2791 free_dev: 2792 kfree(sdev); 2793 err: 2794 sdev = NULL; 2795 pr_info("%s(%s) failed.\n", __func__, device->name); 2796 goto out; 2797 } 2798 2799 /** 2800 * srpt_remove_one() - InfiniBand device removal callback function. 2801 */ 2802 static void srpt_remove_one(struct ib_device *device, void *client_data) 2803 { 2804 struct srpt_device *sdev = client_data; 2805 int i; 2806 2807 if (!sdev) { 2808 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 2809 return; 2810 } 2811 2812 srpt_unregister_mad_agent(sdev); 2813 2814 ib_unregister_event_handler(&sdev->event_handler); 2815 2816 /* Cancel any work queued by the just unregistered IB event handler. */ 2817 for (i = 0; i < sdev->device->phys_port_cnt; i++) 2818 cancel_work_sync(&sdev->port[i].work); 2819 2820 ib_destroy_cm_id(sdev->cm_id); 2821 2822 /* 2823 * Unregistering a target must happen after destroying sdev->cm_id 2824 * such that no new SRP_LOGIN_REQ information units can arrive while 2825 * destroying the target. 2826 */ 2827 spin_lock(&srpt_dev_lock); 2828 list_del(&sdev->list); 2829 spin_unlock(&srpt_dev_lock); 2830 srpt_release_sdev(sdev); 2831 2832 ib_destroy_srq(sdev->srq); 2833 ib_dealloc_pd(sdev->pd); 2834 2835 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 2836 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 2837 sdev->ioctx_ring = NULL; 2838 kfree(sdev); 2839 } 2840 2841 static struct ib_client srpt_client = { 2842 .name = DRV_NAME, 2843 .add = srpt_add_one, 2844 .remove = srpt_remove_one 2845 }; 2846 2847 static int srpt_check_true(struct se_portal_group *se_tpg) 2848 { 2849 return 1; 2850 } 2851 2852 static int srpt_check_false(struct se_portal_group *se_tpg) 2853 { 2854 return 0; 2855 } 2856 2857 static char *srpt_get_fabric_name(void) 2858 { 2859 return "srpt"; 2860 } 2861 2862 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 2863 { 2864 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 2865 2866 return sport->port_guid; 2867 } 2868 2869 static u16 srpt_get_tag(struct se_portal_group *tpg) 2870 { 2871 return 1; 2872 } 2873 2874 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 2875 { 2876 return 1; 2877 } 2878 2879 static void srpt_release_cmd(struct se_cmd *se_cmd) 2880 { 2881 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 2882 struct srpt_send_ioctx, cmd); 2883 struct srpt_rdma_ch *ch = ioctx->ch; 2884 struct se_session *se_sess = ch->sess; 2885 2886 WARN_ON(ioctx->state != SRPT_STATE_DONE); 2887 WARN_ON(ioctx->mapped_sg_count != 0); 2888 2889 if (ioctx->n_rbuf > 1) { 2890 kfree(ioctx->rbufs); 2891 ioctx->rbufs = NULL; 2892 ioctx->n_rbuf = 0; 2893 } 2894 2895 percpu_ida_free(&se_sess->sess_tag_pool, se_cmd->map_tag); 2896 } 2897 2898 /** 2899 * srpt_close_session() - Forcibly close a session. 2900 * 2901 * Callback function invoked by the TCM core to clean up sessions associated 2902 * with a node ACL when the user invokes 2903 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2904 */ 2905 static void srpt_close_session(struct se_session *se_sess) 2906 { 2907 DECLARE_COMPLETION_ONSTACK(release_done); 2908 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2909 struct srpt_device *sdev = ch->sport->sdev; 2910 bool wait; 2911 2912 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num, 2913 ch->state); 2914 2915 mutex_lock(&sdev->mutex); 2916 BUG_ON(ch->release_done); 2917 ch->release_done = &release_done; 2918 wait = !list_empty(&ch->list); 2919 srpt_disconnect_ch(ch); 2920 mutex_unlock(&sdev->mutex); 2921 2922 if (!wait) 2923 return; 2924 2925 while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0) 2926 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__, 2927 ch->sess_name, ch->qp->qp_num, ch->state); 2928 } 2929 2930 /** 2931 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 2932 * 2933 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 2934 * This object represents an arbitrary integer used to uniquely identify a 2935 * particular attached remote initiator port to a particular SCSI target port 2936 * within a particular SCSI target device within a particular SCSI instance. 2937 */ 2938 static u32 srpt_sess_get_index(struct se_session *se_sess) 2939 { 2940 return 0; 2941 } 2942 2943 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 2944 { 2945 } 2946 2947 /* Note: only used from inside debug printk's by the TCM core. */ 2948 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 2949 { 2950 struct srpt_send_ioctx *ioctx; 2951 2952 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2953 return srpt_get_cmd_state(ioctx); 2954 } 2955 2956 /** 2957 * srpt_parse_i_port_id() - Parse an initiator port ID. 2958 * @name: ASCII representation of a 128-bit initiator port ID. 2959 * @i_port_id: Binary 128-bit port ID. 2960 */ 2961 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 2962 { 2963 const char *p; 2964 unsigned len, count, leading_zero_bytes; 2965 int ret, rc; 2966 2967 p = name; 2968 if (strncasecmp(p, "0x", 2) == 0) 2969 p += 2; 2970 ret = -EINVAL; 2971 len = strlen(p); 2972 if (len % 2) 2973 goto out; 2974 count = min(len / 2, 16U); 2975 leading_zero_bytes = 16 - count; 2976 memset(i_port_id, 0, leading_zero_bytes); 2977 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 2978 if (rc < 0) 2979 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 2980 ret = 0; 2981 out: 2982 return ret; 2983 } 2984 2985 /* 2986 * configfs callback function invoked for 2987 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 2988 */ 2989 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name) 2990 { 2991 u8 i_port_id[16]; 2992 2993 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 2994 pr_err("invalid initiator port ID %s\n", name); 2995 return -EINVAL; 2996 } 2997 return 0; 2998 } 2999 3000 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item, 3001 char *page) 3002 { 3003 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3004 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3005 3006 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3007 } 3008 3009 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item, 3010 const char *page, size_t count) 3011 { 3012 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3013 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3014 unsigned long val; 3015 int ret; 3016 3017 ret = kstrtoul(page, 0, &val); 3018 if (ret < 0) { 3019 pr_err("kstrtoul() failed with ret: %d\n", ret); 3020 return -EINVAL; 3021 } 3022 if (val > MAX_SRPT_RDMA_SIZE) { 3023 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3024 MAX_SRPT_RDMA_SIZE); 3025 return -EINVAL; 3026 } 3027 if (val < DEFAULT_MAX_RDMA_SIZE) { 3028 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3029 val, DEFAULT_MAX_RDMA_SIZE); 3030 return -EINVAL; 3031 } 3032 sport->port_attrib.srp_max_rdma_size = val; 3033 3034 return count; 3035 } 3036 3037 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item, 3038 char *page) 3039 { 3040 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3041 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3042 3043 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3044 } 3045 3046 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item, 3047 const char *page, size_t count) 3048 { 3049 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3050 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3051 unsigned long val; 3052 int ret; 3053 3054 ret = kstrtoul(page, 0, &val); 3055 if (ret < 0) { 3056 pr_err("kstrtoul() failed with ret: %d\n", ret); 3057 return -EINVAL; 3058 } 3059 if (val > MAX_SRPT_RSP_SIZE) { 3060 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3061 MAX_SRPT_RSP_SIZE); 3062 return -EINVAL; 3063 } 3064 if (val < MIN_MAX_RSP_SIZE) { 3065 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3066 MIN_MAX_RSP_SIZE); 3067 return -EINVAL; 3068 } 3069 sport->port_attrib.srp_max_rsp_size = val; 3070 3071 return count; 3072 } 3073 3074 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item, 3075 char *page) 3076 { 3077 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3078 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3079 3080 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3081 } 3082 3083 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item, 3084 const char *page, size_t count) 3085 { 3086 struct se_portal_group *se_tpg = attrib_to_tpg(item); 3087 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3088 unsigned long val; 3089 int ret; 3090 3091 ret = kstrtoul(page, 0, &val); 3092 if (ret < 0) { 3093 pr_err("kstrtoul() failed with ret: %d\n", ret); 3094 return -EINVAL; 3095 } 3096 if (val > MAX_SRPT_SRQ_SIZE) { 3097 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3098 MAX_SRPT_SRQ_SIZE); 3099 return -EINVAL; 3100 } 3101 if (val < MIN_SRPT_SRQ_SIZE) { 3102 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3103 MIN_SRPT_SRQ_SIZE); 3104 return -EINVAL; 3105 } 3106 sport->port_attrib.srp_sq_size = val; 3107 3108 return count; 3109 } 3110 3111 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size); 3112 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size); 3113 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size); 3114 3115 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3116 &srpt_tpg_attrib_attr_srp_max_rdma_size, 3117 &srpt_tpg_attrib_attr_srp_max_rsp_size, 3118 &srpt_tpg_attrib_attr_srp_sq_size, 3119 NULL, 3120 }; 3121 3122 static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page) 3123 { 3124 struct se_portal_group *se_tpg = to_tpg(item); 3125 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3126 3127 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3128 } 3129 3130 static ssize_t srpt_tpg_enable_store(struct config_item *item, 3131 const char *page, size_t count) 3132 { 3133 struct se_portal_group *se_tpg = to_tpg(item); 3134 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3135 struct srpt_device *sdev = sport->sdev; 3136 struct srpt_rdma_ch *ch; 3137 unsigned long tmp; 3138 int ret; 3139 3140 ret = kstrtoul(page, 0, &tmp); 3141 if (ret < 0) { 3142 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3143 return -EINVAL; 3144 } 3145 3146 if ((tmp != 0) && (tmp != 1)) { 3147 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3148 return -EINVAL; 3149 } 3150 if (sport->enabled == tmp) 3151 goto out; 3152 sport->enabled = tmp; 3153 if (sport->enabled) 3154 goto out; 3155 3156 mutex_lock(&sdev->mutex); 3157 list_for_each_entry(ch, &sdev->rch_list, list) { 3158 if (ch->sport == sport) { 3159 pr_debug("%s: ch %p %s-%d\n", __func__, ch, 3160 ch->sess_name, ch->qp->qp_num); 3161 srpt_disconnect_ch(ch); 3162 srpt_close_ch(ch); 3163 } 3164 } 3165 mutex_unlock(&sdev->mutex); 3166 3167 out: 3168 return count; 3169 } 3170 3171 CONFIGFS_ATTR(srpt_tpg_, enable); 3172 3173 static struct configfs_attribute *srpt_tpg_attrs[] = { 3174 &srpt_tpg_attr_enable, 3175 NULL, 3176 }; 3177 3178 /** 3179 * configfs callback invoked for 3180 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3181 */ 3182 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3183 struct config_group *group, 3184 const char *name) 3185 { 3186 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3187 int res; 3188 3189 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3190 res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP); 3191 if (res) 3192 return ERR_PTR(res); 3193 3194 return &sport->port_tpg_1; 3195 } 3196 3197 /** 3198 * configfs callback invoked for 3199 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3200 */ 3201 static void srpt_drop_tpg(struct se_portal_group *tpg) 3202 { 3203 struct srpt_port *sport = container_of(tpg, 3204 struct srpt_port, port_tpg_1); 3205 3206 sport->enabled = false; 3207 core_tpg_deregister(&sport->port_tpg_1); 3208 } 3209 3210 /** 3211 * configfs callback invoked for 3212 * mkdir /sys/kernel/config/target/$driver/$port 3213 */ 3214 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3215 struct config_group *group, 3216 const char *name) 3217 { 3218 struct srpt_port *sport; 3219 int ret; 3220 3221 sport = srpt_lookup_port(name); 3222 pr_debug("make_tport(%s)\n", name); 3223 ret = -EINVAL; 3224 if (!sport) 3225 goto err; 3226 3227 return &sport->port_wwn; 3228 3229 err: 3230 return ERR_PTR(ret); 3231 } 3232 3233 /** 3234 * configfs callback invoked for 3235 * rmdir /sys/kernel/config/target/$driver/$port 3236 */ 3237 static void srpt_drop_tport(struct se_wwn *wwn) 3238 { 3239 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3240 3241 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3242 } 3243 3244 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf) 3245 { 3246 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3247 } 3248 3249 CONFIGFS_ATTR_RO(srpt_wwn_, version); 3250 3251 static struct configfs_attribute *srpt_wwn_attrs[] = { 3252 &srpt_wwn_attr_version, 3253 NULL, 3254 }; 3255 3256 static const struct target_core_fabric_ops srpt_template = { 3257 .module = THIS_MODULE, 3258 .name = "srpt", 3259 .get_fabric_name = srpt_get_fabric_name, 3260 .tpg_get_wwn = srpt_get_fabric_wwn, 3261 .tpg_get_tag = srpt_get_tag, 3262 .tpg_check_demo_mode = srpt_check_false, 3263 .tpg_check_demo_mode_cache = srpt_check_true, 3264 .tpg_check_demo_mode_write_protect = srpt_check_true, 3265 .tpg_check_prod_mode_write_protect = srpt_check_false, 3266 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3267 .release_cmd = srpt_release_cmd, 3268 .check_stop_free = srpt_check_stop_free, 3269 .shutdown_session = srpt_shutdown_session, 3270 .close_session = srpt_close_session, 3271 .sess_get_index = srpt_sess_get_index, 3272 .sess_get_initiator_sid = NULL, 3273 .write_pending = srpt_write_pending, 3274 .write_pending_status = srpt_write_pending_status, 3275 .set_default_node_attributes = srpt_set_default_node_attrs, 3276 .get_cmd_state = srpt_get_tcm_cmd_state, 3277 .queue_data_in = srpt_queue_data_in, 3278 .queue_status = srpt_queue_status, 3279 .queue_tm_rsp = srpt_queue_tm_rsp, 3280 .aborted_task = srpt_aborted_task, 3281 /* 3282 * Setup function pointers for generic logic in 3283 * target_core_fabric_configfs.c 3284 */ 3285 .fabric_make_wwn = srpt_make_tport, 3286 .fabric_drop_wwn = srpt_drop_tport, 3287 .fabric_make_tpg = srpt_make_tpg, 3288 .fabric_drop_tpg = srpt_drop_tpg, 3289 .fabric_init_nodeacl = srpt_init_nodeacl, 3290 3291 .tfc_wwn_attrs = srpt_wwn_attrs, 3292 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3293 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3294 }; 3295 3296 /** 3297 * srpt_init_module() - Kernel module initialization. 3298 * 3299 * Note: Since ib_register_client() registers callback functions, and since at 3300 * least one of these callback functions (srpt_add_one()) calls target core 3301 * functions, this driver must be registered with the target core before 3302 * ib_register_client() is called. 3303 */ 3304 static int __init srpt_init_module(void) 3305 { 3306 int ret; 3307 3308 ret = -EINVAL; 3309 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3310 pr_err("invalid value %d for kernel module parameter" 3311 " srp_max_req_size -- must be at least %d.\n", 3312 srp_max_req_size, MIN_MAX_REQ_SIZE); 3313 goto out; 3314 } 3315 3316 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3317 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3318 pr_err("invalid value %d for kernel module parameter" 3319 " srpt_srq_size -- must be in the range [%d..%d].\n", 3320 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3321 goto out; 3322 } 3323 3324 ret = target_register_template(&srpt_template); 3325 if (ret) 3326 goto out; 3327 3328 ret = ib_register_client(&srpt_client); 3329 if (ret) { 3330 pr_err("couldn't register IB client\n"); 3331 goto out_unregister_target; 3332 } 3333 3334 return 0; 3335 3336 out_unregister_target: 3337 target_unregister_template(&srpt_template); 3338 out: 3339 return ret; 3340 } 3341 3342 static void __exit srpt_cleanup_module(void) 3343 { 3344 ib_unregister_client(&srpt_client); 3345 target_unregister_template(&srpt_template); 3346 } 3347 3348 module_init(srpt_init_module); 3349 module_exit(srpt_cleanup_module); 3350