xref: /linux/drivers/infiniband/ulp/srp/ib_srp.c (revision f3b827e0b1841f4cfc18436e09f4f269f3be908e)
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44 
45 #include <linux/atomic.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53 
54 #include "ib_srp.h"
55 
56 #define DRV_NAME	"ib_srp"
57 #define PFX		DRV_NAME ": "
58 #define DRV_VERSION	"2.0"
59 #define DRV_RELDATE	"July 26, 2015"
60 
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66 
67 #if !defined(CONFIG_DYNAMIC_DEBUG)
68 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt)
69 #define DYNAMIC_DEBUG_BRANCH(descriptor) false
70 #endif
71 
72 static unsigned int srp_sg_tablesize;
73 static unsigned int cmd_sg_entries;
74 static unsigned int indirect_sg_entries;
75 static bool allow_ext_sg;
76 static bool prefer_fr = true;
77 static bool register_always = true;
78 static bool never_register;
79 static int topspin_workarounds = 1;
80 
81 module_param(srp_sg_tablesize, uint, 0444);
82 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
83 
84 module_param(cmd_sg_entries, uint, 0444);
85 MODULE_PARM_DESC(cmd_sg_entries,
86 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
87 
88 module_param(indirect_sg_entries, uint, 0444);
89 MODULE_PARM_DESC(indirect_sg_entries,
90 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
91 
92 module_param(allow_ext_sg, bool, 0444);
93 MODULE_PARM_DESC(allow_ext_sg,
94 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
95 
96 module_param(topspin_workarounds, int, 0444);
97 MODULE_PARM_DESC(topspin_workarounds,
98 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
99 
100 module_param(prefer_fr, bool, 0444);
101 MODULE_PARM_DESC(prefer_fr,
102 "Whether to use fast registration if both FMR and fast registration are supported");
103 
104 module_param(register_always, bool, 0444);
105 MODULE_PARM_DESC(register_always,
106 		 "Use memory registration even for contiguous memory regions");
107 
108 module_param(never_register, bool, 0444);
109 MODULE_PARM_DESC(never_register, "Never register memory");
110 
111 static const struct kernel_param_ops srp_tmo_ops;
112 
113 static int srp_reconnect_delay = 10;
114 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
115 		S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
117 
118 static int srp_fast_io_fail_tmo = 15;
119 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
120 		S_IRUGO | S_IWUSR);
121 MODULE_PARM_DESC(fast_io_fail_tmo,
122 		 "Number of seconds between the observation of a transport"
123 		 " layer error and failing all I/O. \"off\" means that this"
124 		 " functionality is disabled.");
125 
126 static int srp_dev_loss_tmo = 600;
127 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
128 		S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(dev_loss_tmo,
130 		 "Maximum number of seconds that the SRP transport should"
131 		 " insulate transport layer errors. After this time has been"
132 		 " exceeded the SCSI host is removed. Should be"
133 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
134 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
135 		 " this functionality is disabled.");
136 
137 static unsigned ch_count;
138 module_param(ch_count, uint, 0444);
139 MODULE_PARM_DESC(ch_count,
140 		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
141 
142 static void srp_add_one(struct ib_device *device);
143 static void srp_remove_one(struct ib_device *device, void *client_data);
144 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
145 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
146 		const char *opname);
147 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
148 
149 static struct scsi_transport_template *ib_srp_transport_template;
150 static struct workqueue_struct *srp_remove_wq;
151 
152 static struct ib_client srp_client = {
153 	.name   = "srp",
154 	.add    = srp_add_one,
155 	.remove = srp_remove_one
156 };
157 
158 static struct ib_sa_client srp_sa_client;
159 
160 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
161 {
162 	int tmo = *(int *)kp->arg;
163 
164 	if (tmo >= 0)
165 		return sprintf(buffer, "%d", tmo);
166 	else
167 		return sprintf(buffer, "off");
168 }
169 
170 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
171 {
172 	int tmo, res;
173 
174 	res = srp_parse_tmo(&tmo, val);
175 	if (res)
176 		goto out;
177 
178 	if (kp->arg == &srp_reconnect_delay)
179 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
180 				    srp_dev_loss_tmo);
181 	else if (kp->arg == &srp_fast_io_fail_tmo)
182 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
183 	else
184 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
185 				    tmo);
186 	if (res)
187 		goto out;
188 	*(int *)kp->arg = tmo;
189 
190 out:
191 	return res;
192 }
193 
194 static const struct kernel_param_ops srp_tmo_ops = {
195 	.get = srp_tmo_get,
196 	.set = srp_tmo_set,
197 };
198 
199 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
200 {
201 	return (struct srp_target_port *) host->hostdata;
202 }
203 
204 static const char *srp_target_info(struct Scsi_Host *host)
205 {
206 	return host_to_target(host)->target_name;
207 }
208 
209 static int srp_target_is_topspin(struct srp_target_port *target)
210 {
211 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
212 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
213 
214 	return topspin_workarounds &&
215 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
216 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
217 }
218 
219 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
220 				   gfp_t gfp_mask,
221 				   enum dma_data_direction direction)
222 {
223 	struct srp_iu *iu;
224 
225 	iu = kmalloc(sizeof *iu, gfp_mask);
226 	if (!iu)
227 		goto out;
228 
229 	iu->buf = kzalloc(size, gfp_mask);
230 	if (!iu->buf)
231 		goto out_free_iu;
232 
233 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
234 				    direction);
235 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
236 		goto out_free_buf;
237 
238 	iu->size      = size;
239 	iu->direction = direction;
240 
241 	return iu;
242 
243 out_free_buf:
244 	kfree(iu->buf);
245 out_free_iu:
246 	kfree(iu);
247 out:
248 	return NULL;
249 }
250 
251 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
252 {
253 	if (!iu)
254 		return;
255 
256 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
257 			    iu->direction);
258 	kfree(iu->buf);
259 	kfree(iu);
260 }
261 
262 static void srp_qp_event(struct ib_event *event, void *context)
263 {
264 	pr_debug("QP event %s (%d)\n",
265 		 ib_event_msg(event->event), event->event);
266 }
267 
268 static int srp_init_qp(struct srp_target_port *target,
269 		       struct ib_qp *qp)
270 {
271 	struct ib_qp_attr *attr;
272 	int ret;
273 
274 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
275 	if (!attr)
276 		return -ENOMEM;
277 
278 	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
279 				  target->srp_host->port,
280 				  be16_to_cpu(target->pkey),
281 				  &attr->pkey_index);
282 	if (ret)
283 		goto out;
284 
285 	attr->qp_state        = IB_QPS_INIT;
286 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
287 				    IB_ACCESS_REMOTE_WRITE);
288 	attr->port_num        = target->srp_host->port;
289 
290 	ret = ib_modify_qp(qp, attr,
291 			   IB_QP_STATE		|
292 			   IB_QP_PKEY_INDEX	|
293 			   IB_QP_ACCESS_FLAGS	|
294 			   IB_QP_PORT);
295 
296 out:
297 	kfree(attr);
298 	return ret;
299 }
300 
301 static int srp_new_cm_id(struct srp_rdma_ch *ch)
302 {
303 	struct srp_target_port *target = ch->target;
304 	struct ib_cm_id *new_cm_id;
305 
306 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
307 				    srp_cm_handler, ch);
308 	if (IS_ERR(new_cm_id))
309 		return PTR_ERR(new_cm_id);
310 
311 	if (ch->cm_id)
312 		ib_destroy_cm_id(ch->cm_id);
313 	ch->cm_id = new_cm_id;
314 	ch->path.sgid = target->sgid;
315 	ch->path.dgid = target->orig_dgid;
316 	ch->path.pkey = target->pkey;
317 	ch->path.service_id = target->service_id;
318 
319 	return 0;
320 }
321 
322 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
323 {
324 	struct srp_device *dev = target->srp_host->srp_dev;
325 	struct ib_fmr_pool_param fmr_param;
326 
327 	memset(&fmr_param, 0, sizeof(fmr_param));
328 	fmr_param.pool_size	    = target->mr_pool_size;
329 	fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
330 	fmr_param.cache		    = 1;
331 	fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
332 	fmr_param.page_shift	    = ilog2(dev->mr_page_size);
333 	fmr_param.access	    = (IB_ACCESS_LOCAL_WRITE |
334 				       IB_ACCESS_REMOTE_WRITE |
335 				       IB_ACCESS_REMOTE_READ);
336 
337 	return ib_create_fmr_pool(dev->pd, &fmr_param);
338 }
339 
340 /**
341  * srp_destroy_fr_pool() - free the resources owned by a pool
342  * @pool: Fast registration pool to be destroyed.
343  */
344 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
345 {
346 	int i;
347 	struct srp_fr_desc *d;
348 
349 	if (!pool)
350 		return;
351 
352 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
353 		if (d->mr)
354 			ib_dereg_mr(d->mr);
355 	}
356 	kfree(pool);
357 }
358 
359 /**
360  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
361  * @device:            IB device to allocate fast registration descriptors for.
362  * @pd:                Protection domain associated with the FR descriptors.
363  * @pool_size:         Number of descriptors to allocate.
364  * @max_page_list_len: Maximum fast registration work request page list length.
365  */
366 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
367 					      struct ib_pd *pd, int pool_size,
368 					      int max_page_list_len)
369 {
370 	struct srp_fr_pool *pool;
371 	struct srp_fr_desc *d;
372 	struct ib_mr *mr;
373 	int i, ret = -EINVAL;
374 	enum ib_mr_type mr_type;
375 
376 	if (pool_size <= 0)
377 		goto err;
378 	ret = -ENOMEM;
379 	pool = kzalloc(sizeof(struct srp_fr_pool) +
380 		       pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
381 	if (!pool)
382 		goto err;
383 	pool->size = pool_size;
384 	pool->max_page_list_len = max_page_list_len;
385 	spin_lock_init(&pool->lock);
386 	INIT_LIST_HEAD(&pool->free_list);
387 
388 	if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
389 		mr_type = IB_MR_TYPE_SG_GAPS;
390 	else
391 		mr_type = IB_MR_TYPE_MEM_REG;
392 
393 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
394 		mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
395 		if (IS_ERR(mr)) {
396 			ret = PTR_ERR(mr);
397 			if (ret == -ENOMEM)
398 				pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
399 					dev_name(&device->dev));
400 			goto destroy_pool;
401 		}
402 		d->mr = mr;
403 		list_add_tail(&d->entry, &pool->free_list);
404 	}
405 
406 out:
407 	return pool;
408 
409 destroy_pool:
410 	srp_destroy_fr_pool(pool);
411 
412 err:
413 	pool = ERR_PTR(ret);
414 	goto out;
415 }
416 
417 /**
418  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
419  * @pool: Pool to obtain descriptor from.
420  */
421 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
422 {
423 	struct srp_fr_desc *d = NULL;
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&pool->lock, flags);
427 	if (!list_empty(&pool->free_list)) {
428 		d = list_first_entry(&pool->free_list, typeof(*d), entry);
429 		list_del(&d->entry);
430 	}
431 	spin_unlock_irqrestore(&pool->lock, flags);
432 
433 	return d;
434 }
435 
436 /**
437  * srp_fr_pool_put() - put an FR descriptor back in the free list
438  * @pool: Pool the descriptor was allocated from.
439  * @desc: Pointer to an array of fast registration descriptor pointers.
440  * @n:    Number of descriptors to put back.
441  *
442  * Note: The caller must already have queued an invalidation request for
443  * desc->mr->rkey before calling this function.
444  */
445 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
446 			    int n)
447 {
448 	unsigned long flags;
449 	int i;
450 
451 	spin_lock_irqsave(&pool->lock, flags);
452 	for (i = 0; i < n; i++)
453 		list_add(&desc[i]->entry, &pool->free_list);
454 	spin_unlock_irqrestore(&pool->lock, flags);
455 }
456 
457 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
458 {
459 	struct srp_device *dev = target->srp_host->srp_dev;
460 
461 	return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
462 				  dev->max_pages_per_mr);
463 }
464 
465 /**
466  * srp_destroy_qp() - destroy an RDMA queue pair
467  * @qp: RDMA queue pair.
468  *
469  * Drain the qp before destroying it.  This avoids that the receive
470  * completion handler can access the queue pair while it is
471  * being destroyed.
472  */
473 static void srp_destroy_qp(struct ib_qp *qp)
474 {
475 	ib_drain_rq(qp);
476 	ib_destroy_qp(qp);
477 }
478 
479 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
480 {
481 	struct srp_target_port *target = ch->target;
482 	struct srp_device *dev = target->srp_host->srp_dev;
483 	struct ib_qp_init_attr *init_attr;
484 	struct ib_cq *recv_cq, *send_cq;
485 	struct ib_qp *qp;
486 	struct ib_fmr_pool *fmr_pool = NULL;
487 	struct srp_fr_pool *fr_pool = NULL;
488 	const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
489 	int ret;
490 
491 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
492 	if (!init_attr)
493 		return -ENOMEM;
494 
495 	/* queue_size + 1 for ib_drain_rq() */
496 	recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
497 				ch->comp_vector, IB_POLL_SOFTIRQ);
498 	if (IS_ERR(recv_cq)) {
499 		ret = PTR_ERR(recv_cq);
500 		goto err;
501 	}
502 
503 	send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
504 				ch->comp_vector, IB_POLL_DIRECT);
505 	if (IS_ERR(send_cq)) {
506 		ret = PTR_ERR(send_cq);
507 		goto err_recv_cq;
508 	}
509 
510 	init_attr->event_handler       = srp_qp_event;
511 	init_attr->cap.max_send_wr     = m * target->queue_size;
512 	init_attr->cap.max_recv_wr     = target->queue_size + 1;
513 	init_attr->cap.max_recv_sge    = 1;
514 	init_attr->cap.max_send_sge    = 1;
515 	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
516 	init_attr->qp_type             = IB_QPT_RC;
517 	init_attr->send_cq             = send_cq;
518 	init_attr->recv_cq             = recv_cq;
519 
520 	qp = ib_create_qp(dev->pd, init_attr);
521 	if (IS_ERR(qp)) {
522 		ret = PTR_ERR(qp);
523 		goto err_send_cq;
524 	}
525 
526 	ret = srp_init_qp(target, qp);
527 	if (ret)
528 		goto err_qp;
529 
530 	if (dev->use_fast_reg) {
531 		fr_pool = srp_alloc_fr_pool(target);
532 		if (IS_ERR(fr_pool)) {
533 			ret = PTR_ERR(fr_pool);
534 			shost_printk(KERN_WARNING, target->scsi_host, PFX
535 				     "FR pool allocation failed (%d)\n", ret);
536 			goto err_qp;
537 		}
538 	} else if (dev->use_fmr) {
539 		fmr_pool = srp_alloc_fmr_pool(target);
540 		if (IS_ERR(fmr_pool)) {
541 			ret = PTR_ERR(fmr_pool);
542 			shost_printk(KERN_WARNING, target->scsi_host, PFX
543 				     "FMR pool allocation failed (%d)\n", ret);
544 			goto err_qp;
545 		}
546 	}
547 
548 	if (ch->qp)
549 		srp_destroy_qp(ch->qp);
550 	if (ch->recv_cq)
551 		ib_free_cq(ch->recv_cq);
552 	if (ch->send_cq)
553 		ib_free_cq(ch->send_cq);
554 
555 	ch->qp = qp;
556 	ch->recv_cq = recv_cq;
557 	ch->send_cq = send_cq;
558 
559 	if (dev->use_fast_reg) {
560 		if (ch->fr_pool)
561 			srp_destroy_fr_pool(ch->fr_pool);
562 		ch->fr_pool = fr_pool;
563 	} else if (dev->use_fmr) {
564 		if (ch->fmr_pool)
565 			ib_destroy_fmr_pool(ch->fmr_pool);
566 		ch->fmr_pool = fmr_pool;
567 	}
568 
569 	kfree(init_attr);
570 	return 0;
571 
572 err_qp:
573 	srp_destroy_qp(qp);
574 
575 err_send_cq:
576 	ib_free_cq(send_cq);
577 
578 err_recv_cq:
579 	ib_free_cq(recv_cq);
580 
581 err:
582 	kfree(init_attr);
583 	return ret;
584 }
585 
586 /*
587  * Note: this function may be called without srp_alloc_iu_bufs() having been
588  * invoked. Hence the ch->[rt]x_ring checks.
589  */
590 static void srp_free_ch_ib(struct srp_target_port *target,
591 			   struct srp_rdma_ch *ch)
592 {
593 	struct srp_device *dev = target->srp_host->srp_dev;
594 	int i;
595 
596 	if (!ch->target)
597 		return;
598 
599 	if (ch->cm_id) {
600 		ib_destroy_cm_id(ch->cm_id);
601 		ch->cm_id = NULL;
602 	}
603 
604 	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
605 	if (!ch->qp)
606 		return;
607 
608 	if (dev->use_fast_reg) {
609 		if (ch->fr_pool)
610 			srp_destroy_fr_pool(ch->fr_pool);
611 	} else if (dev->use_fmr) {
612 		if (ch->fmr_pool)
613 			ib_destroy_fmr_pool(ch->fmr_pool);
614 	}
615 
616 	srp_destroy_qp(ch->qp);
617 	ib_free_cq(ch->send_cq);
618 	ib_free_cq(ch->recv_cq);
619 
620 	/*
621 	 * Avoid that the SCSI error handler tries to use this channel after
622 	 * it has been freed. The SCSI error handler can namely continue
623 	 * trying to perform recovery actions after scsi_remove_host()
624 	 * returned.
625 	 */
626 	ch->target = NULL;
627 
628 	ch->qp = NULL;
629 	ch->send_cq = ch->recv_cq = NULL;
630 
631 	if (ch->rx_ring) {
632 		for (i = 0; i < target->queue_size; ++i)
633 			srp_free_iu(target->srp_host, ch->rx_ring[i]);
634 		kfree(ch->rx_ring);
635 		ch->rx_ring = NULL;
636 	}
637 	if (ch->tx_ring) {
638 		for (i = 0; i < target->queue_size; ++i)
639 			srp_free_iu(target->srp_host, ch->tx_ring[i]);
640 		kfree(ch->tx_ring);
641 		ch->tx_ring = NULL;
642 	}
643 }
644 
645 static void srp_path_rec_completion(int status,
646 				    struct ib_sa_path_rec *pathrec,
647 				    void *ch_ptr)
648 {
649 	struct srp_rdma_ch *ch = ch_ptr;
650 	struct srp_target_port *target = ch->target;
651 
652 	ch->status = status;
653 	if (status)
654 		shost_printk(KERN_ERR, target->scsi_host,
655 			     PFX "Got failed path rec status %d\n", status);
656 	else
657 		ch->path = *pathrec;
658 	complete(&ch->done);
659 }
660 
661 static int srp_lookup_path(struct srp_rdma_ch *ch)
662 {
663 	struct srp_target_port *target = ch->target;
664 	int ret;
665 
666 	ch->path.numb_path = 1;
667 
668 	init_completion(&ch->done);
669 
670 	ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
671 					       target->srp_host->srp_dev->dev,
672 					       target->srp_host->port,
673 					       &ch->path,
674 					       IB_SA_PATH_REC_SERVICE_ID |
675 					       IB_SA_PATH_REC_DGID	 |
676 					       IB_SA_PATH_REC_SGID	 |
677 					       IB_SA_PATH_REC_NUMB_PATH	 |
678 					       IB_SA_PATH_REC_PKEY,
679 					       SRP_PATH_REC_TIMEOUT_MS,
680 					       GFP_KERNEL,
681 					       srp_path_rec_completion,
682 					       ch, &ch->path_query);
683 	if (ch->path_query_id < 0)
684 		return ch->path_query_id;
685 
686 	ret = wait_for_completion_interruptible(&ch->done);
687 	if (ret < 0)
688 		return ret;
689 
690 	if (ch->status < 0)
691 		shost_printk(KERN_WARNING, target->scsi_host,
692 			     PFX "Path record query failed\n");
693 
694 	return ch->status;
695 }
696 
697 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
698 {
699 	struct srp_target_port *target = ch->target;
700 	struct {
701 		struct ib_cm_req_param param;
702 		struct srp_login_req   priv;
703 	} *req = NULL;
704 	int status;
705 
706 	req = kzalloc(sizeof *req, GFP_KERNEL);
707 	if (!req)
708 		return -ENOMEM;
709 
710 	req->param.primary_path		      = &ch->path;
711 	req->param.alternate_path 	      = NULL;
712 	req->param.service_id 		      = target->service_id;
713 	req->param.qp_num		      = ch->qp->qp_num;
714 	req->param.qp_type		      = ch->qp->qp_type;
715 	req->param.private_data 	      = &req->priv;
716 	req->param.private_data_len 	      = sizeof req->priv;
717 	req->param.flow_control 	      = 1;
718 
719 	get_random_bytes(&req->param.starting_psn, 4);
720 	req->param.starting_psn 	     &= 0xffffff;
721 
722 	/*
723 	 * Pick some arbitrary defaults here; we could make these
724 	 * module parameters if anyone cared about setting them.
725 	 */
726 	req->param.responder_resources	      = 4;
727 	req->param.remote_cm_response_timeout = 20;
728 	req->param.local_cm_response_timeout  = 20;
729 	req->param.retry_count                = target->tl_retry_count;
730 	req->param.rnr_retry_count 	      = 7;
731 	req->param.max_cm_retries 	      = 15;
732 
733 	req->priv.opcode     	= SRP_LOGIN_REQ;
734 	req->priv.tag        	= 0;
735 	req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
736 	req->priv.req_buf_fmt 	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
737 					      SRP_BUF_FORMAT_INDIRECT);
738 	req->priv.req_flags	= (multich ? SRP_MULTICHAN_MULTI :
739 				   SRP_MULTICHAN_SINGLE);
740 	/*
741 	 * In the published SRP specification (draft rev. 16a), the
742 	 * port identifier format is 8 bytes of ID extension followed
743 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
744 	 * opposite order, so that the GUID comes first.
745 	 *
746 	 * Targets conforming to these obsolete drafts can be
747 	 * recognized by the I/O Class they report.
748 	 */
749 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
750 		memcpy(req->priv.initiator_port_id,
751 		       &target->sgid.global.interface_id, 8);
752 		memcpy(req->priv.initiator_port_id + 8,
753 		       &target->initiator_ext, 8);
754 		memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
755 		memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
756 	} else {
757 		memcpy(req->priv.initiator_port_id,
758 		       &target->initiator_ext, 8);
759 		memcpy(req->priv.initiator_port_id + 8,
760 		       &target->sgid.global.interface_id, 8);
761 		memcpy(req->priv.target_port_id,     &target->id_ext, 8);
762 		memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
763 	}
764 
765 	/*
766 	 * Topspin/Cisco SRP targets will reject our login unless we
767 	 * zero out the first 8 bytes of our initiator port ID and set
768 	 * the second 8 bytes to the local node GUID.
769 	 */
770 	if (srp_target_is_topspin(target)) {
771 		shost_printk(KERN_DEBUG, target->scsi_host,
772 			     PFX "Topspin/Cisco initiator port ID workaround "
773 			     "activated for target GUID %016llx\n",
774 			     be64_to_cpu(target->ioc_guid));
775 		memset(req->priv.initiator_port_id, 0, 8);
776 		memcpy(req->priv.initiator_port_id + 8,
777 		       &target->srp_host->srp_dev->dev->node_guid, 8);
778 	}
779 
780 	status = ib_send_cm_req(ch->cm_id, &req->param);
781 
782 	kfree(req);
783 
784 	return status;
785 }
786 
787 static bool srp_queue_remove_work(struct srp_target_port *target)
788 {
789 	bool changed = false;
790 
791 	spin_lock_irq(&target->lock);
792 	if (target->state != SRP_TARGET_REMOVED) {
793 		target->state = SRP_TARGET_REMOVED;
794 		changed = true;
795 	}
796 	spin_unlock_irq(&target->lock);
797 
798 	if (changed)
799 		queue_work(srp_remove_wq, &target->remove_work);
800 
801 	return changed;
802 }
803 
804 static void srp_disconnect_target(struct srp_target_port *target)
805 {
806 	struct srp_rdma_ch *ch;
807 	int i;
808 
809 	/* XXX should send SRP_I_LOGOUT request */
810 
811 	for (i = 0; i < target->ch_count; i++) {
812 		ch = &target->ch[i];
813 		ch->connected = false;
814 		if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
815 			shost_printk(KERN_DEBUG, target->scsi_host,
816 				     PFX "Sending CM DREQ failed\n");
817 		}
818 	}
819 }
820 
821 static void srp_free_req_data(struct srp_target_port *target,
822 			      struct srp_rdma_ch *ch)
823 {
824 	struct srp_device *dev = target->srp_host->srp_dev;
825 	struct ib_device *ibdev = dev->dev;
826 	struct srp_request *req;
827 	int i;
828 
829 	if (!ch->req_ring)
830 		return;
831 
832 	for (i = 0; i < target->req_ring_size; ++i) {
833 		req = &ch->req_ring[i];
834 		if (dev->use_fast_reg) {
835 			kfree(req->fr_list);
836 		} else {
837 			kfree(req->fmr_list);
838 			kfree(req->map_page);
839 		}
840 		if (req->indirect_dma_addr) {
841 			ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
842 					    target->indirect_size,
843 					    DMA_TO_DEVICE);
844 		}
845 		kfree(req->indirect_desc);
846 	}
847 
848 	kfree(ch->req_ring);
849 	ch->req_ring = NULL;
850 }
851 
852 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
853 {
854 	struct srp_target_port *target = ch->target;
855 	struct srp_device *srp_dev = target->srp_host->srp_dev;
856 	struct ib_device *ibdev = srp_dev->dev;
857 	struct srp_request *req;
858 	void *mr_list;
859 	dma_addr_t dma_addr;
860 	int i, ret = -ENOMEM;
861 
862 	ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
863 			       GFP_KERNEL);
864 	if (!ch->req_ring)
865 		goto out;
866 
867 	for (i = 0; i < target->req_ring_size; ++i) {
868 		req = &ch->req_ring[i];
869 		mr_list = kmalloc(target->mr_per_cmd * sizeof(void *),
870 				  GFP_KERNEL);
871 		if (!mr_list)
872 			goto out;
873 		if (srp_dev->use_fast_reg) {
874 			req->fr_list = mr_list;
875 		} else {
876 			req->fmr_list = mr_list;
877 			req->map_page = kmalloc(srp_dev->max_pages_per_mr *
878 						sizeof(void *), GFP_KERNEL);
879 			if (!req->map_page)
880 				goto out;
881 		}
882 		req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
883 		if (!req->indirect_desc)
884 			goto out;
885 
886 		dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
887 					     target->indirect_size,
888 					     DMA_TO_DEVICE);
889 		if (ib_dma_mapping_error(ibdev, dma_addr))
890 			goto out;
891 
892 		req->indirect_dma_addr = dma_addr;
893 	}
894 	ret = 0;
895 
896 out:
897 	return ret;
898 }
899 
900 /**
901  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
902  * @shost: SCSI host whose attributes to remove from sysfs.
903  *
904  * Note: Any attributes defined in the host template and that did not exist
905  * before invocation of this function will be ignored.
906  */
907 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
908 {
909 	struct device_attribute **attr;
910 
911 	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
912 		device_remove_file(&shost->shost_dev, *attr);
913 }
914 
915 static void srp_remove_target(struct srp_target_port *target)
916 {
917 	struct srp_rdma_ch *ch;
918 	int i;
919 
920 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
921 
922 	srp_del_scsi_host_attr(target->scsi_host);
923 	srp_rport_get(target->rport);
924 	srp_remove_host(target->scsi_host);
925 	scsi_remove_host(target->scsi_host);
926 	srp_stop_rport_timers(target->rport);
927 	srp_disconnect_target(target);
928 	for (i = 0; i < target->ch_count; i++) {
929 		ch = &target->ch[i];
930 		srp_free_ch_ib(target, ch);
931 	}
932 	cancel_work_sync(&target->tl_err_work);
933 	srp_rport_put(target->rport);
934 	for (i = 0; i < target->ch_count; i++) {
935 		ch = &target->ch[i];
936 		srp_free_req_data(target, ch);
937 	}
938 	kfree(target->ch);
939 	target->ch = NULL;
940 
941 	spin_lock(&target->srp_host->target_lock);
942 	list_del(&target->list);
943 	spin_unlock(&target->srp_host->target_lock);
944 
945 	scsi_host_put(target->scsi_host);
946 }
947 
948 static void srp_remove_work(struct work_struct *work)
949 {
950 	struct srp_target_port *target =
951 		container_of(work, struct srp_target_port, remove_work);
952 
953 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
954 
955 	srp_remove_target(target);
956 }
957 
958 static void srp_rport_delete(struct srp_rport *rport)
959 {
960 	struct srp_target_port *target = rport->lld_data;
961 
962 	srp_queue_remove_work(target);
963 }
964 
965 /**
966  * srp_connected_ch() - number of connected channels
967  * @target: SRP target port.
968  */
969 static int srp_connected_ch(struct srp_target_port *target)
970 {
971 	int i, c = 0;
972 
973 	for (i = 0; i < target->ch_count; i++)
974 		c += target->ch[i].connected;
975 
976 	return c;
977 }
978 
979 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
980 {
981 	struct srp_target_port *target = ch->target;
982 	int ret;
983 
984 	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
985 
986 	ret = srp_lookup_path(ch);
987 	if (ret)
988 		goto out;
989 
990 	while (1) {
991 		init_completion(&ch->done);
992 		ret = srp_send_req(ch, multich);
993 		if (ret)
994 			goto out;
995 		ret = wait_for_completion_interruptible(&ch->done);
996 		if (ret < 0)
997 			goto out;
998 
999 		/*
1000 		 * The CM event handling code will set status to
1001 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
1002 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1003 		 * redirect REJ back.
1004 		 */
1005 		ret = ch->status;
1006 		switch (ret) {
1007 		case 0:
1008 			ch->connected = true;
1009 			goto out;
1010 
1011 		case SRP_PORT_REDIRECT:
1012 			ret = srp_lookup_path(ch);
1013 			if (ret)
1014 				goto out;
1015 			break;
1016 
1017 		case SRP_DLID_REDIRECT:
1018 			break;
1019 
1020 		case SRP_STALE_CONN:
1021 			shost_printk(KERN_ERR, target->scsi_host, PFX
1022 				     "giving up on stale connection\n");
1023 			ret = -ECONNRESET;
1024 			goto out;
1025 
1026 		default:
1027 			goto out;
1028 		}
1029 	}
1030 
1031 out:
1032 	return ret <= 0 ? ret : -ENODEV;
1033 }
1034 
1035 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1036 {
1037 	srp_handle_qp_err(cq, wc, "INV RKEY");
1038 }
1039 
1040 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1041 		u32 rkey)
1042 {
1043 	struct ib_send_wr *bad_wr;
1044 	struct ib_send_wr wr = {
1045 		.opcode		    = IB_WR_LOCAL_INV,
1046 		.next		    = NULL,
1047 		.num_sge	    = 0,
1048 		.send_flags	    = 0,
1049 		.ex.invalidate_rkey = rkey,
1050 	};
1051 
1052 	wr.wr_cqe = &req->reg_cqe;
1053 	req->reg_cqe.done = srp_inv_rkey_err_done;
1054 	return ib_post_send(ch->qp, &wr, &bad_wr);
1055 }
1056 
1057 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1058 			   struct srp_rdma_ch *ch,
1059 			   struct srp_request *req)
1060 {
1061 	struct srp_target_port *target = ch->target;
1062 	struct srp_device *dev = target->srp_host->srp_dev;
1063 	struct ib_device *ibdev = dev->dev;
1064 	int i, res;
1065 
1066 	if (!scsi_sglist(scmnd) ||
1067 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1068 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
1069 		return;
1070 
1071 	if (dev->use_fast_reg) {
1072 		struct srp_fr_desc **pfr;
1073 
1074 		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1075 			res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1076 			if (res < 0) {
1077 				shost_printk(KERN_ERR, target->scsi_host, PFX
1078 				  "Queueing INV WR for rkey %#x failed (%d)\n",
1079 				  (*pfr)->mr->rkey, res);
1080 				queue_work(system_long_wq,
1081 					   &target->tl_err_work);
1082 			}
1083 		}
1084 		if (req->nmdesc)
1085 			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1086 					req->nmdesc);
1087 	} else if (dev->use_fmr) {
1088 		struct ib_pool_fmr **pfmr;
1089 
1090 		for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1091 			ib_fmr_pool_unmap(*pfmr);
1092 	}
1093 
1094 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1095 			scmnd->sc_data_direction);
1096 }
1097 
1098 /**
1099  * srp_claim_req - Take ownership of the scmnd associated with a request.
1100  * @ch: SRP RDMA channel.
1101  * @req: SRP request.
1102  * @sdev: If not NULL, only take ownership for this SCSI device.
1103  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1104  *         ownership of @req->scmnd if it equals @scmnd.
1105  *
1106  * Return value:
1107  * Either NULL or a pointer to the SCSI command the caller became owner of.
1108  */
1109 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1110 				       struct srp_request *req,
1111 				       struct scsi_device *sdev,
1112 				       struct scsi_cmnd *scmnd)
1113 {
1114 	unsigned long flags;
1115 
1116 	spin_lock_irqsave(&ch->lock, flags);
1117 	if (req->scmnd &&
1118 	    (!sdev || req->scmnd->device == sdev) &&
1119 	    (!scmnd || req->scmnd == scmnd)) {
1120 		scmnd = req->scmnd;
1121 		req->scmnd = NULL;
1122 	} else {
1123 		scmnd = NULL;
1124 	}
1125 	spin_unlock_irqrestore(&ch->lock, flags);
1126 
1127 	return scmnd;
1128 }
1129 
1130 /**
1131  * srp_free_req() - Unmap data and adjust ch->req_lim.
1132  * @ch:     SRP RDMA channel.
1133  * @req:    Request to be freed.
1134  * @scmnd:  SCSI command associated with @req.
1135  * @req_lim_delta: Amount to be added to @target->req_lim.
1136  */
1137 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1138 			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1139 {
1140 	unsigned long flags;
1141 
1142 	srp_unmap_data(scmnd, ch, req);
1143 
1144 	spin_lock_irqsave(&ch->lock, flags);
1145 	ch->req_lim += req_lim_delta;
1146 	spin_unlock_irqrestore(&ch->lock, flags);
1147 }
1148 
1149 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1150 			   struct scsi_device *sdev, int result)
1151 {
1152 	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1153 
1154 	if (scmnd) {
1155 		srp_free_req(ch, req, scmnd, 0);
1156 		scmnd->result = result;
1157 		scmnd->scsi_done(scmnd);
1158 	}
1159 }
1160 
1161 static void srp_terminate_io(struct srp_rport *rport)
1162 {
1163 	struct srp_target_port *target = rport->lld_data;
1164 	struct srp_rdma_ch *ch;
1165 	struct Scsi_Host *shost = target->scsi_host;
1166 	struct scsi_device *sdev;
1167 	int i, j;
1168 
1169 	/*
1170 	 * Invoking srp_terminate_io() while srp_queuecommand() is running
1171 	 * is not safe. Hence the warning statement below.
1172 	 */
1173 	shost_for_each_device(sdev, shost)
1174 		WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1175 
1176 	for (i = 0; i < target->ch_count; i++) {
1177 		ch = &target->ch[i];
1178 
1179 		for (j = 0; j < target->req_ring_size; ++j) {
1180 			struct srp_request *req = &ch->req_ring[j];
1181 
1182 			srp_finish_req(ch, req, NULL,
1183 				       DID_TRANSPORT_FAILFAST << 16);
1184 		}
1185 	}
1186 }
1187 
1188 /*
1189  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1190  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1191  * srp_reset_device() or srp_reset_host() calls will occur while this function
1192  * is in progress. One way to realize that is not to call this function
1193  * directly but to call srp_reconnect_rport() instead since that last function
1194  * serializes calls of this function via rport->mutex and also blocks
1195  * srp_queuecommand() calls before invoking this function.
1196  */
1197 static int srp_rport_reconnect(struct srp_rport *rport)
1198 {
1199 	struct srp_target_port *target = rport->lld_data;
1200 	struct srp_rdma_ch *ch;
1201 	int i, j, ret = 0;
1202 	bool multich = false;
1203 
1204 	srp_disconnect_target(target);
1205 
1206 	if (target->state == SRP_TARGET_SCANNING)
1207 		return -ENODEV;
1208 
1209 	/*
1210 	 * Now get a new local CM ID so that we avoid confusing the target in
1211 	 * case things are really fouled up. Doing so also ensures that all CM
1212 	 * callbacks will have finished before a new QP is allocated.
1213 	 */
1214 	for (i = 0; i < target->ch_count; i++) {
1215 		ch = &target->ch[i];
1216 		ret += srp_new_cm_id(ch);
1217 	}
1218 	for (i = 0; i < target->ch_count; i++) {
1219 		ch = &target->ch[i];
1220 		for (j = 0; j < target->req_ring_size; ++j) {
1221 			struct srp_request *req = &ch->req_ring[j];
1222 
1223 			srp_finish_req(ch, req, NULL, DID_RESET << 16);
1224 		}
1225 	}
1226 	for (i = 0; i < target->ch_count; i++) {
1227 		ch = &target->ch[i];
1228 		/*
1229 		 * Whether or not creating a new CM ID succeeded, create a new
1230 		 * QP. This guarantees that all completion callback function
1231 		 * invocations have finished before request resetting starts.
1232 		 */
1233 		ret += srp_create_ch_ib(ch);
1234 
1235 		INIT_LIST_HEAD(&ch->free_tx);
1236 		for (j = 0; j < target->queue_size; ++j)
1237 			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1238 	}
1239 
1240 	target->qp_in_error = false;
1241 
1242 	for (i = 0; i < target->ch_count; i++) {
1243 		ch = &target->ch[i];
1244 		if (ret)
1245 			break;
1246 		ret = srp_connect_ch(ch, multich);
1247 		multich = true;
1248 	}
1249 
1250 	if (ret == 0)
1251 		shost_printk(KERN_INFO, target->scsi_host,
1252 			     PFX "reconnect succeeded\n");
1253 
1254 	return ret;
1255 }
1256 
1257 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1258 			 unsigned int dma_len, u32 rkey)
1259 {
1260 	struct srp_direct_buf *desc = state->desc;
1261 
1262 	WARN_ON_ONCE(!dma_len);
1263 
1264 	desc->va = cpu_to_be64(dma_addr);
1265 	desc->key = cpu_to_be32(rkey);
1266 	desc->len = cpu_to_be32(dma_len);
1267 
1268 	state->total_len += dma_len;
1269 	state->desc++;
1270 	state->ndesc++;
1271 }
1272 
1273 static int srp_map_finish_fmr(struct srp_map_state *state,
1274 			      struct srp_rdma_ch *ch)
1275 {
1276 	struct srp_target_port *target = ch->target;
1277 	struct srp_device *dev = target->srp_host->srp_dev;
1278 	struct ib_pd *pd = target->pd;
1279 	struct ib_pool_fmr *fmr;
1280 	u64 io_addr = 0;
1281 
1282 	if (state->fmr.next >= state->fmr.end) {
1283 		shost_printk(KERN_ERR, ch->target->scsi_host,
1284 			     PFX "Out of MRs (mr_per_cmd = %d)\n",
1285 			     ch->target->mr_per_cmd);
1286 		return -ENOMEM;
1287 	}
1288 
1289 	WARN_ON_ONCE(!dev->use_fmr);
1290 
1291 	if (state->npages == 0)
1292 		return 0;
1293 
1294 	if (state->npages == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1295 		srp_map_desc(state, state->base_dma_addr, state->dma_len,
1296 			     pd->unsafe_global_rkey);
1297 		goto reset_state;
1298 	}
1299 
1300 	fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1301 				   state->npages, io_addr);
1302 	if (IS_ERR(fmr))
1303 		return PTR_ERR(fmr);
1304 
1305 	*state->fmr.next++ = fmr;
1306 	state->nmdesc++;
1307 
1308 	srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1309 		     state->dma_len, fmr->fmr->rkey);
1310 
1311 reset_state:
1312 	state->npages = 0;
1313 	state->dma_len = 0;
1314 
1315 	return 0;
1316 }
1317 
1318 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1319 {
1320 	srp_handle_qp_err(cq, wc, "FAST REG");
1321 }
1322 
1323 /*
1324  * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1325  * where to start in the first element. If sg_offset_p != NULL then
1326  * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1327  * byte that has not yet been mapped.
1328  */
1329 static int srp_map_finish_fr(struct srp_map_state *state,
1330 			     struct srp_request *req,
1331 			     struct srp_rdma_ch *ch, int sg_nents,
1332 			     unsigned int *sg_offset_p)
1333 {
1334 	struct srp_target_port *target = ch->target;
1335 	struct srp_device *dev = target->srp_host->srp_dev;
1336 	struct ib_pd *pd = target->pd;
1337 	struct ib_send_wr *bad_wr;
1338 	struct ib_reg_wr wr;
1339 	struct srp_fr_desc *desc;
1340 	u32 rkey;
1341 	int n, err;
1342 
1343 	if (state->fr.next >= state->fr.end) {
1344 		shost_printk(KERN_ERR, ch->target->scsi_host,
1345 			     PFX "Out of MRs (mr_per_cmd = %d)\n",
1346 			     ch->target->mr_per_cmd);
1347 		return -ENOMEM;
1348 	}
1349 
1350 	WARN_ON_ONCE(!dev->use_fast_reg);
1351 
1352 	if (sg_nents == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1353 		unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1354 
1355 		srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1356 			     sg_dma_len(state->sg) - sg_offset,
1357 			     pd->unsafe_global_rkey);
1358 		if (sg_offset_p)
1359 			*sg_offset_p = 0;
1360 		return 1;
1361 	}
1362 
1363 	desc = srp_fr_pool_get(ch->fr_pool);
1364 	if (!desc)
1365 		return -ENOMEM;
1366 
1367 	rkey = ib_inc_rkey(desc->mr->rkey);
1368 	ib_update_fast_reg_key(desc->mr, rkey);
1369 
1370 	n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1371 			 dev->mr_page_size);
1372 	if (unlikely(n < 0)) {
1373 		srp_fr_pool_put(ch->fr_pool, &desc, 1);
1374 		pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1375 			 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1376 			 sg_offset_p ? *sg_offset_p : -1, n);
1377 		return n;
1378 	}
1379 
1380 	WARN_ON_ONCE(desc->mr->length == 0);
1381 
1382 	req->reg_cqe.done = srp_reg_mr_err_done;
1383 
1384 	wr.wr.next = NULL;
1385 	wr.wr.opcode = IB_WR_REG_MR;
1386 	wr.wr.wr_cqe = &req->reg_cqe;
1387 	wr.wr.num_sge = 0;
1388 	wr.wr.send_flags = 0;
1389 	wr.mr = desc->mr;
1390 	wr.key = desc->mr->rkey;
1391 	wr.access = (IB_ACCESS_LOCAL_WRITE |
1392 		     IB_ACCESS_REMOTE_READ |
1393 		     IB_ACCESS_REMOTE_WRITE);
1394 
1395 	*state->fr.next++ = desc;
1396 	state->nmdesc++;
1397 
1398 	srp_map_desc(state, desc->mr->iova,
1399 		     desc->mr->length, desc->mr->rkey);
1400 
1401 	err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1402 	if (unlikely(err)) {
1403 		WARN_ON_ONCE(err == -ENOMEM);
1404 		return err;
1405 	}
1406 
1407 	return n;
1408 }
1409 
1410 static int srp_map_sg_entry(struct srp_map_state *state,
1411 			    struct srp_rdma_ch *ch,
1412 			    struct scatterlist *sg)
1413 {
1414 	struct srp_target_port *target = ch->target;
1415 	struct srp_device *dev = target->srp_host->srp_dev;
1416 	struct ib_device *ibdev = dev->dev;
1417 	dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1418 	unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1419 	unsigned int len = 0;
1420 	int ret;
1421 
1422 	WARN_ON_ONCE(!dma_len);
1423 
1424 	while (dma_len) {
1425 		unsigned offset = dma_addr & ~dev->mr_page_mask;
1426 
1427 		if (state->npages == dev->max_pages_per_mr ||
1428 		    (state->npages > 0 && offset != 0)) {
1429 			ret = srp_map_finish_fmr(state, ch);
1430 			if (ret)
1431 				return ret;
1432 		}
1433 
1434 		len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1435 
1436 		if (!state->npages)
1437 			state->base_dma_addr = dma_addr;
1438 		state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1439 		state->dma_len += len;
1440 		dma_addr += len;
1441 		dma_len -= len;
1442 	}
1443 
1444 	/*
1445 	 * If the end of the MR is not on a page boundary then we need to
1446 	 * close it out and start a new one -- we can only merge at page
1447 	 * boundaries.
1448 	 */
1449 	ret = 0;
1450 	if ((dma_addr & ~dev->mr_page_mask) != 0)
1451 		ret = srp_map_finish_fmr(state, ch);
1452 	return ret;
1453 }
1454 
1455 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1456 			  struct srp_request *req, struct scatterlist *scat,
1457 			  int count)
1458 {
1459 	struct scatterlist *sg;
1460 	int i, ret;
1461 
1462 	state->pages = req->map_page;
1463 	state->fmr.next = req->fmr_list;
1464 	state->fmr.end = req->fmr_list + ch->target->mr_per_cmd;
1465 
1466 	for_each_sg(scat, sg, count, i) {
1467 		ret = srp_map_sg_entry(state, ch, sg);
1468 		if (ret)
1469 			return ret;
1470 	}
1471 
1472 	ret = srp_map_finish_fmr(state, ch);
1473 	if (ret)
1474 		return ret;
1475 
1476 	return 0;
1477 }
1478 
1479 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1480 			 struct srp_request *req, struct scatterlist *scat,
1481 			 int count)
1482 {
1483 	unsigned int sg_offset = 0;
1484 
1485 	state->fr.next = req->fr_list;
1486 	state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1487 	state->sg = scat;
1488 
1489 	if (count == 0)
1490 		return 0;
1491 
1492 	while (count) {
1493 		int i, n;
1494 
1495 		n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1496 		if (unlikely(n < 0))
1497 			return n;
1498 
1499 		count -= n;
1500 		for (i = 0; i < n; i++)
1501 			state->sg = sg_next(state->sg);
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1508 			  struct srp_request *req, struct scatterlist *scat,
1509 			  int count)
1510 {
1511 	struct srp_target_port *target = ch->target;
1512 	struct srp_device *dev = target->srp_host->srp_dev;
1513 	struct scatterlist *sg;
1514 	int i;
1515 
1516 	for_each_sg(scat, sg, count, i) {
1517 		srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1518 			     ib_sg_dma_len(dev->dev, sg),
1519 			     target->pd->unsafe_global_rkey);
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Register the indirect data buffer descriptor with the HCA.
1527  *
1528  * Note: since the indirect data buffer descriptor has been allocated with
1529  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1530  * memory buffer.
1531  */
1532 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1533 		       void **next_mr, void **end_mr, u32 idb_len,
1534 		       __be32 *idb_rkey)
1535 {
1536 	struct srp_target_port *target = ch->target;
1537 	struct srp_device *dev = target->srp_host->srp_dev;
1538 	struct srp_map_state state;
1539 	struct srp_direct_buf idb_desc;
1540 	u64 idb_pages[1];
1541 	struct scatterlist idb_sg[1];
1542 	int ret;
1543 
1544 	memset(&state, 0, sizeof(state));
1545 	memset(&idb_desc, 0, sizeof(idb_desc));
1546 	state.gen.next = next_mr;
1547 	state.gen.end = end_mr;
1548 	state.desc = &idb_desc;
1549 	state.base_dma_addr = req->indirect_dma_addr;
1550 	state.dma_len = idb_len;
1551 
1552 	if (dev->use_fast_reg) {
1553 		state.sg = idb_sg;
1554 		sg_init_one(idb_sg, req->indirect_desc, idb_len);
1555 		idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1556 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1557 		idb_sg->dma_length = idb_sg->length;	      /* hack^2 */
1558 #endif
1559 		ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1560 		if (ret < 0)
1561 			return ret;
1562 		WARN_ON_ONCE(ret < 1);
1563 	} else if (dev->use_fmr) {
1564 		state.pages = idb_pages;
1565 		state.pages[0] = (req->indirect_dma_addr &
1566 				  dev->mr_page_mask);
1567 		state.npages = 1;
1568 		ret = srp_map_finish_fmr(&state, ch);
1569 		if (ret < 0)
1570 			return ret;
1571 	} else {
1572 		return -EINVAL;
1573 	}
1574 
1575 	*idb_rkey = idb_desc.key;
1576 
1577 	return 0;
1578 }
1579 
1580 static void srp_check_mapping(struct srp_map_state *state,
1581 			      struct srp_rdma_ch *ch, struct srp_request *req,
1582 			      struct scatterlist *scat, int count)
1583 {
1584 	struct srp_device *dev = ch->target->srp_host->srp_dev;
1585 	struct srp_fr_desc **pfr;
1586 	u64 desc_len = 0, mr_len = 0;
1587 	int i;
1588 
1589 	for (i = 0; i < state->ndesc; i++)
1590 		desc_len += be32_to_cpu(req->indirect_desc[i].len);
1591 	if (dev->use_fast_reg)
1592 		for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1593 			mr_len += (*pfr)->mr->length;
1594 	else if (dev->use_fmr)
1595 		for (i = 0; i < state->nmdesc; i++)
1596 			mr_len += be32_to_cpu(req->indirect_desc[i].len);
1597 	if (desc_len != scsi_bufflen(req->scmnd) ||
1598 	    mr_len > scsi_bufflen(req->scmnd))
1599 		pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1600 		       scsi_bufflen(req->scmnd), desc_len, mr_len,
1601 		       state->ndesc, state->nmdesc);
1602 }
1603 
1604 /**
1605  * srp_map_data() - map SCSI data buffer onto an SRP request
1606  * @scmnd: SCSI command to map
1607  * @ch: SRP RDMA channel
1608  * @req: SRP request
1609  *
1610  * Returns the length in bytes of the SRP_CMD IU or a negative value if
1611  * mapping failed.
1612  */
1613 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1614 			struct srp_request *req)
1615 {
1616 	struct srp_target_port *target = ch->target;
1617 	struct ib_pd *pd = target->pd;
1618 	struct scatterlist *scat;
1619 	struct srp_cmd *cmd = req->cmd->buf;
1620 	int len, nents, count, ret;
1621 	struct srp_device *dev;
1622 	struct ib_device *ibdev;
1623 	struct srp_map_state state;
1624 	struct srp_indirect_buf *indirect_hdr;
1625 	u32 idb_len, table_len;
1626 	__be32 idb_rkey;
1627 	u8 fmt;
1628 
1629 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1630 		return sizeof (struct srp_cmd);
1631 
1632 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1633 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1634 		shost_printk(KERN_WARNING, target->scsi_host,
1635 			     PFX "Unhandled data direction %d\n",
1636 			     scmnd->sc_data_direction);
1637 		return -EINVAL;
1638 	}
1639 
1640 	nents = scsi_sg_count(scmnd);
1641 	scat  = scsi_sglist(scmnd);
1642 
1643 	dev = target->srp_host->srp_dev;
1644 	ibdev = dev->dev;
1645 
1646 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1647 	if (unlikely(count == 0))
1648 		return -EIO;
1649 
1650 	fmt = SRP_DATA_DESC_DIRECT;
1651 	len = sizeof (struct srp_cmd) +	sizeof (struct srp_direct_buf);
1652 
1653 	if (count == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1654 		/*
1655 		 * The midlayer only generated a single gather/scatter
1656 		 * entry, or DMA mapping coalesced everything to a
1657 		 * single entry.  So a direct descriptor along with
1658 		 * the DMA MR suffices.
1659 		 */
1660 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1661 
1662 		buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1663 		buf->key = cpu_to_be32(pd->unsafe_global_rkey);
1664 		buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1665 
1666 		req->nmdesc = 0;
1667 		goto map_complete;
1668 	}
1669 
1670 	/*
1671 	 * We have more than one scatter/gather entry, so build our indirect
1672 	 * descriptor table, trying to merge as many entries as we can.
1673 	 */
1674 	indirect_hdr = (void *) cmd->add_data;
1675 
1676 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1677 				   target->indirect_size, DMA_TO_DEVICE);
1678 
1679 	memset(&state, 0, sizeof(state));
1680 	state.desc = req->indirect_desc;
1681 	if (dev->use_fast_reg)
1682 		ret = srp_map_sg_fr(&state, ch, req, scat, count);
1683 	else if (dev->use_fmr)
1684 		ret = srp_map_sg_fmr(&state, ch, req, scat, count);
1685 	else
1686 		ret = srp_map_sg_dma(&state, ch, req, scat, count);
1687 	req->nmdesc = state.nmdesc;
1688 	if (ret < 0)
1689 		goto unmap;
1690 
1691 	{
1692 		DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1693 			"Memory mapping consistency check");
1694 		if (DYNAMIC_DEBUG_BRANCH(ddm))
1695 			srp_check_mapping(&state, ch, req, scat, count);
1696 	}
1697 
1698 	/* We've mapped the request, now pull as much of the indirect
1699 	 * descriptor table as we can into the command buffer. If this
1700 	 * target is not using an external indirect table, we are
1701 	 * guaranteed to fit into the command, as the SCSI layer won't
1702 	 * give us more S/G entries than we allow.
1703 	 */
1704 	if (state.ndesc == 1) {
1705 		/*
1706 		 * Memory registration collapsed the sg-list into one entry,
1707 		 * so use a direct descriptor.
1708 		 */
1709 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1710 
1711 		*buf = req->indirect_desc[0];
1712 		goto map_complete;
1713 	}
1714 
1715 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1716 						!target->allow_ext_sg)) {
1717 		shost_printk(KERN_ERR, target->scsi_host,
1718 			     "Could not fit S/G list into SRP_CMD\n");
1719 		ret = -EIO;
1720 		goto unmap;
1721 	}
1722 
1723 	count = min(state.ndesc, target->cmd_sg_cnt);
1724 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1725 	idb_len = sizeof(struct srp_indirect_buf) + table_len;
1726 
1727 	fmt = SRP_DATA_DESC_INDIRECT;
1728 	len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1729 	len += count * sizeof (struct srp_direct_buf);
1730 
1731 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1732 	       count * sizeof (struct srp_direct_buf));
1733 
1734 	if (!(pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1735 		ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1736 				  idb_len, &idb_rkey);
1737 		if (ret < 0)
1738 			goto unmap;
1739 		req->nmdesc++;
1740 	} else {
1741 		idb_rkey = cpu_to_be32(pd->unsafe_global_rkey);
1742 	}
1743 
1744 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1745 	indirect_hdr->table_desc.key = idb_rkey;
1746 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1747 	indirect_hdr->len = cpu_to_be32(state.total_len);
1748 
1749 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1750 		cmd->data_out_desc_cnt = count;
1751 	else
1752 		cmd->data_in_desc_cnt = count;
1753 
1754 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1755 				      DMA_TO_DEVICE);
1756 
1757 map_complete:
1758 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1759 		cmd->buf_fmt = fmt << 4;
1760 	else
1761 		cmd->buf_fmt = fmt;
1762 
1763 	return len;
1764 
1765 unmap:
1766 	srp_unmap_data(scmnd, ch, req);
1767 	if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1768 		ret = -E2BIG;
1769 	return ret;
1770 }
1771 
1772 /*
1773  * Return an IU and possible credit to the free pool
1774  */
1775 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1776 			  enum srp_iu_type iu_type)
1777 {
1778 	unsigned long flags;
1779 
1780 	spin_lock_irqsave(&ch->lock, flags);
1781 	list_add(&iu->list, &ch->free_tx);
1782 	if (iu_type != SRP_IU_RSP)
1783 		++ch->req_lim;
1784 	spin_unlock_irqrestore(&ch->lock, flags);
1785 }
1786 
1787 /*
1788  * Must be called with ch->lock held to protect req_lim and free_tx.
1789  * If IU is not sent, it must be returned using srp_put_tx_iu().
1790  *
1791  * Note:
1792  * An upper limit for the number of allocated information units for each
1793  * request type is:
1794  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1795  *   more than Scsi_Host.can_queue requests.
1796  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1797  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1798  *   one unanswered SRP request to an initiator.
1799  */
1800 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1801 				      enum srp_iu_type iu_type)
1802 {
1803 	struct srp_target_port *target = ch->target;
1804 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1805 	struct srp_iu *iu;
1806 
1807 	ib_process_cq_direct(ch->send_cq, -1);
1808 
1809 	if (list_empty(&ch->free_tx))
1810 		return NULL;
1811 
1812 	/* Initiator responses to target requests do not consume credits */
1813 	if (iu_type != SRP_IU_RSP) {
1814 		if (ch->req_lim <= rsv) {
1815 			++target->zero_req_lim;
1816 			return NULL;
1817 		}
1818 
1819 		--ch->req_lim;
1820 	}
1821 
1822 	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1823 	list_del(&iu->list);
1824 	return iu;
1825 }
1826 
1827 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1828 {
1829 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1830 	struct srp_rdma_ch *ch = cq->cq_context;
1831 
1832 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1833 		srp_handle_qp_err(cq, wc, "SEND");
1834 		return;
1835 	}
1836 
1837 	list_add(&iu->list, &ch->free_tx);
1838 }
1839 
1840 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1841 {
1842 	struct srp_target_port *target = ch->target;
1843 	struct ib_sge list;
1844 	struct ib_send_wr wr, *bad_wr;
1845 
1846 	list.addr   = iu->dma;
1847 	list.length = len;
1848 	list.lkey   = target->lkey;
1849 
1850 	iu->cqe.done = srp_send_done;
1851 
1852 	wr.next       = NULL;
1853 	wr.wr_cqe     = &iu->cqe;
1854 	wr.sg_list    = &list;
1855 	wr.num_sge    = 1;
1856 	wr.opcode     = IB_WR_SEND;
1857 	wr.send_flags = IB_SEND_SIGNALED;
1858 
1859 	return ib_post_send(ch->qp, &wr, &bad_wr);
1860 }
1861 
1862 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1863 {
1864 	struct srp_target_port *target = ch->target;
1865 	struct ib_recv_wr wr, *bad_wr;
1866 	struct ib_sge list;
1867 
1868 	list.addr   = iu->dma;
1869 	list.length = iu->size;
1870 	list.lkey   = target->lkey;
1871 
1872 	iu->cqe.done = srp_recv_done;
1873 
1874 	wr.next     = NULL;
1875 	wr.wr_cqe   = &iu->cqe;
1876 	wr.sg_list  = &list;
1877 	wr.num_sge  = 1;
1878 
1879 	return ib_post_recv(ch->qp, &wr, &bad_wr);
1880 }
1881 
1882 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1883 {
1884 	struct srp_target_port *target = ch->target;
1885 	struct srp_request *req;
1886 	struct scsi_cmnd *scmnd;
1887 	unsigned long flags;
1888 
1889 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1890 		spin_lock_irqsave(&ch->lock, flags);
1891 		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1892 		spin_unlock_irqrestore(&ch->lock, flags);
1893 
1894 		ch->tsk_mgmt_status = -1;
1895 		if (be32_to_cpu(rsp->resp_data_len) >= 4)
1896 			ch->tsk_mgmt_status = rsp->data[3];
1897 		complete(&ch->tsk_mgmt_done);
1898 	} else {
1899 		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1900 		if (scmnd) {
1901 			req = (void *)scmnd->host_scribble;
1902 			scmnd = srp_claim_req(ch, req, NULL, scmnd);
1903 		}
1904 		if (!scmnd) {
1905 			shost_printk(KERN_ERR, target->scsi_host,
1906 				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1907 				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1908 
1909 			spin_lock_irqsave(&ch->lock, flags);
1910 			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1911 			spin_unlock_irqrestore(&ch->lock, flags);
1912 
1913 			return;
1914 		}
1915 		scmnd->result = rsp->status;
1916 
1917 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1918 			memcpy(scmnd->sense_buffer, rsp->data +
1919 			       be32_to_cpu(rsp->resp_data_len),
1920 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1921 				     SCSI_SENSE_BUFFERSIZE));
1922 		}
1923 
1924 		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1925 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1926 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1927 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1928 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1929 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1930 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1931 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1932 
1933 		srp_free_req(ch, req, scmnd,
1934 			     be32_to_cpu(rsp->req_lim_delta));
1935 
1936 		scmnd->host_scribble = NULL;
1937 		scmnd->scsi_done(scmnd);
1938 	}
1939 }
1940 
1941 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1942 			       void *rsp, int len)
1943 {
1944 	struct srp_target_port *target = ch->target;
1945 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1946 	unsigned long flags;
1947 	struct srp_iu *iu;
1948 	int err;
1949 
1950 	spin_lock_irqsave(&ch->lock, flags);
1951 	ch->req_lim += req_delta;
1952 	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1953 	spin_unlock_irqrestore(&ch->lock, flags);
1954 
1955 	if (!iu) {
1956 		shost_printk(KERN_ERR, target->scsi_host, PFX
1957 			     "no IU available to send response\n");
1958 		return 1;
1959 	}
1960 
1961 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1962 	memcpy(iu->buf, rsp, len);
1963 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1964 
1965 	err = srp_post_send(ch, iu, len);
1966 	if (err) {
1967 		shost_printk(KERN_ERR, target->scsi_host, PFX
1968 			     "unable to post response: %d\n", err);
1969 		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1970 	}
1971 
1972 	return err;
1973 }
1974 
1975 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1976 				 struct srp_cred_req *req)
1977 {
1978 	struct srp_cred_rsp rsp = {
1979 		.opcode = SRP_CRED_RSP,
1980 		.tag = req->tag,
1981 	};
1982 	s32 delta = be32_to_cpu(req->req_lim_delta);
1983 
1984 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1985 		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1986 			     "problems processing SRP_CRED_REQ\n");
1987 }
1988 
1989 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1990 				struct srp_aer_req *req)
1991 {
1992 	struct srp_target_port *target = ch->target;
1993 	struct srp_aer_rsp rsp = {
1994 		.opcode = SRP_AER_RSP,
1995 		.tag = req->tag,
1996 	};
1997 	s32 delta = be32_to_cpu(req->req_lim_delta);
1998 
1999 	shost_printk(KERN_ERR, target->scsi_host, PFX
2000 		     "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2001 
2002 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2003 		shost_printk(KERN_ERR, target->scsi_host, PFX
2004 			     "problems processing SRP_AER_REQ\n");
2005 }
2006 
2007 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2008 {
2009 	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2010 	struct srp_rdma_ch *ch = cq->cq_context;
2011 	struct srp_target_port *target = ch->target;
2012 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2013 	int res;
2014 	u8 opcode;
2015 
2016 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
2017 		srp_handle_qp_err(cq, wc, "RECV");
2018 		return;
2019 	}
2020 
2021 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2022 				   DMA_FROM_DEVICE);
2023 
2024 	opcode = *(u8 *) iu->buf;
2025 
2026 	if (0) {
2027 		shost_printk(KERN_ERR, target->scsi_host,
2028 			     PFX "recv completion, opcode 0x%02x\n", opcode);
2029 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2030 			       iu->buf, wc->byte_len, true);
2031 	}
2032 
2033 	switch (opcode) {
2034 	case SRP_RSP:
2035 		srp_process_rsp(ch, iu->buf);
2036 		break;
2037 
2038 	case SRP_CRED_REQ:
2039 		srp_process_cred_req(ch, iu->buf);
2040 		break;
2041 
2042 	case SRP_AER_REQ:
2043 		srp_process_aer_req(ch, iu->buf);
2044 		break;
2045 
2046 	case SRP_T_LOGOUT:
2047 		/* XXX Handle target logout */
2048 		shost_printk(KERN_WARNING, target->scsi_host,
2049 			     PFX "Got target logout request\n");
2050 		break;
2051 
2052 	default:
2053 		shost_printk(KERN_WARNING, target->scsi_host,
2054 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2055 		break;
2056 	}
2057 
2058 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2059 				      DMA_FROM_DEVICE);
2060 
2061 	res = srp_post_recv(ch, iu);
2062 	if (res != 0)
2063 		shost_printk(KERN_ERR, target->scsi_host,
2064 			     PFX "Recv failed with error code %d\n", res);
2065 }
2066 
2067 /**
2068  * srp_tl_err_work() - handle a transport layer error
2069  * @work: Work structure embedded in an SRP target port.
2070  *
2071  * Note: This function may get invoked before the rport has been created,
2072  * hence the target->rport test.
2073  */
2074 static void srp_tl_err_work(struct work_struct *work)
2075 {
2076 	struct srp_target_port *target;
2077 
2078 	target = container_of(work, struct srp_target_port, tl_err_work);
2079 	if (target->rport)
2080 		srp_start_tl_fail_timers(target->rport);
2081 }
2082 
2083 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2084 		const char *opname)
2085 {
2086 	struct srp_rdma_ch *ch = cq->cq_context;
2087 	struct srp_target_port *target = ch->target;
2088 
2089 	if (ch->connected && !target->qp_in_error) {
2090 		shost_printk(KERN_ERR, target->scsi_host,
2091 			     PFX "failed %s status %s (%d) for CQE %p\n",
2092 			     opname, ib_wc_status_msg(wc->status), wc->status,
2093 			     wc->wr_cqe);
2094 		queue_work(system_long_wq, &target->tl_err_work);
2095 	}
2096 	target->qp_in_error = true;
2097 }
2098 
2099 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2100 {
2101 	struct srp_target_port *target = host_to_target(shost);
2102 	struct srp_rport *rport = target->rport;
2103 	struct srp_rdma_ch *ch;
2104 	struct srp_request *req;
2105 	struct srp_iu *iu;
2106 	struct srp_cmd *cmd;
2107 	struct ib_device *dev;
2108 	unsigned long flags;
2109 	u32 tag;
2110 	u16 idx;
2111 	int len, ret;
2112 	const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2113 
2114 	/*
2115 	 * The SCSI EH thread is the only context from which srp_queuecommand()
2116 	 * can get invoked for blocked devices (SDEV_BLOCK /
2117 	 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2118 	 * locking the rport mutex if invoked from inside the SCSI EH.
2119 	 */
2120 	if (in_scsi_eh)
2121 		mutex_lock(&rport->mutex);
2122 
2123 	scmnd->result = srp_chkready(target->rport);
2124 	if (unlikely(scmnd->result))
2125 		goto err;
2126 
2127 	WARN_ON_ONCE(scmnd->request->tag < 0);
2128 	tag = blk_mq_unique_tag(scmnd->request);
2129 	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2130 	idx = blk_mq_unique_tag_to_tag(tag);
2131 	WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2132 		  dev_name(&shost->shost_gendev), tag, idx,
2133 		  target->req_ring_size);
2134 
2135 	spin_lock_irqsave(&ch->lock, flags);
2136 	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2137 	spin_unlock_irqrestore(&ch->lock, flags);
2138 
2139 	if (!iu)
2140 		goto err;
2141 
2142 	req = &ch->req_ring[idx];
2143 	dev = target->srp_host->srp_dev->dev;
2144 	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2145 				   DMA_TO_DEVICE);
2146 
2147 	scmnd->host_scribble = (void *) req;
2148 
2149 	cmd = iu->buf;
2150 	memset(cmd, 0, sizeof *cmd);
2151 
2152 	cmd->opcode = SRP_CMD;
2153 	int_to_scsilun(scmnd->device->lun, &cmd->lun);
2154 	cmd->tag    = tag;
2155 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2156 
2157 	req->scmnd    = scmnd;
2158 	req->cmd      = iu;
2159 
2160 	len = srp_map_data(scmnd, ch, req);
2161 	if (len < 0) {
2162 		shost_printk(KERN_ERR, target->scsi_host,
2163 			     PFX "Failed to map data (%d)\n", len);
2164 		/*
2165 		 * If we ran out of memory descriptors (-ENOMEM) because an
2166 		 * application is queuing many requests with more than
2167 		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2168 		 * to reduce queue depth temporarily.
2169 		 */
2170 		scmnd->result = len == -ENOMEM ?
2171 			DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2172 		goto err_iu;
2173 	}
2174 
2175 	ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2176 				      DMA_TO_DEVICE);
2177 
2178 	if (srp_post_send(ch, iu, len)) {
2179 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2180 		goto err_unmap;
2181 	}
2182 
2183 	ret = 0;
2184 
2185 unlock_rport:
2186 	if (in_scsi_eh)
2187 		mutex_unlock(&rport->mutex);
2188 
2189 	return ret;
2190 
2191 err_unmap:
2192 	srp_unmap_data(scmnd, ch, req);
2193 
2194 err_iu:
2195 	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2196 
2197 	/*
2198 	 * Avoid that the loops that iterate over the request ring can
2199 	 * encounter a dangling SCSI command pointer.
2200 	 */
2201 	req->scmnd = NULL;
2202 
2203 err:
2204 	if (scmnd->result) {
2205 		scmnd->scsi_done(scmnd);
2206 		ret = 0;
2207 	} else {
2208 		ret = SCSI_MLQUEUE_HOST_BUSY;
2209 	}
2210 
2211 	goto unlock_rport;
2212 }
2213 
2214 /*
2215  * Note: the resources allocated in this function are freed in
2216  * srp_free_ch_ib().
2217  */
2218 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2219 {
2220 	struct srp_target_port *target = ch->target;
2221 	int i;
2222 
2223 	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2224 			      GFP_KERNEL);
2225 	if (!ch->rx_ring)
2226 		goto err_no_ring;
2227 	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2228 			      GFP_KERNEL);
2229 	if (!ch->tx_ring)
2230 		goto err_no_ring;
2231 
2232 	for (i = 0; i < target->queue_size; ++i) {
2233 		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2234 					      ch->max_ti_iu_len,
2235 					      GFP_KERNEL, DMA_FROM_DEVICE);
2236 		if (!ch->rx_ring[i])
2237 			goto err;
2238 	}
2239 
2240 	for (i = 0; i < target->queue_size; ++i) {
2241 		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2242 					      target->max_iu_len,
2243 					      GFP_KERNEL, DMA_TO_DEVICE);
2244 		if (!ch->tx_ring[i])
2245 			goto err;
2246 
2247 		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2248 	}
2249 
2250 	return 0;
2251 
2252 err:
2253 	for (i = 0; i < target->queue_size; ++i) {
2254 		srp_free_iu(target->srp_host, ch->rx_ring[i]);
2255 		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2256 	}
2257 
2258 
2259 err_no_ring:
2260 	kfree(ch->tx_ring);
2261 	ch->tx_ring = NULL;
2262 	kfree(ch->rx_ring);
2263 	ch->rx_ring = NULL;
2264 
2265 	return -ENOMEM;
2266 }
2267 
2268 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2269 {
2270 	uint64_t T_tr_ns, max_compl_time_ms;
2271 	uint32_t rq_tmo_jiffies;
2272 
2273 	/*
2274 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2275 	 * table 91), both the QP timeout and the retry count have to be set
2276 	 * for RC QP's during the RTR to RTS transition.
2277 	 */
2278 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2279 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2280 
2281 	/*
2282 	 * Set target->rq_tmo_jiffies to one second more than the largest time
2283 	 * it can take before an error completion is generated. See also
2284 	 * C9-140..142 in the IBTA spec for more information about how to
2285 	 * convert the QP Local ACK Timeout value to nanoseconds.
2286 	 */
2287 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2288 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2289 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
2290 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2291 
2292 	return rq_tmo_jiffies;
2293 }
2294 
2295 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2296 			       const struct srp_login_rsp *lrsp,
2297 			       struct srp_rdma_ch *ch)
2298 {
2299 	struct srp_target_port *target = ch->target;
2300 	struct ib_qp_attr *qp_attr = NULL;
2301 	int attr_mask = 0;
2302 	int ret;
2303 	int i;
2304 
2305 	if (lrsp->opcode == SRP_LOGIN_RSP) {
2306 		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2307 		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2308 
2309 		/*
2310 		 * Reserve credits for task management so we don't
2311 		 * bounce requests back to the SCSI mid-layer.
2312 		 */
2313 		target->scsi_host->can_queue
2314 			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2315 			      target->scsi_host->can_queue);
2316 		target->scsi_host->cmd_per_lun
2317 			= min_t(int, target->scsi_host->can_queue,
2318 				target->scsi_host->cmd_per_lun);
2319 	} else {
2320 		shost_printk(KERN_WARNING, target->scsi_host,
2321 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2322 		ret = -ECONNRESET;
2323 		goto error;
2324 	}
2325 
2326 	if (!ch->rx_ring) {
2327 		ret = srp_alloc_iu_bufs(ch);
2328 		if (ret)
2329 			goto error;
2330 	}
2331 
2332 	ret = -ENOMEM;
2333 	qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2334 	if (!qp_attr)
2335 		goto error;
2336 
2337 	qp_attr->qp_state = IB_QPS_RTR;
2338 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2339 	if (ret)
2340 		goto error_free;
2341 
2342 	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2343 	if (ret)
2344 		goto error_free;
2345 
2346 	for (i = 0; i < target->queue_size; i++) {
2347 		struct srp_iu *iu = ch->rx_ring[i];
2348 
2349 		ret = srp_post_recv(ch, iu);
2350 		if (ret)
2351 			goto error_free;
2352 	}
2353 
2354 	qp_attr->qp_state = IB_QPS_RTS;
2355 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2356 	if (ret)
2357 		goto error_free;
2358 
2359 	target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2360 
2361 	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2362 	if (ret)
2363 		goto error_free;
2364 
2365 	ret = ib_send_cm_rtu(cm_id, NULL, 0);
2366 
2367 error_free:
2368 	kfree(qp_attr);
2369 
2370 error:
2371 	ch->status = ret;
2372 }
2373 
2374 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2375 			       struct ib_cm_event *event,
2376 			       struct srp_rdma_ch *ch)
2377 {
2378 	struct srp_target_port *target = ch->target;
2379 	struct Scsi_Host *shost = target->scsi_host;
2380 	struct ib_class_port_info *cpi;
2381 	int opcode;
2382 
2383 	switch (event->param.rej_rcvd.reason) {
2384 	case IB_CM_REJ_PORT_CM_REDIRECT:
2385 		cpi = event->param.rej_rcvd.ari;
2386 		ch->path.dlid = cpi->redirect_lid;
2387 		ch->path.pkey = cpi->redirect_pkey;
2388 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2389 		memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2390 
2391 		ch->status = ch->path.dlid ?
2392 			SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2393 		break;
2394 
2395 	case IB_CM_REJ_PORT_REDIRECT:
2396 		if (srp_target_is_topspin(target)) {
2397 			/*
2398 			 * Topspin/Cisco SRP gateways incorrectly send
2399 			 * reject reason code 25 when they mean 24
2400 			 * (port redirect).
2401 			 */
2402 			memcpy(ch->path.dgid.raw,
2403 			       event->param.rej_rcvd.ari, 16);
2404 
2405 			shost_printk(KERN_DEBUG, shost,
2406 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2407 				     be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2408 				     be64_to_cpu(ch->path.dgid.global.interface_id));
2409 
2410 			ch->status = SRP_PORT_REDIRECT;
2411 		} else {
2412 			shost_printk(KERN_WARNING, shost,
2413 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2414 			ch->status = -ECONNRESET;
2415 		}
2416 		break;
2417 
2418 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2419 		shost_printk(KERN_WARNING, shost,
2420 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2421 		ch->status = -ECONNRESET;
2422 		break;
2423 
2424 	case IB_CM_REJ_CONSUMER_DEFINED:
2425 		opcode = *(u8 *) event->private_data;
2426 		if (opcode == SRP_LOGIN_REJ) {
2427 			struct srp_login_rej *rej = event->private_data;
2428 			u32 reason = be32_to_cpu(rej->reason);
2429 
2430 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2431 				shost_printk(KERN_WARNING, shost,
2432 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2433 			else
2434 				shost_printk(KERN_WARNING, shost, PFX
2435 					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2436 					     target->sgid.raw,
2437 					     target->orig_dgid.raw, reason);
2438 		} else
2439 			shost_printk(KERN_WARNING, shost,
2440 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2441 				     " opcode 0x%02x\n", opcode);
2442 		ch->status = -ECONNRESET;
2443 		break;
2444 
2445 	case IB_CM_REJ_STALE_CONN:
2446 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2447 		ch->status = SRP_STALE_CONN;
2448 		break;
2449 
2450 	default:
2451 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2452 			     event->param.rej_rcvd.reason);
2453 		ch->status = -ECONNRESET;
2454 	}
2455 }
2456 
2457 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2458 {
2459 	struct srp_rdma_ch *ch = cm_id->context;
2460 	struct srp_target_port *target = ch->target;
2461 	int comp = 0;
2462 
2463 	switch (event->event) {
2464 	case IB_CM_REQ_ERROR:
2465 		shost_printk(KERN_DEBUG, target->scsi_host,
2466 			     PFX "Sending CM REQ failed\n");
2467 		comp = 1;
2468 		ch->status = -ECONNRESET;
2469 		break;
2470 
2471 	case IB_CM_REP_RECEIVED:
2472 		comp = 1;
2473 		srp_cm_rep_handler(cm_id, event->private_data, ch);
2474 		break;
2475 
2476 	case IB_CM_REJ_RECEIVED:
2477 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2478 		comp = 1;
2479 
2480 		srp_cm_rej_handler(cm_id, event, ch);
2481 		break;
2482 
2483 	case IB_CM_DREQ_RECEIVED:
2484 		shost_printk(KERN_WARNING, target->scsi_host,
2485 			     PFX "DREQ received - connection closed\n");
2486 		ch->connected = false;
2487 		if (ib_send_cm_drep(cm_id, NULL, 0))
2488 			shost_printk(KERN_ERR, target->scsi_host,
2489 				     PFX "Sending CM DREP failed\n");
2490 		queue_work(system_long_wq, &target->tl_err_work);
2491 		break;
2492 
2493 	case IB_CM_TIMEWAIT_EXIT:
2494 		shost_printk(KERN_ERR, target->scsi_host,
2495 			     PFX "connection closed\n");
2496 		comp = 1;
2497 
2498 		ch->status = 0;
2499 		break;
2500 
2501 	case IB_CM_MRA_RECEIVED:
2502 	case IB_CM_DREQ_ERROR:
2503 	case IB_CM_DREP_RECEIVED:
2504 		break;
2505 
2506 	default:
2507 		shost_printk(KERN_WARNING, target->scsi_host,
2508 			     PFX "Unhandled CM event %d\n", event->event);
2509 		break;
2510 	}
2511 
2512 	if (comp)
2513 		complete(&ch->done);
2514 
2515 	return 0;
2516 }
2517 
2518 /**
2519  * srp_change_queue_depth - setting device queue depth
2520  * @sdev: scsi device struct
2521  * @qdepth: requested queue depth
2522  *
2523  * Returns queue depth.
2524  */
2525 static int
2526 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2527 {
2528 	if (!sdev->tagged_supported)
2529 		qdepth = 1;
2530 	return scsi_change_queue_depth(sdev, qdepth);
2531 }
2532 
2533 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2534 			     u8 func)
2535 {
2536 	struct srp_target_port *target = ch->target;
2537 	struct srp_rport *rport = target->rport;
2538 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2539 	struct srp_iu *iu;
2540 	struct srp_tsk_mgmt *tsk_mgmt;
2541 
2542 	if (!ch->connected || target->qp_in_error)
2543 		return -1;
2544 
2545 	init_completion(&ch->tsk_mgmt_done);
2546 
2547 	/*
2548 	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2549 	 * invoked while a task management function is being sent.
2550 	 */
2551 	mutex_lock(&rport->mutex);
2552 	spin_lock_irq(&ch->lock);
2553 	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2554 	spin_unlock_irq(&ch->lock);
2555 
2556 	if (!iu) {
2557 		mutex_unlock(&rport->mutex);
2558 
2559 		return -1;
2560 	}
2561 
2562 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2563 				   DMA_TO_DEVICE);
2564 	tsk_mgmt = iu->buf;
2565 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2566 
2567 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2568 	int_to_scsilun(lun, &tsk_mgmt->lun);
2569 	tsk_mgmt->tag		= req_tag | SRP_TAG_TSK_MGMT;
2570 	tsk_mgmt->tsk_mgmt_func = func;
2571 	tsk_mgmt->task_tag	= req_tag;
2572 
2573 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2574 				      DMA_TO_DEVICE);
2575 	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2576 		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2577 		mutex_unlock(&rport->mutex);
2578 
2579 		return -1;
2580 	}
2581 	mutex_unlock(&rport->mutex);
2582 
2583 	if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2584 					 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2585 		return -1;
2586 
2587 	return 0;
2588 }
2589 
2590 static int srp_abort(struct scsi_cmnd *scmnd)
2591 {
2592 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2593 	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2594 	u32 tag;
2595 	u16 ch_idx;
2596 	struct srp_rdma_ch *ch;
2597 	int ret;
2598 
2599 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2600 
2601 	if (!req)
2602 		return SUCCESS;
2603 	tag = blk_mq_unique_tag(scmnd->request);
2604 	ch_idx = blk_mq_unique_tag_to_hwq(tag);
2605 	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2606 		return SUCCESS;
2607 	ch = &target->ch[ch_idx];
2608 	if (!srp_claim_req(ch, req, NULL, scmnd))
2609 		return SUCCESS;
2610 	shost_printk(KERN_ERR, target->scsi_host,
2611 		     "Sending SRP abort for tag %#x\n", tag);
2612 	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2613 			      SRP_TSK_ABORT_TASK) == 0)
2614 		ret = SUCCESS;
2615 	else if (target->rport->state == SRP_RPORT_LOST)
2616 		ret = FAST_IO_FAIL;
2617 	else
2618 		ret = FAILED;
2619 	srp_free_req(ch, req, scmnd, 0);
2620 	scmnd->result = DID_ABORT << 16;
2621 	scmnd->scsi_done(scmnd);
2622 
2623 	return ret;
2624 }
2625 
2626 static int srp_reset_device(struct scsi_cmnd *scmnd)
2627 {
2628 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2629 	struct srp_rdma_ch *ch;
2630 	int i;
2631 
2632 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2633 
2634 	ch = &target->ch[0];
2635 	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2636 			      SRP_TSK_LUN_RESET))
2637 		return FAILED;
2638 	if (ch->tsk_mgmt_status)
2639 		return FAILED;
2640 
2641 	for (i = 0; i < target->ch_count; i++) {
2642 		ch = &target->ch[i];
2643 		for (i = 0; i < target->req_ring_size; ++i) {
2644 			struct srp_request *req = &ch->req_ring[i];
2645 
2646 			srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2647 		}
2648 	}
2649 
2650 	return SUCCESS;
2651 }
2652 
2653 static int srp_reset_host(struct scsi_cmnd *scmnd)
2654 {
2655 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2656 
2657 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2658 
2659 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2660 }
2661 
2662 static int srp_slave_alloc(struct scsi_device *sdev)
2663 {
2664 	struct Scsi_Host *shost = sdev->host;
2665 	struct srp_target_port *target = host_to_target(shost);
2666 	struct srp_device *srp_dev = target->srp_host->srp_dev;
2667 	struct ib_device *ibdev = srp_dev->dev;
2668 
2669 	if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
2670 		blk_queue_virt_boundary(sdev->request_queue,
2671 					~srp_dev->mr_page_mask);
2672 
2673 	return 0;
2674 }
2675 
2676 static int srp_slave_configure(struct scsi_device *sdev)
2677 {
2678 	struct Scsi_Host *shost = sdev->host;
2679 	struct srp_target_port *target = host_to_target(shost);
2680 	struct request_queue *q = sdev->request_queue;
2681 	unsigned long timeout;
2682 
2683 	if (sdev->type == TYPE_DISK) {
2684 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2685 		blk_queue_rq_timeout(q, timeout);
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2692 			   char *buf)
2693 {
2694 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2695 
2696 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2697 }
2698 
2699 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2700 			     char *buf)
2701 {
2702 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2703 
2704 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2705 }
2706 
2707 static ssize_t show_service_id(struct device *dev,
2708 			       struct device_attribute *attr, char *buf)
2709 {
2710 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2711 
2712 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2713 }
2714 
2715 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2716 			 char *buf)
2717 {
2718 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2719 
2720 	return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2721 }
2722 
2723 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2724 			 char *buf)
2725 {
2726 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2727 
2728 	return sprintf(buf, "%pI6\n", target->sgid.raw);
2729 }
2730 
2731 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2732 			 char *buf)
2733 {
2734 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2735 	struct srp_rdma_ch *ch = &target->ch[0];
2736 
2737 	return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2738 }
2739 
2740 static ssize_t show_orig_dgid(struct device *dev,
2741 			      struct device_attribute *attr, char *buf)
2742 {
2743 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2744 
2745 	return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2746 }
2747 
2748 static ssize_t show_req_lim(struct device *dev,
2749 			    struct device_attribute *attr, char *buf)
2750 {
2751 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2752 	struct srp_rdma_ch *ch;
2753 	int i, req_lim = INT_MAX;
2754 
2755 	for (i = 0; i < target->ch_count; i++) {
2756 		ch = &target->ch[i];
2757 		req_lim = min(req_lim, ch->req_lim);
2758 	}
2759 	return sprintf(buf, "%d\n", req_lim);
2760 }
2761 
2762 static ssize_t show_zero_req_lim(struct device *dev,
2763 				 struct device_attribute *attr, char *buf)
2764 {
2765 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2766 
2767 	return sprintf(buf, "%d\n", target->zero_req_lim);
2768 }
2769 
2770 static ssize_t show_local_ib_port(struct device *dev,
2771 				  struct device_attribute *attr, char *buf)
2772 {
2773 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2774 
2775 	return sprintf(buf, "%d\n", target->srp_host->port);
2776 }
2777 
2778 static ssize_t show_local_ib_device(struct device *dev,
2779 				    struct device_attribute *attr, char *buf)
2780 {
2781 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2782 
2783 	return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2784 }
2785 
2786 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2787 			     char *buf)
2788 {
2789 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2790 
2791 	return sprintf(buf, "%d\n", target->ch_count);
2792 }
2793 
2794 static ssize_t show_comp_vector(struct device *dev,
2795 				struct device_attribute *attr, char *buf)
2796 {
2797 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2798 
2799 	return sprintf(buf, "%d\n", target->comp_vector);
2800 }
2801 
2802 static ssize_t show_tl_retry_count(struct device *dev,
2803 				   struct device_attribute *attr, char *buf)
2804 {
2805 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2806 
2807 	return sprintf(buf, "%d\n", target->tl_retry_count);
2808 }
2809 
2810 static ssize_t show_cmd_sg_entries(struct device *dev,
2811 				   struct device_attribute *attr, char *buf)
2812 {
2813 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2814 
2815 	return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2816 }
2817 
2818 static ssize_t show_allow_ext_sg(struct device *dev,
2819 				 struct device_attribute *attr, char *buf)
2820 {
2821 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2822 
2823 	return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2824 }
2825 
2826 static DEVICE_ATTR(id_ext,	    S_IRUGO, show_id_ext,	   NULL);
2827 static DEVICE_ATTR(ioc_guid,	    S_IRUGO, show_ioc_guid,	   NULL);
2828 static DEVICE_ATTR(service_id,	    S_IRUGO, show_service_id,	   NULL);
2829 static DEVICE_ATTR(pkey,	    S_IRUGO, show_pkey,		   NULL);
2830 static DEVICE_ATTR(sgid,	    S_IRUGO, show_sgid,		   NULL);
2831 static DEVICE_ATTR(dgid,	    S_IRUGO, show_dgid,		   NULL);
2832 static DEVICE_ATTR(orig_dgid,	    S_IRUGO, show_orig_dgid,	   NULL);
2833 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2834 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,	   NULL);
2835 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2836 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2837 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2838 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2839 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2840 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2841 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2842 
2843 static struct device_attribute *srp_host_attrs[] = {
2844 	&dev_attr_id_ext,
2845 	&dev_attr_ioc_guid,
2846 	&dev_attr_service_id,
2847 	&dev_attr_pkey,
2848 	&dev_attr_sgid,
2849 	&dev_attr_dgid,
2850 	&dev_attr_orig_dgid,
2851 	&dev_attr_req_lim,
2852 	&dev_attr_zero_req_lim,
2853 	&dev_attr_local_ib_port,
2854 	&dev_attr_local_ib_device,
2855 	&dev_attr_ch_count,
2856 	&dev_attr_comp_vector,
2857 	&dev_attr_tl_retry_count,
2858 	&dev_attr_cmd_sg_entries,
2859 	&dev_attr_allow_ext_sg,
2860 	NULL
2861 };
2862 
2863 static struct scsi_host_template srp_template = {
2864 	.module				= THIS_MODULE,
2865 	.name				= "InfiniBand SRP initiator",
2866 	.proc_name			= DRV_NAME,
2867 	.slave_alloc			= srp_slave_alloc,
2868 	.slave_configure		= srp_slave_configure,
2869 	.info				= srp_target_info,
2870 	.queuecommand			= srp_queuecommand,
2871 	.change_queue_depth             = srp_change_queue_depth,
2872 	.eh_abort_handler		= srp_abort,
2873 	.eh_device_reset_handler	= srp_reset_device,
2874 	.eh_host_reset_handler		= srp_reset_host,
2875 	.skip_settle_delay		= true,
2876 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
2877 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
2878 	.this_id			= -1,
2879 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
2880 	.use_clustering			= ENABLE_CLUSTERING,
2881 	.shost_attrs			= srp_host_attrs,
2882 	.track_queue_depth		= 1,
2883 };
2884 
2885 static int srp_sdev_count(struct Scsi_Host *host)
2886 {
2887 	struct scsi_device *sdev;
2888 	int c = 0;
2889 
2890 	shost_for_each_device(sdev, host)
2891 		c++;
2892 
2893 	return c;
2894 }
2895 
2896 /*
2897  * Return values:
2898  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2899  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2900  *    removal has been scheduled.
2901  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2902  */
2903 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2904 {
2905 	struct srp_rport_identifiers ids;
2906 	struct srp_rport *rport;
2907 
2908 	target->state = SRP_TARGET_SCANNING;
2909 	sprintf(target->target_name, "SRP.T10:%016llX",
2910 		be64_to_cpu(target->id_ext));
2911 
2912 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2913 		return -ENODEV;
2914 
2915 	memcpy(ids.port_id, &target->id_ext, 8);
2916 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2917 	ids.roles = SRP_RPORT_ROLE_TARGET;
2918 	rport = srp_rport_add(target->scsi_host, &ids);
2919 	if (IS_ERR(rport)) {
2920 		scsi_remove_host(target->scsi_host);
2921 		return PTR_ERR(rport);
2922 	}
2923 
2924 	rport->lld_data = target;
2925 	target->rport = rport;
2926 
2927 	spin_lock(&host->target_lock);
2928 	list_add_tail(&target->list, &host->target_list);
2929 	spin_unlock(&host->target_lock);
2930 
2931 	scsi_scan_target(&target->scsi_host->shost_gendev,
2932 			 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
2933 
2934 	if (srp_connected_ch(target) < target->ch_count ||
2935 	    target->qp_in_error) {
2936 		shost_printk(KERN_INFO, target->scsi_host,
2937 			     PFX "SCSI scan failed - removing SCSI host\n");
2938 		srp_queue_remove_work(target);
2939 		goto out;
2940 	}
2941 
2942 	pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
2943 		 dev_name(&target->scsi_host->shost_gendev),
2944 		 srp_sdev_count(target->scsi_host));
2945 
2946 	spin_lock_irq(&target->lock);
2947 	if (target->state == SRP_TARGET_SCANNING)
2948 		target->state = SRP_TARGET_LIVE;
2949 	spin_unlock_irq(&target->lock);
2950 
2951 out:
2952 	return 0;
2953 }
2954 
2955 static void srp_release_dev(struct device *dev)
2956 {
2957 	struct srp_host *host =
2958 		container_of(dev, struct srp_host, dev);
2959 
2960 	complete(&host->released);
2961 }
2962 
2963 static struct class srp_class = {
2964 	.name    = "infiniband_srp",
2965 	.dev_release = srp_release_dev
2966 };
2967 
2968 /**
2969  * srp_conn_unique() - check whether the connection to a target is unique
2970  * @host:   SRP host.
2971  * @target: SRP target port.
2972  */
2973 static bool srp_conn_unique(struct srp_host *host,
2974 			    struct srp_target_port *target)
2975 {
2976 	struct srp_target_port *t;
2977 	bool ret = false;
2978 
2979 	if (target->state == SRP_TARGET_REMOVED)
2980 		goto out;
2981 
2982 	ret = true;
2983 
2984 	spin_lock(&host->target_lock);
2985 	list_for_each_entry(t, &host->target_list, list) {
2986 		if (t != target &&
2987 		    target->id_ext == t->id_ext &&
2988 		    target->ioc_guid == t->ioc_guid &&
2989 		    target->initiator_ext == t->initiator_ext) {
2990 			ret = false;
2991 			break;
2992 		}
2993 	}
2994 	spin_unlock(&host->target_lock);
2995 
2996 out:
2997 	return ret;
2998 }
2999 
3000 /*
3001  * Target ports are added by writing
3002  *
3003  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3004  *     pkey=<P_Key>,service_id=<service ID>
3005  *
3006  * to the add_target sysfs attribute.
3007  */
3008 enum {
3009 	SRP_OPT_ERR		= 0,
3010 	SRP_OPT_ID_EXT		= 1 << 0,
3011 	SRP_OPT_IOC_GUID	= 1 << 1,
3012 	SRP_OPT_DGID		= 1 << 2,
3013 	SRP_OPT_PKEY		= 1 << 3,
3014 	SRP_OPT_SERVICE_ID	= 1 << 4,
3015 	SRP_OPT_MAX_SECT	= 1 << 5,
3016 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
3017 	SRP_OPT_IO_CLASS	= 1 << 7,
3018 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
3019 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
3020 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
3021 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
3022 	SRP_OPT_COMP_VECTOR	= 1 << 12,
3023 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
3024 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
3025 	SRP_OPT_ALL		= (SRP_OPT_ID_EXT	|
3026 				   SRP_OPT_IOC_GUID	|
3027 				   SRP_OPT_DGID		|
3028 				   SRP_OPT_PKEY		|
3029 				   SRP_OPT_SERVICE_ID),
3030 };
3031 
3032 static const match_table_t srp_opt_tokens = {
3033 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
3034 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
3035 	{ SRP_OPT_DGID,			"dgid=%s" 		},
3036 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
3037 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
3038 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
3039 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
3040 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
3041 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
3042 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
3043 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
3044 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
3045 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
3046 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
3047 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
3048 	{ SRP_OPT_ERR,			NULL 			}
3049 };
3050 
3051 static int srp_parse_options(const char *buf, struct srp_target_port *target)
3052 {
3053 	char *options, *sep_opt;
3054 	char *p;
3055 	char dgid[3];
3056 	substring_t args[MAX_OPT_ARGS];
3057 	int opt_mask = 0;
3058 	int token;
3059 	int ret = -EINVAL;
3060 	int i;
3061 
3062 	options = kstrdup(buf, GFP_KERNEL);
3063 	if (!options)
3064 		return -ENOMEM;
3065 
3066 	sep_opt = options;
3067 	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3068 		if (!*p)
3069 			continue;
3070 
3071 		token = match_token(p, srp_opt_tokens, args);
3072 		opt_mask |= token;
3073 
3074 		switch (token) {
3075 		case SRP_OPT_ID_EXT:
3076 			p = match_strdup(args);
3077 			if (!p) {
3078 				ret = -ENOMEM;
3079 				goto out;
3080 			}
3081 			target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3082 			kfree(p);
3083 			break;
3084 
3085 		case SRP_OPT_IOC_GUID:
3086 			p = match_strdup(args);
3087 			if (!p) {
3088 				ret = -ENOMEM;
3089 				goto out;
3090 			}
3091 			target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
3092 			kfree(p);
3093 			break;
3094 
3095 		case SRP_OPT_DGID:
3096 			p = match_strdup(args);
3097 			if (!p) {
3098 				ret = -ENOMEM;
3099 				goto out;
3100 			}
3101 			if (strlen(p) != 32) {
3102 				pr_warn("bad dest GID parameter '%s'\n", p);
3103 				kfree(p);
3104 				goto out;
3105 			}
3106 
3107 			for (i = 0; i < 16; ++i) {
3108 				strlcpy(dgid, p + i * 2, sizeof(dgid));
3109 				if (sscanf(dgid, "%hhx",
3110 					   &target->orig_dgid.raw[i]) < 1) {
3111 					ret = -EINVAL;
3112 					kfree(p);
3113 					goto out;
3114 				}
3115 			}
3116 			kfree(p);
3117 			break;
3118 
3119 		case SRP_OPT_PKEY:
3120 			if (match_hex(args, &token)) {
3121 				pr_warn("bad P_Key parameter '%s'\n", p);
3122 				goto out;
3123 			}
3124 			target->pkey = cpu_to_be16(token);
3125 			break;
3126 
3127 		case SRP_OPT_SERVICE_ID:
3128 			p = match_strdup(args);
3129 			if (!p) {
3130 				ret = -ENOMEM;
3131 				goto out;
3132 			}
3133 			target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3134 			kfree(p);
3135 			break;
3136 
3137 		case SRP_OPT_MAX_SECT:
3138 			if (match_int(args, &token)) {
3139 				pr_warn("bad max sect parameter '%s'\n", p);
3140 				goto out;
3141 			}
3142 			target->scsi_host->max_sectors = token;
3143 			break;
3144 
3145 		case SRP_OPT_QUEUE_SIZE:
3146 			if (match_int(args, &token) || token < 1) {
3147 				pr_warn("bad queue_size parameter '%s'\n", p);
3148 				goto out;
3149 			}
3150 			target->scsi_host->can_queue = token;
3151 			target->queue_size = token + SRP_RSP_SQ_SIZE +
3152 					     SRP_TSK_MGMT_SQ_SIZE;
3153 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3154 				target->scsi_host->cmd_per_lun = token;
3155 			break;
3156 
3157 		case SRP_OPT_MAX_CMD_PER_LUN:
3158 			if (match_int(args, &token) || token < 1) {
3159 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
3160 					p);
3161 				goto out;
3162 			}
3163 			target->scsi_host->cmd_per_lun = token;
3164 			break;
3165 
3166 		case SRP_OPT_IO_CLASS:
3167 			if (match_hex(args, &token)) {
3168 				pr_warn("bad IO class parameter '%s'\n", p);
3169 				goto out;
3170 			}
3171 			if (token != SRP_REV10_IB_IO_CLASS &&
3172 			    token != SRP_REV16A_IB_IO_CLASS) {
3173 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3174 					token, SRP_REV10_IB_IO_CLASS,
3175 					SRP_REV16A_IB_IO_CLASS);
3176 				goto out;
3177 			}
3178 			target->io_class = token;
3179 			break;
3180 
3181 		case SRP_OPT_INITIATOR_EXT:
3182 			p = match_strdup(args);
3183 			if (!p) {
3184 				ret = -ENOMEM;
3185 				goto out;
3186 			}
3187 			target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3188 			kfree(p);
3189 			break;
3190 
3191 		case SRP_OPT_CMD_SG_ENTRIES:
3192 			if (match_int(args, &token) || token < 1 || token > 255) {
3193 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3194 					p);
3195 				goto out;
3196 			}
3197 			target->cmd_sg_cnt = token;
3198 			break;
3199 
3200 		case SRP_OPT_ALLOW_EXT_SG:
3201 			if (match_int(args, &token)) {
3202 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3203 				goto out;
3204 			}
3205 			target->allow_ext_sg = !!token;
3206 			break;
3207 
3208 		case SRP_OPT_SG_TABLESIZE:
3209 			if (match_int(args, &token) || token < 1 ||
3210 					token > SG_MAX_SEGMENTS) {
3211 				pr_warn("bad max sg_tablesize parameter '%s'\n",
3212 					p);
3213 				goto out;
3214 			}
3215 			target->sg_tablesize = token;
3216 			break;
3217 
3218 		case SRP_OPT_COMP_VECTOR:
3219 			if (match_int(args, &token) || token < 0) {
3220 				pr_warn("bad comp_vector parameter '%s'\n", p);
3221 				goto out;
3222 			}
3223 			target->comp_vector = token;
3224 			break;
3225 
3226 		case SRP_OPT_TL_RETRY_COUNT:
3227 			if (match_int(args, &token) || token < 2 || token > 7) {
3228 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3229 					p);
3230 				goto out;
3231 			}
3232 			target->tl_retry_count = token;
3233 			break;
3234 
3235 		default:
3236 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3237 				p);
3238 			goto out;
3239 		}
3240 	}
3241 
3242 	if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3243 		ret = 0;
3244 	else
3245 		for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3246 			if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3247 			    !(srp_opt_tokens[i].token & opt_mask))
3248 				pr_warn("target creation request is missing parameter '%s'\n",
3249 					srp_opt_tokens[i].pattern);
3250 
3251 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3252 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3253 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3254 			target->scsi_host->cmd_per_lun,
3255 			target->scsi_host->can_queue);
3256 
3257 out:
3258 	kfree(options);
3259 	return ret;
3260 }
3261 
3262 static ssize_t srp_create_target(struct device *dev,
3263 				 struct device_attribute *attr,
3264 				 const char *buf, size_t count)
3265 {
3266 	struct srp_host *host =
3267 		container_of(dev, struct srp_host, dev);
3268 	struct Scsi_Host *target_host;
3269 	struct srp_target_port *target;
3270 	struct srp_rdma_ch *ch;
3271 	struct srp_device *srp_dev = host->srp_dev;
3272 	struct ib_device *ibdev = srp_dev->dev;
3273 	int ret, node_idx, node, cpu, i;
3274 	unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3275 	bool multich = false;
3276 
3277 	target_host = scsi_host_alloc(&srp_template,
3278 				      sizeof (struct srp_target_port));
3279 	if (!target_host)
3280 		return -ENOMEM;
3281 
3282 	target_host->transportt  = ib_srp_transport_template;
3283 	target_host->max_channel = 0;
3284 	target_host->max_id      = 1;
3285 	target_host->max_lun     = -1LL;
3286 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3287 
3288 	target = host_to_target(target_host);
3289 
3290 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
3291 	target->scsi_host	= target_host;
3292 	target->srp_host	= host;
3293 	target->pd		= host->srp_dev->pd;
3294 	target->lkey		= host->srp_dev->pd->local_dma_lkey;
3295 	target->cmd_sg_cnt	= cmd_sg_entries;
3296 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
3297 	target->allow_ext_sg	= allow_ext_sg;
3298 	target->tl_retry_count	= 7;
3299 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3300 
3301 	/*
3302 	 * Avoid that the SCSI host can be removed by srp_remove_target()
3303 	 * before this function returns.
3304 	 */
3305 	scsi_host_get(target->scsi_host);
3306 
3307 	ret = mutex_lock_interruptible(&host->add_target_mutex);
3308 	if (ret < 0)
3309 		goto put;
3310 
3311 	ret = srp_parse_options(buf, target);
3312 	if (ret)
3313 		goto out;
3314 
3315 	target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3316 
3317 	if (!srp_conn_unique(target->srp_host, target)) {
3318 		shost_printk(KERN_INFO, target->scsi_host,
3319 			     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3320 			     be64_to_cpu(target->id_ext),
3321 			     be64_to_cpu(target->ioc_guid),
3322 			     be64_to_cpu(target->initiator_ext));
3323 		ret = -EEXIST;
3324 		goto out;
3325 	}
3326 
3327 	if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3328 	    target->cmd_sg_cnt < target->sg_tablesize) {
3329 		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3330 		target->sg_tablesize = target->cmd_sg_cnt;
3331 	}
3332 
3333 	if (srp_dev->use_fast_reg || srp_dev->use_fmr) {
3334 		/*
3335 		 * FR and FMR can only map one HCA page per entry. If the
3336 		 * start address is not aligned on a HCA page boundary two
3337 		 * entries will be used for the head and the tail although
3338 		 * these two entries combined contain at most one HCA page of
3339 		 * data. Hence the "+ 1" in the calculation below.
3340 		 *
3341 		 * The indirect data buffer descriptor is contiguous so the
3342 		 * memory for that buffer will only be registered if
3343 		 * register_always is true. Hence add one to mr_per_cmd if
3344 		 * register_always has been set.
3345 		 */
3346 		max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3347 				  (ilog2(srp_dev->mr_page_size) - 9);
3348 		mr_per_cmd = register_always +
3349 			(target->scsi_host->max_sectors + 1 +
3350 			 max_sectors_per_mr - 1) / max_sectors_per_mr;
3351 		pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3352 			 target->scsi_host->max_sectors,
3353 			 srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3354 			 max_sectors_per_mr, mr_per_cmd);
3355 	}
3356 
3357 	target_host->sg_tablesize = target->sg_tablesize;
3358 	target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3359 	target->mr_per_cmd = mr_per_cmd;
3360 	target->indirect_size = target->sg_tablesize *
3361 				sizeof (struct srp_direct_buf);
3362 	target->max_iu_len = sizeof (struct srp_cmd) +
3363 			     sizeof (struct srp_indirect_buf) +
3364 			     target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3365 
3366 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3367 	INIT_WORK(&target->remove_work, srp_remove_work);
3368 	spin_lock_init(&target->lock);
3369 	ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3370 	if (ret)
3371 		goto out;
3372 
3373 	ret = -ENOMEM;
3374 	target->ch_count = max_t(unsigned, num_online_nodes(),
3375 				 min(ch_count ? :
3376 				     min(4 * num_online_nodes(),
3377 					 ibdev->num_comp_vectors),
3378 				     num_online_cpus()));
3379 	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3380 			     GFP_KERNEL);
3381 	if (!target->ch)
3382 		goto out;
3383 
3384 	node_idx = 0;
3385 	for_each_online_node(node) {
3386 		const int ch_start = (node_idx * target->ch_count /
3387 				      num_online_nodes());
3388 		const int ch_end = ((node_idx + 1) * target->ch_count /
3389 				    num_online_nodes());
3390 		const int cv_start = (node_idx * ibdev->num_comp_vectors /
3391 				      num_online_nodes() + target->comp_vector)
3392 				     % ibdev->num_comp_vectors;
3393 		const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3394 				    num_online_nodes() + target->comp_vector)
3395 				   % ibdev->num_comp_vectors;
3396 		int cpu_idx = 0;
3397 
3398 		for_each_online_cpu(cpu) {
3399 			if (cpu_to_node(cpu) != node)
3400 				continue;
3401 			if (ch_start + cpu_idx >= ch_end)
3402 				continue;
3403 			ch = &target->ch[ch_start + cpu_idx];
3404 			ch->target = target;
3405 			ch->comp_vector = cv_start == cv_end ? cv_start :
3406 				cv_start + cpu_idx % (cv_end - cv_start);
3407 			spin_lock_init(&ch->lock);
3408 			INIT_LIST_HEAD(&ch->free_tx);
3409 			ret = srp_new_cm_id(ch);
3410 			if (ret)
3411 				goto err_disconnect;
3412 
3413 			ret = srp_create_ch_ib(ch);
3414 			if (ret)
3415 				goto err_disconnect;
3416 
3417 			ret = srp_alloc_req_data(ch);
3418 			if (ret)
3419 				goto err_disconnect;
3420 
3421 			ret = srp_connect_ch(ch, multich);
3422 			if (ret) {
3423 				shost_printk(KERN_ERR, target->scsi_host,
3424 					     PFX "Connection %d/%d failed\n",
3425 					     ch_start + cpu_idx,
3426 					     target->ch_count);
3427 				if (node_idx == 0 && cpu_idx == 0) {
3428 					goto err_disconnect;
3429 				} else {
3430 					srp_free_ch_ib(target, ch);
3431 					srp_free_req_data(target, ch);
3432 					target->ch_count = ch - target->ch;
3433 					goto connected;
3434 				}
3435 			}
3436 
3437 			multich = true;
3438 			cpu_idx++;
3439 		}
3440 		node_idx++;
3441 	}
3442 
3443 connected:
3444 	target->scsi_host->nr_hw_queues = target->ch_count;
3445 
3446 	ret = srp_add_target(host, target);
3447 	if (ret)
3448 		goto err_disconnect;
3449 
3450 	if (target->state != SRP_TARGET_REMOVED) {
3451 		shost_printk(KERN_DEBUG, target->scsi_host, PFX
3452 			     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3453 			     be64_to_cpu(target->id_ext),
3454 			     be64_to_cpu(target->ioc_guid),
3455 			     be16_to_cpu(target->pkey),
3456 			     be64_to_cpu(target->service_id),
3457 			     target->sgid.raw, target->orig_dgid.raw);
3458 	}
3459 
3460 	ret = count;
3461 
3462 out:
3463 	mutex_unlock(&host->add_target_mutex);
3464 
3465 put:
3466 	scsi_host_put(target->scsi_host);
3467 	if (ret < 0)
3468 		scsi_host_put(target->scsi_host);
3469 
3470 	return ret;
3471 
3472 err_disconnect:
3473 	srp_disconnect_target(target);
3474 
3475 	for (i = 0; i < target->ch_count; i++) {
3476 		ch = &target->ch[i];
3477 		srp_free_ch_ib(target, ch);
3478 		srp_free_req_data(target, ch);
3479 	}
3480 
3481 	kfree(target->ch);
3482 	goto out;
3483 }
3484 
3485 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3486 
3487 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3488 			  char *buf)
3489 {
3490 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3491 
3492 	return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3493 }
3494 
3495 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3496 
3497 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3498 			 char *buf)
3499 {
3500 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3501 
3502 	return sprintf(buf, "%d\n", host->port);
3503 }
3504 
3505 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3506 
3507 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3508 {
3509 	struct srp_host *host;
3510 
3511 	host = kzalloc(sizeof *host, GFP_KERNEL);
3512 	if (!host)
3513 		return NULL;
3514 
3515 	INIT_LIST_HEAD(&host->target_list);
3516 	spin_lock_init(&host->target_lock);
3517 	init_completion(&host->released);
3518 	mutex_init(&host->add_target_mutex);
3519 	host->srp_dev = device;
3520 	host->port = port;
3521 
3522 	host->dev.class = &srp_class;
3523 	host->dev.parent = device->dev->dma_device;
3524 	dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3525 
3526 	if (device_register(&host->dev))
3527 		goto free_host;
3528 	if (device_create_file(&host->dev, &dev_attr_add_target))
3529 		goto err_class;
3530 	if (device_create_file(&host->dev, &dev_attr_ibdev))
3531 		goto err_class;
3532 	if (device_create_file(&host->dev, &dev_attr_port))
3533 		goto err_class;
3534 
3535 	return host;
3536 
3537 err_class:
3538 	device_unregister(&host->dev);
3539 
3540 free_host:
3541 	kfree(host);
3542 
3543 	return NULL;
3544 }
3545 
3546 static void srp_add_one(struct ib_device *device)
3547 {
3548 	struct srp_device *srp_dev;
3549 	struct ib_device_attr *attr = &device->attrs;
3550 	struct srp_host *host;
3551 	int mr_page_shift, p;
3552 	u64 max_pages_per_mr;
3553 	unsigned int flags = 0;
3554 
3555 	srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
3556 	if (!srp_dev)
3557 		return;
3558 
3559 	/*
3560 	 * Use the smallest page size supported by the HCA, down to a
3561 	 * minimum of 4096 bytes. We're unlikely to build large sglists
3562 	 * out of smaller entries.
3563 	 */
3564 	mr_page_shift		= max(12, ffs(attr->page_size_cap) - 1);
3565 	srp_dev->mr_page_size	= 1 << mr_page_shift;
3566 	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
3567 	max_pages_per_mr	= attr->max_mr_size;
3568 	do_div(max_pages_per_mr, srp_dev->mr_page_size);
3569 	pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
3570 		 attr->max_mr_size, srp_dev->mr_page_size,
3571 		 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
3572 	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3573 					  max_pages_per_mr);
3574 
3575 	srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3576 			    device->map_phys_fmr && device->unmap_fmr);
3577 	srp_dev->has_fr = (attr->device_cap_flags &
3578 			   IB_DEVICE_MEM_MGT_EXTENSIONS);
3579 	if (!never_register && !srp_dev->has_fmr && !srp_dev->has_fr) {
3580 		dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3581 	} else if (!never_register &&
3582 		   attr->max_mr_size >= 2 * srp_dev->mr_page_size) {
3583 		srp_dev->use_fast_reg = (srp_dev->has_fr &&
3584 					 (!srp_dev->has_fmr || prefer_fr));
3585 		srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3586 	}
3587 
3588 	if (never_register || !register_always ||
3589 	    (!srp_dev->has_fmr && !srp_dev->has_fr))
3590 		flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
3591 
3592 	if (srp_dev->use_fast_reg) {
3593 		srp_dev->max_pages_per_mr =
3594 			min_t(u32, srp_dev->max_pages_per_mr,
3595 			      attr->max_fast_reg_page_list_len);
3596 	}
3597 	srp_dev->mr_max_size	= srp_dev->mr_page_size *
3598 				   srp_dev->max_pages_per_mr;
3599 	pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3600 		 device->name, mr_page_shift, attr->max_mr_size,
3601 		 attr->max_fast_reg_page_list_len,
3602 		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3603 
3604 	INIT_LIST_HEAD(&srp_dev->dev_list);
3605 
3606 	srp_dev->dev = device;
3607 	srp_dev->pd  = ib_alloc_pd(device, flags);
3608 	if (IS_ERR(srp_dev->pd))
3609 		goto free_dev;
3610 
3611 
3612 	for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3613 		host = srp_add_port(srp_dev, p);
3614 		if (host)
3615 			list_add_tail(&host->list, &srp_dev->dev_list);
3616 	}
3617 
3618 	ib_set_client_data(device, &srp_client, srp_dev);
3619 	return;
3620 
3621 free_dev:
3622 	kfree(srp_dev);
3623 }
3624 
3625 static void srp_remove_one(struct ib_device *device, void *client_data)
3626 {
3627 	struct srp_device *srp_dev;
3628 	struct srp_host *host, *tmp_host;
3629 	struct srp_target_port *target;
3630 
3631 	srp_dev = client_data;
3632 	if (!srp_dev)
3633 		return;
3634 
3635 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3636 		device_unregister(&host->dev);
3637 		/*
3638 		 * Wait for the sysfs entry to go away, so that no new
3639 		 * target ports can be created.
3640 		 */
3641 		wait_for_completion(&host->released);
3642 
3643 		/*
3644 		 * Remove all target ports.
3645 		 */
3646 		spin_lock(&host->target_lock);
3647 		list_for_each_entry(target, &host->target_list, list)
3648 			srp_queue_remove_work(target);
3649 		spin_unlock(&host->target_lock);
3650 
3651 		/*
3652 		 * Wait for tl_err and target port removal tasks.
3653 		 */
3654 		flush_workqueue(system_long_wq);
3655 		flush_workqueue(srp_remove_wq);
3656 
3657 		kfree(host);
3658 	}
3659 
3660 	ib_dealloc_pd(srp_dev->pd);
3661 
3662 	kfree(srp_dev);
3663 }
3664 
3665 static struct srp_function_template ib_srp_transport_functions = {
3666 	.has_rport_state	 = true,
3667 	.reset_timer_if_blocked	 = true,
3668 	.reconnect_delay	 = &srp_reconnect_delay,
3669 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
3670 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
3671 	.reconnect		 = srp_rport_reconnect,
3672 	.rport_delete		 = srp_rport_delete,
3673 	.terminate_rport_io	 = srp_terminate_io,
3674 };
3675 
3676 static int __init srp_init_module(void)
3677 {
3678 	int ret;
3679 
3680 	if (srp_sg_tablesize) {
3681 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3682 		if (!cmd_sg_entries)
3683 			cmd_sg_entries = srp_sg_tablesize;
3684 	}
3685 
3686 	if (!cmd_sg_entries)
3687 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3688 
3689 	if (cmd_sg_entries > 255) {
3690 		pr_warn("Clamping cmd_sg_entries to 255\n");
3691 		cmd_sg_entries = 255;
3692 	}
3693 
3694 	if (!indirect_sg_entries)
3695 		indirect_sg_entries = cmd_sg_entries;
3696 	else if (indirect_sg_entries < cmd_sg_entries) {
3697 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3698 			cmd_sg_entries);
3699 		indirect_sg_entries = cmd_sg_entries;
3700 	}
3701 
3702 	if (indirect_sg_entries > SG_MAX_SEGMENTS) {
3703 		pr_warn("Clamping indirect_sg_entries to %u\n",
3704 			SG_MAX_SEGMENTS);
3705 		indirect_sg_entries = SG_MAX_SEGMENTS;
3706 	}
3707 
3708 	srp_remove_wq = create_workqueue("srp_remove");
3709 	if (!srp_remove_wq) {
3710 		ret = -ENOMEM;
3711 		goto out;
3712 	}
3713 
3714 	ret = -ENOMEM;
3715 	ib_srp_transport_template =
3716 		srp_attach_transport(&ib_srp_transport_functions);
3717 	if (!ib_srp_transport_template)
3718 		goto destroy_wq;
3719 
3720 	ret = class_register(&srp_class);
3721 	if (ret) {
3722 		pr_err("couldn't register class infiniband_srp\n");
3723 		goto release_tr;
3724 	}
3725 
3726 	ib_sa_register_client(&srp_sa_client);
3727 
3728 	ret = ib_register_client(&srp_client);
3729 	if (ret) {
3730 		pr_err("couldn't register IB client\n");
3731 		goto unreg_sa;
3732 	}
3733 
3734 out:
3735 	return ret;
3736 
3737 unreg_sa:
3738 	ib_sa_unregister_client(&srp_sa_client);
3739 	class_unregister(&srp_class);
3740 
3741 release_tr:
3742 	srp_release_transport(ib_srp_transport_template);
3743 
3744 destroy_wq:
3745 	destroy_workqueue(srp_remove_wq);
3746 	goto out;
3747 }
3748 
3749 static void __exit srp_cleanup_module(void)
3750 {
3751 	ib_unregister_client(&srp_client);
3752 	ib_sa_unregister_client(&srp_sa_client);
3753 	class_unregister(&srp_class);
3754 	srp_release_transport(ib_srp_transport_template);
3755 	destroy_workqueue(srp_remove_wq);
3756 }
3757 
3758 module_init(srp_init_module);
3759 module_exit(srp_cleanup_module);
3760