1 /* 2 * Copyright (c) 2005 Cisco Systems. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/string.h> 40 #include <linux/parser.h> 41 #include <linux/random.h> 42 #include <linux/jiffies.h> 43 #include <rdma/ib_cache.h> 44 45 #include <linux/atomic.h> 46 47 #include <scsi/scsi.h> 48 #include <scsi/scsi_device.h> 49 #include <scsi/scsi_dbg.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/srp.h> 52 #include <scsi/scsi_transport_srp.h> 53 54 #include "ib_srp.h" 55 56 #define DRV_NAME "ib_srp" 57 #define PFX DRV_NAME ": " 58 #define DRV_VERSION "2.0" 59 #define DRV_RELDATE "July 26, 2015" 60 61 MODULE_AUTHOR("Roland Dreier"); 62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 MODULE_VERSION(DRV_VERSION); 65 MODULE_INFO(release_date, DRV_RELDATE); 66 67 #if !defined(CONFIG_DYNAMIC_DEBUG) 68 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt) 69 #define DYNAMIC_DEBUG_BRANCH(descriptor) false 70 #endif 71 72 static unsigned int srp_sg_tablesize; 73 static unsigned int cmd_sg_entries; 74 static unsigned int indirect_sg_entries; 75 static bool allow_ext_sg; 76 static bool prefer_fr = true; 77 static bool register_always = true; 78 static bool never_register; 79 static int topspin_workarounds = 1; 80 81 module_param(srp_sg_tablesize, uint, 0444); 82 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries"); 83 84 module_param(cmd_sg_entries, uint, 0444); 85 MODULE_PARM_DESC(cmd_sg_entries, 86 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)"); 87 88 module_param(indirect_sg_entries, uint, 0444); 89 MODULE_PARM_DESC(indirect_sg_entries, 90 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")"); 91 92 module_param(allow_ext_sg, bool, 0444); 93 MODULE_PARM_DESC(allow_ext_sg, 94 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)"); 95 96 module_param(topspin_workarounds, int, 0444); 97 MODULE_PARM_DESC(topspin_workarounds, 98 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0"); 99 100 module_param(prefer_fr, bool, 0444); 101 MODULE_PARM_DESC(prefer_fr, 102 "Whether to use fast registration if both FMR and fast registration are supported"); 103 104 module_param(register_always, bool, 0444); 105 MODULE_PARM_DESC(register_always, 106 "Use memory registration even for contiguous memory regions"); 107 108 module_param(never_register, bool, 0444); 109 MODULE_PARM_DESC(never_register, "Never register memory"); 110 111 static const struct kernel_param_ops srp_tmo_ops; 112 113 static int srp_reconnect_delay = 10; 114 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay, 115 S_IRUGO | S_IWUSR); 116 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts"); 117 118 static int srp_fast_io_fail_tmo = 15; 119 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo, 120 S_IRUGO | S_IWUSR); 121 MODULE_PARM_DESC(fast_io_fail_tmo, 122 "Number of seconds between the observation of a transport" 123 " layer error and failing all I/O. \"off\" means that this" 124 " functionality is disabled."); 125 126 static int srp_dev_loss_tmo = 600; 127 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo, 128 S_IRUGO | S_IWUSR); 129 MODULE_PARM_DESC(dev_loss_tmo, 130 "Maximum number of seconds that the SRP transport should" 131 " insulate transport layer errors. After this time has been" 132 " exceeded the SCSI host is removed. Should be" 133 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT) 134 " if fast_io_fail_tmo has not been set. \"off\" means that" 135 " this functionality is disabled."); 136 137 static unsigned ch_count; 138 module_param(ch_count, uint, 0444); 139 MODULE_PARM_DESC(ch_count, 140 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA."); 141 142 static void srp_add_one(struct ib_device *device); 143 static void srp_remove_one(struct ib_device *device, void *client_data); 144 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc); 145 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc, 146 const char *opname); 147 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event); 148 149 static struct scsi_transport_template *ib_srp_transport_template; 150 static struct workqueue_struct *srp_remove_wq; 151 152 static struct ib_client srp_client = { 153 .name = "srp", 154 .add = srp_add_one, 155 .remove = srp_remove_one 156 }; 157 158 static struct ib_sa_client srp_sa_client; 159 160 static int srp_tmo_get(char *buffer, const struct kernel_param *kp) 161 { 162 int tmo = *(int *)kp->arg; 163 164 if (tmo >= 0) 165 return sprintf(buffer, "%d", tmo); 166 else 167 return sprintf(buffer, "off"); 168 } 169 170 static int srp_tmo_set(const char *val, const struct kernel_param *kp) 171 { 172 int tmo, res; 173 174 res = srp_parse_tmo(&tmo, val); 175 if (res) 176 goto out; 177 178 if (kp->arg == &srp_reconnect_delay) 179 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo, 180 srp_dev_loss_tmo); 181 else if (kp->arg == &srp_fast_io_fail_tmo) 182 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo); 183 else 184 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo, 185 tmo); 186 if (res) 187 goto out; 188 *(int *)kp->arg = tmo; 189 190 out: 191 return res; 192 } 193 194 static const struct kernel_param_ops srp_tmo_ops = { 195 .get = srp_tmo_get, 196 .set = srp_tmo_set, 197 }; 198 199 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host) 200 { 201 return (struct srp_target_port *) host->hostdata; 202 } 203 204 static const char *srp_target_info(struct Scsi_Host *host) 205 { 206 return host_to_target(host)->target_name; 207 } 208 209 static int srp_target_is_topspin(struct srp_target_port *target) 210 { 211 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad }; 212 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d }; 213 214 return topspin_workarounds && 215 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) || 216 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui)); 217 } 218 219 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size, 220 gfp_t gfp_mask, 221 enum dma_data_direction direction) 222 { 223 struct srp_iu *iu; 224 225 iu = kmalloc(sizeof *iu, gfp_mask); 226 if (!iu) 227 goto out; 228 229 iu->buf = kzalloc(size, gfp_mask); 230 if (!iu->buf) 231 goto out_free_iu; 232 233 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size, 234 direction); 235 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma)) 236 goto out_free_buf; 237 238 iu->size = size; 239 iu->direction = direction; 240 241 return iu; 242 243 out_free_buf: 244 kfree(iu->buf); 245 out_free_iu: 246 kfree(iu); 247 out: 248 return NULL; 249 } 250 251 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu) 252 { 253 if (!iu) 254 return; 255 256 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size, 257 iu->direction); 258 kfree(iu->buf); 259 kfree(iu); 260 } 261 262 static void srp_qp_event(struct ib_event *event, void *context) 263 { 264 pr_debug("QP event %s (%d)\n", 265 ib_event_msg(event->event), event->event); 266 } 267 268 static int srp_init_qp(struct srp_target_port *target, 269 struct ib_qp *qp) 270 { 271 struct ib_qp_attr *attr; 272 int ret; 273 274 attr = kmalloc(sizeof *attr, GFP_KERNEL); 275 if (!attr) 276 return -ENOMEM; 277 278 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev, 279 target->srp_host->port, 280 be16_to_cpu(target->pkey), 281 &attr->pkey_index); 282 if (ret) 283 goto out; 284 285 attr->qp_state = IB_QPS_INIT; 286 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ | 287 IB_ACCESS_REMOTE_WRITE); 288 attr->port_num = target->srp_host->port; 289 290 ret = ib_modify_qp(qp, attr, 291 IB_QP_STATE | 292 IB_QP_PKEY_INDEX | 293 IB_QP_ACCESS_FLAGS | 294 IB_QP_PORT); 295 296 out: 297 kfree(attr); 298 return ret; 299 } 300 301 static int srp_new_cm_id(struct srp_rdma_ch *ch) 302 { 303 struct srp_target_port *target = ch->target; 304 struct ib_cm_id *new_cm_id; 305 306 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev, 307 srp_cm_handler, ch); 308 if (IS_ERR(new_cm_id)) 309 return PTR_ERR(new_cm_id); 310 311 if (ch->cm_id) 312 ib_destroy_cm_id(ch->cm_id); 313 ch->cm_id = new_cm_id; 314 ch->path.sgid = target->sgid; 315 ch->path.dgid = target->orig_dgid; 316 ch->path.pkey = target->pkey; 317 ch->path.service_id = target->service_id; 318 319 return 0; 320 } 321 322 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target) 323 { 324 struct srp_device *dev = target->srp_host->srp_dev; 325 struct ib_fmr_pool_param fmr_param; 326 327 memset(&fmr_param, 0, sizeof(fmr_param)); 328 fmr_param.pool_size = target->mr_pool_size; 329 fmr_param.dirty_watermark = fmr_param.pool_size / 4; 330 fmr_param.cache = 1; 331 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr; 332 fmr_param.page_shift = ilog2(dev->mr_page_size); 333 fmr_param.access = (IB_ACCESS_LOCAL_WRITE | 334 IB_ACCESS_REMOTE_WRITE | 335 IB_ACCESS_REMOTE_READ); 336 337 return ib_create_fmr_pool(dev->pd, &fmr_param); 338 } 339 340 /** 341 * srp_destroy_fr_pool() - free the resources owned by a pool 342 * @pool: Fast registration pool to be destroyed. 343 */ 344 static void srp_destroy_fr_pool(struct srp_fr_pool *pool) 345 { 346 int i; 347 struct srp_fr_desc *d; 348 349 if (!pool) 350 return; 351 352 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 353 if (d->mr) 354 ib_dereg_mr(d->mr); 355 } 356 kfree(pool); 357 } 358 359 /** 360 * srp_create_fr_pool() - allocate and initialize a pool for fast registration 361 * @device: IB device to allocate fast registration descriptors for. 362 * @pd: Protection domain associated with the FR descriptors. 363 * @pool_size: Number of descriptors to allocate. 364 * @max_page_list_len: Maximum fast registration work request page list length. 365 */ 366 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device, 367 struct ib_pd *pd, int pool_size, 368 int max_page_list_len) 369 { 370 struct srp_fr_pool *pool; 371 struct srp_fr_desc *d; 372 struct ib_mr *mr; 373 int i, ret = -EINVAL; 374 enum ib_mr_type mr_type; 375 376 if (pool_size <= 0) 377 goto err; 378 ret = -ENOMEM; 379 pool = kzalloc(sizeof(struct srp_fr_pool) + 380 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL); 381 if (!pool) 382 goto err; 383 pool->size = pool_size; 384 pool->max_page_list_len = max_page_list_len; 385 spin_lock_init(&pool->lock); 386 INIT_LIST_HEAD(&pool->free_list); 387 388 if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG) 389 mr_type = IB_MR_TYPE_SG_GAPS; 390 else 391 mr_type = IB_MR_TYPE_MEM_REG; 392 393 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 394 mr = ib_alloc_mr(pd, mr_type, max_page_list_len); 395 if (IS_ERR(mr)) { 396 ret = PTR_ERR(mr); 397 if (ret == -ENOMEM) 398 pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n", 399 dev_name(&device->dev)); 400 goto destroy_pool; 401 } 402 d->mr = mr; 403 list_add_tail(&d->entry, &pool->free_list); 404 } 405 406 out: 407 return pool; 408 409 destroy_pool: 410 srp_destroy_fr_pool(pool); 411 412 err: 413 pool = ERR_PTR(ret); 414 goto out; 415 } 416 417 /** 418 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration 419 * @pool: Pool to obtain descriptor from. 420 */ 421 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool) 422 { 423 struct srp_fr_desc *d = NULL; 424 unsigned long flags; 425 426 spin_lock_irqsave(&pool->lock, flags); 427 if (!list_empty(&pool->free_list)) { 428 d = list_first_entry(&pool->free_list, typeof(*d), entry); 429 list_del(&d->entry); 430 } 431 spin_unlock_irqrestore(&pool->lock, flags); 432 433 return d; 434 } 435 436 /** 437 * srp_fr_pool_put() - put an FR descriptor back in the free list 438 * @pool: Pool the descriptor was allocated from. 439 * @desc: Pointer to an array of fast registration descriptor pointers. 440 * @n: Number of descriptors to put back. 441 * 442 * Note: The caller must already have queued an invalidation request for 443 * desc->mr->rkey before calling this function. 444 */ 445 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc, 446 int n) 447 { 448 unsigned long flags; 449 int i; 450 451 spin_lock_irqsave(&pool->lock, flags); 452 for (i = 0; i < n; i++) 453 list_add(&desc[i]->entry, &pool->free_list); 454 spin_unlock_irqrestore(&pool->lock, flags); 455 } 456 457 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target) 458 { 459 struct srp_device *dev = target->srp_host->srp_dev; 460 461 return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size, 462 dev->max_pages_per_mr); 463 } 464 465 /** 466 * srp_destroy_qp() - destroy an RDMA queue pair 467 * @qp: RDMA queue pair. 468 * 469 * Drain the qp before destroying it. This avoids that the receive 470 * completion handler can access the queue pair while it is 471 * being destroyed. 472 */ 473 static void srp_destroy_qp(struct ib_qp *qp) 474 { 475 ib_drain_rq(qp); 476 ib_destroy_qp(qp); 477 } 478 479 static int srp_create_ch_ib(struct srp_rdma_ch *ch) 480 { 481 struct srp_target_port *target = ch->target; 482 struct srp_device *dev = target->srp_host->srp_dev; 483 struct ib_qp_init_attr *init_attr; 484 struct ib_cq *recv_cq, *send_cq; 485 struct ib_qp *qp; 486 struct ib_fmr_pool *fmr_pool = NULL; 487 struct srp_fr_pool *fr_pool = NULL; 488 const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2; 489 int ret; 490 491 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL); 492 if (!init_attr) 493 return -ENOMEM; 494 495 /* queue_size + 1 for ib_drain_rq() */ 496 recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1, 497 ch->comp_vector, IB_POLL_SOFTIRQ); 498 if (IS_ERR(recv_cq)) { 499 ret = PTR_ERR(recv_cq); 500 goto err; 501 } 502 503 send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size, 504 ch->comp_vector, IB_POLL_DIRECT); 505 if (IS_ERR(send_cq)) { 506 ret = PTR_ERR(send_cq); 507 goto err_recv_cq; 508 } 509 510 init_attr->event_handler = srp_qp_event; 511 init_attr->cap.max_send_wr = m * target->queue_size; 512 init_attr->cap.max_recv_wr = target->queue_size + 1; 513 init_attr->cap.max_recv_sge = 1; 514 init_attr->cap.max_send_sge = 1; 515 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 516 init_attr->qp_type = IB_QPT_RC; 517 init_attr->send_cq = send_cq; 518 init_attr->recv_cq = recv_cq; 519 520 qp = ib_create_qp(dev->pd, init_attr); 521 if (IS_ERR(qp)) { 522 ret = PTR_ERR(qp); 523 goto err_send_cq; 524 } 525 526 ret = srp_init_qp(target, qp); 527 if (ret) 528 goto err_qp; 529 530 if (dev->use_fast_reg) { 531 fr_pool = srp_alloc_fr_pool(target); 532 if (IS_ERR(fr_pool)) { 533 ret = PTR_ERR(fr_pool); 534 shost_printk(KERN_WARNING, target->scsi_host, PFX 535 "FR pool allocation failed (%d)\n", ret); 536 goto err_qp; 537 } 538 } else if (dev->use_fmr) { 539 fmr_pool = srp_alloc_fmr_pool(target); 540 if (IS_ERR(fmr_pool)) { 541 ret = PTR_ERR(fmr_pool); 542 shost_printk(KERN_WARNING, target->scsi_host, PFX 543 "FMR pool allocation failed (%d)\n", ret); 544 goto err_qp; 545 } 546 } 547 548 if (ch->qp) 549 srp_destroy_qp(ch->qp); 550 if (ch->recv_cq) 551 ib_free_cq(ch->recv_cq); 552 if (ch->send_cq) 553 ib_free_cq(ch->send_cq); 554 555 ch->qp = qp; 556 ch->recv_cq = recv_cq; 557 ch->send_cq = send_cq; 558 559 if (dev->use_fast_reg) { 560 if (ch->fr_pool) 561 srp_destroy_fr_pool(ch->fr_pool); 562 ch->fr_pool = fr_pool; 563 } else if (dev->use_fmr) { 564 if (ch->fmr_pool) 565 ib_destroy_fmr_pool(ch->fmr_pool); 566 ch->fmr_pool = fmr_pool; 567 } 568 569 kfree(init_attr); 570 return 0; 571 572 err_qp: 573 srp_destroy_qp(qp); 574 575 err_send_cq: 576 ib_free_cq(send_cq); 577 578 err_recv_cq: 579 ib_free_cq(recv_cq); 580 581 err: 582 kfree(init_attr); 583 return ret; 584 } 585 586 /* 587 * Note: this function may be called without srp_alloc_iu_bufs() having been 588 * invoked. Hence the ch->[rt]x_ring checks. 589 */ 590 static void srp_free_ch_ib(struct srp_target_port *target, 591 struct srp_rdma_ch *ch) 592 { 593 struct srp_device *dev = target->srp_host->srp_dev; 594 int i; 595 596 if (!ch->target) 597 return; 598 599 if (ch->cm_id) { 600 ib_destroy_cm_id(ch->cm_id); 601 ch->cm_id = NULL; 602 } 603 604 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */ 605 if (!ch->qp) 606 return; 607 608 if (dev->use_fast_reg) { 609 if (ch->fr_pool) 610 srp_destroy_fr_pool(ch->fr_pool); 611 } else if (dev->use_fmr) { 612 if (ch->fmr_pool) 613 ib_destroy_fmr_pool(ch->fmr_pool); 614 } 615 616 srp_destroy_qp(ch->qp); 617 ib_free_cq(ch->send_cq); 618 ib_free_cq(ch->recv_cq); 619 620 /* 621 * Avoid that the SCSI error handler tries to use this channel after 622 * it has been freed. The SCSI error handler can namely continue 623 * trying to perform recovery actions after scsi_remove_host() 624 * returned. 625 */ 626 ch->target = NULL; 627 628 ch->qp = NULL; 629 ch->send_cq = ch->recv_cq = NULL; 630 631 if (ch->rx_ring) { 632 for (i = 0; i < target->queue_size; ++i) 633 srp_free_iu(target->srp_host, ch->rx_ring[i]); 634 kfree(ch->rx_ring); 635 ch->rx_ring = NULL; 636 } 637 if (ch->tx_ring) { 638 for (i = 0; i < target->queue_size; ++i) 639 srp_free_iu(target->srp_host, ch->tx_ring[i]); 640 kfree(ch->tx_ring); 641 ch->tx_ring = NULL; 642 } 643 } 644 645 static void srp_path_rec_completion(int status, 646 struct ib_sa_path_rec *pathrec, 647 void *ch_ptr) 648 { 649 struct srp_rdma_ch *ch = ch_ptr; 650 struct srp_target_port *target = ch->target; 651 652 ch->status = status; 653 if (status) 654 shost_printk(KERN_ERR, target->scsi_host, 655 PFX "Got failed path rec status %d\n", status); 656 else 657 ch->path = *pathrec; 658 complete(&ch->done); 659 } 660 661 static int srp_lookup_path(struct srp_rdma_ch *ch) 662 { 663 struct srp_target_port *target = ch->target; 664 int ret; 665 666 ch->path.numb_path = 1; 667 668 init_completion(&ch->done); 669 670 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client, 671 target->srp_host->srp_dev->dev, 672 target->srp_host->port, 673 &ch->path, 674 IB_SA_PATH_REC_SERVICE_ID | 675 IB_SA_PATH_REC_DGID | 676 IB_SA_PATH_REC_SGID | 677 IB_SA_PATH_REC_NUMB_PATH | 678 IB_SA_PATH_REC_PKEY, 679 SRP_PATH_REC_TIMEOUT_MS, 680 GFP_KERNEL, 681 srp_path_rec_completion, 682 ch, &ch->path_query); 683 if (ch->path_query_id < 0) 684 return ch->path_query_id; 685 686 ret = wait_for_completion_interruptible(&ch->done); 687 if (ret < 0) 688 return ret; 689 690 if (ch->status < 0) 691 shost_printk(KERN_WARNING, target->scsi_host, 692 PFX "Path record query failed\n"); 693 694 return ch->status; 695 } 696 697 static int srp_send_req(struct srp_rdma_ch *ch, bool multich) 698 { 699 struct srp_target_port *target = ch->target; 700 struct { 701 struct ib_cm_req_param param; 702 struct srp_login_req priv; 703 } *req = NULL; 704 int status; 705 706 req = kzalloc(sizeof *req, GFP_KERNEL); 707 if (!req) 708 return -ENOMEM; 709 710 req->param.primary_path = &ch->path; 711 req->param.alternate_path = NULL; 712 req->param.service_id = target->service_id; 713 req->param.qp_num = ch->qp->qp_num; 714 req->param.qp_type = ch->qp->qp_type; 715 req->param.private_data = &req->priv; 716 req->param.private_data_len = sizeof req->priv; 717 req->param.flow_control = 1; 718 719 get_random_bytes(&req->param.starting_psn, 4); 720 req->param.starting_psn &= 0xffffff; 721 722 /* 723 * Pick some arbitrary defaults here; we could make these 724 * module parameters if anyone cared about setting them. 725 */ 726 req->param.responder_resources = 4; 727 req->param.remote_cm_response_timeout = 20; 728 req->param.local_cm_response_timeout = 20; 729 req->param.retry_count = target->tl_retry_count; 730 req->param.rnr_retry_count = 7; 731 req->param.max_cm_retries = 15; 732 733 req->priv.opcode = SRP_LOGIN_REQ; 734 req->priv.tag = 0; 735 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len); 736 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 737 SRP_BUF_FORMAT_INDIRECT); 738 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI : 739 SRP_MULTICHAN_SINGLE); 740 /* 741 * In the published SRP specification (draft rev. 16a), the 742 * port identifier format is 8 bytes of ID extension followed 743 * by 8 bytes of GUID. Older drafts put the two halves in the 744 * opposite order, so that the GUID comes first. 745 * 746 * Targets conforming to these obsolete drafts can be 747 * recognized by the I/O Class they report. 748 */ 749 if (target->io_class == SRP_REV10_IB_IO_CLASS) { 750 memcpy(req->priv.initiator_port_id, 751 &target->sgid.global.interface_id, 8); 752 memcpy(req->priv.initiator_port_id + 8, 753 &target->initiator_ext, 8); 754 memcpy(req->priv.target_port_id, &target->ioc_guid, 8); 755 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8); 756 } else { 757 memcpy(req->priv.initiator_port_id, 758 &target->initiator_ext, 8); 759 memcpy(req->priv.initiator_port_id + 8, 760 &target->sgid.global.interface_id, 8); 761 memcpy(req->priv.target_port_id, &target->id_ext, 8); 762 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8); 763 } 764 765 /* 766 * Topspin/Cisco SRP targets will reject our login unless we 767 * zero out the first 8 bytes of our initiator port ID and set 768 * the second 8 bytes to the local node GUID. 769 */ 770 if (srp_target_is_topspin(target)) { 771 shost_printk(KERN_DEBUG, target->scsi_host, 772 PFX "Topspin/Cisco initiator port ID workaround " 773 "activated for target GUID %016llx\n", 774 be64_to_cpu(target->ioc_guid)); 775 memset(req->priv.initiator_port_id, 0, 8); 776 memcpy(req->priv.initiator_port_id + 8, 777 &target->srp_host->srp_dev->dev->node_guid, 8); 778 } 779 780 status = ib_send_cm_req(ch->cm_id, &req->param); 781 782 kfree(req); 783 784 return status; 785 } 786 787 static bool srp_queue_remove_work(struct srp_target_port *target) 788 { 789 bool changed = false; 790 791 spin_lock_irq(&target->lock); 792 if (target->state != SRP_TARGET_REMOVED) { 793 target->state = SRP_TARGET_REMOVED; 794 changed = true; 795 } 796 spin_unlock_irq(&target->lock); 797 798 if (changed) 799 queue_work(srp_remove_wq, &target->remove_work); 800 801 return changed; 802 } 803 804 static void srp_disconnect_target(struct srp_target_port *target) 805 { 806 struct srp_rdma_ch *ch; 807 int i; 808 809 /* XXX should send SRP_I_LOGOUT request */ 810 811 for (i = 0; i < target->ch_count; i++) { 812 ch = &target->ch[i]; 813 ch->connected = false; 814 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) { 815 shost_printk(KERN_DEBUG, target->scsi_host, 816 PFX "Sending CM DREQ failed\n"); 817 } 818 } 819 } 820 821 static void srp_free_req_data(struct srp_target_port *target, 822 struct srp_rdma_ch *ch) 823 { 824 struct srp_device *dev = target->srp_host->srp_dev; 825 struct ib_device *ibdev = dev->dev; 826 struct srp_request *req; 827 int i; 828 829 if (!ch->req_ring) 830 return; 831 832 for (i = 0; i < target->req_ring_size; ++i) { 833 req = &ch->req_ring[i]; 834 if (dev->use_fast_reg) { 835 kfree(req->fr_list); 836 } else { 837 kfree(req->fmr_list); 838 kfree(req->map_page); 839 } 840 if (req->indirect_dma_addr) { 841 ib_dma_unmap_single(ibdev, req->indirect_dma_addr, 842 target->indirect_size, 843 DMA_TO_DEVICE); 844 } 845 kfree(req->indirect_desc); 846 } 847 848 kfree(ch->req_ring); 849 ch->req_ring = NULL; 850 } 851 852 static int srp_alloc_req_data(struct srp_rdma_ch *ch) 853 { 854 struct srp_target_port *target = ch->target; 855 struct srp_device *srp_dev = target->srp_host->srp_dev; 856 struct ib_device *ibdev = srp_dev->dev; 857 struct srp_request *req; 858 void *mr_list; 859 dma_addr_t dma_addr; 860 int i, ret = -ENOMEM; 861 862 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring), 863 GFP_KERNEL); 864 if (!ch->req_ring) 865 goto out; 866 867 for (i = 0; i < target->req_ring_size; ++i) { 868 req = &ch->req_ring[i]; 869 mr_list = kmalloc(target->mr_per_cmd * sizeof(void *), 870 GFP_KERNEL); 871 if (!mr_list) 872 goto out; 873 if (srp_dev->use_fast_reg) { 874 req->fr_list = mr_list; 875 } else { 876 req->fmr_list = mr_list; 877 req->map_page = kmalloc(srp_dev->max_pages_per_mr * 878 sizeof(void *), GFP_KERNEL); 879 if (!req->map_page) 880 goto out; 881 } 882 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL); 883 if (!req->indirect_desc) 884 goto out; 885 886 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc, 887 target->indirect_size, 888 DMA_TO_DEVICE); 889 if (ib_dma_mapping_error(ibdev, dma_addr)) 890 goto out; 891 892 req->indirect_dma_addr = dma_addr; 893 } 894 ret = 0; 895 896 out: 897 return ret; 898 } 899 900 /** 901 * srp_del_scsi_host_attr() - Remove attributes defined in the host template. 902 * @shost: SCSI host whose attributes to remove from sysfs. 903 * 904 * Note: Any attributes defined in the host template and that did not exist 905 * before invocation of this function will be ignored. 906 */ 907 static void srp_del_scsi_host_attr(struct Scsi_Host *shost) 908 { 909 struct device_attribute **attr; 910 911 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr) 912 device_remove_file(&shost->shost_dev, *attr); 913 } 914 915 static void srp_remove_target(struct srp_target_port *target) 916 { 917 struct srp_rdma_ch *ch; 918 int i; 919 920 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 921 922 srp_del_scsi_host_attr(target->scsi_host); 923 srp_rport_get(target->rport); 924 srp_remove_host(target->scsi_host); 925 scsi_remove_host(target->scsi_host); 926 srp_stop_rport_timers(target->rport); 927 srp_disconnect_target(target); 928 for (i = 0; i < target->ch_count; i++) { 929 ch = &target->ch[i]; 930 srp_free_ch_ib(target, ch); 931 } 932 cancel_work_sync(&target->tl_err_work); 933 srp_rport_put(target->rport); 934 for (i = 0; i < target->ch_count; i++) { 935 ch = &target->ch[i]; 936 srp_free_req_data(target, ch); 937 } 938 kfree(target->ch); 939 target->ch = NULL; 940 941 spin_lock(&target->srp_host->target_lock); 942 list_del(&target->list); 943 spin_unlock(&target->srp_host->target_lock); 944 945 scsi_host_put(target->scsi_host); 946 } 947 948 static void srp_remove_work(struct work_struct *work) 949 { 950 struct srp_target_port *target = 951 container_of(work, struct srp_target_port, remove_work); 952 953 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 954 955 srp_remove_target(target); 956 } 957 958 static void srp_rport_delete(struct srp_rport *rport) 959 { 960 struct srp_target_port *target = rport->lld_data; 961 962 srp_queue_remove_work(target); 963 } 964 965 /** 966 * srp_connected_ch() - number of connected channels 967 * @target: SRP target port. 968 */ 969 static int srp_connected_ch(struct srp_target_port *target) 970 { 971 int i, c = 0; 972 973 for (i = 0; i < target->ch_count; i++) 974 c += target->ch[i].connected; 975 976 return c; 977 } 978 979 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich) 980 { 981 struct srp_target_port *target = ch->target; 982 int ret; 983 984 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0); 985 986 ret = srp_lookup_path(ch); 987 if (ret) 988 goto out; 989 990 while (1) { 991 init_completion(&ch->done); 992 ret = srp_send_req(ch, multich); 993 if (ret) 994 goto out; 995 ret = wait_for_completion_interruptible(&ch->done); 996 if (ret < 0) 997 goto out; 998 999 /* 1000 * The CM event handling code will set status to 1001 * SRP_PORT_REDIRECT if we get a port redirect REJ 1002 * back, or SRP_DLID_REDIRECT if we get a lid/qp 1003 * redirect REJ back. 1004 */ 1005 ret = ch->status; 1006 switch (ret) { 1007 case 0: 1008 ch->connected = true; 1009 goto out; 1010 1011 case SRP_PORT_REDIRECT: 1012 ret = srp_lookup_path(ch); 1013 if (ret) 1014 goto out; 1015 break; 1016 1017 case SRP_DLID_REDIRECT: 1018 break; 1019 1020 case SRP_STALE_CONN: 1021 shost_printk(KERN_ERR, target->scsi_host, PFX 1022 "giving up on stale connection\n"); 1023 ret = -ECONNRESET; 1024 goto out; 1025 1026 default: 1027 goto out; 1028 } 1029 } 1030 1031 out: 1032 return ret <= 0 ? ret : -ENODEV; 1033 } 1034 1035 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc) 1036 { 1037 srp_handle_qp_err(cq, wc, "INV RKEY"); 1038 } 1039 1040 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch, 1041 u32 rkey) 1042 { 1043 struct ib_send_wr *bad_wr; 1044 struct ib_send_wr wr = { 1045 .opcode = IB_WR_LOCAL_INV, 1046 .next = NULL, 1047 .num_sge = 0, 1048 .send_flags = 0, 1049 .ex.invalidate_rkey = rkey, 1050 }; 1051 1052 wr.wr_cqe = &req->reg_cqe; 1053 req->reg_cqe.done = srp_inv_rkey_err_done; 1054 return ib_post_send(ch->qp, &wr, &bad_wr); 1055 } 1056 1057 static void srp_unmap_data(struct scsi_cmnd *scmnd, 1058 struct srp_rdma_ch *ch, 1059 struct srp_request *req) 1060 { 1061 struct srp_target_port *target = ch->target; 1062 struct srp_device *dev = target->srp_host->srp_dev; 1063 struct ib_device *ibdev = dev->dev; 1064 int i, res; 1065 1066 if (!scsi_sglist(scmnd) || 1067 (scmnd->sc_data_direction != DMA_TO_DEVICE && 1068 scmnd->sc_data_direction != DMA_FROM_DEVICE)) 1069 return; 1070 1071 if (dev->use_fast_reg) { 1072 struct srp_fr_desc **pfr; 1073 1074 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) { 1075 res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey); 1076 if (res < 0) { 1077 shost_printk(KERN_ERR, target->scsi_host, PFX 1078 "Queueing INV WR for rkey %#x failed (%d)\n", 1079 (*pfr)->mr->rkey, res); 1080 queue_work(system_long_wq, 1081 &target->tl_err_work); 1082 } 1083 } 1084 if (req->nmdesc) 1085 srp_fr_pool_put(ch->fr_pool, req->fr_list, 1086 req->nmdesc); 1087 } else if (dev->use_fmr) { 1088 struct ib_pool_fmr **pfmr; 1089 1090 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++) 1091 ib_fmr_pool_unmap(*pfmr); 1092 } 1093 1094 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd), 1095 scmnd->sc_data_direction); 1096 } 1097 1098 /** 1099 * srp_claim_req - Take ownership of the scmnd associated with a request. 1100 * @ch: SRP RDMA channel. 1101 * @req: SRP request. 1102 * @sdev: If not NULL, only take ownership for this SCSI device. 1103 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take 1104 * ownership of @req->scmnd if it equals @scmnd. 1105 * 1106 * Return value: 1107 * Either NULL or a pointer to the SCSI command the caller became owner of. 1108 */ 1109 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch, 1110 struct srp_request *req, 1111 struct scsi_device *sdev, 1112 struct scsi_cmnd *scmnd) 1113 { 1114 unsigned long flags; 1115 1116 spin_lock_irqsave(&ch->lock, flags); 1117 if (req->scmnd && 1118 (!sdev || req->scmnd->device == sdev) && 1119 (!scmnd || req->scmnd == scmnd)) { 1120 scmnd = req->scmnd; 1121 req->scmnd = NULL; 1122 } else { 1123 scmnd = NULL; 1124 } 1125 spin_unlock_irqrestore(&ch->lock, flags); 1126 1127 return scmnd; 1128 } 1129 1130 /** 1131 * srp_free_req() - Unmap data and adjust ch->req_lim. 1132 * @ch: SRP RDMA channel. 1133 * @req: Request to be freed. 1134 * @scmnd: SCSI command associated with @req. 1135 * @req_lim_delta: Amount to be added to @target->req_lim. 1136 */ 1137 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req, 1138 struct scsi_cmnd *scmnd, s32 req_lim_delta) 1139 { 1140 unsigned long flags; 1141 1142 srp_unmap_data(scmnd, ch, req); 1143 1144 spin_lock_irqsave(&ch->lock, flags); 1145 ch->req_lim += req_lim_delta; 1146 spin_unlock_irqrestore(&ch->lock, flags); 1147 } 1148 1149 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req, 1150 struct scsi_device *sdev, int result) 1151 { 1152 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL); 1153 1154 if (scmnd) { 1155 srp_free_req(ch, req, scmnd, 0); 1156 scmnd->result = result; 1157 scmnd->scsi_done(scmnd); 1158 } 1159 } 1160 1161 static void srp_terminate_io(struct srp_rport *rport) 1162 { 1163 struct srp_target_port *target = rport->lld_data; 1164 struct srp_rdma_ch *ch; 1165 struct Scsi_Host *shost = target->scsi_host; 1166 struct scsi_device *sdev; 1167 int i, j; 1168 1169 /* 1170 * Invoking srp_terminate_io() while srp_queuecommand() is running 1171 * is not safe. Hence the warning statement below. 1172 */ 1173 shost_for_each_device(sdev, shost) 1174 WARN_ON_ONCE(sdev->request_queue->request_fn_active); 1175 1176 for (i = 0; i < target->ch_count; i++) { 1177 ch = &target->ch[i]; 1178 1179 for (j = 0; j < target->req_ring_size; ++j) { 1180 struct srp_request *req = &ch->req_ring[j]; 1181 1182 srp_finish_req(ch, req, NULL, 1183 DID_TRANSPORT_FAILFAST << 16); 1184 } 1185 } 1186 } 1187 1188 /* 1189 * It is up to the caller to ensure that srp_rport_reconnect() calls are 1190 * serialized and that no concurrent srp_queuecommand(), srp_abort(), 1191 * srp_reset_device() or srp_reset_host() calls will occur while this function 1192 * is in progress. One way to realize that is not to call this function 1193 * directly but to call srp_reconnect_rport() instead since that last function 1194 * serializes calls of this function via rport->mutex and also blocks 1195 * srp_queuecommand() calls before invoking this function. 1196 */ 1197 static int srp_rport_reconnect(struct srp_rport *rport) 1198 { 1199 struct srp_target_port *target = rport->lld_data; 1200 struct srp_rdma_ch *ch; 1201 int i, j, ret = 0; 1202 bool multich = false; 1203 1204 srp_disconnect_target(target); 1205 1206 if (target->state == SRP_TARGET_SCANNING) 1207 return -ENODEV; 1208 1209 /* 1210 * Now get a new local CM ID so that we avoid confusing the target in 1211 * case things are really fouled up. Doing so also ensures that all CM 1212 * callbacks will have finished before a new QP is allocated. 1213 */ 1214 for (i = 0; i < target->ch_count; i++) { 1215 ch = &target->ch[i]; 1216 ret += srp_new_cm_id(ch); 1217 } 1218 for (i = 0; i < target->ch_count; i++) { 1219 ch = &target->ch[i]; 1220 for (j = 0; j < target->req_ring_size; ++j) { 1221 struct srp_request *req = &ch->req_ring[j]; 1222 1223 srp_finish_req(ch, req, NULL, DID_RESET << 16); 1224 } 1225 } 1226 for (i = 0; i < target->ch_count; i++) { 1227 ch = &target->ch[i]; 1228 /* 1229 * Whether or not creating a new CM ID succeeded, create a new 1230 * QP. This guarantees that all completion callback function 1231 * invocations have finished before request resetting starts. 1232 */ 1233 ret += srp_create_ch_ib(ch); 1234 1235 INIT_LIST_HEAD(&ch->free_tx); 1236 for (j = 0; j < target->queue_size; ++j) 1237 list_add(&ch->tx_ring[j]->list, &ch->free_tx); 1238 } 1239 1240 target->qp_in_error = false; 1241 1242 for (i = 0; i < target->ch_count; i++) { 1243 ch = &target->ch[i]; 1244 if (ret) 1245 break; 1246 ret = srp_connect_ch(ch, multich); 1247 multich = true; 1248 } 1249 1250 if (ret == 0) 1251 shost_printk(KERN_INFO, target->scsi_host, 1252 PFX "reconnect succeeded\n"); 1253 1254 return ret; 1255 } 1256 1257 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr, 1258 unsigned int dma_len, u32 rkey) 1259 { 1260 struct srp_direct_buf *desc = state->desc; 1261 1262 WARN_ON_ONCE(!dma_len); 1263 1264 desc->va = cpu_to_be64(dma_addr); 1265 desc->key = cpu_to_be32(rkey); 1266 desc->len = cpu_to_be32(dma_len); 1267 1268 state->total_len += dma_len; 1269 state->desc++; 1270 state->ndesc++; 1271 } 1272 1273 static int srp_map_finish_fmr(struct srp_map_state *state, 1274 struct srp_rdma_ch *ch) 1275 { 1276 struct srp_target_port *target = ch->target; 1277 struct srp_device *dev = target->srp_host->srp_dev; 1278 struct ib_pd *pd = target->pd; 1279 struct ib_pool_fmr *fmr; 1280 u64 io_addr = 0; 1281 1282 if (state->fmr.next >= state->fmr.end) { 1283 shost_printk(KERN_ERR, ch->target->scsi_host, 1284 PFX "Out of MRs (mr_per_cmd = %d)\n", 1285 ch->target->mr_per_cmd); 1286 return -ENOMEM; 1287 } 1288 1289 WARN_ON_ONCE(!dev->use_fmr); 1290 1291 if (state->npages == 0) 1292 return 0; 1293 1294 if (state->npages == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1295 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1296 pd->unsafe_global_rkey); 1297 goto reset_state; 1298 } 1299 1300 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages, 1301 state->npages, io_addr); 1302 if (IS_ERR(fmr)) 1303 return PTR_ERR(fmr); 1304 1305 *state->fmr.next++ = fmr; 1306 state->nmdesc++; 1307 1308 srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask, 1309 state->dma_len, fmr->fmr->rkey); 1310 1311 reset_state: 1312 state->npages = 0; 1313 state->dma_len = 0; 1314 1315 return 0; 1316 } 1317 1318 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc) 1319 { 1320 srp_handle_qp_err(cq, wc, "FAST REG"); 1321 } 1322 1323 /* 1324 * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset 1325 * where to start in the first element. If sg_offset_p != NULL then 1326 * *sg_offset_p is updated to the offset in state->sg[retval] of the first 1327 * byte that has not yet been mapped. 1328 */ 1329 static int srp_map_finish_fr(struct srp_map_state *state, 1330 struct srp_request *req, 1331 struct srp_rdma_ch *ch, int sg_nents, 1332 unsigned int *sg_offset_p) 1333 { 1334 struct srp_target_port *target = ch->target; 1335 struct srp_device *dev = target->srp_host->srp_dev; 1336 struct ib_pd *pd = target->pd; 1337 struct ib_send_wr *bad_wr; 1338 struct ib_reg_wr wr; 1339 struct srp_fr_desc *desc; 1340 u32 rkey; 1341 int n, err; 1342 1343 if (state->fr.next >= state->fr.end) { 1344 shost_printk(KERN_ERR, ch->target->scsi_host, 1345 PFX "Out of MRs (mr_per_cmd = %d)\n", 1346 ch->target->mr_per_cmd); 1347 return -ENOMEM; 1348 } 1349 1350 WARN_ON_ONCE(!dev->use_fast_reg); 1351 1352 if (sg_nents == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1353 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 1354 1355 srp_map_desc(state, sg_dma_address(state->sg) + sg_offset, 1356 sg_dma_len(state->sg) - sg_offset, 1357 pd->unsafe_global_rkey); 1358 if (sg_offset_p) 1359 *sg_offset_p = 0; 1360 return 1; 1361 } 1362 1363 desc = srp_fr_pool_get(ch->fr_pool); 1364 if (!desc) 1365 return -ENOMEM; 1366 1367 rkey = ib_inc_rkey(desc->mr->rkey); 1368 ib_update_fast_reg_key(desc->mr, rkey); 1369 1370 n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p, 1371 dev->mr_page_size); 1372 if (unlikely(n < 0)) { 1373 srp_fr_pool_put(ch->fr_pool, &desc, 1); 1374 pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n", 1375 dev_name(&req->scmnd->device->sdev_gendev), sg_nents, 1376 sg_offset_p ? *sg_offset_p : -1, n); 1377 return n; 1378 } 1379 1380 WARN_ON_ONCE(desc->mr->length == 0); 1381 1382 req->reg_cqe.done = srp_reg_mr_err_done; 1383 1384 wr.wr.next = NULL; 1385 wr.wr.opcode = IB_WR_REG_MR; 1386 wr.wr.wr_cqe = &req->reg_cqe; 1387 wr.wr.num_sge = 0; 1388 wr.wr.send_flags = 0; 1389 wr.mr = desc->mr; 1390 wr.key = desc->mr->rkey; 1391 wr.access = (IB_ACCESS_LOCAL_WRITE | 1392 IB_ACCESS_REMOTE_READ | 1393 IB_ACCESS_REMOTE_WRITE); 1394 1395 *state->fr.next++ = desc; 1396 state->nmdesc++; 1397 1398 srp_map_desc(state, desc->mr->iova, 1399 desc->mr->length, desc->mr->rkey); 1400 1401 err = ib_post_send(ch->qp, &wr.wr, &bad_wr); 1402 if (unlikely(err)) { 1403 WARN_ON_ONCE(err == -ENOMEM); 1404 return err; 1405 } 1406 1407 return n; 1408 } 1409 1410 static int srp_map_sg_entry(struct srp_map_state *state, 1411 struct srp_rdma_ch *ch, 1412 struct scatterlist *sg) 1413 { 1414 struct srp_target_port *target = ch->target; 1415 struct srp_device *dev = target->srp_host->srp_dev; 1416 struct ib_device *ibdev = dev->dev; 1417 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg); 1418 unsigned int dma_len = ib_sg_dma_len(ibdev, sg); 1419 unsigned int len = 0; 1420 int ret; 1421 1422 WARN_ON_ONCE(!dma_len); 1423 1424 while (dma_len) { 1425 unsigned offset = dma_addr & ~dev->mr_page_mask; 1426 1427 if (state->npages == dev->max_pages_per_mr || 1428 (state->npages > 0 && offset != 0)) { 1429 ret = srp_map_finish_fmr(state, ch); 1430 if (ret) 1431 return ret; 1432 } 1433 1434 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset); 1435 1436 if (!state->npages) 1437 state->base_dma_addr = dma_addr; 1438 state->pages[state->npages++] = dma_addr & dev->mr_page_mask; 1439 state->dma_len += len; 1440 dma_addr += len; 1441 dma_len -= len; 1442 } 1443 1444 /* 1445 * If the end of the MR is not on a page boundary then we need to 1446 * close it out and start a new one -- we can only merge at page 1447 * boundaries. 1448 */ 1449 ret = 0; 1450 if ((dma_addr & ~dev->mr_page_mask) != 0) 1451 ret = srp_map_finish_fmr(state, ch); 1452 return ret; 1453 } 1454 1455 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch, 1456 struct srp_request *req, struct scatterlist *scat, 1457 int count) 1458 { 1459 struct scatterlist *sg; 1460 int i, ret; 1461 1462 state->pages = req->map_page; 1463 state->fmr.next = req->fmr_list; 1464 state->fmr.end = req->fmr_list + ch->target->mr_per_cmd; 1465 1466 for_each_sg(scat, sg, count, i) { 1467 ret = srp_map_sg_entry(state, ch, sg); 1468 if (ret) 1469 return ret; 1470 } 1471 1472 ret = srp_map_finish_fmr(state, ch); 1473 if (ret) 1474 return ret; 1475 1476 return 0; 1477 } 1478 1479 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch, 1480 struct srp_request *req, struct scatterlist *scat, 1481 int count) 1482 { 1483 unsigned int sg_offset = 0; 1484 1485 state->fr.next = req->fr_list; 1486 state->fr.end = req->fr_list + ch->target->mr_per_cmd; 1487 state->sg = scat; 1488 1489 if (count == 0) 1490 return 0; 1491 1492 while (count) { 1493 int i, n; 1494 1495 n = srp_map_finish_fr(state, req, ch, count, &sg_offset); 1496 if (unlikely(n < 0)) 1497 return n; 1498 1499 count -= n; 1500 for (i = 0; i < n; i++) 1501 state->sg = sg_next(state->sg); 1502 } 1503 1504 return 0; 1505 } 1506 1507 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch, 1508 struct srp_request *req, struct scatterlist *scat, 1509 int count) 1510 { 1511 struct srp_target_port *target = ch->target; 1512 struct srp_device *dev = target->srp_host->srp_dev; 1513 struct scatterlist *sg; 1514 int i; 1515 1516 for_each_sg(scat, sg, count, i) { 1517 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg), 1518 ib_sg_dma_len(dev->dev, sg), 1519 target->pd->unsafe_global_rkey); 1520 } 1521 1522 return 0; 1523 } 1524 1525 /* 1526 * Register the indirect data buffer descriptor with the HCA. 1527 * 1528 * Note: since the indirect data buffer descriptor has been allocated with 1529 * kmalloc() it is guaranteed that this buffer is a physically contiguous 1530 * memory buffer. 1531 */ 1532 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req, 1533 void **next_mr, void **end_mr, u32 idb_len, 1534 __be32 *idb_rkey) 1535 { 1536 struct srp_target_port *target = ch->target; 1537 struct srp_device *dev = target->srp_host->srp_dev; 1538 struct srp_map_state state; 1539 struct srp_direct_buf idb_desc; 1540 u64 idb_pages[1]; 1541 struct scatterlist idb_sg[1]; 1542 int ret; 1543 1544 memset(&state, 0, sizeof(state)); 1545 memset(&idb_desc, 0, sizeof(idb_desc)); 1546 state.gen.next = next_mr; 1547 state.gen.end = end_mr; 1548 state.desc = &idb_desc; 1549 state.base_dma_addr = req->indirect_dma_addr; 1550 state.dma_len = idb_len; 1551 1552 if (dev->use_fast_reg) { 1553 state.sg = idb_sg; 1554 sg_init_one(idb_sg, req->indirect_desc, idb_len); 1555 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */ 1556 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1557 idb_sg->dma_length = idb_sg->length; /* hack^2 */ 1558 #endif 1559 ret = srp_map_finish_fr(&state, req, ch, 1, NULL); 1560 if (ret < 0) 1561 return ret; 1562 WARN_ON_ONCE(ret < 1); 1563 } else if (dev->use_fmr) { 1564 state.pages = idb_pages; 1565 state.pages[0] = (req->indirect_dma_addr & 1566 dev->mr_page_mask); 1567 state.npages = 1; 1568 ret = srp_map_finish_fmr(&state, ch); 1569 if (ret < 0) 1570 return ret; 1571 } else { 1572 return -EINVAL; 1573 } 1574 1575 *idb_rkey = idb_desc.key; 1576 1577 return 0; 1578 } 1579 1580 static void srp_check_mapping(struct srp_map_state *state, 1581 struct srp_rdma_ch *ch, struct srp_request *req, 1582 struct scatterlist *scat, int count) 1583 { 1584 struct srp_device *dev = ch->target->srp_host->srp_dev; 1585 struct srp_fr_desc **pfr; 1586 u64 desc_len = 0, mr_len = 0; 1587 int i; 1588 1589 for (i = 0; i < state->ndesc; i++) 1590 desc_len += be32_to_cpu(req->indirect_desc[i].len); 1591 if (dev->use_fast_reg) 1592 for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++) 1593 mr_len += (*pfr)->mr->length; 1594 else if (dev->use_fmr) 1595 for (i = 0; i < state->nmdesc; i++) 1596 mr_len += be32_to_cpu(req->indirect_desc[i].len); 1597 if (desc_len != scsi_bufflen(req->scmnd) || 1598 mr_len > scsi_bufflen(req->scmnd)) 1599 pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n", 1600 scsi_bufflen(req->scmnd), desc_len, mr_len, 1601 state->ndesc, state->nmdesc); 1602 } 1603 1604 /** 1605 * srp_map_data() - map SCSI data buffer onto an SRP request 1606 * @scmnd: SCSI command to map 1607 * @ch: SRP RDMA channel 1608 * @req: SRP request 1609 * 1610 * Returns the length in bytes of the SRP_CMD IU or a negative value if 1611 * mapping failed. 1612 */ 1613 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch, 1614 struct srp_request *req) 1615 { 1616 struct srp_target_port *target = ch->target; 1617 struct ib_pd *pd = target->pd; 1618 struct scatterlist *scat; 1619 struct srp_cmd *cmd = req->cmd->buf; 1620 int len, nents, count, ret; 1621 struct srp_device *dev; 1622 struct ib_device *ibdev; 1623 struct srp_map_state state; 1624 struct srp_indirect_buf *indirect_hdr; 1625 u32 idb_len, table_len; 1626 __be32 idb_rkey; 1627 u8 fmt; 1628 1629 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE) 1630 return sizeof (struct srp_cmd); 1631 1632 if (scmnd->sc_data_direction != DMA_FROM_DEVICE && 1633 scmnd->sc_data_direction != DMA_TO_DEVICE) { 1634 shost_printk(KERN_WARNING, target->scsi_host, 1635 PFX "Unhandled data direction %d\n", 1636 scmnd->sc_data_direction); 1637 return -EINVAL; 1638 } 1639 1640 nents = scsi_sg_count(scmnd); 1641 scat = scsi_sglist(scmnd); 1642 1643 dev = target->srp_host->srp_dev; 1644 ibdev = dev->dev; 1645 1646 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction); 1647 if (unlikely(count == 0)) 1648 return -EIO; 1649 1650 fmt = SRP_DATA_DESC_DIRECT; 1651 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf); 1652 1653 if (count == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1654 /* 1655 * The midlayer only generated a single gather/scatter 1656 * entry, or DMA mapping coalesced everything to a 1657 * single entry. So a direct descriptor along with 1658 * the DMA MR suffices. 1659 */ 1660 struct srp_direct_buf *buf = (void *) cmd->add_data; 1661 1662 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat)); 1663 buf->key = cpu_to_be32(pd->unsafe_global_rkey); 1664 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat)); 1665 1666 req->nmdesc = 0; 1667 goto map_complete; 1668 } 1669 1670 /* 1671 * We have more than one scatter/gather entry, so build our indirect 1672 * descriptor table, trying to merge as many entries as we can. 1673 */ 1674 indirect_hdr = (void *) cmd->add_data; 1675 1676 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr, 1677 target->indirect_size, DMA_TO_DEVICE); 1678 1679 memset(&state, 0, sizeof(state)); 1680 state.desc = req->indirect_desc; 1681 if (dev->use_fast_reg) 1682 ret = srp_map_sg_fr(&state, ch, req, scat, count); 1683 else if (dev->use_fmr) 1684 ret = srp_map_sg_fmr(&state, ch, req, scat, count); 1685 else 1686 ret = srp_map_sg_dma(&state, ch, req, scat, count); 1687 req->nmdesc = state.nmdesc; 1688 if (ret < 0) 1689 goto unmap; 1690 1691 { 1692 DEFINE_DYNAMIC_DEBUG_METADATA(ddm, 1693 "Memory mapping consistency check"); 1694 if (DYNAMIC_DEBUG_BRANCH(ddm)) 1695 srp_check_mapping(&state, ch, req, scat, count); 1696 } 1697 1698 /* We've mapped the request, now pull as much of the indirect 1699 * descriptor table as we can into the command buffer. If this 1700 * target is not using an external indirect table, we are 1701 * guaranteed to fit into the command, as the SCSI layer won't 1702 * give us more S/G entries than we allow. 1703 */ 1704 if (state.ndesc == 1) { 1705 /* 1706 * Memory registration collapsed the sg-list into one entry, 1707 * so use a direct descriptor. 1708 */ 1709 struct srp_direct_buf *buf = (void *) cmd->add_data; 1710 1711 *buf = req->indirect_desc[0]; 1712 goto map_complete; 1713 } 1714 1715 if (unlikely(target->cmd_sg_cnt < state.ndesc && 1716 !target->allow_ext_sg)) { 1717 shost_printk(KERN_ERR, target->scsi_host, 1718 "Could not fit S/G list into SRP_CMD\n"); 1719 ret = -EIO; 1720 goto unmap; 1721 } 1722 1723 count = min(state.ndesc, target->cmd_sg_cnt); 1724 table_len = state.ndesc * sizeof (struct srp_direct_buf); 1725 idb_len = sizeof(struct srp_indirect_buf) + table_len; 1726 1727 fmt = SRP_DATA_DESC_INDIRECT; 1728 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf); 1729 len += count * sizeof (struct srp_direct_buf); 1730 1731 memcpy(indirect_hdr->desc_list, req->indirect_desc, 1732 count * sizeof (struct srp_direct_buf)); 1733 1734 if (!(pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) { 1735 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end, 1736 idb_len, &idb_rkey); 1737 if (ret < 0) 1738 goto unmap; 1739 req->nmdesc++; 1740 } else { 1741 idb_rkey = cpu_to_be32(pd->unsafe_global_rkey); 1742 } 1743 1744 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr); 1745 indirect_hdr->table_desc.key = idb_rkey; 1746 indirect_hdr->table_desc.len = cpu_to_be32(table_len); 1747 indirect_hdr->len = cpu_to_be32(state.total_len); 1748 1749 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1750 cmd->data_out_desc_cnt = count; 1751 else 1752 cmd->data_in_desc_cnt = count; 1753 1754 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len, 1755 DMA_TO_DEVICE); 1756 1757 map_complete: 1758 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1759 cmd->buf_fmt = fmt << 4; 1760 else 1761 cmd->buf_fmt = fmt; 1762 1763 return len; 1764 1765 unmap: 1766 srp_unmap_data(scmnd, ch, req); 1767 if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size) 1768 ret = -E2BIG; 1769 return ret; 1770 } 1771 1772 /* 1773 * Return an IU and possible credit to the free pool 1774 */ 1775 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu, 1776 enum srp_iu_type iu_type) 1777 { 1778 unsigned long flags; 1779 1780 spin_lock_irqsave(&ch->lock, flags); 1781 list_add(&iu->list, &ch->free_tx); 1782 if (iu_type != SRP_IU_RSP) 1783 ++ch->req_lim; 1784 spin_unlock_irqrestore(&ch->lock, flags); 1785 } 1786 1787 /* 1788 * Must be called with ch->lock held to protect req_lim and free_tx. 1789 * If IU is not sent, it must be returned using srp_put_tx_iu(). 1790 * 1791 * Note: 1792 * An upper limit for the number of allocated information units for each 1793 * request type is: 1794 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues 1795 * more than Scsi_Host.can_queue requests. 1796 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE. 1797 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than 1798 * one unanswered SRP request to an initiator. 1799 */ 1800 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch, 1801 enum srp_iu_type iu_type) 1802 { 1803 struct srp_target_port *target = ch->target; 1804 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE; 1805 struct srp_iu *iu; 1806 1807 ib_process_cq_direct(ch->send_cq, -1); 1808 1809 if (list_empty(&ch->free_tx)) 1810 return NULL; 1811 1812 /* Initiator responses to target requests do not consume credits */ 1813 if (iu_type != SRP_IU_RSP) { 1814 if (ch->req_lim <= rsv) { 1815 ++target->zero_req_lim; 1816 return NULL; 1817 } 1818 1819 --ch->req_lim; 1820 } 1821 1822 iu = list_first_entry(&ch->free_tx, struct srp_iu, list); 1823 list_del(&iu->list); 1824 return iu; 1825 } 1826 1827 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc) 1828 { 1829 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe); 1830 struct srp_rdma_ch *ch = cq->cq_context; 1831 1832 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1833 srp_handle_qp_err(cq, wc, "SEND"); 1834 return; 1835 } 1836 1837 list_add(&iu->list, &ch->free_tx); 1838 } 1839 1840 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len) 1841 { 1842 struct srp_target_port *target = ch->target; 1843 struct ib_sge list; 1844 struct ib_send_wr wr, *bad_wr; 1845 1846 list.addr = iu->dma; 1847 list.length = len; 1848 list.lkey = target->lkey; 1849 1850 iu->cqe.done = srp_send_done; 1851 1852 wr.next = NULL; 1853 wr.wr_cqe = &iu->cqe; 1854 wr.sg_list = &list; 1855 wr.num_sge = 1; 1856 wr.opcode = IB_WR_SEND; 1857 wr.send_flags = IB_SEND_SIGNALED; 1858 1859 return ib_post_send(ch->qp, &wr, &bad_wr); 1860 } 1861 1862 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu) 1863 { 1864 struct srp_target_port *target = ch->target; 1865 struct ib_recv_wr wr, *bad_wr; 1866 struct ib_sge list; 1867 1868 list.addr = iu->dma; 1869 list.length = iu->size; 1870 list.lkey = target->lkey; 1871 1872 iu->cqe.done = srp_recv_done; 1873 1874 wr.next = NULL; 1875 wr.wr_cqe = &iu->cqe; 1876 wr.sg_list = &list; 1877 wr.num_sge = 1; 1878 1879 return ib_post_recv(ch->qp, &wr, &bad_wr); 1880 } 1881 1882 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp) 1883 { 1884 struct srp_target_port *target = ch->target; 1885 struct srp_request *req; 1886 struct scsi_cmnd *scmnd; 1887 unsigned long flags; 1888 1889 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) { 1890 spin_lock_irqsave(&ch->lock, flags); 1891 ch->req_lim += be32_to_cpu(rsp->req_lim_delta); 1892 spin_unlock_irqrestore(&ch->lock, flags); 1893 1894 ch->tsk_mgmt_status = -1; 1895 if (be32_to_cpu(rsp->resp_data_len) >= 4) 1896 ch->tsk_mgmt_status = rsp->data[3]; 1897 complete(&ch->tsk_mgmt_done); 1898 } else { 1899 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag); 1900 if (scmnd) { 1901 req = (void *)scmnd->host_scribble; 1902 scmnd = srp_claim_req(ch, req, NULL, scmnd); 1903 } 1904 if (!scmnd) { 1905 shost_printk(KERN_ERR, target->scsi_host, 1906 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n", 1907 rsp->tag, ch - target->ch, ch->qp->qp_num); 1908 1909 spin_lock_irqsave(&ch->lock, flags); 1910 ch->req_lim += be32_to_cpu(rsp->req_lim_delta); 1911 spin_unlock_irqrestore(&ch->lock, flags); 1912 1913 return; 1914 } 1915 scmnd->result = rsp->status; 1916 1917 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) { 1918 memcpy(scmnd->sense_buffer, rsp->data + 1919 be32_to_cpu(rsp->resp_data_len), 1920 min_t(int, be32_to_cpu(rsp->sense_data_len), 1921 SCSI_SENSE_BUFFERSIZE)); 1922 } 1923 1924 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER)) 1925 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt)); 1926 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER)) 1927 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt)); 1928 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER)) 1929 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt)); 1930 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER)) 1931 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt)); 1932 1933 srp_free_req(ch, req, scmnd, 1934 be32_to_cpu(rsp->req_lim_delta)); 1935 1936 scmnd->host_scribble = NULL; 1937 scmnd->scsi_done(scmnd); 1938 } 1939 } 1940 1941 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta, 1942 void *rsp, int len) 1943 { 1944 struct srp_target_port *target = ch->target; 1945 struct ib_device *dev = target->srp_host->srp_dev->dev; 1946 unsigned long flags; 1947 struct srp_iu *iu; 1948 int err; 1949 1950 spin_lock_irqsave(&ch->lock, flags); 1951 ch->req_lim += req_delta; 1952 iu = __srp_get_tx_iu(ch, SRP_IU_RSP); 1953 spin_unlock_irqrestore(&ch->lock, flags); 1954 1955 if (!iu) { 1956 shost_printk(KERN_ERR, target->scsi_host, PFX 1957 "no IU available to send response\n"); 1958 return 1; 1959 } 1960 1961 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE); 1962 memcpy(iu->buf, rsp, len); 1963 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE); 1964 1965 err = srp_post_send(ch, iu, len); 1966 if (err) { 1967 shost_printk(KERN_ERR, target->scsi_host, PFX 1968 "unable to post response: %d\n", err); 1969 srp_put_tx_iu(ch, iu, SRP_IU_RSP); 1970 } 1971 1972 return err; 1973 } 1974 1975 static void srp_process_cred_req(struct srp_rdma_ch *ch, 1976 struct srp_cred_req *req) 1977 { 1978 struct srp_cred_rsp rsp = { 1979 .opcode = SRP_CRED_RSP, 1980 .tag = req->tag, 1981 }; 1982 s32 delta = be32_to_cpu(req->req_lim_delta); 1983 1984 if (srp_response_common(ch, delta, &rsp, sizeof(rsp))) 1985 shost_printk(KERN_ERR, ch->target->scsi_host, PFX 1986 "problems processing SRP_CRED_REQ\n"); 1987 } 1988 1989 static void srp_process_aer_req(struct srp_rdma_ch *ch, 1990 struct srp_aer_req *req) 1991 { 1992 struct srp_target_port *target = ch->target; 1993 struct srp_aer_rsp rsp = { 1994 .opcode = SRP_AER_RSP, 1995 .tag = req->tag, 1996 }; 1997 s32 delta = be32_to_cpu(req->req_lim_delta); 1998 1999 shost_printk(KERN_ERR, target->scsi_host, PFX 2000 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun)); 2001 2002 if (srp_response_common(ch, delta, &rsp, sizeof(rsp))) 2003 shost_printk(KERN_ERR, target->scsi_host, PFX 2004 "problems processing SRP_AER_REQ\n"); 2005 } 2006 2007 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc) 2008 { 2009 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe); 2010 struct srp_rdma_ch *ch = cq->cq_context; 2011 struct srp_target_port *target = ch->target; 2012 struct ib_device *dev = target->srp_host->srp_dev->dev; 2013 int res; 2014 u8 opcode; 2015 2016 if (unlikely(wc->status != IB_WC_SUCCESS)) { 2017 srp_handle_qp_err(cq, wc, "RECV"); 2018 return; 2019 } 2020 2021 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len, 2022 DMA_FROM_DEVICE); 2023 2024 opcode = *(u8 *) iu->buf; 2025 2026 if (0) { 2027 shost_printk(KERN_ERR, target->scsi_host, 2028 PFX "recv completion, opcode 0x%02x\n", opcode); 2029 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1, 2030 iu->buf, wc->byte_len, true); 2031 } 2032 2033 switch (opcode) { 2034 case SRP_RSP: 2035 srp_process_rsp(ch, iu->buf); 2036 break; 2037 2038 case SRP_CRED_REQ: 2039 srp_process_cred_req(ch, iu->buf); 2040 break; 2041 2042 case SRP_AER_REQ: 2043 srp_process_aer_req(ch, iu->buf); 2044 break; 2045 2046 case SRP_T_LOGOUT: 2047 /* XXX Handle target logout */ 2048 shost_printk(KERN_WARNING, target->scsi_host, 2049 PFX "Got target logout request\n"); 2050 break; 2051 2052 default: 2053 shost_printk(KERN_WARNING, target->scsi_host, 2054 PFX "Unhandled SRP opcode 0x%02x\n", opcode); 2055 break; 2056 } 2057 2058 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len, 2059 DMA_FROM_DEVICE); 2060 2061 res = srp_post_recv(ch, iu); 2062 if (res != 0) 2063 shost_printk(KERN_ERR, target->scsi_host, 2064 PFX "Recv failed with error code %d\n", res); 2065 } 2066 2067 /** 2068 * srp_tl_err_work() - handle a transport layer error 2069 * @work: Work structure embedded in an SRP target port. 2070 * 2071 * Note: This function may get invoked before the rport has been created, 2072 * hence the target->rport test. 2073 */ 2074 static void srp_tl_err_work(struct work_struct *work) 2075 { 2076 struct srp_target_port *target; 2077 2078 target = container_of(work, struct srp_target_port, tl_err_work); 2079 if (target->rport) 2080 srp_start_tl_fail_timers(target->rport); 2081 } 2082 2083 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc, 2084 const char *opname) 2085 { 2086 struct srp_rdma_ch *ch = cq->cq_context; 2087 struct srp_target_port *target = ch->target; 2088 2089 if (ch->connected && !target->qp_in_error) { 2090 shost_printk(KERN_ERR, target->scsi_host, 2091 PFX "failed %s status %s (%d) for CQE %p\n", 2092 opname, ib_wc_status_msg(wc->status), wc->status, 2093 wc->wr_cqe); 2094 queue_work(system_long_wq, &target->tl_err_work); 2095 } 2096 target->qp_in_error = true; 2097 } 2098 2099 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd) 2100 { 2101 struct srp_target_port *target = host_to_target(shost); 2102 struct srp_rport *rport = target->rport; 2103 struct srp_rdma_ch *ch; 2104 struct srp_request *req; 2105 struct srp_iu *iu; 2106 struct srp_cmd *cmd; 2107 struct ib_device *dev; 2108 unsigned long flags; 2109 u32 tag; 2110 u16 idx; 2111 int len, ret; 2112 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler; 2113 2114 /* 2115 * The SCSI EH thread is the only context from which srp_queuecommand() 2116 * can get invoked for blocked devices (SDEV_BLOCK / 2117 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by 2118 * locking the rport mutex if invoked from inside the SCSI EH. 2119 */ 2120 if (in_scsi_eh) 2121 mutex_lock(&rport->mutex); 2122 2123 scmnd->result = srp_chkready(target->rport); 2124 if (unlikely(scmnd->result)) 2125 goto err; 2126 2127 WARN_ON_ONCE(scmnd->request->tag < 0); 2128 tag = blk_mq_unique_tag(scmnd->request); 2129 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)]; 2130 idx = blk_mq_unique_tag_to_tag(tag); 2131 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n", 2132 dev_name(&shost->shost_gendev), tag, idx, 2133 target->req_ring_size); 2134 2135 spin_lock_irqsave(&ch->lock, flags); 2136 iu = __srp_get_tx_iu(ch, SRP_IU_CMD); 2137 spin_unlock_irqrestore(&ch->lock, flags); 2138 2139 if (!iu) 2140 goto err; 2141 2142 req = &ch->req_ring[idx]; 2143 dev = target->srp_host->srp_dev->dev; 2144 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len, 2145 DMA_TO_DEVICE); 2146 2147 scmnd->host_scribble = (void *) req; 2148 2149 cmd = iu->buf; 2150 memset(cmd, 0, sizeof *cmd); 2151 2152 cmd->opcode = SRP_CMD; 2153 int_to_scsilun(scmnd->device->lun, &cmd->lun); 2154 cmd->tag = tag; 2155 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len); 2156 2157 req->scmnd = scmnd; 2158 req->cmd = iu; 2159 2160 len = srp_map_data(scmnd, ch, req); 2161 if (len < 0) { 2162 shost_printk(KERN_ERR, target->scsi_host, 2163 PFX "Failed to map data (%d)\n", len); 2164 /* 2165 * If we ran out of memory descriptors (-ENOMEM) because an 2166 * application is queuing many requests with more than 2167 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer 2168 * to reduce queue depth temporarily. 2169 */ 2170 scmnd->result = len == -ENOMEM ? 2171 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16; 2172 goto err_iu; 2173 } 2174 2175 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len, 2176 DMA_TO_DEVICE); 2177 2178 if (srp_post_send(ch, iu, len)) { 2179 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n"); 2180 goto err_unmap; 2181 } 2182 2183 ret = 0; 2184 2185 unlock_rport: 2186 if (in_scsi_eh) 2187 mutex_unlock(&rport->mutex); 2188 2189 return ret; 2190 2191 err_unmap: 2192 srp_unmap_data(scmnd, ch, req); 2193 2194 err_iu: 2195 srp_put_tx_iu(ch, iu, SRP_IU_CMD); 2196 2197 /* 2198 * Avoid that the loops that iterate over the request ring can 2199 * encounter a dangling SCSI command pointer. 2200 */ 2201 req->scmnd = NULL; 2202 2203 err: 2204 if (scmnd->result) { 2205 scmnd->scsi_done(scmnd); 2206 ret = 0; 2207 } else { 2208 ret = SCSI_MLQUEUE_HOST_BUSY; 2209 } 2210 2211 goto unlock_rport; 2212 } 2213 2214 /* 2215 * Note: the resources allocated in this function are freed in 2216 * srp_free_ch_ib(). 2217 */ 2218 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch) 2219 { 2220 struct srp_target_port *target = ch->target; 2221 int i; 2222 2223 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring), 2224 GFP_KERNEL); 2225 if (!ch->rx_ring) 2226 goto err_no_ring; 2227 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring), 2228 GFP_KERNEL); 2229 if (!ch->tx_ring) 2230 goto err_no_ring; 2231 2232 for (i = 0; i < target->queue_size; ++i) { 2233 ch->rx_ring[i] = srp_alloc_iu(target->srp_host, 2234 ch->max_ti_iu_len, 2235 GFP_KERNEL, DMA_FROM_DEVICE); 2236 if (!ch->rx_ring[i]) 2237 goto err; 2238 } 2239 2240 for (i = 0; i < target->queue_size; ++i) { 2241 ch->tx_ring[i] = srp_alloc_iu(target->srp_host, 2242 target->max_iu_len, 2243 GFP_KERNEL, DMA_TO_DEVICE); 2244 if (!ch->tx_ring[i]) 2245 goto err; 2246 2247 list_add(&ch->tx_ring[i]->list, &ch->free_tx); 2248 } 2249 2250 return 0; 2251 2252 err: 2253 for (i = 0; i < target->queue_size; ++i) { 2254 srp_free_iu(target->srp_host, ch->rx_ring[i]); 2255 srp_free_iu(target->srp_host, ch->tx_ring[i]); 2256 } 2257 2258 2259 err_no_ring: 2260 kfree(ch->tx_ring); 2261 ch->tx_ring = NULL; 2262 kfree(ch->rx_ring); 2263 ch->rx_ring = NULL; 2264 2265 return -ENOMEM; 2266 } 2267 2268 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask) 2269 { 2270 uint64_t T_tr_ns, max_compl_time_ms; 2271 uint32_t rq_tmo_jiffies; 2272 2273 /* 2274 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair, 2275 * table 91), both the QP timeout and the retry count have to be set 2276 * for RC QP's during the RTR to RTS transition. 2277 */ 2278 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) != 2279 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)); 2280 2281 /* 2282 * Set target->rq_tmo_jiffies to one second more than the largest time 2283 * it can take before an error completion is generated. See also 2284 * C9-140..142 in the IBTA spec for more information about how to 2285 * convert the QP Local ACK Timeout value to nanoseconds. 2286 */ 2287 T_tr_ns = 4096 * (1ULL << qp_attr->timeout); 2288 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns; 2289 do_div(max_compl_time_ms, NSEC_PER_MSEC); 2290 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000); 2291 2292 return rq_tmo_jiffies; 2293 } 2294 2295 static void srp_cm_rep_handler(struct ib_cm_id *cm_id, 2296 const struct srp_login_rsp *lrsp, 2297 struct srp_rdma_ch *ch) 2298 { 2299 struct srp_target_port *target = ch->target; 2300 struct ib_qp_attr *qp_attr = NULL; 2301 int attr_mask = 0; 2302 int ret; 2303 int i; 2304 2305 if (lrsp->opcode == SRP_LOGIN_RSP) { 2306 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len); 2307 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta); 2308 2309 /* 2310 * Reserve credits for task management so we don't 2311 * bounce requests back to the SCSI mid-layer. 2312 */ 2313 target->scsi_host->can_queue 2314 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE, 2315 target->scsi_host->can_queue); 2316 target->scsi_host->cmd_per_lun 2317 = min_t(int, target->scsi_host->can_queue, 2318 target->scsi_host->cmd_per_lun); 2319 } else { 2320 shost_printk(KERN_WARNING, target->scsi_host, 2321 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode); 2322 ret = -ECONNRESET; 2323 goto error; 2324 } 2325 2326 if (!ch->rx_ring) { 2327 ret = srp_alloc_iu_bufs(ch); 2328 if (ret) 2329 goto error; 2330 } 2331 2332 ret = -ENOMEM; 2333 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL); 2334 if (!qp_attr) 2335 goto error; 2336 2337 qp_attr->qp_state = IB_QPS_RTR; 2338 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2339 if (ret) 2340 goto error_free; 2341 2342 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask); 2343 if (ret) 2344 goto error_free; 2345 2346 for (i = 0; i < target->queue_size; i++) { 2347 struct srp_iu *iu = ch->rx_ring[i]; 2348 2349 ret = srp_post_recv(ch, iu); 2350 if (ret) 2351 goto error_free; 2352 } 2353 2354 qp_attr->qp_state = IB_QPS_RTS; 2355 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2356 if (ret) 2357 goto error_free; 2358 2359 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask); 2360 2361 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask); 2362 if (ret) 2363 goto error_free; 2364 2365 ret = ib_send_cm_rtu(cm_id, NULL, 0); 2366 2367 error_free: 2368 kfree(qp_attr); 2369 2370 error: 2371 ch->status = ret; 2372 } 2373 2374 static void srp_cm_rej_handler(struct ib_cm_id *cm_id, 2375 struct ib_cm_event *event, 2376 struct srp_rdma_ch *ch) 2377 { 2378 struct srp_target_port *target = ch->target; 2379 struct Scsi_Host *shost = target->scsi_host; 2380 struct ib_class_port_info *cpi; 2381 int opcode; 2382 2383 switch (event->param.rej_rcvd.reason) { 2384 case IB_CM_REJ_PORT_CM_REDIRECT: 2385 cpi = event->param.rej_rcvd.ari; 2386 ch->path.dlid = cpi->redirect_lid; 2387 ch->path.pkey = cpi->redirect_pkey; 2388 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff; 2389 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16); 2390 2391 ch->status = ch->path.dlid ? 2392 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT; 2393 break; 2394 2395 case IB_CM_REJ_PORT_REDIRECT: 2396 if (srp_target_is_topspin(target)) { 2397 /* 2398 * Topspin/Cisco SRP gateways incorrectly send 2399 * reject reason code 25 when they mean 24 2400 * (port redirect). 2401 */ 2402 memcpy(ch->path.dgid.raw, 2403 event->param.rej_rcvd.ari, 16); 2404 2405 shost_printk(KERN_DEBUG, shost, 2406 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n", 2407 be64_to_cpu(ch->path.dgid.global.subnet_prefix), 2408 be64_to_cpu(ch->path.dgid.global.interface_id)); 2409 2410 ch->status = SRP_PORT_REDIRECT; 2411 } else { 2412 shost_printk(KERN_WARNING, shost, 2413 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n"); 2414 ch->status = -ECONNRESET; 2415 } 2416 break; 2417 2418 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID: 2419 shost_printk(KERN_WARNING, shost, 2420 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n"); 2421 ch->status = -ECONNRESET; 2422 break; 2423 2424 case IB_CM_REJ_CONSUMER_DEFINED: 2425 opcode = *(u8 *) event->private_data; 2426 if (opcode == SRP_LOGIN_REJ) { 2427 struct srp_login_rej *rej = event->private_data; 2428 u32 reason = be32_to_cpu(rej->reason); 2429 2430 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE) 2431 shost_printk(KERN_WARNING, shost, 2432 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n"); 2433 else 2434 shost_printk(KERN_WARNING, shost, PFX 2435 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n", 2436 target->sgid.raw, 2437 target->orig_dgid.raw, reason); 2438 } else 2439 shost_printk(KERN_WARNING, shost, 2440 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED," 2441 " opcode 0x%02x\n", opcode); 2442 ch->status = -ECONNRESET; 2443 break; 2444 2445 case IB_CM_REJ_STALE_CONN: 2446 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n"); 2447 ch->status = SRP_STALE_CONN; 2448 break; 2449 2450 default: 2451 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n", 2452 event->param.rej_rcvd.reason); 2453 ch->status = -ECONNRESET; 2454 } 2455 } 2456 2457 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2458 { 2459 struct srp_rdma_ch *ch = cm_id->context; 2460 struct srp_target_port *target = ch->target; 2461 int comp = 0; 2462 2463 switch (event->event) { 2464 case IB_CM_REQ_ERROR: 2465 shost_printk(KERN_DEBUG, target->scsi_host, 2466 PFX "Sending CM REQ failed\n"); 2467 comp = 1; 2468 ch->status = -ECONNRESET; 2469 break; 2470 2471 case IB_CM_REP_RECEIVED: 2472 comp = 1; 2473 srp_cm_rep_handler(cm_id, event->private_data, ch); 2474 break; 2475 2476 case IB_CM_REJ_RECEIVED: 2477 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n"); 2478 comp = 1; 2479 2480 srp_cm_rej_handler(cm_id, event, ch); 2481 break; 2482 2483 case IB_CM_DREQ_RECEIVED: 2484 shost_printk(KERN_WARNING, target->scsi_host, 2485 PFX "DREQ received - connection closed\n"); 2486 ch->connected = false; 2487 if (ib_send_cm_drep(cm_id, NULL, 0)) 2488 shost_printk(KERN_ERR, target->scsi_host, 2489 PFX "Sending CM DREP failed\n"); 2490 queue_work(system_long_wq, &target->tl_err_work); 2491 break; 2492 2493 case IB_CM_TIMEWAIT_EXIT: 2494 shost_printk(KERN_ERR, target->scsi_host, 2495 PFX "connection closed\n"); 2496 comp = 1; 2497 2498 ch->status = 0; 2499 break; 2500 2501 case IB_CM_MRA_RECEIVED: 2502 case IB_CM_DREQ_ERROR: 2503 case IB_CM_DREP_RECEIVED: 2504 break; 2505 2506 default: 2507 shost_printk(KERN_WARNING, target->scsi_host, 2508 PFX "Unhandled CM event %d\n", event->event); 2509 break; 2510 } 2511 2512 if (comp) 2513 complete(&ch->done); 2514 2515 return 0; 2516 } 2517 2518 /** 2519 * srp_change_queue_depth - setting device queue depth 2520 * @sdev: scsi device struct 2521 * @qdepth: requested queue depth 2522 * 2523 * Returns queue depth. 2524 */ 2525 static int 2526 srp_change_queue_depth(struct scsi_device *sdev, int qdepth) 2527 { 2528 if (!sdev->tagged_supported) 2529 qdepth = 1; 2530 return scsi_change_queue_depth(sdev, qdepth); 2531 } 2532 2533 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun, 2534 u8 func) 2535 { 2536 struct srp_target_port *target = ch->target; 2537 struct srp_rport *rport = target->rport; 2538 struct ib_device *dev = target->srp_host->srp_dev->dev; 2539 struct srp_iu *iu; 2540 struct srp_tsk_mgmt *tsk_mgmt; 2541 2542 if (!ch->connected || target->qp_in_error) 2543 return -1; 2544 2545 init_completion(&ch->tsk_mgmt_done); 2546 2547 /* 2548 * Lock the rport mutex to avoid that srp_create_ch_ib() is 2549 * invoked while a task management function is being sent. 2550 */ 2551 mutex_lock(&rport->mutex); 2552 spin_lock_irq(&ch->lock); 2553 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT); 2554 spin_unlock_irq(&ch->lock); 2555 2556 if (!iu) { 2557 mutex_unlock(&rport->mutex); 2558 2559 return -1; 2560 } 2561 2562 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt, 2563 DMA_TO_DEVICE); 2564 tsk_mgmt = iu->buf; 2565 memset(tsk_mgmt, 0, sizeof *tsk_mgmt); 2566 2567 tsk_mgmt->opcode = SRP_TSK_MGMT; 2568 int_to_scsilun(lun, &tsk_mgmt->lun); 2569 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT; 2570 tsk_mgmt->tsk_mgmt_func = func; 2571 tsk_mgmt->task_tag = req_tag; 2572 2573 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt, 2574 DMA_TO_DEVICE); 2575 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) { 2576 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT); 2577 mutex_unlock(&rport->mutex); 2578 2579 return -1; 2580 } 2581 mutex_unlock(&rport->mutex); 2582 2583 if (!wait_for_completion_timeout(&ch->tsk_mgmt_done, 2584 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS))) 2585 return -1; 2586 2587 return 0; 2588 } 2589 2590 static int srp_abort(struct scsi_cmnd *scmnd) 2591 { 2592 struct srp_target_port *target = host_to_target(scmnd->device->host); 2593 struct srp_request *req = (struct srp_request *) scmnd->host_scribble; 2594 u32 tag; 2595 u16 ch_idx; 2596 struct srp_rdma_ch *ch; 2597 int ret; 2598 2599 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n"); 2600 2601 if (!req) 2602 return SUCCESS; 2603 tag = blk_mq_unique_tag(scmnd->request); 2604 ch_idx = blk_mq_unique_tag_to_hwq(tag); 2605 if (WARN_ON_ONCE(ch_idx >= target->ch_count)) 2606 return SUCCESS; 2607 ch = &target->ch[ch_idx]; 2608 if (!srp_claim_req(ch, req, NULL, scmnd)) 2609 return SUCCESS; 2610 shost_printk(KERN_ERR, target->scsi_host, 2611 "Sending SRP abort for tag %#x\n", tag); 2612 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun, 2613 SRP_TSK_ABORT_TASK) == 0) 2614 ret = SUCCESS; 2615 else if (target->rport->state == SRP_RPORT_LOST) 2616 ret = FAST_IO_FAIL; 2617 else 2618 ret = FAILED; 2619 srp_free_req(ch, req, scmnd, 0); 2620 scmnd->result = DID_ABORT << 16; 2621 scmnd->scsi_done(scmnd); 2622 2623 return ret; 2624 } 2625 2626 static int srp_reset_device(struct scsi_cmnd *scmnd) 2627 { 2628 struct srp_target_port *target = host_to_target(scmnd->device->host); 2629 struct srp_rdma_ch *ch; 2630 int i; 2631 2632 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n"); 2633 2634 ch = &target->ch[0]; 2635 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun, 2636 SRP_TSK_LUN_RESET)) 2637 return FAILED; 2638 if (ch->tsk_mgmt_status) 2639 return FAILED; 2640 2641 for (i = 0; i < target->ch_count; i++) { 2642 ch = &target->ch[i]; 2643 for (i = 0; i < target->req_ring_size; ++i) { 2644 struct srp_request *req = &ch->req_ring[i]; 2645 2646 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16); 2647 } 2648 } 2649 2650 return SUCCESS; 2651 } 2652 2653 static int srp_reset_host(struct scsi_cmnd *scmnd) 2654 { 2655 struct srp_target_port *target = host_to_target(scmnd->device->host); 2656 2657 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n"); 2658 2659 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED; 2660 } 2661 2662 static int srp_slave_alloc(struct scsi_device *sdev) 2663 { 2664 struct Scsi_Host *shost = sdev->host; 2665 struct srp_target_port *target = host_to_target(shost); 2666 struct srp_device *srp_dev = target->srp_host->srp_dev; 2667 struct ib_device *ibdev = srp_dev->dev; 2668 2669 if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)) 2670 blk_queue_virt_boundary(sdev->request_queue, 2671 ~srp_dev->mr_page_mask); 2672 2673 return 0; 2674 } 2675 2676 static int srp_slave_configure(struct scsi_device *sdev) 2677 { 2678 struct Scsi_Host *shost = sdev->host; 2679 struct srp_target_port *target = host_to_target(shost); 2680 struct request_queue *q = sdev->request_queue; 2681 unsigned long timeout; 2682 2683 if (sdev->type == TYPE_DISK) { 2684 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies); 2685 blk_queue_rq_timeout(q, timeout); 2686 } 2687 2688 return 0; 2689 } 2690 2691 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr, 2692 char *buf) 2693 { 2694 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2695 2696 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext)); 2697 } 2698 2699 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr, 2700 char *buf) 2701 { 2702 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2703 2704 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid)); 2705 } 2706 2707 static ssize_t show_service_id(struct device *dev, 2708 struct device_attribute *attr, char *buf) 2709 { 2710 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2711 2712 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id)); 2713 } 2714 2715 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr, 2716 char *buf) 2717 { 2718 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2719 2720 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey)); 2721 } 2722 2723 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr, 2724 char *buf) 2725 { 2726 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2727 2728 return sprintf(buf, "%pI6\n", target->sgid.raw); 2729 } 2730 2731 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr, 2732 char *buf) 2733 { 2734 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2735 struct srp_rdma_ch *ch = &target->ch[0]; 2736 2737 return sprintf(buf, "%pI6\n", ch->path.dgid.raw); 2738 } 2739 2740 static ssize_t show_orig_dgid(struct device *dev, 2741 struct device_attribute *attr, char *buf) 2742 { 2743 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2744 2745 return sprintf(buf, "%pI6\n", target->orig_dgid.raw); 2746 } 2747 2748 static ssize_t show_req_lim(struct device *dev, 2749 struct device_attribute *attr, char *buf) 2750 { 2751 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2752 struct srp_rdma_ch *ch; 2753 int i, req_lim = INT_MAX; 2754 2755 for (i = 0; i < target->ch_count; i++) { 2756 ch = &target->ch[i]; 2757 req_lim = min(req_lim, ch->req_lim); 2758 } 2759 return sprintf(buf, "%d\n", req_lim); 2760 } 2761 2762 static ssize_t show_zero_req_lim(struct device *dev, 2763 struct device_attribute *attr, char *buf) 2764 { 2765 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2766 2767 return sprintf(buf, "%d\n", target->zero_req_lim); 2768 } 2769 2770 static ssize_t show_local_ib_port(struct device *dev, 2771 struct device_attribute *attr, char *buf) 2772 { 2773 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2774 2775 return sprintf(buf, "%d\n", target->srp_host->port); 2776 } 2777 2778 static ssize_t show_local_ib_device(struct device *dev, 2779 struct device_attribute *attr, char *buf) 2780 { 2781 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2782 2783 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name); 2784 } 2785 2786 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr, 2787 char *buf) 2788 { 2789 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2790 2791 return sprintf(buf, "%d\n", target->ch_count); 2792 } 2793 2794 static ssize_t show_comp_vector(struct device *dev, 2795 struct device_attribute *attr, char *buf) 2796 { 2797 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2798 2799 return sprintf(buf, "%d\n", target->comp_vector); 2800 } 2801 2802 static ssize_t show_tl_retry_count(struct device *dev, 2803 struct device_attribute *attr, char *buf) 2804 { 2805 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2806 2807 return sprintf(buf, "%d\n", target->tl_retry_count); 2808 } 2809 2810 static ssize_t show_cmd_sg_entries(struct device *dev, 2811 struct device_attribute *attr, char *buf) 2812 { 2813 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2814 2815 return sprintf(buf, "%u\n", target->cmd_sg_cnt); 2816 } 2817 2818 static ssize_t show_allow_ext_sg(struct device *dev, 2819 struct device_attribute *attr, char *buf) 2820 { 2821 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2822 2823 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false"); 2824 } 2825 2826 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL); 2827 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL); 2828 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL); 2829 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL); 2830 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL); 2831 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL); 2832 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL); 2833 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL); 2834 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL); 2835 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL); 2836 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL); 2837 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL); 2838 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL); 2839 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL); 2840 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL); 2841 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL); 2842 2843 static struct device_attribute *srp_host_attrs[] = { 2844 &dev_attr_id_ext, 2845 &dev_attr_ioc_guid, 2846 &dev_attr_service_id, 2847 &dev_attr_pkey, 2848 &dev_attr_sgid, 2849 &dev_attr_dgid, 2850 &dev_attr_orig_dgid, 2851 &dev_attr_req_lim, 2852 &dev_attr_zero_req_lim, 2853 &dev_attr_local_ib_port, 2854 &dev_attr_local_ib_device, 2855 &dev_attr_ch_count, 2856 &dev_attr_comp_vector, 2857 &dev_attr_tl_retry_count, 2858 &dev_attr_cmd_sg_entries, 2859 &dev_attr_allow_ext_sg, 2860 NULL 2861 }; 2862 2863 static struct scsi_host_template srp_template = { 2864 .module = THIS_MODULE, 2865 .name = "InfiniBand SRP initiator", 2866 .proc_name = DRV_NAME, 2867 .slave_alloc = srp_slave_alloc, 2868 .slave_configure = srp_slave_configure, 2869 .info = srp_target_info, 2870 .queuecommand = srp_queuecommand, 2871 .change_queue_depth = srp_change_queue_depth, 2872 .eh_abort_handler = srp_abort, 2873 .eh_device_reset_handler = srp_reset_device, 2874 .eh_host_reset_handler = srp_reset_host, 2875 .skip_settle_delay = true, 2876 .sg_tablesize = SRP_DEF_SG_TABLESIZE, 2877 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE, 2878 .this_id = -1, 2879 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE, 2880 .use_clustering = ENABLE_CLUSTERING, 2881 .shost_attrs = srp_host_attrs, 2882 .track_queue_depth = 1, 2883 }; 2884 2885 static int srp_sdev_count(struct Scsi_Host *host) 2886 { 2887 struct scsi_device *sdev; 2888 int c = 0; 2889 2890 shost_for_each_device(sdev, host) 2891 c++; 2892 2893 return c; 2894 } 2895 2896 /* 2897 * Return values: 2898 * < 0 upon failure. Caller is responsible for SRP target port cleanup. 2899 * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port 2900 * removal has been scheduled. 2901 * 0 and target->state != SRP_TARGET_REMOVED upon success. 2902 */ 2903 static int srp_add_target(struct srp_host *host, struct srp_target_port *target) 2904 { 2905 struct srp_rport_identifiers ids; 2906 struct srp_rport *rport; 2907 2908 target->state = SRP_TARGET_SCANNING; 2909 sprintf(target->target_name, "SRP.T10:%016llX", 2910 be64_to_cpu(target->id_ext)); 2911 2912 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device)) 2913 return -ENODEV; 2914 2915 memcpy(ids.port_id, &target->id_ext, 8); 2916 memcpy(ids.port_id + 8, &target->ioc_guid, 8); 2917 ids.roles = SRP_RPORT_ROLE_TARGET; 2918 rport = srp_rport_add(target->scsi_host, &ids); 2919 if (IS_ERR(rport)) { 2920 scsi_remove_host(target->scsi_host); 2921 return PTR_ERR(rport); 2922 } 2923 2924 rport->lld_data = target; 2925 target->rport = rport; 2926 2927 spin_lock(&host->target_lock); 2928 list_add_tail(&target->list, &host->target_list); 2929 spin_unlock(&host->target_lock); 2930 2931 scsi_scan_target(&target->scsi_host->shost_gendev, 2932 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL); 2933 2934 if (srp_connected_ch(target) < target->ch_count || 2935 target->qp_in_error) { 2936 shost_printk(KERN_INFO, target->scsi_host, 2937 PFX "SCSI scan failed - removing SCSI host\n"); 2938 srp_queue_remove_work(target); 2939 goto out; 2940 } 2941 2942 pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n", 2943 dev_name(&target->scsi_host->shost_gendev), 2944 srp_sdev_count(target->scsi_host)); 2945 2946 spin_lock_irq(&target->lock); 2947 if (target->state == SRP_TARGET_SCANNING) 2948 target->state = SRP_TARGET_LIVE; 2949 spin_unlock_irq(&target->lock); 2950 2951 out: 2952 return 0; 2953 } 2954 2955 static void srp_release_dev(struct device *dev) 2956 { 2957 struct srp_host *host = 2958 container_of(dev, struct srp_host, dev); 2959 2960 complete(&host->released); 2961 } 2962 2963 static struct class srp_class = { 2964 .name = "infiniband_srp", 2965 .dev_release = srp_release_dev 2966 }; 2967 2968 /** 2969 * srp_conn_unique() - check whether the connection to a target is unique 2970 * @host: SRP host. 2971 * @target: SRP target port. 2972 */ 2973 static bool srp_conn_unique(struct srp_host *host, 2974 struct srp_target_port *target) 2975 { 2976 struct srp_target_port *t; 2977 bool ret = false; 2978 2979 if (target->state == SRP_TARGET_REMOVED) 2980 goto out; 2981 2982 ret = true; 2983 2984 spin_lock(&host->target_lock); 2985 list_for_each_entry(t, &host->target_list, list) { 2986 if (t != target && 2987 target->id_ext == t->id_ext && 2988 target->ioc_guid == t->ioc_guid && 2989 target->initiator_ext == t->initiator_ext) { 2990 ret = false; 2991 break; 2992 } 2993 } 2994 spin_unlock(&host->target_lock); 2995 2996 out: 2997 return ret; 2998 } 2999 3000 /* 3001 * Target ports are added by writing 3002 * 3003 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>, 3004 * pkey=<P_Key>,service_id=<service ID> 3005 * 3006 * to the add_target sysfs attribute. 3007 */ 3008 enum { 3009 SRP_OPT_ERR = 0, 3010 SRP_OPT_ID_EXT = 1 << 0, 3011 SRP_OPT_IOC_GUID = 1 << 1, 3012 SRP_OPT_DGID = 1 << 2, 3013 SRP_OPT_PKEY = 1 << 3, 3014 SRP_OPT_SERVICE_ID = 1 << 4, 3015 SRP_OPT_MAX_SECT = 1 << 5, 3016 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6, 3017 SRP_OPT_IO_CLASS = 1 << 7, 3018 SRP_OPT_INITIATOR_EXT = 1 << 8, 3019 SRP_OPT_CMD_SG_ENTRIES = 1 << 9, 3020 SRP_OPT_ALLOW_EXT_SG = 1 << 10, 3021 SRP_OPT_SG_TABLESIZE = 1 << 11, 3022 SRP_OPT_COMP_VECTOR = 1 << 12, 3023 SRP_OPT_TL_RETRY_COUNT = 1 << 13, 3024 SRP_OPT_QUEUE_SIZE = 1 << 14, 3025 SRP_OPT_ALL = (SRP_OPT_ID_EXT | 3026 SRP_OPT_IOC_GUID | 3027 SRP_OPT_DGID | 3028 SRP_OPT_PKEY | 3029 SRP_OPT_SERVICE_ID), 3030 }; 3031 3032 static const match_table_t srp_opt_tokens = { 3033 { SRP_OPT_ID_EXT, "id_ext=%s" }, 3034 { SRP_OPT_IOC_GUID, "ioc_guid=%s" }, 3035 { SRP_OPT_DGID, "dgid=%s" }, 3036 { SRP_OPT_PKEY, "pkey=%x" }, 3037 { SRP_OPT_SERVICE_ID, "service_id=%s" }, 3038 { SRP_OPT_MAX_SECT, "max_sect=%d" }, 3039 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" }, 3040 { SRP_OPT_IO_CLASS, "io_class=%x" }, 3041 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" }, 3042 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" }, 3043 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" }, 3044 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" }, 3045 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" }, 3046 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" }, 3047 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" }, 3048 { SRP_OPT_ERR, NULL } 3049 }; 3050 3051 static int srp_parse_options(const char *buf, struct srp_target_port *target) 3052 { 3053 char *options, *sep_opt; 3054 char *p; 3055 char dgid[3]; 3056 substring_t args[MAX_OPT_ARGS]; 3057 int opt_mask = 0; 3058 int token; 3059 int ret = -EINVAL; 3060 int i; 3061 3062 options = kstrdup(buf, GFP_KERNEL); 3063 if (!options) 3064 return -ENOMEM; 3065 3066 sep_opt = options; 3067 while ((p = strsep(&sep_opt, ",\n")) != NULL) { 3068 if (!*p) 3069 continue; 3070 3071 token = match_token(p, srp_opt_tokens, args); 3072 opt_mask |= token; 3073 3074 switch (token) { 3075 case SRP_OPT_ID_EXT: 3076 p = match_strdup(args); 3077 if (!p) { 3078 ret = -ENOMEM; 3079 goto out; 3080 } 3081 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3082 kfree(p); 3083 break; 3084 3085 case SRP_OPT_IOC_GUID: 3086 p = match_strdup(args); 3087 if (!p) { 3088 ret = -ENOMEM; 3089 goto out; 3090 } 3091 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3092 kfree(p); 3093 break; 3094 3095 case SRP_OPT_DGID: 3096 p = match_strdup(args); 3097 if (!p) { 3098 ret = -ENOMEM; 3099 goto out; 3100 } 3101 if (strlen(p) != 32) { 3102 pr_warn("bad dest GID parameter '%s'\n", p); 3103 kfree(p); 3104 goto out; 3105 } 3106 3107 for (i = 0; i < 16; ++i) { 3108 strlcpy(dgid, p + i * 2, sizeof(dgid)); 3109 if (sscanf(dgid, "%hhx", 3110 &target->orig_dgid.raw[i]) < 1) { 3111 ret = -EINVAL; 3112 kfree(p); 3113 goto out; 3114 } 3115 } 3116 kfree(p); 3117 break; 3118 3119 case SRP_OPT_PKEY: 3120 if (match_hex(args, &token)) { 3121 pr_warn("bad P_Key parameter '%s'\n", p); 3122 goto out; 3123 } 3124 target->pkey = cpu_to_be16(token); 3125 break; 3126 3127 case SRP_OPT_SERVICE_ID: 3128 p = match_strdup(args); 3129 if (!p) { 3130 ret = -ENOMEM; 3131 goto out; 3132 } 3133 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3134 kfree(p); 3135 break; 3136 3137 case SRP_OPT_MAX_SECT: 3138 if (match_int(args, &token)) { 3139 pr_warn("bad max sect parameter '%s'\n", p); 3140 goto out; 3141 } 3142 target->scsi_host->max_sectors = token; 3143 break; 3144 3145 case SRP_OPT_QUEUE_SIZE: 3146 if (match_int(args, &token) || token < 1) { 3147 pr_warn("bad queue_size parameter '%s'\n", p); 3148 goto out; 3149 } 3150 target->scsi_host->can_queue = token; 3151 target->queue_size = token + SRP_RSP_SQ_SIZE + 3152 SRP_TSK_MGMT_SQ_SIZE; 3153 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 3154 target->scsi_host->cmd_per_lun = token; 3155 break; 3156 3157 case SRP_OPT_MAX_CMD_PER_LUN: 3158 if (match_int(args, &token) || token < 1) { 3159 pr_warn("bad max cmd_per_lun parameter '%s'\n", 3160 p); 3161 goto out; 3162 } 3163 target->scsi_host->cmd_per_lun = token; 3164 break; 3165 3166 case SRP_OPT_IO_CLASS: 3167 if (match_hex(args, &token)) { 3168 pr_warn("bad IO class parameter '%s'\n", p); 3169 goto out; 3170 } 3171 if (token != SRP_REV10_IB_IO_CLASS && 3172 token != SRP_REV16A_IB_IO_CLASS) { 3173 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n", 3174 token, SRP_REV10_IB_IO_CLASS, 3175 SRP_REV16A_IB_IO_CLASS); 3176 goto out; 3177 } 3178 target->io_class = token; 3179 break; 3180 3181 case SRP_OPT_INITIATOR_EXT: 3182 p = match_strdup(args); 3183 if (!p) { 3184 ret = -ENOMEM; 3185 goto out; 3186 } 3187 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3188 kfree(p); 3189 break; 3190 3191 case SRP_OPT_CMD_SG_ENTRIES: 3192 if (match_int(args, &token) || token < 1 || token > 255) { 3193 pr_warn("bad max cmd_sg_entries parameter '%s'\n", 3194 p); 3195 goto out; 3196 } 3197 target->cmd_sg_cnt = token; 3198 break; 3199 3200 case SRP_OPT_ALLOW_EXT_SG: 3201 if (match_int(args, &token)) { 3202 pr_warn("bad allow_ext_sg parameter '%s'\n", p); 3203 goto out; 3204 } 3205 target->allow_ext_sg = !!token; 3206 break; 3207 3208 case SRP_OPT_SG_TABLESIZE: 3209 if (match_int(args, &token) || token < 1 || 3210 token > SG_MAX_SEGMENTS) { 3211 pr_warn("bad max sg_tablesize parameter '%s'\n", 3212 p); 3213 goto out; 3214 } 3215 target->sg_tablesize = token; 3216 break; 3217 3218 case SRP_OPT_COMP_VECTOR: 3219 if (match_int(args, &token) || token < 0) { 3220 pr_warn("bad comp_vector parameter '%s'\n", p); 3221 goto out; 3222 } 3223 target->comp_vector = token; 3224 break; 3225 3226 case SRP_OPT_TL_RETRY_COUNT: 3227 if (match_int(args, &token) || token < 2 || token > 7) { 3228 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n", 3229 p); 3230 goto out; 3231 } 3232 target->tl_retry_count = token; 3233 break; 3234 3235 default: 3236 pr_warn("unknown parameter or missing value '%s' in target creation request\n", 3237 p); 3238 goto out; 3239 } 3240 } 3241 3242 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL) 3243 ret = 0; 3244 else 3245 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i) 3246 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) && 3247 !(srp_opt_tokens[i].token & opt_mask)) 3248 pr_warn("target creation request is missing parameter '%s'\n", 3249 srp_opt_tokens[i].pattern); 3250 3251 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue 3252 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 3253 pr_warn("cmd_per_lun = %d > queue_size = %d\n", 3254 target->scsi_host->cmd_per_lun, 3255 target->scsi_host->can_queue); 3256 3257 out: 3258 kfree(options); 3259 return ret; 3260 } 3261 3262 static ssize_t srp_create_target(struct device *dev, 3263 struct device_attribute *attr, 3264 const char *buf, size_t count) 3265 { 3266 struct srp_host *host = 3267 container_of(dev, struct srp_host, dev); 3268 struct Scsi_Host *target_host; 3269 struct srp_target_port *target; 3270 struct srp_rdma_ch *ch; 3271 struct srp_device *srp_dev = host->srp_dev; 3272 struct ib_device *ibdev = srp_dev->dev; 3273 int ret, node_idx, node, cpu, i; 3274 unsigned int max_sectors_per_mr, mr_per_cmd = 0; 3275 bool multich = false; 3276 3277 target_host = scsi_host_alloc(&srp_template, 3278 sizeof (struct srp_target_port)); 3279 if (!target_host) 3280 return -ENOMEM; 3281 3282 target_host->transportt = ib_srp_transport_template; 3283 target_host->max_channel = 0; 3284 target_host->max_id = 1; 3285 target_host->max_lun = -1LL; 3286 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb; 3287 3288 target = host_to_target(target_host); 3289 3290 target->io_class = SRP_REV16A_IB_IO_CLASS; 3291 target->scsi_host = target_host; 3292 target->srp_host = host; 3293 target->pd = host->srp_dev->pd; 3294 target->lkey = host->srp_dev->pd->local_dma_lkey; 3295 target->cmd_sg_cnt = cmd_sg_entries; 3296 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries; 3297 target->allow_ext_sg = allow_ext_sg; 3298 target->tl_retry_count = 7; 3299 target->queue_size = SRP_DEFAULT_QUEUE_SIZE; 3300 3301 /* 3302 * Avoid that the SCSI host can be removed by srp_remove_target() 3303 * before this function returns. 3304 */ 3305 scsi_host_get(target->scsi_host); 3306 3307 ret = mutex_lock_interruptible(&host->add_target_mutex); 3308 if (ret < 0) 3309 goto put; 3310 3311 ret = srp_parse_options(buf, target); 3312 if (ret) 3313 goto out; 3314 3315 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE; 3316 3317 if (!srp_conn_unique(target->srp_host, target)) { 3318 shost_printk(KERN_INFO, target->scsi_host, 3319 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n", 3320 be64_to_cpu(target->id_ext), 3321 be64_to_cpu(target->ioc_guid), 3322 be64_to_cpu(target->initiator_ext)); 3323 ret = -EEXIST; 3324 goto out; 3325 } 3326 3327 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg && 3328 target->cmd_sg_cnt < target->sg_tablesize) { 3329 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n"); 3330 target->sg_tablesize = target->cmd_sg_cnt; 3331 } 3332 3333 if (srp_dev->use_fast_reg || srp_dev->use_fmr) { 3334 /* 3335 * FR and FMR can only map one HCA page per entry. If the 3336 * start address is not aligned on a HCA page boundary two 3337 * entries will be used for the head and the tail although 3338 * these two entries combined contain at most one HCA page of 3339 * data. Hence the "+ 1" in the calculation below. 3340 * 3341 * The indirect data buffer descriptor is contiguous so the 3342 * memory for that buffer will only be registered if 3343 * register_always is true. Hence add one to mr_per_cmd if 3344 * register_always has been set. 3345 */ 3346 max_sectors_per_mr = srp_dev->max_pages_per_mr << 3347 (ilog2(srp_dev->mr_page_size) - 9); 3348 mr_per_cmd = register_always + 3349 (target->scsi_host->max_sectors + 1 + 3350 max_sectors_per_mr - 1) / max_sectors_per_mr; 3351 pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n", 3352 target->scsi_host->max_sectors, 3353 srp_dev->max_pages_per_mr, srp_dev->mr_page_size, 3354 max_sectors_per_mr, mr_per_cmd); 3355 } 3356 3357 target_host->sg_tablesize = target->sg_tablesize; 3358 target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd; 3359 target->mr_per_cmd = mr_per_cmd; 3360 target->indirect_size = target->sg_tablesize * 3361 sizeof (struct srp_direct_buf); 3362 target->max_iu_len = sizeof (struct srp_cmd) + 3363 sizeof (struct srp_indirect_buf) + 3364 target->cmd_sg_cnt * sizeof (struct srp_direct_buf); 3365 3366 INIT_WORK(&target->tl_err_work, srp_tl_err_work); 3367 INIT_WORK(&target->remove_work, srp_remove_work); 3368 spin_lock_init(&target->lock); 3369 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL); 3370 if (ret) 3371 goto out; 3372 3373 ret = -ENOMEM; 3374 target->ch_count = max_t(unsigned, num_online_nodes(), 3375 min(ch_count ? : 3376 min(4 * num_online_nodes(), 3377 ibdev->num_comp_vectors), 3378 num_online_cpus())); 3379 target->ch = kcalloc(target->ch_count, sizeof(*target->ch), 3380 GFP_KERNEL); 3381 if (!target->ch) 3382 goto out; 3383 3384 node_idx = 0; 3385 for_each_online_node(node) { 3386 const int ch_start = (node_idx * target->ch_count / 3387 num_online_nodes()); 3388 const int ch_end = ((node_idx + 1) * target->ch_count / 3389 num_online_nodes()); 3390 const int cv_start = (node_idx * ibdev->num_comp_vectors / 3391 num_online_nodes() + target->comp_vector) 3392 % ibdev->num_comp_vectors; 3393 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors / 3394 num_online_nodes() + target->comp_vector) 3395 % ibdev->num_comp_vectors; 3396 int cpu_idx = 0; 3397 3398 for_each_online_cpu(cpu) { 3399 if (cpu_to_node(cpu) != node) 3400 continue; 3401 if (ch_start + cpu_idx >= ch_end) 3402 continue; 3403 ch = &target->ch[ch_start + cpu_idx]; 3404 ch->target = target; 3405 ch->comp_vector = cv_start == cv_end ? cv_start : 3406 cv_start + cpu_idx % (cv_end - cv_start); 3407 spin_lock_init(&ch->lock); 3408 INIT_LIST_HEAD(&ch->free_tx); 3409 ret = srp_new_cm_id(ch); 3410 if (ret) 3411 goto err_disconnect; 3412 3413 ret = srp_create_ch_ib(ch); 3414 if (ret) 3415 goto err_disconnect; 3416 3417 ret = srp_alloc_req_data(ch); 3418 if (ret) 3419 goto err_disconnect; 3420 3421 ret = srp_connect_ch(ch, multich); 3422 if (ret) { 3423 shost_printk(KERN_ERR, target->scsi_host, 3424 PFX "Connection %d/%d failed\n", 3425 ch_start + cpu_idx, 3426 target->ch_count); 3427 if (node_idx == 0 && cpu_idx == 0) { 3428 goto err_disconnect; 3429 } else { 3430 srp_free_ch_ib(target, ch); 3431 srp_free_req_data(target, ch); 3432 target->ch_count = ch - target->ch; 3433 goto connected; 3434 } 3435 } 3436 3437 multich = true; 3438 cpu_idx++; 3439 } 3440 node_idx++; 3441 } 3442 3443 connected: 3444 target->scsi_host->nr_hw_queues = target->ch_count; 3445 3446 ret = srp_add_target(host, target); 3447 if (ret) 3448 goto err_disconnect; 3449 3450 if (target->state != SRP_TARGET_REMOVED) { 3451 shost_printk(KERN_DEBUG, target->scsi_host, PFX 3452 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n", 3453 be64_to_cpu(target->id_ext), 3454 be64_to_cpu(target->ioc_guid), 3455 be16_to_cpu(target->pkey), 3456 be64_to_cpu(target->service_id), 3457 target->sgid.raw, target->orig_dgid.raw); 3458 } 3459 3460 ret = count; 3461 3462 out: 3463 mutex_unlock(&host->add_target_mutex); 3464 3465 put: 3466 scsi_host_put(target->scsi_host); 3467 if (ret < 0) 3468 scsi_host_put(target->scsi_host); 3469 3470 return ret; 3471 3472 err_disconnect: 3473 srp_disconnect_target(target); 3474 3475 for (i = 0; i < target->ch_count; i++) { 3476 ch = &target->ch[i]; 3477 srp_free_ch_ib(target, ch); 3478 srp_free_req_data(target, ch); 3479 } 3480 3481 kfree(target->ch); 3482 goto out; 3483 } 3484 3485 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target); 3486 3487 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, 3488 char *buf) 3489 { 3490 struct srp_host *host = container_of(dev, struct srp_host, dev); 3491 3492 return sprintf(buf, "%s\n", host->srp_dev->dev->name); 3493 } 3494 3495 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); 3496 3497 static ssize_t show_port(struct device *dev, struct device_attribute *attr, 3498 char *buf) 3499 { 3500 struct srp_host *host = container_of(dev, struct srp_host, dev); 3501 3502 return sprintf(buf, "%d\n", host->port); 3503 } 3504 3505 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL); 3506 3507 static struct srp_host *srp_add_port(struct srp_device *device, u8 port) 3508 { 3509 struct srp_host *host; 3510 3511 host = kzalloc(sizeof *host, GFP_KERNEL); 3512 if (!host) 3513 return NULL; 3514 3515 INIT_LIST_HEAD(&host->target_list); 3516 spin_lock_init(&host->target_lock); 3517 init_completion(&host->released); 3518 mutex_init(&host->add_target_mutex); 3519 host->srp_dev = device; 3520 host->port = port; 3521 3522 host->dev.class = &srp_class; 3523 host->dev.parent = device->dev->dma_device; 3524 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port); 3525 3526 if (device_register(&host->dev)) 3527 goto free_host; 3528 if (device_create_file(&host->dev, &dev_attr_add_target)) 3529 goto err_class; 3530 if (device_create_file(&host->dev, &dev_attr_ibdev)) 3531 goto err_class; 3532 if (device_create_file(&host->dev, &dev_attr_port)) 3533 goto err_class; 3534 3535 return host; 3536 3537 err_class: 3538 device_unregister(&host->dev); 3539 3540 free_host: 3541 kfree(host); 3542 3543 return NULL; 3544 } 3545 3546 static void srp_add_one(struct ib_device *device) 3547 { 3548 struct srp_device *srp_dev; 3549 struct ib_device_attr *attr = &device->attrs; 3550 struct srp_host *host; 3551 int mr_page_shift, p; 3552 u64 max_pages_per_mr; 3553 unsigned int flags = 0; 3554 3555 srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL); 3556 if (!srp_dev) 3557 return; 3558 3559 /* 3560 * Use the smallest page size supported by the HCA, down to a 3561 * minimum of 4096 bytes. We're unlikely to build large sglists 3562 * out of smaller entries. 3563 */ 3564 mr_page_shift = max(12, ffs(attr->page_size_cap) - 1); 3565 srp_dev->mr_page_size = 1 << mr_page_shift; 3566 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1); 3567 max_pages_per_mr = attr->max_mr_size; 3568 do_div(max_pages_per_mr, srp_dev->mr_page_size); 3569 pr_debug("%s: %llu / %u = %llu <> %u\n", __func__, 3570 attr->max_mr_size, srp_dev->mr_page_size, 3571 max_pages_per_mr, SRP_MAX_PAGES_PER_MR); 3572 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR, 3573 max_pages_per_mr); 3574 3575 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr && 3576 device->map_phys_fmr && device->unmap_fmr); 3577 srp_dev->has_fr = (attr->device_cap_flags & 3578 IB_DEVICE_MEM_MGT_EXTENSIONS); 3579 if (!never_register && !srp_dev->has_fmr && !srp_dev->has_fr) { 3580 dev_warn(&device->dev, "neither FMR nor FR is supported\n"); 3581 } else if (!never_register && 3582 attr->max_mr_size >= 2 * srp_dev->mr_page_size) { 3583 srp_dev->use_fast_reg = (srp_dev->has_fr && 3584 (!srp_dev->has_fmr || prefer_fr)); 3585 srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr; 3586 } 3587 3588 if (never_register || !register_always || 3589 (!srp_dev->has_fmr && !srp_dev->has_fr)) 3590 flags |= IB_PD_UNSAFE_GLOBAL_RKEY; 3591 3592 if (srp_dev->use_fast_reg) { 3593 srp_dev->max_pages_per_mr = 3594 min_t(u32, srp_dev->max_pages_per_mr, 3595 attr->max_fast_reg_page_list_len); 3596 } 3597 srp_dev->mr_max_size = srp_dev->mr_page_size * 3598 srp_dev->max_pages_per_mr; 3599 pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n", 3600 device->name, mr_page_shift, attr->max_mr_size, 3601 attr->max_fast_reg_page_list_len, 3602 srp_dev->max_pages_per_mr, srp_dev->mr_max_size); 3603 3604 INIT_LIST_HEAD(&srp_dev->dev_list); 3605 3606 srp_dev->dev = device; 3607 srp_dev->pd = ib_alloc_pd(device, flags); 3608 if (IS_ERR(srp_dev->pd)) 3609 goto free_dev; 3610 3611 3612 for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) { 3613 host = srp_add_port(srp_dev, p); 3614 if (host) 3615 list_add_tail(&host->list, &srp_dev->dev_list); 3616 } 3617 3618 ib_set_client_data(device, &srp_client, srp_dev); 3619 return; 3620 3621 free_dev: 3622 kfree(srp_dev); 3623 } 3624 3625 static void srp_remove_one(struct ib_device *device, void *client_data) 3626 { 3627 struct srp_device *srp_dev; 3628 struct srp_host *host, *tmp_host; 3629 struct srp_target_port *target; 3630 3631 srp_dev = client_data; 3632 if (!srp_dev) 3633 return; 3634 3635 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) { 3636 device_unregister(&host->dev); 3637 /* 3638 * Wait for the sysfs entry to go away, so that no new 3639 * target ports can be created. 3640 */ 3641 wait_for_completion(&host->released); 3642 3643 /* 3644 * Remove all target ports. 3645 */ 3646 spin_lock(&host->target_lock); 3647 list_for_each_entry(target, &host->target_list, list) 3648 srp_queue_remove_work(target); 3649 spin_unlock(&host->target_lock); 3650 3651 /* 3652 * Wait for tl_err and target port removal tasks. 3653 */ 3654 flush_workqueue(system_long_wq); 3655 flush_workqueue(srp_remove_wq); 3656 3657 kfree(host); 3658 } 3659 3660 ib_dealloc_pd(srp_dev->pd); 3661 3662 kfree(srp_dev); 3663 } 3664 3665 static struct srp_function_template ib_srp_transport_functions = { 3666 .has_rport_state = true, 3667 .reset_timer_if_blocked = true, 3668 .reconnect_delay = &srp_reconnect_delay, 3669 .fast_io_fail_tmo = &srp_fast_io_fail_tmo, 3670 .dev_loss_tmo = &srp_dev_loss_tmo, 3671 .reconnect = srp_rport_reconnect, 3672 .rport_delete = srp_rport_delete, 3673 .terminate_rport_io = srp_terminate_io, 3674 }; 3675 3676 static int __init srp_init_module(void) 3677 { 3678 int ret; 3679 3680 if (srp_sg_tablesize) { 3681 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n"); 3682 if (!cmd_sg_entries) 3683 cmd_sg_entries = srp_sg_tablesize; 3684 } 3685 3686 if (!cmd_sg_entries) 3687 cmd_sg_entries = SRP_DEF_SG_TABLESIZE; 3688 3689 if (cmd_sg_entries > 255) { 3690 pr_warn("Clamping cmd_sg_entries to 255\n"); 3691 cmd_sg_entries = 255; 3692 } 3693 3694 if (!indirect_sg_entries) 3695 indirect_sg_entries = cmd_sg_entries; 3696 else if (indirect_sg_entries < cmd_sg_entries) { 3697 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n", 3698 cmd_sg_entries); 3699 indirect_sg_entries = cmd_sg_entries; 3700 } 3701 3702 if (indirect_sg_entries > SG_MAX_SEGMENTS) { 3703 pr_warn("Clamping indirect_sg_entries to %u\n", 3704 SG_MAX_SEGMENTS); 3705 indirect_sg_entries = SG_MAX_SEGMENTS; 3706 } 3707 3708 srp_remove_wq = create_workqueue("srp_remove"); 3709 if (!srp_remove_wq) { 3710 ret = -ENOMEM; 3711 goto out; 3712 } 3713 3714 ret = -ENOMEM; 3715 ib_srp_transport_template = 3716 srp_attach_transport(&ib_srp_transport_functions); 3717 if (!ib_srp_transport_template) 3718 goto destroy_wq; 3719 3720 ret = class_register(&srp_class); 3721 if (ret) { 3722 pr_err("couldn't register class infiniband_srp\n"); 3723 goto release_tr; 3724 } 3725 3726 ib_sa_register_client(&srp_sa_client); 3727 3728 ret = ib_register_client(&srp_client); 3729 if (ret) { 3730 pr_err("couldn't register IB client\n"); 3731 goto unreg_sa; 3732 } 3733 3734 out: 3735 return ret; 3736 3737 unreg_sa: 3738 ib_sa_unregister_client(&srp_sa_client); 3739 class_unregister(&srp_class); 3740 3741 release_tr: 3742 srp_release_transport(ib_srp_transport_template); 3743 3744 destroy_wq: 3745 destroy_workqueue(srp_remove_wq); 3746 goto out; 3747 } 3748 3749 static void __exit srp_cleanup_module(void) 3750 { 3751 ib_unregister_client(&srp_client); 3752 ib_sa_unregister_client(&srp_sa_client); 3753 class_unregister(&srp_class); 3754 srp_release_transport(ib_srp_transport_template); 3755 destroy_workqueue(srp_remove_wq); 3756 } 3757 3758 module_init(srp_init_module); 3759 module_exit(srp_cleanup_module); 3760