1 /* 2 * Copyright (c) 2005 Cisco Systems. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/string.h> 40 #include <linux/parser.h> 41 #include <linux/random.h> 42 #include <linux/jiffies.h> 43 #include <rdma/ib_cache.h> 44 45 #include <linux/atomic.h> 46 47 #include <scsi/scsi.h> 48 #include <scsi/scsi_device.h> 49 #include <scsi/scsi_dbg.h> 50 #include <scsi/scsi_tcq.h> 51 #include <scsi/srp.h> 52 #include <scsi/scsi_transport_srp.h> 53 54 #include "ib_srp.h" 55 56 #define DRV_NAME "ib_srp" 57 #define PFX DRV_NAME ": " 58 #define DRV_VERSION "1.0" 59 #define DRV_RELDATE "July 1, 2013" 60 61 MODULE_AUTHOR("Roland Dreier"); 62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator"); 63 MODULE_LICENSE("Dual BSD/GPL"); 64 MODULE_VERSION(DRV_VERSION); 65 MODULE_INFO(release_date, DRV_RELDATE); 66 67 static unsigned int srp_sg_tablesize; 68 static unsigned int cmd_sg_entries; 69 static unsigned int indirect_sg_entries; 70 static bool allow_ext_sg; 71 static bool prefer_fr; 72 static bool register_always; 73 static int topspin_workarounds = 1; 74 75 module_param(srp_sg_tablesize, uint, 0444); 76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries"); 77 78 module_param(cmd_sg_entries, uint, 0444); 79 MODULE_PARM_DESC(cmd_sg_entries, 80 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)"); 81 82 module_param(indirect_sg_entries, uint, 0444); 83 MODULE_PARM_DESC(indirect_sg_entries, 84 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")"); 85 86 module_param(allow_ext_sg, bool, 0444); 87 MODULE_PARM_DESC(allow_ext_sg, 88 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)"); 89 90 module_param(topspin_workarounds, int, 0444); 91 MODULE_PARM_DESC(topspin_workarounds, 92 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0"); 93 94 module_param(prefer_fr, bool, 0444); 95 MODULE_PARM_DESC(prefer_fr, 96 "Whether to use fast registration if both FMR and fast registration are supported"); 97 98 module_param(register_always, bool, 0444); 99 MODULE_PARM_DESC(register_always, 100 "Use memory registration even for contiguous memory regions"); 101 102 static const struct kernel_param_ops srp_tmo_ops; 103 104 static int srp_reconnect_delay = 10; 105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay, 106 S_IRUGO | S_IWUSR); 107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts"); 108 109 static int srp_fast_io_fail_tmo = 15; 110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo, 111 S_IRUGO | S_IWUSR); 112 MODULE_PARM_DESC(fast_io_fail_tmo, 113 "Number of seconds between the observation of a transport" 114 " layer error and failing all I/O. \"off\" means that this" 115 " functionality is disabled."); 116 117 static int srp_dev_loss_tmo = 600; 118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo, 119 S_IRUGO | S_IWUSR); 120 MODULE_PARM_DESC(dev_loss_tmo, 121 "Maximum number of seconds that the SRP transport should" 122 " insulate transport layer errors. After this time has been" 123 " exceeded the SCSI host is removed. Should be" 124 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT) 125 " if fast_io_fail_tmo has not been set. \"off\" means that" 126 " this functionality is disabled."); 127 128 static unsigned ch_count; 129 module_param(ch_count, uint, 0444); 130 MODULE_PARM_DESC(ch_count, 131 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA."); 132 133 static void srp_add_one(struct ib_device *device); 134 static void srp_remove_one(struct ib_device *device); 135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr); 136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr); 137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event); 138 139 static struct scsi_transport_template *ib_srp_transport_template; 140 static struct workqueue_struct *srp_remove_wq; 141 142 static struct ib_client srp_client = { 143 .name = "srp", 144 .add = srp_add_one, 145 .remove = srp_remove_one 146 }; 147 148 static struct ib_sa_client srp_sa_client; 149 150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp) 151 { 152 int tmo = *(int *)kp->arg; 153 154 if (tmo >= 0) 155 return sprintf(buffer, "%d", tmo); 156 else 157 return sprintf(buffer, "off"); 158 } 159 160 static int srp_tmo_set(const char *val, const struct kernel_param *kp) 161 { 162 int tmo, res; 163 164 res = srp_parse_tmo(&tmo, val); 165 if (res) 166 goto out; 167 168 if (kp->arg == &srp_reconnect_delay) 169 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo, 170 srp_dev_loss_tmo); 171 else if (kp->arg == &srp_fast_io_fail_tmo) 172 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo); 173 else 174 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo, 175 tmo); 176 if (res) 177 goto out; 178 *(int *)kp->arg = tmo; 179 180 out: 181 return res; 182 } 183 184 static const struct kernel_param_ops srp_tmo_ops = { 185 .get = srp_tmo_get, 186 .set = srp_tmo_set, 187 }; 188 189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host) 190 { 191 return (struct srp_target_port *) host->hostdata; 192 } 193 194 static const char *srp_target_info(struct Scsi_Host *host) 195 { 196 return host_to_target(host)->target_name; 197 } 198 199 static int srp_target_is_topspin(struct srp_target_port *target) 200 { 201 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad }; 202 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d }; 203 204 return topspin_workarounds && 205 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) || 206 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui)); 207 } 208 209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size, 210 gfp_t gfp_mask, 211 enum dma_data_direction direction) 212 { 213 struct srp_iu *iu; 214 215 iu = kmalloc(sizeof *iu, gfp_mask); 216 if (!iu) 217 goto out; 218 219 iu->buf = kzalloc(size, gfp_mask); 220 if (!iu->buf) 221 goto out_free_iu; 222 223 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size, 224 direction); 225 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma)) 226 goto out_free_buf; 227 228 iu->size = size; 229 iu->direction = direction; 230 231 return iu; 232 233 out_free_buf: 234 kfree(iu->buf); 235 out_free_iu: 236 kfree(iu); 237 out: 238 return NULL; 239 } 240 241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu) 242 { 243 if (!iu) 244 return; 245 246 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size, 247 iu->direction); 248 kfree(iu->buf); 249 kfree(iu); 250 } 251 252 static void srp_qp_event(struct ib_event *event, void *context) 253 { 254 pr_debug("QP event %s (%d)\n", 255 ib_event_msg(event->event), event->event); 256 } 257 258 static int srp_init_qp(struct srp_target_port *target, 259 struct ib_qp *qp) 260 { 261 struct ib_qp_attr *attr; 262 int ret; 263 264 attr = kmalloc(sizeof *attr, GFP_KERNEL); 265 if (!attr) 266 return -ENOMEM; 267 268 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev, 269 target->srp_host->port, 270 be16_to_cpu(target->pkey), 271 &attr->pkey_index); 272 if (ret) 273 goto out; 274 275 attr->qp_state = IB_QPS_INIT; 276 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ | 277 IB_ACCESS_REMOTE_WRITE); 278 attr->port_num = target->srp_host->port; 279 280 ret = ib_modify_qp(qp, attr, 281 IB_QP_STATE | 282 IB_QP_PKEY_INDEX | 283 IB_QP_ACCESS_FLAGS | 284 IB_QP_PORT); 285 286 out: 287 kfree(attr); 288 return ret; 289 } 290 291 static int srp_new_cm_id(struct srp_rdma_ch *ch) 292 { 293 struct srp_target_port *target = ch->target; 294 struct ib_cm_id *new_cm_id; 295 296 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev, 297 srp_cm_handler, ch); 298 if (IS_ERR(new_cm_id)) 299 return PTR_ERR(new_cm_id); 300 301 if (ch->cm_id) 302 ib_destroy_cm_id(ch->cm_id); 303 ch->cm_id = new_cm_id; 304 ch->path.sgid = target->sgid; 305 ch->path.dgid = target->orig_dgid; 306 ch->path.pkey = target->pkey; 307 ch->path.service_id = target->service_id; 308 309 return 0; 310 } 311 312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target) 313 { 314 struct srp_device *dev = target->srp_host->srp_dev; 315 struct ib_fmr_pool_param fmr_param; 316 317 memset(&fmr_param, 0, sizeof(fmr_param)); 318 fmr_param.pool_size = target->scsi_host->can_queue; 319 fmr_param.dirty_watermark = fmr_param.pool_size / 4; 320 fmr_param.cache = 1; 321 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr; 322 fmr_param.page_shift = ilog2(dev->mr_page_size); 323 fmr_param.access = (IB_ACCESS_LOCAL_WRITE | 324 IB_ACCESS_REMOTE_WRITE | 325 IB_ACCESS_REMOTE_READ); 326 327 return ib_create_fmr_pool(dev->pd, &fmr_param); 328 } 329 330 /** 331 * srp_destroy_fr_pool() - free the resources owned by a pool 332 * @pool: Fast registration pool to be destroyed. 333 */ 334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool) 335 { 336 int i; 337 struct srp_fr_desc *d; 338 339 if (!pool) 340 return; 341 342 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 343 if (d->frpl) 344 ib_free_fast_reg_page_list(d->frpl); 345 if (d->mr) 346 ib_dereg_mr(d->mr); 347 } 348 kfree(pool); 349 } 350 351 /** 352 * srp_create_fr_pool() - allocate and initialize a pool for fast registration 353 * @device: IB device to allocate fast registration descriptors for. 354 * @pd: Protection domain associated with the FR descriptors. 355 * @pool_size: Number of descriptors to allocate. 356 * @max_page_list_len: Maximum fast registration work request page list length. 357 */ 358 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device, 359 struct ib_pd *pd, int pool_size, 360 int max_page_list_len) 361 { 362 struct srp_fr_pool *pool; 363 struct srp_fr_desc *d; 364 struct ib_mr *mr; 365 struct ib_fast_reg_page_list *frpl; 366 int i, ret = -EINVAL; 367 368 if (pool_size <= 0) 369 goto err; 370 ret = -ENOMEM; 371 pool = kzalloc(sizeof(struct srp_fr_pool) + 372 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL); 373 if (!pool) 374 goto err; 375 pool->size = pool_size; 376 pool->max_page_list_len = max_page_list_len; 377 spin_lock_init(&pool->lock); 378 INIT_LIST_HEAD(&pool->free_list); 379 380 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) { 381 mr = ib_alloc_fast_reg_mr(pd, max_page_list_len); 382 if (IS_ERR(mr)) { 383 ret = PTR_ERR(mr); 384 goto destroy_pool; 385 } 386 d->mr = mr; 387 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len); 388 if (IS_ERR(frpl)) { 389 ret = PTR_ERR(frpl); 390 goto destroy_pool; 391 } 392 d->frpl = frpl; 393 list_add_tail(&d->entry, &pool->free_list); 394 } 395 396 out: 397 return pool; 398 399 destroy_pool: 400 srp_destroy_fr_pool(pool); 401 402 err: 403 pool = ERR_PTR(ret); 404 goto out; 405 } 406 407 /** 408 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration 409 * @pool: Pool to obtain descriptor from. 410 */ 411 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool) 412 { 413 struct srp_fr_desc *d = NULL; 414 unsigned long flags; 415 416 spin_lock_irqsave(&pool->lock, flags); 417 if (!list_empty(&pool->free_list)) { 418 d = list_first_entry(&pool->free_list, typeof(*d), entry); 419 list_del(&d->entry); 420 } 421 spin_unlock_irqrestore(&pool->lock, flags); 422 423 return d; 424 } 425 426 /** 427 * srp_fr_pool_put() - put an FR descriptor back in the free list 428 * @pool: Pool the descriptor was allocated from. 429 * @desc: Pointer to an array of fast registration descriptor pointers. 430 * @n: Number of descriptors to put back. 431 * 432 * Note: The caller must already have queued an invalidation request for 433 * desc->mr->rkey before calling this function. 434 */ 435 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc, 436 int n) 437 { 438 unsigned long flags; 439 int i; 440 441 spin_lock_irqsave(&pool->lock, flags); 442 for (i = 0; i < n; i++) 443 list_add(&desc[i]->entry, &pool->free_list); 444 spin_unlock_irqrestore(&pool->lock, flags); 445 } 446 447 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target) 448 { 449 struct srp_device *dev = target->srp_host->srp_dev; 450 451 return srp_create_fr_pool(dev->dev, dev->pd, 452 target->scsi_host->can_queue, 453 dev->max_pages_per_mr); 454 } 455 456 /** 457 * srp_destroy_qp() - destroy an RDMA queue pair 458 * @ch: SRP RDMA channel. 459 * 460 * Change a queue pair into the error state and wait until all receive 461 * completions have been processed before destroying it. This avoids that 462 * the receive completion handler can access the queue pair while it is 463 * being destroyed. 464 */ 465 static void srp_destroy_qp(struct srp_rdma_ch *ch) 466 { 467 static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 468 static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID }; 469 struct ib_recv_wr *bad_wr; 470 int ret; 471 472 /* Destroying a QP and reusing ch->done is only safe if not connected */ 473 WARN_ON_ONCE(ch->connected); 474 475 ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE); 476 WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret); 477 if (ret) 478 goto out; 479 480 init_completion(&ch->done); 481 ret = ib_post_recv(ch->qp, &wr, &bad_wr); 482 WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret); 483 if (ret == 0) 484 wait_for_completion(&ch->done); 485 486 out: 487 ib_destroy_qp(ch->qp); 488 } 489 490 static int srp_create_ch_ib(struct srp_rdma_ch *ch) 491 { 492 struct srp_target_port *target = ch->target; 493 struct srp_device *dev = target->srp_host->srp_dev; 494 struct ib_qp_init_attr *init_attr; 495 struct ib_cq *recv_cq, *send_cq; 496 struct ib_qp *qp; 497 struct ib_fmr_pool *fmr_pool = NULL; 498 struct srp_fr_pool *fr_pool = NULL; 499 const int m = 1 + dev->use_fast_reg; 500 struct ib_cq_init_attr cq_attr = {}; 501 int ret; 502 503 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL); 504 if (!init_attr) 505 return -ENOMEM; 506 507 /* + 1 for SRP_LAST_WR_ID */ 508 cq_attr.cqe = target->queue_size + 1; 509 cq_attr.comp_vector = ch->comp_vector; 510 recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch, 511 &cq_attr); 512 if (IS_ERR(recv_cq)) { 513 ret = PTR_ERR(recv_cq); 514 goto err; 515 } 516 517 cq_attr.cqe = m * target->queue_size; 518 cq_attr.comp_vector = ch->comp_vector; 519 send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch, 520 &cq_attr); 521 if (IS_ERR(send_cq)) { 522 ret = PTR_ERR(send_cq); 523 goto err_recv_cq; 524 } 525 526 ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP); 527 528 init_attr->event_handler = srp_qp_event; 529 init_attr->cap.max_send_wr = m * target->queue_size; 530 init_attr->cap.max_recv_wr = target->queue_size + 1; 531 init_attr->cap.max_recv_sge = 1; 532 init_attr->cap.max_send_sge = 1; 533 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 534 init_attr->qp_type = IB_QPT_RC; 535 init_attr->send_cq = send_cq; 536 init_attr->recv_cq = recv_cq; 537 538 qp = ib_create_qp(dev->pd, init_attr); 539 if (IS_ERR(qp)) { 540 ret = PTR_ERR(qp); 541 goto err_send_cq; 542 } 543 544 ret = srp_init_qp(target, qp); 545 if (ret) 546 goto err_qp; 547 548 if (dev->use_fast_reg && dev->has_fr) { 549 fr_pool = srp_alloc_fr_pool(target); 550 if (IS_ERR(fr_pool)) { 551 ret = PTR_ERR(fr_pool); 552 shost_printk(KERN_WARNING, target->scsi_host, PFX 553 "FR pool allocation failed (%d)\n", ret); 554 goto err_qp; 555 } 556 if (ch->fr_pool) 557 srp_destroy_fr_pool(ch->fr_pool); 558 ch->fr_pool = fr_pool; 559 } else if (!dev->use_fast_reg && dev->has_fmr) { 560 fmr_pool = srp_alloc_fmr_pool(target); 561 if (IS_ERR(fmr_pool)) { 562 ret = PTR_ERR(fmr_pool); 563 shost_printk(KERN_WARNING, target->scsi_host, PFX 564 "FMR pool allocation failed (%d)\n", ret); 565 goto err_qp; 566 } 567 if (ch->fmr_pool) 568 ib_destroy_fmr_pool(ch->fmr_pool); 569 ch->fmr_pool = fmr_pool; 570 } 571 572 if (ch->qp) 573 srp_destroy_qp(ch); 574 if (ch->recv_cq) 575 ib_destroy_cq(ch->recv_cq); 576 if (ch->send_cq) 577 ib_destroy_cq(ch->send_cq); 578 579 ch->qp = qp; 580 ch->recv_cq = recv_cq; 581 ch->send_cq = send_cq; 582 583 kfree(init_attr); 584 return 0; 585 586 err_qp: 587 ib_destroy_qp(qp); 588 589 err_send_cq: 590 ib_destroy_cq(send_cq); 591 592 err_recv_cq: 593 ib_destroy_cq(recv_cq); 594 595 err: 596 kfree(init_attr); 597 return ret; 598 } 599 600 /* 601 * Note: this function may be called without srp_alloc_iu_bufs() having been 602 * invoked. Hence the ch->[rt]x_ring checks. 603 */ 604 static void srp_free_ch_ib(struct srp_target_port *target, 605 struct srp_rdma_ch *ch) 606 { 607 struct srp_device *dev = target->srp_host->srp_dev; 608 int i; 609 610 if (!ch->target) 611 return; 612 613 if (ch->cm_id) { 614 ib_destroy_cm_id(ch->cm_id); 615 ch->cm_id = NULL; 616 } 617 618 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */ 619 if (!ch->qp) 620 return; 621 622 if (dev->use_fast_reg) { 623 if (ch->fr_pool) 624 srp_destroy_fr_pool(ch->fr_pool); 625 } else { 626 if (ch->fmr_pool) 627 ib_destroy_fmr_pool(ch->fmr_pool); 628 } 629 srp_destroy_qp(ch); 630 ib_destroy_cq(ch->send_cq); 631 ib_destroy_cq(ch->recv_cq); 632 633 /* 634 * Avoid that the SCSI error handler tries to use this channel after 635 * it has been freed. The SCSI error handler can namely continue 636 * trying to perform recovery actions after scsi_remove_host() 637 * returned. 638 */ 639 ch->target = NULL; 640 641 ch->qp = NULL; 642 ch->send_cq = ch->recv_cq = NULL; 643 644 if (ch->rx_ring) { 645 for (i = 0; i < target->queue_size; ++i) 646 srp_free_iu(target->srp_host, ch->rx_ring[i]); 647 kfree(ch->rx_ring); 648 ch->rx_ring = NULL; 649 } 650 if (ch->tx_ring) { 651 for (i = 0; i < target->queue_size; ++i) 652 srp_free_iu(target->srp_host, ch->tx_ring[i]); 653 kfree(ch->tx_ring); 654 ch->tx_ring = NULL; 655 } 656 } 657 658 static void srp_path_rec_completion(int status, 659 struct ib_sa_path_rec *pathrec, 660 void *ch_ptr) 661 { 662 struct srp_rdma_ch *ch = ch_ptr; 663 struct srp_target_port *target = ch->target; 664 665 ch->status = status; 666 if (status) 667 shost_printk(KERN_ERR, target->scsi_host, 668 PFX "Got failed path rec status %d\n", status); 669 else 670 ch->path = *pathrec; 671 complete(&ch->done); 672 } 673 674 static int srp_lookup_path(struct srp_rdma_ch *ch) 675 { 676 struct srp_target_port *target = ch->target; 677 int ret; 678 679 ch->path.numb_path = 1; 680 681 init_completion(&ch->done); 682 683 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client, 684 target->srp_host->srp_dev->dev, 685 target->srp_host->port, 686 &ch->path, 687 IB_SA_PATH_REC_SERVICE_ID | 688 IB_SA_PATH_REC_DGID | 689 IB_SA_PATH_REC_SGID | 690 IB_SA_PATH_REC_NUMB_PATH | 691 IB_SA_PATH_REC_PKEY, 692 SRP_PATH_REC_TIMEOUT_MS, 693 GFP_KERNEL, 694 srp_path_rec_completion, 695 ch, &ch->path_query); 696 if (ch->path_query_id < 0) 697 return ch->path_query_id; 698 699 ret = wait_for_completion_interruptible(&ch->done); 700 if (ret < 0) 701 return ret; 702 703 if (ch->status < 0) 704 shost_printk(KERN_WARNING, target->scsi_host, 705 PFX "Path record query failed\n"); 706 707 return ch->status; 708 } 709 710 static int srp_send_req(struct srp_rdma_ch *ch, bool multich) 711 { 712 struct srp_target_port *target = ch->target; 713 struct { 714 struct ib_cm_req_param param; 715 struct srp_login_req priv; 716 } *req = NULL; 717 int status; 718 719 req = kzalloc(sizeof *req, GFP_KERNEL); 720 if (!req) 721 return -ENOMEM; 722 723 req->param.primary_path = &ch->path; 724 req->param.alternate_path = NULL; 725 req->param.service_id = target->service_id; 726 req->param.qp_num = ch->qp->qp_num; 727 req->param.qp_type = ch->qp->qp_type; 728 req->param.private_data = &req->priv; 729 req->param.private_data_len = sizeof req->priv; 730 req->param.flow_control = 1; 731 732 get_random_bytes(&req->param.starting_psn, 4); 733 req->param.starting_psn &= 0xffffff; 734 735 /* 736 * Pick some arbitrary defaults here; we could make these 737 * module parameters if anyone cared about setting them. 738 */ 739 req->param.responder_resources = 4; 740 req->param.remote_cm_response_timeout = 20; 741 req->param.local_cm_response_timeout = 20; 742 req->param.retry_count = target->tl_retry_count; 743 req->param.rnr_retry_count = 7; 744 req->param.max_cm_retries = 15; 745 746 req->priv.opcode = SRP_LOGIN_REQ; 747 req->priv.tag = 0; 748 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len); 749 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | 750 SRP_BUF_FORMAT_INDIRECT); 751 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI : 752 SRP_MULTICHAN_SINGLE); 753 /* 754 * In the published SRP specification (draft rev. 16a), the 755 * port identifier format is 8 bytes of ID extension followed 756 * by 8 bytes of GUID. Older drafts put the two halves in the 757 * opposite order, so that the GUID comes first. 758 * 759 * Targets conforming to these obsolete drafts can be 760 * recognized by the I/O Class they report. 761 */ 762 if (target->io_class == SRP_REV10_IB_IO_CLASS) { 763 memcpy(req->priv.initiator_port_id, 764 &target->sgid.global.interface_id, 8); 765 memcpy(req->priv.initiator_port_id + 8, 766 &target->initiator_ext, 8); 767 memcpy(req->priv.target_port_id, &target->ioc_guid, 8); 768 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8); 769 } else { 770 memcpy(req->priv.initiator_port_id, 771 &target->initiator_ext, 8); 772 memcpy(req->priv.initiator_port_id + 8, 773 &target->sgid.global.interface_id, 8); 774 memcpy(req->priv.target_port_id, &target->id_ext, 8); 775 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8); 776 } 777 778 /* 779 * Topspin/Cisco SRP targets will reject our login unless we 780 * zero out the first 8 bytes of our initiator port ID and set 781 * the second 8 bytes to the local node GUID. 782 */ 783 if (srp_target_is_topspin(target)) { 784 shost_printk(KERN_DEBUG, target->scsi_host, 785 PFX "Topspin/Cisco initiator port ID workaround " 786 "activated for target GUID %016llx\n", 787 be64_to_cpu(target->ioc_guid)); 788 memset(req->priv.initiator_port_id, 0, 8); 789 memcpy(req->priv.initiator_port_id + 8, 790 &target->srp_host->srp_dev->dev->node_guid, 8); 791 } 792 793 status = ib_send_cm_req(ch->cm_id, &req->param); 794 795 kfree(req); 796 797 return status; 798 } 799 800 static bool srp_queue_remove_work(struct srp_target_port *target) 801 { 802 bool changed = false; 803 804 spin_lock_irq(&target->lock); 805 if (target->state != SRP_TARGET_REMOVED) { 806 target->state = SRP_TARGET_REMOVED; 807 changed = true; 808 } 809 spin_unlock_irq(&target->lock); 810 811 if (changed) 812 queue_work(srp_remove_wq, &target->remove_work); 813 814 return changed; 815 } 816 817 static void srp_disconnect_target(struct srp_target_port *target) 818 { 819 struct srp_rdma_ch *ch; 820 int i; 821 822 /* XXX should send SRP_I_LOGOUT request */ 823 824 for (i = 0; i < target->ch_count; i++) { 825 ch = &target->ch[i]; 826 ch->connected = false; 827 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) { 828 shost_printk(KERN_DEBUG, target->scsi_host, 829 PFX "Sending CM DREQ failed\n"); 830 } 831 } 832 } 833 834 static void srp_free_req_data(struct srp_target_port *target, 835 struct srp_rdma_ch *ch) 836 { 837 struct srp_device *dev = target->srp_host->srp_dev; 838 struct ib_device *ibdev = dev->dev; 839 struct srp_request *req; 840 int i; 841 842 if (!ch->req_ring) 843 return; 844 845 for (i = 0; i < target->req_ring_size; ++i) { 846 req = &ch->req_ring[i]; 847 if (dev->use_fast_reg) 848 kfree(req->fr_list); 849 else 850 kfree(req->fmr_list); 851 kfree(req->map_page); 852 if (req->indirect_dma_addr) { 853 ib_dma_unmap_single(ibdev, req->indirect_dma_addr, 854 target->indirect_size, 855 DMA_TO_DEVICE); 856 } 857 kfree(req->indirect_desc); 858 } 859 860 kfree(ch->req_ring); 861 ch->req_ring = NULL; 862 } 863 864 static int srp_alloc_req_data(struct srp_rdma_ch *ch) 865 { 866 struct srp_target_port *target = ch->target; 867 struct srp_device *srp_dev = target->srp_host->srp_dev; 868 struct ib_device *ibdev = srp_dev->dev; 869 struct srp_request *req; 870 void *mr_list; 871 dma_addr_t dma_addr; 872 int i, ret = -ENOMEM; 873 874 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring), 875 GFP_KERNEL); 876 if (!ch->req_ring) 877 goto out; 878 879 for (i = 0; i < target->req_ring_size; ++i) { 880 req = &ch->req_ring[i]; 881 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *), 882 GFP_KERNEL); 883 if (!mr_list) 884 goto out; 885 if (srp_dev->use_fast_reg) 886 req->fr_list = mr_list; 887 else 888 req->fmr_list = mr_list; 889 req->map_page = kmalloc(srp_dev->max_pages_per_mr * 890 sizeof(void *), GFP_KERNEL); 891 if (!req->map_page) 892 goto out; 893 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL); 894 if (!req->indirect_desc) 895 goto out; 896 897 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc, 898 target->indirect_size, 899 DMA_TO_DEVICE); 900 if (ib_dma_mapping_error(ibdev, dma_addr)) 901 goto out; 902 903 req->indirect_dma_addr = dma_addr; 904 } 905 ret = 0; 906 907 out: 908 return ret; 909 } 910 911 /** 912 * srp_del_scsi_host_attr() - Remove attributes defined in the host template. 913 * @shost: SCSI host whose attributes to remove from sysfs. 914 * 915 * Note: Any attributes defined in the host template and that did not exist 916 * before invocation of this function will be ignored. 917 */ 918 static void srp_del_scsi_host_attr(struct Scsi_Host *shost) 919 { 920 struct device_attribute **attr; 921 922 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr) 923 device_remove_file(&shost->shost_dev, *attr); 924 } 925 926 static void srp_remove_target(struct srp_target_port *target) 927 { 928 struct srp_rdma_ch *ch; 929 int i; 930 931 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 932 933 srp_del_scsi_host_attr(target->scsi_host); 934 srp_rport_get(target->rport); 935 srp_remove_host(target->scsi_host); 936 scsi_remove_host(target->scsi_host); 937 srp_stop_rport_timers(target->rport); 938 srp_disconnect_target(target); 939 for (i = 0; i < target->ch_count; i++) { 940 ch = &target->ch[i]; 941 srp_free_ch_ib(target, ch); 942 } 943 cancel_work_sync(&target->tl_err_work); 944 srp_rport_put(target->rport); 945 for (i = 0; i < target->ch_count; i++) { 946 ch = &target->ch[i]; 947 srp_free_req_data(target, ch); 948 } 949 kfree(target->ch); 950 target->ch = NULL; 951 952 spin_lock(&target->srp_host->target_lock); 953 list_del(&target->list); 954 spin_unlock(&target->srp_host->target_lock); 955 956 scsi_host_put(target->scsi_host); 957 } 958 959 static void srp_remove_work(struct work_struct *work) 960 { 961 struct srp_target_port *target = 962 container_of(work, struct srp_target_port, remove_work); 963 964 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); 965 966 srp_remove_target(target); 967 } 968 969 static void srp_rport_delete(struct srp_rport *rport) 970 { 971 struct srp_target_port *target = rport->lld_data; 972 973 srp_queue_remove_work(target); 974 } 975 976 /** 977 * srp_connected_ch() - number of connected channels 978 * @target: SRP target port. 979 */ 980 static int srp_connected_ch(struct srp_target_port *target) 981 { 982 int i, c = 0; 983 984 for (i = 0; i < target->ch_count; i++) 985 c += target->ch[i].connected; 986 987 return c; 988 } 989 990 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich) 991 { 992 struct srp_target_port *target = ch->target; 993 int ret; 994 995 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0); 996 997 ret = srp_lookup_path(ch); 998 if (ret) 999 return ret; 1000 1001 while (1) { 1002 init_completion(&ch->done); 1003 ret = srp_send_req(ch, multich); 1004 if (ret) 1005 return ret; 1006 ret = wait_for_completion_interruptible(&ch->done); 1007 if (ret < 0) 1008 return ret; 1009 1010 /* 1011 * The CM event handling code will set status to 1012 * SRP_PORT_REDIRECT if we get a port redirect REJ 1013 * back, or SRP_DLID_REDIRECT if we get a lid/qp 1014 * redirect REJ back. 1015 */ 1016 switch (ch->status) { 1017 case 0: 1018 ch->connected = true; 1019 return 0; 1020 1021 case SRP_PORT_REDIRECT: 1022 ret = srp_lookup_path(ch); 1023 if (ret) 1024 return ret; 1025 break; 1026 1027 case SRP_DLID_REDIRECT: 1028 break; 1029 1030 case SRP_STALE_CONN: 1031 shost_printk(KERN_ERR, target->scsi_host, PFX 1032 "giving up on stale connection\n"); 1033 ch->status = -ECONNRESET; 1034 return ch->status; 1035 1036 default: 1037 return ch->status; 1038 } 1039 } 1040 } 1041 1042 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey) 1043 { 1044 struct ib_send_wr *bad_wr; 1045 struct ib_send_wr wr = { 1046 .opcode = IB_WR_LOCAL_INV, 1047 .wr_id = LOCAL_INV_WR_ID_MASK, 1048 .next = NULL, 1049 .num_sge = 0, 1050 .send_flags = 0, 1051 .ex.invalidate_rkey = rkey, 1052 }; 1053 1054 return ib_post_send(ch->qp, &wr, &bad_wr); 1055 } 1056 1057 static void srp_unmap_data(struct scsi_cmnd *scmnd, 1058 struct srp_rdma_ch *ch, 1059 struct srp_request *req) 1060 { 1061 struct srp_target_port *target = ch->target; 1062 struct srp_device *dev = target->srp_host->srp_dev; 1063 struct ib_device *ibdev = dev->dev; 1064 int i, res; 1065 1066 if (!scsi_sglist(scmnd) || 1067 (scmnd->sc_data_direction != DMA_TO_DEVICE && 1068 scmnd->sc_data_direction != DMA_FROM_DEVICE)) 1069 return; 1070 1071 if (dev->use_fast_reg) { 1072 struct srp_fr_desc **pfr; 1073 1074 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) { 1075 res = srp_inv_rkey(ch, (*pfr)->mr->rkey); 1076 if (res < 0) { 1077 shost_printk(KERN_ERR, target->scsi_host, PFX 1078 "Queueing INV WR for rkey %#x failed (%d)\n", 1079 (*pfr)->mr->rkey, res); 1080 queue_work(system_long_wq, 1081 &target->tl_err_work); 1082 } 1083 } 1084 if (req->nmdesc) 1085 srp_fr_pool_put(ch->fr_pool, req->fr_list, 1086 req->nmdesc); 1087 } else { 1088 struct ib_pool_fmr **pfmr; 1089 1090 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++) 1091 ib_fmr_pool_unmap(*pfmr); 1092 } 1093 1094 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd), 1095 scmnd->sc_data_direction); 1096 } 1097 1098 /** 1099 * srp_claim_req - Take ownership of the scmnd associated with a request. 1100 * @ch: SRP RDMA channel. 1101 * @req: SRP request. 1102 * @sdev: If not NULL, only take ownership for this SCSI device. 1103 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take 1104 * ownership of @req->scmnd if it equals @scmnd. 1105 * 1106 * Return value: 1107 * Either NULL or a pointer to the SCSI command the caller became owner of. 1108 */ 1109 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch, 1110 struct srp_request *req, 1111 struct scsi_device *sdev, 1112 struct scsi_cmnd *scmnd) 1113 { 1114 unsigned long flags; 1115 1116 spin_lock_irqsave(&ch->lock, flags); 1117 if (req->scmnd && 1118 (!sdev || req->scmnd->device == sdev) && 1119 (!scmnd || req->scmnd == scmnd)) { 1120 scmnd = req->scmnd; 1121 req->scmnd = NULL; 1122 } else { 1123 scmnd = NULL; 1124 } 1125 spin_unlock_irqrestore(&ch->lock, flags); 1126 1127 return scmnd; 1128 } 1129 1130 /** 1131 * srp_free_req() - Unmap data and add request to the free request list. 1132 * @ch: SRP RDMA channel. 1133 * @req: Request to be freed. 1134 * @scmnd: SCSI command associated with @req. 1135 * @req_lim_delta: Amount to be added to @target->req_lim. 1136 */ 1137 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req, 1138 struct scsi_cmnd *scmnd, s32 req_lim_delta) 1139 { 1140 unsigned long flags; 1141 1142 srp_unmap_data(scmnd, ch, req); 1143 1144 spin_lock_irqsave(&ch->lock, flags); 1145 ch->req_lim += req_lim_delta; 1146 spin_unlock_irqrestore(&ch->lock, flags); 1147 } 1148 1149 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req, 1150 struct scsi_device *sdev, int result) 1151 { 1152 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL); 1153 1154 if (scmnd) { 1155 srp_free_req(ch, req, scmnd, 0); 1156 scmnd->result = result; 1157 scmnd->scsi_done(scmnd); 1158 } 1159 } 1160 1161 static void srp_terminate_io(struct srp_rport *rport) 1162 { 1163 struct srp_target_port *target = rport->lld_data; 1164 struct srp_rdma_ch *ch; 1165 struct Scsi_Host *shost = target->scsi_host; 1166 struct scsi_device *sdev; 1167 int i, j; 1168 1169 /* 1170 * Invoking srp_terminate_io() while srp_queuecommand() is running 1171 * is not safe. Hence the warning statement below. 1172 */ 1173 shost_for_each_device(sdev, shost) 1174 WARN_ON_ONCE(sdev->request_queue->request_fn_active); 1175 1176 for (i = 0; i < target->ch_count; i++) { 1177 ch = &target->ch[i]; 1178 1179 for (j = 0; j < target->req_ring_size; ++j) { 1180 struct srp_request *req = &ch->req_ring[j]; 1181 1182 srp_finish_req(ch, req, NULL, 1183 DID_TRANSPORT_FAILFAST << 16); 1184 } 1185 } 1186 } 1187 1188 /* 1189 * It is up to the caller to ensure that srp_rport_reconnect() calls are 1190 * serialized and that no concurrent srp_queuecommand(), srp_abort(), 1191 * srp_reset_device() or srp_reset_host() calls will occur while this function 1192 * is in progress. One way to realize that is not to call this function 1193 * directly but to call srp_reconnect_rport() instead since that last function 1194 * serializes calls of this function via rport->mutex and also blocks 1195 * srp_queuecommand() calls before invoking this function. 1196 */ 1197 static int srp_rport_reconnect(struct srp_rport *rport) 1198 { 1199 struct srp_target_port *target = rport->lld_data; 1200 struct srp_rdma_ch *ch; 1201 int i, j, ret = 0; 1202 bool multich = false; 1203 1204 srp_disconnect_target(target); 1205 1206 if (target->state == SRP_TARGET_SCANNING) 1207 return -ENODEV; 1208 1209 /* 1210 * Now get a new local CM ID so that we avoid confusing the target in 1211 * case things are really fouled up. Doing so also ensures that all CM 1212 * callbacks will have finished before a new QP is allocated. 1213 */ 1214 for (i = 0; i < target->ch_count; i++) { 1215 ch = &target->ch[i]; 1216 ret += srp_new_cm_id(ch); 1217 } 1218 for (i = 0; i < target->ch_count; i++) { 1219 ch = &target->ch[i]; 1220 for (j = 0; j < target->req_ring_size; ++j) { 1221 struct srp_request *req = &ch->req_ring[j]; 1222 1223 srp_finish_req(ch, req, NULL, DID_RESET << 16); 1224 } 1225 } 1226 for (i = 0; i < target->ch_count; i++) { 1227 ch = &target->ch[i]; 1228 /* 1229 * Whether or not creating a new CM ID succeeded, create a new 1230 * QP. This guarantees that all completion callback function 1231 * invocations have finished before request resetting starts. 1232 */ 1233 ret += srp_create_ch_ib(ch); 1234 1235 INIT_LIST_HEAD(&ch->free_tx); 1236 for (j = 0; j < target->queue_size; ++j) 1237 list_add(&ch->tx_ring[j]->list, &ch->free_tx); 1238 } 1239 1240 target->qp_in_error = false; 1241 1242 for (i = 0; i < target->ch_count; i++) { 1243 ch = &target->ch[i]; 1244 if (ret) 1245 break; 1246 ret = srp_connect_ch(ch, multich); 1247 multich = true; 1248 } 1249 1250 if (ret == 0) 1251 shost_printk(KERN_INFO, target->scsi_host, 1252 PFX "reconnect succeeded\n"); 1253 1254 return ret; 1255 } 1256 1257 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr, 1258 unsigned int dma_len, u32 rkey) 1259 { 1260 struct srp_direct_buf *desc = state->desc; 1261 1262 desc->va = cpu_to_be64(dma_addr); 1263 desc->key = cpu_to_be32(rkey); 1264 desc->len = cpu_to_be32(dma_len); 1265 1266 state->total_len += dma_len; 1267 state->desc++; 1268 state->ndesc++; 1269 } 1270 1271 static int srp_map_finish_fmr(struct srp_map_state *state, 1272 struct srp_rdma_ch *ch) 1273 { 1274 struct ib_pool_fmr *fmr; 1275 u64 io_addr = 0; 1276 1277 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages, 1278 state->npages, io_addr); 1279 if (IS_ERR(fmr)) 1280 return PTR_ERR(fmr); 1281 1282 *state->next_fmr++ = fmr; 1283 state->nmdesc++; 1284 1285 srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey); 1286 1287 return 0; 1288 } 1289 1290 static int srp_map_finish_fr(struct srp_map_state *state, 1291 struct srp_rdma_ch *ch) 1292 { 1293 struct srp_target_port *target = ch->target; 1294 struct srp_device *dev = target->srp_host->srp_dev; 1295 struct ib_send_wr *bad_wr; 1296 struct ib_send_wr wr; 1297 struct srp_fr_desc *desc; 1298 u32 rkey; 1299 1300 desc = srp_fr_pool_get(ch->fr_pool); 1301 if (!desc) 1302 return -ENOMEM; 1303 1304 rkey = ib_inc_rkey(desc->mr->rkey); 1305 ib_update_fast_reg_key(desc->mr, rkey); 1306 1307 memcpy(desc->frpl->page_list, state->pages, 1308 sizeof(state->pages[0]) * state->npages); 1309 1310 memset(&wr, 0, sizeof(wr)); 1311 wr.opcode = IB_WR_FAST_REG_MR; 1312 wr.wr_id = FAST_REG_WR_ID_MASK; 1313 wr.wr.fast_reg.iova_start = state->base_dma_addr; 1314 wr.wr.fast_reg.page_list = desc->frpl; 1315 wr.wr.fast_reg.page_list_len = state->npages; 1316 wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size); 1317 wr.wr.fast_reg.length = state->dma_len; 1318 wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE | 1319 IB_ACCESS_REMOTE_READ | 1320 IB_ACCESS_REMOTE_WRITE); 1321 wr.wr.fast_reg.rkey = desc->mr->lkey; 1322 1323 *state->next_fr++ = desc; 1324 state->nmdesc++; 1325 1326 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1327 desc->mr->rkey); 1328 1329 return ib_post_send(ch->qp, &wr, &bad_wr); 1330 } 1331 1332 static int srp_finish_mapping(struct srp_map_state *state, 1333 struct srp_rdma_ch *ch) 1334 { 1335 struct srp_target_port *target = ch->target; 1336 int ret = 0; 1337 1338 if (state->npages == 0) 1339 return 0; 1340 1341 if (state->npages == 1 && !register_always) 1342 srp_map_desc(state, state->base_dma_addr, state->dma_len, 1343 target->rkey); 1344 else 1345 ret = target->srp_host->srp_dev->use_fast_reg ? 1346 srp_map_finish_fr(state, ch) : 1347 srp_map_finish_fmr(state, ch); 1348 1349 if (ret == 0) { 1350 state->npages = 0; 1351 state->dma_len = 0; 1352 } 1353 1354 return ret; 1355 } 1356 1357 static void srp_map_update_start(struct srp_map_state *state, 1358 struct scatterlist *sg, int sg_index, 1359 dma_addr_t dma_addr) 1360 { 1361 state->unmapped_sg = sg; 1362 state->unmapped_index = sg_index; 1363 state->unmapped_addr = dma_addr; 1364 } 1365 1366 static int srp_map_sg_entry(struct srp_map_state *state, 1367 struct srp_rdma_ch *ch, 1368 struct scatterlist *sg, int sg_index, 1369 bool use_mr) 1370 { 1371 struct srp_target_port *target = ch->target; 1372 struct srp_device *dev = target->srp_host->srp_dev; 1373 struct ib_device *ibdev = dev->dev; 1374 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg); 1375 unsigned int dma_len = ib_sg_dma_len(ibdev, sg); 1376 unsigned int len; 1377 int ret; 1378 1379 if (!dma_len) 1380 return 0; 1381 1382 if (!use_mr) { 1383 /* 1384 * Once we're in direct map mode for a request, we don't 1385 * go back to FMR or FR mode, so no need to update anything 1386 * other than the descriptor. 1387 */ 1388 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1389 return 0; 1390 } 1391 1392 /* 1393 * Since not all RDMA HW drivers support non-zero page offsets for 1394 * FMR, if we start at an offset into a page, don't merge into the 1395 * current FMR mapping. Finish it out, and use the kernel's MR for 1396 * this sg entry. 1397 */ 1398 if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) || 1399 dma_len > dev->mr_max_size) { 1400 ret = srp_finish_mapping(state, ch); 1401 if (ret) 1402 return ret; 1403 1404 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1405 srp_map_update_start(state, NULL, 0, 0); 1406 return 0; 1407 } 1408 1409 /* 1410 * If this is the first sg that will be mapped via FMR or via FR, save 1411 * our position. We need to know the first unmapped entry, its index, 1412 * and the first unmapped address within that entry to be able to 1413 * restart mapping after an error. 1414 */ 1415 if (!state->unmapped_sg) 1416 srp_map_update_start(state, sg, sg_index, dma_addr); 1417 1418 while (dma_len) { 1419 unsigned offset = dma_addr & ~dev->mr_page_mask; 1420 if (state->npages == dev->max_pages_per_mr || offset != 0) { 1421 ret = srp_finish_mapping(state, ch); 1422 if (ret) 1423 return ret; 1424 1425 srp_map_update_start(state, sg, sg_index, dma_addr); 1426 } 1427 1428 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset); 1429 1430 if (!state->npages) 1431 state->base_dma_addr = dma_addr; 1432 state->pages[state->npages++] = dma_addr & dev->mr_page_mask; 1433 state->dma_len += len; 1434 dma_addr += len; 1435 dma_len -= len; 1436 } 1437 1438 /* 1439 * If the last entry of the MR wasn't a full page, then we need to 1440 * close it out and start a new one -- we can only merge at page 1441 * boundries. 1442 */ 1443 ret = 0; 1444 if (len != dev->mr_page_size) { 1445 ret = srp_finish_mapping(state, ch); 1446 if (!ret) 1447 srp_map_update_start(state, NULL, 0, 0); 1448 } 1449 return ret; 1450 } 1451 1452 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch, 1453 struct srp_request *req, struct scatterlist *scat, 1454 int count) 1455 { 1456 struct srp_target_port *target = ch->target; 1457 struct srp_device *dev = target->srp_host->srp_dev; 1458 struct ib_device *ibdev = dev->dev; 1459 struct scatterlist *sg; 1460 int i; 1461 bool use_mr; 1462 1463 state->desc = req->indirect_desc; 1464 state->pages = req->map_page; 1465 if (dev->use_fast_reg) { 1466 state->next_fr = req->fr_list; 1467 use_mr = !!ch->fr_pool; 1468 } else { 1469 state->next_fmr = req->fmr_list; 1470 use_mr = !!ch->fmr_pool; 1471 } 1472 1473 for_each_sg(scat, sg, count, i) { 1474 if (srp_map_sg_entry(state, ch, sg, i, use_mr)) { 1475 /* 1476 * Memory registration failed, so backtrack to the 1477 * first unmapped entry and continue on without using 1478 * memory registration. 1479 */ 1480 dma_addr_t dma_addr; 1481 unsigned int dma_len; 1482 1483 backtrack: 1484 sg = state->unmapped_sg; 1485 i = state->unmapped_index; 1486 1487 dma_addr = ib_sg_dma_address(ibdev, sg); 1488 dma_len = ib_sg_dma_len(ibdev, sg); 1489 dma_len -= (state->unmapped_addr - dma_addr); 1490 dma_addr = state->unmapped_addr; 1491 use_mr = false; 1492 srp_map_desc(state, dma_addr, dma_len, target->rkey); 1493 } 1494 } 1495 1496 if (use_mr && srp_finish_mapping(state, ch)) 1497 goto backtrack; 1498 1499 req->nmdesc = state->nmdesc; 1500 1501 return 0; 1502 } 1503 1504 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch, 1505 struct srp_request *req) 1506 { 1507 struct srp_target_port *target = ch->target; 1508 struct scatterlist *scat; 1509 struct srp_cmd *cmd = req->cmd->buf; 1510 int len, nents, count; 1511 struct srp_device *dev; 1512 struct ib_device *ibdev; 1513 struct srp_map_state state; 1514 struct srp_indirect_buf *indirect_hdr; 1515 u32 table_len; 1516 u8 fmt; 1517 1518 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE) 1519 return sizeof (struct srp_cmd); 1520 1521 if (scmnd->sc_data_direction != DMA_FROM_DEVICE && 1522 scmnd->sc_data_direction != DMA_TO_DEVICE) { 1523 shost_printk(KERN_WARNING, target->scsi_host, 1524 PFX "Unhandled data direction %d\n", 1525 scmnd->sc_data_direction); 1526 return -EINVAL; 1527 } 1528 1529 nents = scsi_sg_count(scmnd); 1530 scat = scsi_sglist(scmnd); 1531 1532 dev = target->srp_host->srp_dev; 1533 ibdev = dev->dev; 1534 1535 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction); 1536 if (unlikely(count == 0)) 1537 return -EIO; 1538 1539 fmt = SRP_DATA_DESC_DIRECT; 1540 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf); 1541 1542 if (count == 1 && !register_always) { 1543 /* 1544 * The midlayer only generated a single gather/scatter 1545 * entry, or DMA mapping coalesced everything to a 1546 * single entry. So a direct descriptor along with 1547 * the DMA MR suffices. 1548 */ 1549 struct srp_direct_buf *buf = (void *) cmd->add_data; 1550 1551 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat)); 1552 buf->key = cpu_to_be32(target->rkey); 1553 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat)); 1554 1555 req->nmdesc = 0; 1556 goto map_complete; 1557 } 1558 1559 /* 1560 * We have more than one scatter/gather entry, so build our indirect 1561 * descriptor table, trying to merge as many entries as we can. 1562 */ 1563 indirect_hdr = (void *) cmd->add_data; 1564 1565 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr, 1566 target->indirect_size, DMA_TO_DEVICE); 1567 1568 memset(&state, 0, sizeof(state)); 1569 srp_map_sg(&state, ch, req, scat, count); 1570 1571 /* We've mapped the request, now pull as much of the indirect 1572 * descriptor table as we can into the command buffer. If this 1573 * target is not using an external indirect table, we are 1574 * guaranteed to fit into the command, as the SCSI layer won't 1575 * give us more S/G entries than we allow. 1576 */ 1577 if (state.ndesc == 1) { 1578 /* 1579 * Memory registration collapsed the sg-list into one entry, 1580 * so use a direct descriptor. 1581 */ 1582 struct srp_direct_buf *buf = (void *) cmd->add_data; 1583 1584 *buf = req->indirect_desc[0]; 1585 goto map_complete; 1586 } 1587 1588 if (unlikely(target->cmd_sg_cnt < state.ndesc && 1589 !target->allow_ext_sg)) { 1590 shost_printk(KERN_ERR, target->scsi_host, 1591 "Could not fit S/G list into SRP_CMD\n"); 1592 return -EIO; 1593 } 1594 1595 count = min(state.ndesc, target->cmd_sg_cnt); 1596 table_len = state.ndesc * sizeof (struct srp_direct_buf); 1597 1598 fmt = SRP_DATA_DESC_INDIRECT; 1599 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf); 1600 len += count * sizeof (struct srp_direct_buf); 1601 1602 memcpy(indirect_hdr->desc_list, req->indirect_desc, 1603 count * sizeof (struct srp_direct_buf)); 1604 1605 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr); 1606 indirect_hdr->table_desc.key = cpu_to_be32(target->rkey); 1607 indirect_hdr->table_desc.len = cpu_to_be32(table_len); 1608 indirect_hdr->len = cpu_to_be32(state.total_len); 1609 1610 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1611 cmd->data_out_desc_cnt = count; 1612 else 1613 cmd->data_in_desc_cnt = count; 1614 1615 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len, 1616 DMA_TO_DEVICE); 1617 1618 map_complete: 1619 if (scmnd->sc_data_direction == DMA_TO_DEVICE) 1620 cmd->buf_fmt = fmt << 4; 1621 else 1622 cmd->buf_fmt = fmt; 1623 1624 return len; 1625 } 1626 1627 /* 1628 * Return an IU and possible credit to the free pool 1629 */ 1630 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu, 1631 enum srp_iu_type iu_type) 1632 { 1633 unsigned long flags; 1634 1635 spin_lock_irqsave(&ch->lock, flags); 1636 list_add(&iu->list, &ch->free_tx); 1637 if (iu_type != SRP_IU_RSP) 1638 ++ch->req_lim; 1639 spin_unlock_irqrestore(&ch->lock, flags); 1640 } 1641 1642 /* 1643 * Must be called with ch->lock held to protect req_lim and free_tx. 1644 * If IU is not sent, it must be returned using srp_put_tx_iu(). 1645 * 1646 * Note: 1647 * An upper limit for the number of allocated information units for each 1648 * request type is: 1649 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues 1650 * more than Scsi_Host.can_queue requests. 1651 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE. 1652 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than 1653 * one unanswered SRP request to an initiator. 1654 */ 1655 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch, 1656 enum srp_iu_type iu_type) 1657 { 1658 struct srp_target_port *target = ch->target; 1659 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE; 1660 struct srp_iu *iu; 1661 1662 srp_send_completion(ch->send_cq, ch); 1663 1664 if (list_empty(&ch->free_tx)) 1665 return NULL; 1666 1667 /* Initiator responses to target requests do not consume credits */ 1668 if (iu_type != SRP_IU_RSP) { 1669 if (ch->req_lim <= rsv) { 1670 ++target->zero_req_lim; 1671 return NULL; 1672 } 1673 1674 --ch->req_lim; 1675 } 1676 1677 iu = list_first_entry(&ch->free_tx, struct srp_iu, list); 1678 list_del(&iu->list); 1679 return iu; 1680 } 1681 1682 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len) 1683 { 1684 struct srp_target_port *target = ch->target; 1685 struct ib_sge list; 1686 struct ib_send_wr wr, *bad_wr; 1687 1688 list.addr = iu->dma; 1689 list.length = len; 1690 list.lkey = target->lkey; 1691 1692 wr.next = NULL; 1693 wr.wr_id = (uintptr_t) iu; 1694 wr.sg_list = &list; 1695 wr.num_sge = 1; 1696 wr.opcode = IB_WR_SEND; 1697 wr.send_flags = IB_SEND_SIGNALED; 1698 1699 return ib_post_send(ch->qp, &wr, &bad_wr); 1700 } 1701 1702 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu) 1703 { 1704 struct srp_target_port *target = ch->target; 1705 struct ib_recv_wr wr, *bad_wr; 1706 struct ib_sge list; 1707 1708 list.addr = iu->dma; 1709 list.length = iu->size; 1710 list.lkey = target->lkey; 1711 1712 wr.next = NULL; 1713 wr.wr_id = (uintptr_t) iu; 1714 wr.sg_list = &list; 1715 wr.num_sge = 1; 1716 1717 return ib_post_recv(ch->qp, &wr, &bad_wr); 1718 } 1719 1720 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp) 1721 { 1722 struct srp_target_port *target = ch->target; 1723 struct srp_request *req; 1724 struct scsi_cmnd *scmnd; 1725 unsigned long flags; 1726 1727 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) { 1728 spin_lock_irqsave(&ch->lock, flags); 1729 ch->req_lim += be32_to_cpu(rsp->req_lim_delta); 1730 spin_unlock_irqrestore(&ch->lock, flags); 1731 1732 ch->tsk_mgmt_status = -1; 1733 if (be32_to_cpu(rsp->resp_data_len) >= 4) 1734 ch->tsk_mgmt_status = rsp->data[3]; 1735 complete(&ch->tsk_mgmt_done); 1736 } else { 1737 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag); 1738 if (scmnd) { 1739 req = (void *)scmnd->host_scribble; 1740 scmnd = srp_claim_req(ch, req, NULL, scmnd); 1741 } 1742 if (!scmnd) { 1743 shost_printk(KERN_ERR, target->scsi_host, 1744 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n", 1745 rsp->tag, ch - target->ch, ch->qp->qp_num); 1746 1747 spin_lock_irqsave(&ch->lock, flags); 1748 ch->req_lim += be32_to_cpu(rsp->req_lim_delta); 1749 spin_unlock_irqrestore(&ch->lock, flags); 1750 1751 return; 1752 } 1753 scmnd->result = rsp->status; 1754 1755 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) { 1756 memcpy(scmnd->sense_buffer, rsp->data + 1757 be32_to_cpu(rsp->resp_data_len), 1758 min_t(int, be32_to_cpu(rsp->sense_data_len), 1759 SCSI_SENSE_BUFFERSIZE)); 1760 } 1761 1762 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER)) 1763 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt)); 1764 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER)) 1765 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt)); 1766 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER)) 1767 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt)); 1768 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER)) 1769 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt)); 1770 1771 srp_free_req(ch, req, scmnd, 1772 be32_to_cpu(rsp->req_lim_delta)); 1773 1774 scmnd->host_scribble = NULL; 1775 scmnd->scsi_done(scmnd); 1776 } 1777 } 1778 1779 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta, 1780 void *rsp, int len) 1781 { 1782 struct srp_target_port *target = ch->target; 1783 struct ib_device *dev = target->srp_host->srp_dev->dev; 1784 unsigned long flags; 1785 struct srp_iu *iu; 1786 int err; 1787 1788 spin_lock_irqsave(&ch->lock, flags); 1789 ch->req_lim += req_delta; 1790 iu = __srp_get_tx_iu(ch, SRP_IU_RSP); 1791 spin_unlock_irqrestore(&ch->lock, flags); 1792 1793 if (!iu) { 1794 shost_printk(KERN_ERR, target->scsi_host, PFX 1795 "no IU available to send response\n"); 1796 return 1; 1797 } 1798 1799 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE); 1800 memcpy(iu->buf, rsp, len); 1801 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE); 1802 1803 err = srp_post_send(ch, iu, len); 1804 if (err) { 1805 shost_printk(KERN_ERR, target->scsi_host, PFX 1806 "unable to post response: %d\n", err); 1807 srp_put_tx_iu(ch, iu, SRP_IU_RSP); 1808 } 1809 1810 return err; 1811 } 1812 1813 static void srp_process_cred_req(struct srp_rdma_ch *ch, 1814 struct srp_cred_req *req) 1815 { 1816 struct srp_cred_rsp rsp = { 1817 .opcode = SRP_CRED_RSP, 1818 .tag = req->tag, 1819 }; 1820 s32 delta = be32_to_cpu(req->req_lim_delta); 1821 1822 if (srp_response_common(ch, delta, &rsp, sizeof(rsp))) 1823 shost_printk(KERN_ERR, ch->target->scsi_host, PFX 1824 "problems processing SRP_CRED_REQ\n"); 1825 } 1826 1827 static void srp_process_aer_req(struct srp_rdma_ch *ch, 1828 struct srp_aer_req *req) 1829 { 1830 struct srp_target_port *target = ch->target; 1831 struct srp_aer_rsp rsp = { 1832 .opcode = SRP_AER_RSP, 1833 .tag = req->tag, 1834 }; 1835 s32 delta = be32_to_cpu(req->req_lim_delta); 1836 1837 shost_printk(KERN_ERR, target->scsi_host, PFX 1838 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun)); 1839 1840 if (srp_response_common(ch, delta, &rsp, sizeof(rsp))) 1841 shost_printk(KERN_ERR, target->scsi_host, PFX 1842 "problems processing SRP_AER_REQ\n"); 1843 } 1844 1845 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc) 1846 { 1847 struct srp_target_port *target = ch->target; 1848 struct ib_device *dev = target->srp_host->srp_dev->dev; 1849 struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id; 1850 int res; 1851 u8 opcode; 1852 1853 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len, 1854 DMA_FROM_DEVICE); 1855 1856 opcode = *(u8 *) iu->buf; 1857 1858 if (0) { 1859 shost_printk(KERN_ERR, target->scsi_host, 1860 PFX "recv completion, opcode 0x%02x\n", opcode); 1861 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1, 1862 iu->buf, wc->byte_len, true); 1863 } 1864 1865 switch (opcode) { 1866 case SRP_RSP: 1867 srp_process_rsp(ch, iu->buf); 1868 break; 1869 1870 case SRP_CRED_REQ: 1871 srp_process_cred_req(ch, iu->buf); 1872 break; 1873 1874 case SRP_AER_REQ: 1875 srp_process_aer_req(ch, iu->buf); 1876 break; 1877 1878 case SRP_T_LOGOUT: 1879 /* XXX Handle target logout */ 1880 shost_printk(KERN_WARNING, target->scsi_host, 1881 PFX "Got target logout request\n"); 1882 break; 1883 1884 default: 1885 shost_printk(KERN_WARNING, target->scsi_host, 1886 PFX "Unhandled SRP opcode 0x%02x\n", opcode); 1887 break; 1888 } 1889 1890 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len, 1891 DMA_FROM_DEVICE); 1892 1893 res = srp_post_recv(ch, iu); 1894 if (res != 0) 1895 shost_printk(KERN_ERR, target->scsi_host, 1896 PFX "Recv failed with error code %d\n", res); 1897 } 1898 1899 /** 1900 * srp_tl_err_work() - handle a transport layer error 1901 * @work: Work structure embedded in an SRP target port. 1902 * 1903 * Note: This function may get invoked before the rport has been created, 1904 * hence the target->rport test. 1905 */ 1906 static void srp_tl_err_work(struct work_struct *work) 1907 { 1908 struct srp_target_port *target; 1909 1910 target = container_of(work, struct srp_target_port, tl_err_work); 1911 if (target->rport) 1912 srp_start_tl_fail_timers(target->rport); 1913 } 1914 1915 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status, 1916 bool send_err, struct srp_rdma_ch *ch) 1917 { 1918 struct srp_target_port *target = ch->target; 1919 1920 if (wr_id == SRP_LAST_WR_ID) { 1921 complete(&ch->done); 1922 return; 1923 } 1924 1925 if (ch->connected && !target->qp_in_error) { 1926 if (wr_id & LOCAL_INV_WR_ID_MASK) { 1927 shost_printk(KERN_ERR, target->scsi_host, PFX 1928 "LOCAL_INV failed with status %s (%d)\n", 1929 ib_wc_status_msg(wc_status), wc_status); 1930 } else if (wr_id & FAST_REG_WR_ID_MASK) { 1931 shost_printk(KERN_ERR, target->scsi_host, PFX 1932 "FAST_REG_MR failed status %s (%d)\n", 1933 ib_wc_status_msg(wc_status), wc_status); 1934 } else { 1935 shost_printk(KERN_ERR, target->scsi_host, 1936 PFX "failed %s status %s (%d) for iu %p\n", 1937 send_err ? "send" : "receive", 1938 ib_wc_status_msg(wc_status), wc_status, 1939 (void *)(uintptr_t)wr_id); 1940 } 1941 queue_work(system_long_wq, &target->tl_err_work); 1942 } 1943 target->qp_in_error = true; 1944 } 1945 1946 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr) 1947 { 1948 struct srp_rdma_ch *ch = ch_ptr; 1949 struct ib_wc wc; 1950 1951 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1952 while (ib_poll_cq(cq, 1, &wc) > 0) { 1953 if (likely(wc.status == IB_WC_SUCCESS)) { 1954 srp_handle_recv(ch, &wc); 1955 } else { 1956 srp_handle_qp_err(wc.wr_id, wc.status, false, ch); 1957 } 1958 } 1959 } 1960 1961 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr) 1962 { 1963 struct srp_rdma_ch *ch = ch_ptr; 1964 struct ib_wc wc; 1965 struct srp_iu *iu; 1966 1967 while (ib_poll_cq(cq, 1, &wc) > 0) { 1968 if (likely(wc.status == IB_WC_SUCCESS)) { 1969 iu = (struct srp_iu *) (uintptr_t) wc.wr_id; 1970 list_add(&iu->list, &ch->free_tx); 1971 } else { 1972 srp_handle_qp_err(wc.wr_id, wc.status, true, ch); 1973 } 1974 } 1975 } 1976 1977 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd) 1978 { 1979 struct srp_target_port *target = host_to_target(shost); 1980 struct srp_rport *rport = target->rport; 1981 struct srp_rdma_ch *ch; 1982 struct srp_request *req; 1983 struct srp_iu *iu; 1984 struct srp_cmd *cmd; 1985 struct ib_device *dev; 1986 unsigned long flags; 1987 u32 tag; 1988 u16 idx; 1989 int len, ret; 1990 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler; 1991 1992 /* 1993 * The SCSI EH thread is the only context from which srp_queuecommand() 1994 * can get invoked for blocked devices (SDEV_BLOCK / 1995 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by 1996 * locking the rport mutex if invoked from inside the SCSI EH. 1997 */ 1998 if (in_scsi_eh) 1999 mutex_lock(&rport->mutex); 2000 2001 scmnd->result = srp_chkready(target->rport); 2002 if (unlikely(scmnd->result)) 2003 goto err; 2004 2005 WARN_ON_ONCE(scmnd->request->tag < 0); 2006 tag = blk_mq_unique_tag(scmnd->request); 2007 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)]; 2008 idx = blk_mq_unique_tag_to_tag(tag); 2009 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n", 2010 dev_name(&shost->shost_gendev), tag, idx, 2011 target->req_ring_size); 2012 2013 spin_lock_irqsave(&ch->lock, flags); 2014 iu = __srp_get_tx_iu(ch, SRP_IU_CMD); 2015 spin_unlock_irqrestore(&ch->lock, flags); 2016 2017 if (!iu) 2018 goto err; 2019 2020 req = &ch->req_ring[idx]; 2021 dev = target->srp_host->srp_dev->dev; 2022 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len, 2023 DMA_TO_DEVICE); 2024 2025 scmnd->host_scribble = (void *) req; 2026 2027 cmd = iu->buf; 2028 memset(cmd, 0, sizeof *cmd); 2029 2030 cmd->opcode = SRP_CMD; 2031 int_to_scsilun(scmnd->device->lun, &cmd->lun); 2032 cmd->tag = tag; 2033 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len); 2034 2035 req->scmnd = scmnd; 2036 req->cmd = iu; 2037 2038 len = srp_map_data(scmnd, ch, req); 2039 if (len < 0) { 2040 shost_printk(KERN_ERR, target->scsi_host, 2041 PFX "Failed to map data (%d)\n", len); 2042 /* 2043 * If we ran out of memory descriptors (-ENOMEM) because an 2044 * application is queuing many requests with more than 2045 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer 2046 * to reduce queue depth temporarily. 2047 */ 2048 scmnd->result = len == -ENOMEM ? 2049 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16; 2050 goto err_iu; 2051 } 2052 2053 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len, 2054 DMA_TO_DEVICE); 2055 2056 if (srp_post_send(ch, iu, len)) { 2057 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n"); 2058 goto err_unmap; 2059 } 2060 2061 ret = 0; 2062 2063 unlock_rport: 2064 if (in_scsi_eh) 2065 mutex_unlock(&rport->mutex); 2066 2067 return ret; 2068 2069 err_unmap: 2070 srp_unmap_data(scmnd, ch, req); 2071 2072 err_iu: 2073 srp_put_tx_iu(ch, iu, SRP_IU_CMD); 2074 2075 /* 2076 * Avoid that the loops that iterate over the request ring can 2077 * encounter a dangling SCSI command pointer. 2078 */ 2079 req->scmnd = NULL; 2080 2081 err: 2082 if (scmnd->result) { 2083 scmnd->scsi_done(scmnd); 2084 ret = 0; 2085 } else { 2086 ret = SCSI_MLQUEUE_HOST_BUSY; 2087 } 2088 2089 goto unlock_rport; 2090 } 2091 2092 /* 2093 * Note: the resources allocated in this function are freed in 2094 * srp_free_ch_ib(). 2095 */ 2096 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch) 2097 { 2098 struct srp_target_port *target = ch->target; 2099 int i; 2100 2101 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring), 2102 GFP_KERNEL); 2103 if (!ch->rx_ring) 2104 goto err_no_ring; 2105 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring), 2106 GFP_KERNEL); 2107 if (!ch->tx_ring) 2108 goto err_no_ring; 2109 2110 for (i = 0; i < target->queue_size; ++i) { 2111 ch->rx_ring[i] = srp_alloc_iu(target->srp_host, 2112 ch->max_ti_iu_len, 2113 GFP_KERNEL, DMA_FROM_DEVICE); 2114 if (!ch->rx_ring[i]) 2115 goto err; 2116 } 2117 2118 for (i = 0; i < target->queue_size; ++i) { 2119 ch->tx_ring[i] = srp_alloc_iu(target->srp_host, 2120 target->max_iu_len, 2121 GFP_KERNEL, DMA_TO_DEVICE); 2122 if (!ch->tx_ring[i]) 2123 goto err; 2124 2125 list_add(&ch->tx_ring[i]->list, &ch->free_tx); 2126 } 2127 2128 return 0; 2129 2130 err: 2131 for (i = 0; i < target->queue_size; ++i) { 2132 srp_free_iu(target->srp_host, ch->rx_ring[i]); 2133 srp_free_iu(target->srp_host, ch->tx_ring[i]); 2134 } 2135 2136 2137 err_no_ring: 2138 kfree(ch->tx_ring); 2139 ch->tx_ring = NULL; 2140 kfree(ch->rx_ring); 2141 ch->rx_ring = NULL; 2142 2143 return -ENOMEM; 2144 } 2145 2146 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask) 2147 { 2148 uint64_t T_tr_ns, max_compl_time_ms; 2149 uint32_t rq_tmo_jiffies; 2150 2151 /* 2152 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair, 2153 * table 91), both the QP timeout and the retry count have to be set 2154 * for RC QP's during the RTR to RTS transition. 2155 */ 2156 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) != 2157 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)); 2158 2159 /* 2160 * Set target->rq_tmo_jiffies to one second more than the largest time 2161 * it can take before an error completion is generated. See also 2162 * C9-140..142 in the IBTA spec for more information about how to 2163 * convert the QP Local ACK Timeout value to nanoseconds. 2164 */ 2165 T_tr_ns = 4096 * (1ULL << qp_attr->timeout); 2166 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns; 2167 do_div(max_compl_time_ms, NSEC_PER_MSEC); 2168 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000); 2169 2170 return rq_tmo_jiffies; 2171 } 2172 2173 static void srp_cm_rep_handler(struct ib_cm_id *cm_id, 2174 struct srp_login_rsp *lrsp, 2175 struct srp_rdma_ch *ch) 2176 { 2177 struct srp_target_port *target = ch->target; 2178 struct ib_qp_attr *qp_attr = NULL; 2179 int attr_mask = 0; 2180 int ret; 2181 int i; 2182 2183 if (lrsp->opcode == SRP_LOGIN_RSP) { 2184 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len); 2185 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta); 2186 2187 /* 2188 * Reserve credits for task management so we don't 2189 * bounce requests back to the SCSI mid-layer. 2190 */ 2191 target->scsi_host->can_queue 2192 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE, 2193 target->scsi_host->can_queue); 2194 target->scsi_host->cmd_per_lun 2195 = min_t(int, target->scsi_host->can_queue, 2196 target->scsi_host->cmd_per_lun); 2197 } else { 2198 shost_printk(KERN_WARNING, target->scsi_host, 2199 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode); 2200 ret = -ECONNRESET; 2201 goto error; 2202 } 2203 2204 if (!ch->rx_ring) { 2205 ret = srp_alloc_iu_bufs(ch); 2206 if (ret) 2207 goto error; 2208 } 2209 2210 ret = -ENOMEM; 2211 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL); 2212 if (!qp_attr) 2213 goto error; 2214 2215 qp_attr->qp_state = IB_QPS_RTR; 2216 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2217 if (ret) 2218 goto error_free; 2219 2220 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask); 2221 if (ret) 2222 goto error_free; 2223 2224 for (i = 0; i < target->queue_size; i++) { 2225 struct srp_iu *iu = ch->rx_ring[i]; 2226 2227 ret = srp_post_recv(ch, iu); 2228 if (ret) 2229 goto error_free; 2230 } 2231 2232 qp_attr->qp_state = IB_QPS_RTS; 2233 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); 2234 if (ret) 2235 goto error_free; 2236 2237 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask); 2238 2239 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask); 2240 if (ret) 2241 goto error_free; 2242 2243 ret = ib_send_cm_rtu(cm_id, NULL, 0); 2244 2245 error_free: 2246 kfree(qp_attr); 2247 2248 error: 2249 ch->status = ret; 2250 } 2251 2252 static void srp_cm_rej_handler(struct ib_cm_id *cm_id, 2253 struct ib_cm_event *event, 2254 struct srp_rdma_ch *ch) 2255 { 2256 struct srp_target_port *target = ch->target; 2257 struct Scsi_Host *shost = target->scsi_host; 2258 struct ib_class_port_info *cpi; 2259 int opcode; 2260 2261 switch (event->param.rej_rcvd.reason) { 2262 case IB_CM_REJ_PORT_CM_REDIRECT: 2263 cpi = event->param.rej_rcvd.ari; 2264 ch->path.dlid = cpi->redirect_lid; 2265 ch->path.pkey = cpi->redirect_pkey; 2266 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff; 2267 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16); 2268 2269 ch->status = ch->path.dlid ? 2270 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT; 2271 break; 2272 2273 case IB_CM_REJ_PORT_REDIRECT: 2274 if (srp_target_is_topspin(target)) { 2275 /* 2276 * Topspin/Cisco SRP gateways incorrectly send 2277 * reject reason code 25 when they mean 24 2278 * (port redirect). 2279 */ 2280 memcpy(ch->path.dgid.raw, 2281 event->param.rej_rcvd.ari, 16); 2282 2283 shost_printk(KERN_DEBUG, shost, 2284 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n", 2285 be64_to_cpu(ch->path.dgid.global.subnet_prefix), 2286 be64_to_cpu(ch->path.dgid.global.interface_id)); 2287 2288 ch->status = SRP_PORT_REDIRECT; 2289 } else { 2290 shost_printk(KERN_WARNING, shost, 2291 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n"); 2292 ch->status = -ECONNRESET; 2293 } 2294 break; 2295 2296 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID: 2297 shost_printk(KERN_WARNING, shost, 2298 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n"); 2299 ch->status = -ECONNRESET; 2300 break; 2301 2302 case IB_CM_REJ_CONSUMER_DEFINED: 2303 opcode = *(u8 *) event->private_data; 2304 if (opcode == SRP_LOGIN_REJ) { 2305 struct srp_login_rej *rej = event->private_data; 2306 u32 reason = be32_to_cpu(rej->reason); 2307 2308 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE) 2309 shost_printk(KERN_WARNING, shost, 2310 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n"); 2311 else 2312 shost_printk(KERN_WARNING, shost, PFX 2313 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n", 2314 target->sgid.raw, 2315 target->orig_dgid.raw, reason); 2316 } else 2317 shost_printk(KERN_WARNING, shost, 2318 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED," 2319 " opcode 0x%02x\n", opcode); 2320 ch->status = -ECONNRESET; 2321 break; 2322 2323 case IB_CM_REJ_STALE_CONN: 2324 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n"); 2325 ch->status = SRP_STALE_CONN; 2326 break; 2327 2328 default: 2329 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n", 2330 event->param.rej_rcvd.reason); 2331 ch->status = -ECONNRESET; 2332 } 2333 } 2334 2335 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2336 { 2337 struct srp_rdma_ch *ch = cm_id->context; 2338 struct srp_target_port *target = ch->target; 2339 int comp = 0; 2340 2341 switch (event->event) { 2342 case IB_CM_REQ_ERROR: 2343 shost_printk(KERN_DEBUG, target->scsi_host, 2344 PFX "Sending CM REQ failed\n"); 2345 comp = 1; 2346 ch->status = -ECONNRESET; 2347 break; 2348 2349 case IB_CM_REP_RECEIVED: 2350 comp = 1; 2351 srp_cm_rep_handler(cm_id, event->private_data, ch); 2352 break; 2353 2354 case IB_CM_REJ_RECEIVED: 2355 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n"); 2356 comp = 1; 2357 2358 srp_cm_rej_handler(cm_id, event, ch); 2359 break; 2360 2361 case IB_CM_DREQ_RECEIVED: 2362 shost_printk(KERN_WARNING, target->scsi_host, 2363 PFX "DREQ received - connection closed\n"); 2364 ch->connected = false; 2365 if (ib_send_cm_drep(cm_id, NULL, 0)) 2366 shost_printk(KERN_ERR, target->scsi_host, 2367 PFX "Sending CM DREP failed\n"); 2368 queue_work(system_long_wq, &target->tl_err_work); 2369 break; 2370 2371 case IB_CM_TIMEWAIT_EXIT: 2372 shost_printk(KERN_ERR, target->scsi_host, 2373 PFX "connection closed\n"); 2374 comp = 1; 2375 2376 ch->status = 0; 2377 break; 2378 2379 case IB_CM_MRA_RECEIVED: 2380 case IB_CM_DREQ_ERROR: 2381 case IB_CM_DREP_RECEIVED: 2382 break; 2383 2384 default: 2385 shost_printk(KERN_WARNING, target->scsi_host, 2386 PFX "Unhandled CM event %d\n", event->event); 2387 break; 2388 } 2389 2390 if (comp) 2391 complete(&ch->done); 2392 2393 return 0; 2394 } 2395 2396 /** 2397 * srp_change_queue_depth - setting device queue depth 2398 * @sdev: scsi device struct 2399 * @qdepth: requested queue depth 2400 * 2401 * Returns queue depth. 2402 */ 2403 static int 2404 srp_change_queue_depth(struct scsi_device *sdev, int qdepth) 2405 { 2406 if (!sdev->tagged_supported) 2407 qdepth = 1; 2408 return scsi_change_queue_depth(sdev, qdepth); 2409 } 2410 2411 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun, 2412 u8 func) 2413 { 2414 struct srp_target_port *target = ch->target; 2415 struct srp_rport *rport = target->rport; 2416 struct ib_device *dev = target->srp_host->srp_dev->dev; 2417 struct srp_iu *iu; 2418 struct srp_tsk_mgmt *tsk_mgmt; 2419 2420 if (!ch->connected || target->qp_in_error) 2421 return -1; 2422 2423 init_completion(&ch->tsk_mgmt_done); 2424 2425 /* 2426 * Lock the rport mutex to avoid that srp_create_ch_ib() is 2427 * invoked while a task management function is being sent. 2428 */ 2429 mutex_lock(&rport->mutex); 2430 spin_lock_irq(&ch->lock); 2431 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT); 2432 spin_unlock_irq(&ch->lock); 2433 2434 if (!iu) { 2435 mutex_unlock(&rport->mutex); 2436 2437 return -1; 2438 } 2439 2440 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt, 2441 DMA_TO_DEVICE); 2442 tsk_mgmt = iu->buf; 2443 memset(tsk_mgmt, 0, sizeof *tsk_mgmt); 2444 2445 tsk_mgmt->opcode = SRP_TSK_MGMT; 2446 int_to_scsilun(lun, &tsk_mgmt->lun); 2447 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT; 2448 tsk_mgmt->tsk_mgmt_func = func; 2449 tsk_mgmt->task_tag = req_tag; 2450 2451 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt, 2452 DMA_TO_DEVICE); 2453 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) { 2454 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT); 2455 mutex_unlock(&rport->mutex); 2456 2457 return -1; 2458 } 2459 mutex_unlock(&rport->mutex); 2460 2461 if (!wait_for_completion_timeout(&ch->tsk_mgmt_done, 2462 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS))) 2463 return -1; 2464 2465 return 0; 2466 } 2467 2468 static int srp_abort(struct scsi_cmnd *scmnd) 2469 { 2470 struct srp_target_port *target = host_to_target(scmnd->device->host); 2471 struct srp_request *req = (struct srp_request *) scmnd->host_scribble; 2472 u32 tag; 2473 u16 ch_idx; 2474 struct srp_rdma_ch *ch; 2475 int ret; 2476 2477 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n"); 2478 2479 if (!req) 2480 return SUCCESS; 2481 tag = blk_mq_unique_tag(scmnd->request); 2482 ch_idx = blk_mq_unique_tag_to_hwq(tag); 2483 if (WARN_ON_ONCE(ch_idx >= target->ch_count)) 2484 return SUCCESS; 2485 ch = &target->ch[ch_idx]; 2486 if (!srp_claim_req(ch, req, NULL, scmnd)) 2487 return SUCCESS; 2488 shost_printk(KERN_ERR, target->scsi_host, 2489 "Sending SRP abort for tag %#x\n", tag); 2490 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun, 2491 SRP_TSK_ABORT_TASK) == 0) 2492 ret = SUCCESS; 2493 else if (target->rport->state == SRP_RPORT_LOST) 2494 ret = FAST_IO_FAIL; 2495 else 2496 ret = FAILED; 2497 srp_free_req(ch, req, scmnd, 0); 2498 scmnd->result = DID_ABORT << 16; 2499 scmnd->scsi_done(scmnd); 2500 2501 return ret; 2502 } 2503 2504 static int srp_reset_device(struct scsi_cmnd *scmnd) 2505 { 2506 struct srp_target_port *target = host_to_target(scmnd->device->host); 2507 struct srp_rdma_ch *ch; 2508 int i; 2509 2510 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n"); 2511 2512 ch = &target->ch[0]; 2513 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun, 2514 SRP_TSK_LUN_RESET)) 2515 return FAILED; 2516 if (ch->tsk_mgmt_status) 2517 return FAILED; 2518 2519 for (i = 0; i < target->ch_count; i++) { 2520 ch = &target->ch[i]; 2521 for (i = 0; i < target->req_ring_size; ++i) { 2522 struct srp_request *req = &ch->req_ring[i]; 2523 2524 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16); 2525 } 2526 } 2527 2528 return SUCCESS; 2529 } 2530 2531 static int srp_reset_host(struct scsi_cmnd *scmnd) 2532 { 2533 struct srp_target_port *target = host_to_target(scmnd->device->host); 2534 2535 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n"); 2536 2537 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED; 2538 } 2539 2540 static int srp_slave_configure(struct scsi_device *sdev) 2541 { 2542 struct Scsi_Host *shost = sdev->host; 2543 struct srp_target_port *target = host_to_target(shost); 2544 struct request_queue *q = sdev->request_queue; 2545 unsigned long timeout; 2546 2547 if (sdev->type == TYPE_DISK) { 2548 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies); 2549 blk_queue_rq_timeout(q, timeout); 2550 } 2551 2552 return 0; 2553 } 2554 2555 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr, 2556 char *buf) 2557 { 2558 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2559 2560 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext)); 2561 } 2562 2563 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr, 2564 char *buf) 2565 { 2566 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2567 2568 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid)); 2569 } 2570 2571 static ssize_t show_service_id(struct device *dev, 2572 struct device_attribute *attr, char *buf) 2573 { 2574 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2575 2576 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id)); 2577 } 2578 2579 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr, 2580 char *buf) 2581 { 2582 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2583 2584 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey)); 2585 } 2586 2587 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr, 2588 char *buf) 2589 { 2590 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2591 2592 return sprintf(buf, "%pI6\n", target->sgid.raw); 2593 } 2594 2595 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr, 2596 char *buf) 2597 { 2598 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2599 struct srp_rdma_ch *ch = &target->ch[0]; 2600 2601 return sprintf(buf, "%pI6\n", ch->path.dgid.raw); 2602 } 2603 2604 static ssize_t show_orig_dgid(struct device *dev, 2605 struct device_attribute *attr, char *buf) 2606 { 2607 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2608 2609 return sprintf(buf, "%pI6\n", target->orig_dgid.raw); 2610 } 2611 2612 static ssize_t show_req_lim(struct device *dev, 2613 struct device_attribute *attr, char *buf) 2614 { 2615 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2616 struct srp_rdma_ch *ch; 2617 int i, req_lim = INT_MAX; 2618 2619 for (i = 0; i < target->ch_count; i++) { 2620 ch = &target->ch[i]; 2621 req_lim = min(req_lim, ch->req_lim); 2622 } 2623 return sprintf(buf, "%d\n", req_lim); 2624 } 2625 2626 static ssize_t show_zero_req_lim(struct device *dev, 2627 struct device_attribute *attr, char *buf) 2628 { 2629 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2630 2631 return sprintf(buf, "%d\n", target->zero_req_lim); 2632 } 2633 2634 static ssize_t show_local_ib_port(struct device *dev, 2635 struct device_attribute *attr, char *buf) 2636 { 2637 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2638 2639 return sprintf(buf, "%d\n", target->srp_host->port); 2640 } 2641 2642 static ssize_t show_local_ib_device(struct device *dev, 2643 struct device_attribute *attr, char *buf) 2644 { 2645 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2646 2647 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name); 2648 } 2649 2650 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr, 2651 char *buf) 2652 { 2653 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2654 2655 return sprintf(buf, "%d\n", target->ch_count); 2656 } 2657 2658 static ssize_t show_comp_vector(struct device *dev, 2659 struct device_attribute *attr, char *buf) 2660 { 2661 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2662 2663 return sprintf(buf, "%d\n", target->comp_vector); 2664 } 2665 2666 static ssize_t show_tl_retry_count(struct device *dev, 2667 struct device_attribute *attr, char *buf) 2668 { 2669 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2670 2671 return sprintf(buf, "%d\n", target->tl_retry_count); 2672 } 2673 2674 static ssize_t show_cmd_sg_entries(struct device *dev, 2675 struct device_attribute *attr, char *buf) 2676 { 2677 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2678 2679 return sprintf(buf, "%u\n", target->cmd_sg_cnt); 2680 } 2681 2682 static ssize_t show_allow_ext_sg(struct device *dev, 2683 struct device_attribute *attr, char *buf) 2684 { 2685 struct srp_target_port *target = host_to_target(class_to_shost(dev)); 2686 2687 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false"); 2688 } 2689 2690 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL); 2691 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL); 2692 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL); 2693 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL); 2694 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL); 2695 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL); 2696 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL); 2697 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL); 2698 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL); 2699 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL); 2700 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL); 2701 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL); 2702 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL); 2703 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL); 2704 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL); 2705 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL); 2706 2707 static struct device_attribute *srp_host_attrs[] = { 2708 &dev_attr_id_ext, 2709 &dev_attr_ioc_guid, 2710 &dev_attr_service_id, 2711 &dev_attr_pkey, 2712 &dev_attr_sgid, 2713 &dev_attr_dgid, 2714 &dev_attr_orig_dgid, 2715 &dev_attr_req_lim, 2716 &dev_attr_zero_req_lim, 2717 &dev_attr_local_ib_port, 2718 &dev_attr_local_ib_device, 2719 &dev_attr_ch_count, 2720 &dev_attr_comp_vector, 2721 &dev_attr_tl_retry_count, 2722 &dev_attr_cmd_sg_entries, 2723 &dev_attr_allow_ext_sg, 2724 NULL 2725 }; 2726 2727 static struct scsi_host_template srp_template = { 2728 .module = THIS_MODULE, 2729 .name = "InfiniBand SRP initiator", 2730 .proc_name = DRV_NAME, 2731 .slave_configure = srp_slave_configure, 2732 .info = srp_target_info, 2733 .queuecommand = srp_queuecommand, 2734 .change_queue_depth = srp_change_queue_depth, 2735 .eh_abort_handler = srp_abort, 2736 .eh_device_reset_handler = srp_reset_device, 2737 .eh_host_reset_handler = srp_reset_host, 2738 .skip_settle_delay = true, 2739 .sg_tablesize = SRP_DEF_SG_TABLESIZE, 2740 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE, 2741 .this_id = -1, 2742 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE, 2743 .use_clustering = ENABLE_CLUSTERING, 2744 .shost_attrs = srp_host_attrs, 2745 .use_blk_tags = 1, 2746 .track_queue_depth = 1, 2747 }; 2748 2749 static int srp_sdev_count(struct Scsi_Host *host) 2750 { 2751 struct scsi_device *sdev; 2752 int c = 0; 2753 2754 shost_for_each_device(sdev, host) 2755 c++; 2756 2757 return c; 2758 } 2759 2760 static int srp_add_target(struct srp_host *host, struct srp_target_port *target) 2761 { 2762 struct srp_rport_identifiers ids; 2763 struct srp_rport *rport; 2764 2765 target->state = SRP_TARGET_SCANNING; 2766 sprintf(target->target_name, "SRP.T10:%016llX", 2767 be64_to_cpu(target->id_ext)); 2768 2769 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device)) 2770 return -ENODEV; 2771 2772 memcpy(ids.port_id, &target->id_ext, 8); 2773 memcpy(ids.port_id + 8, &target->ioc_guid, 8); 2774 ids.roles = SRP_RPORT_ROLE_TARGET; 2775 rport = srp_rport_add(target->scsi_host, &ids); 2776 if (IS_ERR(rport)) { 2777 scsi_remove_host(target->scsi_host); 2778 return PTR_ERR(rport); 2779 } 2780 2781 rport->lld_data = target; 2782 target->rport = rport; 2783 2784 spin_lock(&host->target_lock); 2785 list_add_tail(&target->list, &host->target_list); 2786 spin_unlock(&host->target_lock); 2787 2788 scsi_scan_target(&target->scsi_host->shost_gendev, 2789 0, target->scsi_id, SCAN_WILD_CARD, 0); 2790 2791 if (srp_connected_ch(target) < target->ch_count || 2792 target->qp_in_error) { 2793 shost_printk(KERN_INFO, target->scsi_host, 2794 PFX "SCSI scan failed - removing SCSI host\n"); 2795 srp_queue_remove_work(target); 2796 goto out; 2797 } 2798 2799 pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n", 2800 dev_name(&target->scsi_host->shost_gendev), 2801 srp_sdev_count(target->scsi_host)); 2802 2803 spin_lock_irq(&target->lock); 2804 if (target->state == SRP_TARGET_SCANNING) 2805 target->state = SRP_TARGET_LIVE; 2806 spin_unlock_irq(&target->lock); 2807 2808 out: 2809 return 0; 2810 } 2811 2812 static void srp_release_dev(struct device *dev) 2813 { 2814 struct srp_host *host = 2815 container_of(dev, struct srp_host, dev); 2816 2817 complete(&host->released); 2818 } 2819 2820 static struct class srp_class = { 2821 .name = "infiniband_srp", 2822 .dev_release = srp_release_dev 2823 }; 2824 2825 /** 2826 * srp_conn_unique() - check whether the connection to a target is unique 2827 * @host: SRP host. 2828 * @target: SRP target port. 2829 */ 2830 static bool srp_conn_unique(struct srp_host *host, 2831 struct srp_target_port *target) 2832 { 2833 struct srp_target_port *t; 2834 bool ret = false; 2835 2836 if (target->state == SRP_TARGET_REMOVED) 2837 goto out; 2838 2839 ret = true; 2840 2841 spin_lock(&host->target_lock); 2842 list_for_each_entry(t, &host->target_list, list) { 2843 if (t != target && 2844 target->id_ext == t->id_ext && 2845 target->ioc_guid == t->ioc_guid && 2846 target->initiator_ext == t->initiator_ext) { 2847 ret = false; 2848 break; 2849 } 2850 } 2851 spin_unlock(&host->target_lock); 2852 2853 out: 2854 return ret; 2855 } 2856 2857 /* 2858 * Target ports are added by writing 2859 * 2860 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>, 2861 * pkey=<P_Key>,service_id=<service ID> 2862 * 2863 * to the add_target sysfs attribute. 2864 */ 2865 enum { 2866 SRP_OPT_ERR = 0, 2867 SRP_OPT_ID_EXT = 1 << 0, 2868 SRP_OPT_IOC_GUID = 1 << 1, 2869 SRP_OPT_DGID = 1 << 2, 2870 SRP_OPT_PKEY = 1 << 3, 2871 SRP_OPT_SERVICE_ID = 1 << 4, 2872 SRP_OPT_MAX_SECT = 1 << 5, 2873 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6, 2874 SRP_OPT_IO_CLASS = 1 << 7, 2875 SRP_OPT_INITIATOR_EXT = 1 << 8, 2876 SRP_OPT_CMD_SG_ENTRIES = 1 << 9, 2877 SRP_OPT_ALLOW_EXT_SG = 1 << 10, 2878 SRP_OPT_SG_TABLESIZE = 1 << 11, 2879 SRP_OPT_COMP_VECTOR = 1 << 12, 2880 SRP_OPT_TL_RETRY_COUNT = 1 << 13, 2881 SRP_OPT_QUEUE_SIZE = 1 << 14, 2882 SRP_OPT_ALL = (SRP_OPT_ID_EXT | 2883 SRP_OPT_IOC_GUID | 2884 SRP_OPT_DGID | 2885 SRP_OPT_PKEY | 2886 SRP_OPT_SERVICE_ID), 2887 }; 2888 2889 static const match_table_t srp_opt_tokens = { 2890 { SRP_OPT_ID_EXT, "id_ext=%s" }, 2891 { SRP_OPT_IOC_GUID, "ioc_guid=%s" }, 2892 { SRP_OPT_DGID, "dgid=%s" }, 2893 { SRP_OPT_PKEY, "pkey=%x" }, 2894 { SRP_OPT_SERVICE_ID, "service_id=%s" }, 2895 { SRP_OPT_MAX_SECT, "max_sect=%d" }, 2896 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" }, 2897 { SRP_OPT_IO_CLASS, "io_class=%x" }, 2898 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" }, 2899 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" }, 2900 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" }, 2901 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" }, 2902 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" }, 2903 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" }, 2904 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" }, 2905 { SRP_OPT_ERR, NULL } 2906 }; 2907 2908 static int srp_parse_options(const char *buf, struct srp_target_port *target) 2909 { 2910 char *options, *sep_opt; 2911 char *p; 2912 char dgid[3]; 2913 substring_t args[MAX_OPT_ARGS]; 2914 int opt_mask = 0; 2915 int token; 2916 int ret = -EINVAL; 2917 int i; 2918 2919 options = kstrdup(buf, GFP_KERNEL); 2920 if (!options) 2921 return -ENOMEM; 2922 2923 sep_opt = options; 2924 while ((p = strsep(&sep_opt, ",\n")) != NULL) { 2925 if (!*p) 2926 continue; 2927 2928 token = match_token(p, srp_opt_tokens, args); 2929 opt_mask |= token; 2930 2931 switch (token) { 2932 case SRP_OPT_ID_EXT: 2933 p = match_strdup(args); 2934 if (!p) { 2935 ret = -ENOMEM; 2936 goto out; 2937 } 2938 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2939 kfree(p); 2940 break; 2941 2942 case SRP_OPT_IOC_GUID: 2943 p = match_strdup(args); 2944 if (!p) { 2945 ret = -ENOMEM; 2946 goto out; 2947 } 2948 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2949 kfree(p); 2950 break; 2951 2952 case SRP_OPT_DGID: 2953 p = match_strdup(args); 2954 if (!p) { 2955 ret = -ENOMEM; 2956 goto out; 2957 } 2958 if (strlen(p) != 32) { 2959 pr_warn("bad dest GID parameter '%s'\n", p); 2960 kfree(p); 2961 goto out; 2962 } 2963 2964 for (i = 0; i < 16; ++i) { 2965 strlcpy(dgid, p + i * 2, sizeof(dgid)); 2966 if (sscanf(dgid, "%hhx", 2967 &target->orig_dgid.raw[i]) < 1) { 2968 ret = -EINVAL; 2969 kfree(p); 2970 goto out; 2971 } 2972 } 2973 kfree(p); 2974 break; 2975 2976 case SRP_OPT_PKEY: 2977 if (match_hex(args, &token)) { 2978 pr_warn("bad P_Key parameter '%s'\n", p); 2979 goto out; 2980 } 2981 target->pkey = cpu_to_be16(token); 2982 break; 2983 2984 case SRP_OPT_SERVICE_ID: 2985 p = match_strdup(args); 2986 if (!p) { 2987 ret = -ENOMEM; 2988 goto out; 2989 } 2990 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16)); 2991 kfree(p); 2992 break; 2993 2994 case SRP_OPT_MAX_SECT: 2995 if (match_int(args, &token)) { 2996 pr_warn("bad max sect parameter '%s'\n", p); 2997 goto out; 2998 } 2999 target->scsi_host->max_sectors = token; 3000 break; 3001 3002 case SRP_OPT_QUEUE_SIZE: 3003 if (match_int(args, &token) || token < 1) { 3004 pr_warn("bad queue_size parameter '%s'\n", p); 3005 goto out; 3006 } 3007 target->scsi_host->can_queue = token; 3008 target->queue_size = token + SRP_RSP_SQ_SIZE + 3009 SRP_TSK_MGMT_SQ_SIZE; 3010 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 3011 target->scsi_host->cmd_per_lun = token; 3012 break; 3013 3014 case SRP_OPT_MAX_CMD_PER_LUN: 3015 if (match_int(args, &token) || token < 1) { 3016 pr_warn("bad max cmd_per_lun parameter '%s'\n", 3017 p); 3018 goto out; 3019 } 3020 target->scsi_host->cmd_per_lun = token; 3021 break; 3022 3023 case SRP_OPT_IO_CLASS: 3024 if (match_hex(args, &token)) { 3025 pr_warn("bad IO class parameter '%s'\n", p); 3026 goto out; 3027 } 3028 if (token != SRP_REV10_IB_IO_CLASS && 3029 token != SRP_REV16A_IB_IO_CLASS) { 3030 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n", 3031 token, SRP_REV10_IB_IO_CLASS, 3032 SRP_REV16A_IB_IO_CLASS); 3033 goto out; 3034 } 3035 target->io_class = token; 3036 break; 3037 3038 case SRP_OPT_INITIATOR_EXT: 3039 p = match_strdup(args); 3040 if (!p) { 3041 ret = -ENOMEM; 3042 goto out; 3043 } 3044 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); 3045 kfree(p); 3046 break; 3047 3048 case SRP_OPT_CMD_SG_ENTRIES: 3049 if (match_int(args, &token) || token < 1 || token > 255) { 3050 pr_warn("bad max cmd_sg_entries parameter '%s'\n", 3051 p); 3052 goto out; 3053 } 3054 target->cmd_sg_cnt = token; 3055 break; 3056 3057 case SRP_OPT_ALLOW_EXT_SG: 3058 if (match_int(args, &token)) { 3059 pr_warn("bad allow_ext_sg parameter '%s'\n", p); 3060 goto out; 3061 } 3062 target->allow_ext_sg = !!token; 3063 break; 3064 3065 case SRP_OPT_SG_TABLESIZE: 3066 if (match_int(args, &token) || token < 1 || 3067 token > SCSI_MAX_SG_CHAIN_SEGMENTS) { 3068 pr_warn("bad max sg_tablesize parameter '%s'\n", 3069 p); 3070 goto out; 3071 } 3072 target->sg_tablesize = token; 3073 break; 3074 3075 case SRP_OPT_COMP_VECTOR: 3076 if (match_int(args, &token) || token < 0) { 3077 pr_warn("bad comp_vector parameter '%s'\n", p); 3078 goto out; 3079 } 3080 target->comp_vector = token; 3081 break; 3082 3083 case SRP_OPT_TL_RETRY_COUNT: 3084 if (match_int(args, &token) || token < 2 || token > 7) { 3085 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n", 3086 p); 3087 goto out; 3088 } 3089 target->tl_retry_count = token; 3090 break; 3091 3092 default: 3093 pr_warn("unknown parameter or missing value '%s' in target creation request\n", 3094 p); 3095 goto out; 3096 } 3097 } 3098 3099 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL) 3100 ret = 0; 3101 else 3102 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i) 3103 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) && 3104 !(srp_opt_tokens[i].token & opt_mask)) 3105 pr_warn("target creation request is missing parameter '%s'\n", 3106 srp_opt_tokens[i].pattern); 3107 3108 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue 3109 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) 3110 pr_warn("cmd_per_lun = %d > queue_size = %d\n", 3111 target->scsi_host->cmd_per_lun, 3112 target->scsi_host->can_queue); 3113 3114 out: 3115 kfree(options); 3116 return ret; 3117 } 3118 3119 static ssize_t srp_create_target(struct device *dev, 3120 struct device_attribute *attr, 3121 const char *buf, size_t count) 3122 { 3123 struct srp_host *host = 3124 container_of(dev, struct srp_host, dev); 3125 struct Scsi_Host *target_host; 3126 struct srp_target_port *target; 3127 struct srp_rdma_ch *ch; 3128 struct srp_device *srp_dev = host->srp_dev; 3129 struct ib_device *ibdev = srp_dev->dev; 3130 int ret, node_idx, node, cpu, i; 3131 bool multich = false; 3132 3133 target_host = scsi_host_alloc(&srp_template, 3134 sizeof (struct srp_target_port)); 3135 if (!target_host) 3136 return -ENOMEM; 3137 3138 target_host->transportt = ib_srp_transport_template; 3139 target_host->max_channel = 0; 3140 target_host->max_id = 1; 3141 target_host->max_lun = -1LL; 3142 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb; 3143 3144 target = host_to_target(target_host); 3145 3146 target->io_class = SRP_REV16A_IB_IO_CLASS; 3147 target->scsi_host = target_host; 3148 target->srp_host = host; 3149 target->lkey = host->srp_dev->mr->lkey; 3150 target->rkey = host->srp_dev->mr->rkey; 3151 target->cmd_sg_cnt = cmd_sg_entries; 3152 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries; 3153 target->allow_ext_sg = allow_ext_sg; 3154 target->tl_retry_count = 7; 3155 target->queue_size = SRP_DEFAULT_QUEUE_SIZE; 3156 3157 /* 3158 * Avoid that the SCSI host can be removed by srp_remove_target() 3159 * before this function returns. 3160 */ 3161 scsi_host_get(target->scsi_host); 3162 3163 mutex_lock(&host->add_target_mutex); 3164 3165 ret = srp_parse_options(buf, target); 3166 if (ret) 3167 goto out; 3168 3169 ret = scsi_init_shared_tag_map(target_host, target_host->can_queue); 3170 if (ret) 3171 goto out; 3172 3173 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE; 3174 3175 if (!srp_conn_unique(target->srp_host, target)) { 3176 shost_printk(KERN_INFO, target->scsi_host, 3177 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n", 3178 be64_to_cpu(target->id_ext), 3179 be64_to_cpu(target->ioc_guid), 3180 be64_to_cpu(target->initiator_ext)); 3181 ret = -EEXIST; 3182 goto out; 3183 } 3184 3185 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg && 3186 target->cmd_sg_cnt < target->sg_tablesize) { 3187 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n"); 3188 target->sg_tablesize = target->cmd_sg_cnt; 3189 } 3190 3191 target_host->sg_tablesize = target->sg_tablesize; 3192 target->indirect_size = target->sg_tablesize * 3193 sizeof (struct srp_direct_buf); 3194 target->max_iu_len = sizeof (struct srp_cmd) + 3195 sizeof (struct srp_indirect_buf) + 3196 target->cmd_sg_cnt * sizeof (struct srp_direct_buf); 3197 3198 INIT_WORK(&target->tl_err_work, srp_tl_err_work); 3199 INIT_WORK(&target->remove_work, srp_remove_work); 3200 spin_lock_init(&target->lock); 3201 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid); 3202 if (ret) 3203 goto out; 3204 3205 ret = -ENOMEM; 3206 target->ch_count = max_t(unsigned, num_online_nodes(), 3207 min(ch_count ? : 3208 min(4 * num_online_nodes(), 3209 ibdev->num_comp_vectors), 3210 num_online_cpus())); 3211 target->ch = kcalloc(target->ch_count, sizeof(*target->ch), 3212 GFP_KERNEL); 3213 if (!target->ch) 3214 goto out; 3215 3216 node_idx = 0; 3217 for_each_online_node(node) { 3218 const int ch_start = (node_idx * target->ch_count / 3219 num_online_nodes()); 3220 const int ch_end = ((node_idx + 1) * target->ch_count / 3221 num_online_nodes()); 3222 const int cv_start = (node_idx * ibdev->num_comp_vectors / 3223 num_online_nodes() + target->comp_vector) 3224 % ibdev->num_comp_vectors; 3225 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors / 3226 num_online_nodes() + target->comp_vector) 3227 % ibdev->num_comp_vectors; 3228 int cpu_idx = 0; 3229 3230 for_each_online_cpu(cpu) { 3231 if (cpu_to_node(cpu) != node) 3232 continue; 3233 if (ch_start + cpu_idx >= ch_end) 3234 continue; 3235 ch = &target->ch[ch_start + cpu_idx]; 3236 ch->target = target; 3237 ch->comp_vector = cv_start == cv_end ? cv_start : 3238 cv_start + cpu_idx % (cv_end - cv_start); 3239 spin_lock_init(&ch->lock); 3240 INIT_LIST_HEAD(&ch->free_tx); 3241 ret = srp_new_cm_id(ch); 3242 if (ret) 3243 goto err_disconnect; 3244 3245 ret = srp_create_ch_ib(ch); 3246 if (ret) 3247 goto err_disconnect; 3248 3249 ret = srp_alloc_req_data(ch); 3250 if (ret) 3251 goto err_disconnect; 3252 3253 ret = srp_connect_ch(ch, multich); 3254 if (ret) { 3255 shost_printk(KERN_ERR, target->scsi_host, 3256 PFX "Connection %d/%d failed\n", 3257 ch_start + cpu_idx, 3258 target->ch_count); 3259 if (node_idx == 0 && cpu_idx == 0) { 3260 goto err_disconnect; 3261 } else { 3262 srp_free_ch_ib(target, ch); 3263 srp_free_req_data(target, ch); 3264 target->ch_count = ch - target->ch; 3265 break; 3266 } 3267 } 3268 3269 multich = true; 3270 cpu_idx++; 3271 } 3272 node_idx++; 3273 } 3274 3275 target->scsi_host->nr_hw_queues = target->ch_count; 3276 3277 ret = srp_add_target(host, target); 3278 if (ret) 3279 goto err_disconnect; 3280 3281 if (target->state != SRP_TARGET_REMOVED) { 3282 shost_printk(KERN_DEBUG, target->scsi_host, PFX 3283 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n", 3284 be64_to_cpu(target->id_ext), 3285 be64_to_cpu(target->ioc_guid), 3286 be16_to_cpu(target->pkey), 3287 be64_to_cpu(target->service_id), 3288 target->sgid.raw, target->orig_dgid.raw); 3289 } 3290 3291 ret = count; 3292 3293 out: 3294 mutex_unlock(&host->add_target_mutex); 3295 3296 scsi_host_put(target->scsi_host); 3297 3298 return ret; 3299 3300 err_disconnect: 3301 srp_disconnect_target(target); 3302 3303 for (i = 0; i < target->ch_count; i++) { 3304 ch = &target->ch[i]; 3305 srp_free_ch_ib(target, ch); 3306 srp_free_req_data(target, ch); 3307 } 3308 3309 kfree(target->ch); 3310 goto out; 3311 } 3312 3313 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target); 3314 3315 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, 3316 char *buf) 3317 { 3318 struct srp_host *host = container_of(dev, struct srp_host, dev); 3319 3320 return sprintf(buf, "%s\n", host->srp_dev->dev->name); 3321 } 3322 3323 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); 3324 3325 static ssize_t show_port(struct device *dev, struct device_attribute *attr, 3326 char *buf) 3327 { 3328 struct srp_host *host = container_of(dev, struct srp_host, dev); 3329 3330 return sprintf(buf, "%d\n", host->port); 3331 } 3332 3333 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL); 3334 3335 static struct srp_host *srp_add_port(struct srp_device *device, u8 port) 3336 { 3337 struct srp_host *host; 3338 3339 host = kzalloc(sizeof *host, GFP_KERNEL); 3340 if (!host) 3341 return NULL; 3342 3343 INIT_LIST_HEAD(&host->target_list); 3344 spin_lock_init(&host->target_lock); 3345 init_completion(&host->released); 3346 mutex_init(&host->add_target_mutex); 3347 host->srp_dev = device; 3348 host->port = port; 3349 3350 host->dev.class = &srp_class; 3351 host->dev.parent = device->dev->dma_device; 3352 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port); 3353 3354 if (device_register(&host->dev)) 3355 goto free_host; 3356 if (device_create_file(&host->dev, &dev_attr_add_target)) 3357 goto err_class; 3358 if (device_create_file(&host->dev, &dev_attr_ibdev)) 3359 goto err_class; 3360 if (device_create_file(&host->dev, &dev_attr_port)) 3361 goto err_class; 3362 3363 return host; 3364 3365 err_class: 3366 device_unregister(&host->dev); 3367 3368 free_host: 3369 kfree(host); 3370 3371 return NULL; 3372 } 3373 3374 static void srp_add_one(struct ib_device *device) 3375 { 3376 struct srp_device *srp_dev; 3377 struct ib_device_attr *dev_attr; 3378 struct srp_host *host; 3379 int mr_page_shift, p; 3380 u64 max_pages_per_mr; 3381 3382 dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL); 3383 if (!dev_attr) 3384 return; 3385 3386 if (ib_query_device(device, dev_attr)) { 3387 pr_warn("Query device failed for %s\n", device->name); 3388 goto free_attr; 3389 } 3390 3391 srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL); 3392 if (!srp_dev) 3393 goto free_attr; 3394 3395 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr && 3396 device->map_phys_fmr && device->unmap_fmr); 3397 srp_dev->has_fr = (dev_attr->device_cap_flags & 3398 IB_DEVICE_MEM_MGT_EXTENSIONS); 3399 if (!srp_dev->has_fmr && !srp_dev->has_fr) 3400 dev_warn(&device->dev, "neither FMR nor FR is supported\n"); 3401 3402 srp_dev->use_fast_reg = (srp_dev->has_fr && 3403 (!srp_dev->has_fmr || prefer_fr)); 3404 3405 /* 3406 * Use the smallest page size supported by the HCA, down to a 3407 * minimum of 4096 bytes. We're unlikely to build large sglists 3408 * out of smaller entries. 3409 */ 3410 mr_page_shift = max(12, ffs(dev_attr->page_size_cap) - 1); 3411 srp_dev->mr_page_size = 1 << mr_page_shift; 3412 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1); 3413 max_pages_per_mr = dev_attr->max_mr_size; 3414 do_div(max_pages_per_mr, srp_dev->mr_page_size); 3415 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR, 3416 max_pages_per_mr); 3417 if (srp_dev->use_fast_reg) { 3418 srp_dev->max_pages_per_mr = 3419 min_t(u32, srp_dev->max_pages_per_mr, 3420 dev_attr->max_fast_reg_page_list_len); 3421 } 3422 srp_dev->mr_max_size = srp_dev->mr_page_size * 3423 srp_dev->max_pages_per_mr; 3424 pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n", 3425 device->name, mr_page_shift, dev_attr->max_mr_size, 3426 dev_attr->max_fast_reg_page_list_len, 3427 srp_dev->max_pages_per_mr, srp_dev->mr_max_size); 3428 3429 INIT_LIST_HEAD(&srp_dev->dev_list); 3430 3431 srp_dev->dev = device; 3432 srp_dev->pd = ib_alloc_pd(device); 3433 if (IS_ERR(srp_dev->pd)) 3434 goto free_dev; 3435 3436 srp_dev->mr = ib_get_dma_mr(srp_dev->pd, 3437 IB_ACCESS_LOCAL_WRITE | 3438 IB_ACCESS_REMOTE_READ | 3439 IB_ACCESS_REMOTE_WRITE); 3440 if (IS_ERR(srp_dev->mr)) 3441 goto err_pd; 3442 3443 for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) { 3444 host = srp_add_port(srp_dev, p); 3445 if (host) 3446 list_add_tail(&host->list, &srp_dev->dev_list); 3447 } 3448 3449 ib_set_client_data(device, &srp_client, srp_dev); 3450 3451 goto free_attr; 3452 3453 err_pd: 3454 ib_dealloc_pd(srp_dev->pd); 3455 3456 free_dev: 3457 kfree(srp_dev); 3458 3459 free_attr: 3460 kfree(dev_attr); 3461 } 3462 3463 static void srp_remove_one(struct ib_device *device) 3464 { 3465 struct srp_device *srp_dev; 3466 struct srp_host *host, *tmp_host; 3467 struct srp_target_port *target; 3468 3469 srp_dev = ib_get_client_data(device, &srp_client); 3470 if (!srp_dev) 3471 return; 3472 3473 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) { 3474 device_unregister(&host->dev); 3475 /* 3476 * Wait for the sysfs entry to go away, so that no new 3477 * target ports can be created. 3478 */ 3479 wait_for_completion(&host->released); 3480 3481 /* 3482 * Remove all target ports. 3483 */ 3484 spin_lock(&host->target_lock); 3485 list_for_each_entry(target, &host->target_list, list) 3486 srp_queue_remove_work(target); 3487 spin_unlock(&host->target_lock); 3488 3489 /* 3490 * Wait for tl_err and target port removal tasks. 3491 */ 3492 flush_workqueue(system_long_wq); 3493 flush_workqueue(srp_remove_wq); 3494 3495 kfree(host); 3496 } 3497 3498 ib_dereg_mr(srp_dev->mr); 3499 ib_dealloc_pd(srp_dev->pd); 3500 3501 kfree(srp_dev); 3502 } 3503 3504 static struct srp_function_template ib_srp_transport_functions = { 3505 .has_rport_state = true, 3506 .reset_timer_if_blocked = true, 3507 .reconnect_delay = &srp_reconnect_delay, 3508 .fast_io_fail_tmo = &srp_fast_io_fail_tmo, 3509 .dev_loss_tmo = &srp_dev_loss_tmo, 3510 .reconnect = srp_rport_reconnect, 3511 .rport_delete = srp_rport_delete, 3512 .terminate_rport_io = srp_terminate_io, 3513 }; 3514 3515 static int __init srp_init_module(void) 3516 { 3517 int ret; 3518 3519 BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *)); 3520 3521 if (srp_sg_tablesize) { 3522 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n"); 3523 if (!cmd_sg_entries) 3524 cmd_sg_entries = srp_sg_tablesize; 3525 } 3526 3527 if (!cmd_sg_entries) 3528 cmd_sg_entries = SRP_DEF_SG_TABLESIZE; 3529 3530 if (cmd_sg_entries > 255) { 3531 pr_warn("Clamping cmd_sg_entries to 255\n"); 3532 cmd_sg_entries = 255; 3533 } 3534 3535 if (!indirect_sg_entries) 3536 indirect_sg_entries = cmd_sg_entries; 3537 else if (indirect_sg_entries < cmd_sg_entries) { 3538 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n", 3539 cmd_sg_entries); 3540 indirect_sg_entries = cmd_sg_entries; 3541 } 3542 3543 srp_remove_wq = create_workqueue("srp_remove"); 3544 if (!srp_remove_wq) { 3545 ret = -ENOMEM; 3546 goto out; 3547 } 3548 3549 ret = -ENOMEM; 3550 ib_srp_transport_template = 3551 srp_attach_transport(&ib_srp_transport_functions); 3552 if (!ib_srp_transport_template) 3553 goto destroy_wq; 3554 3555 ret = class_register(&srp_class); 3556 if (ret) { 3557 pr_err("couldn't register class infiniband_srp\n"); 3558 goto release_tr; 3559 } 3560 3561 ib_sa_register_client(&srp_sa_client); 3562 3563 ret = ib_register_client(&srp_client); 3564 if (ret) { 3565 pr_err("couldn't register IB client\n"); 3566 goto unreg_sa; 3567 } 3568 3569 out: 3570 return ret; 3571 3572 unreg_sa: 3573 ib_sa_unregister_client(&srp_sa_client); 3574 class_unregister(&srp_class); 3575 3576 release_tr: 3577 srp_release_transport(ib_srp_transport_template); 3578 3579 destroy_wq: 3580 destroy_workqueue(srp_remove_wq); 3581 goto out; 3582 } 3583 3584 static void __exit srp_cleanup_module(void) 3585 { 3586 ib_unregister_client(&srp_client); 3587 ib_sa_unregister_client(&srp_sa_client); 3588 class_unregister(&srp_class); 3589 srp_release_transport(ib_srp_transport_template); 3590 destroy_workqueue(srp_remove_wq); 3591 } 3592 3593 module_init(srp_init_module); 3594 module_exit(srp_cleanup_module); 3595