xref: /linux/drivers/infiniband/ulp/srp/ib_srp.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44 
45 #include <linux/atomic.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53 
54 #include "ib_srp.h"
55 
56 #define DRV_NAME	"ib_srp"
57 #define PFX		DRV_NAME ": "
58 #define DRV_VERSION	"1.0"
59 #define DRV_RELDATE	"July 1, 2013"
60 
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66 
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr;
72 static bool register_always;
73 static int topspin_workarounds = 1;
74 
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77 
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80 		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81 
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84 		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85 
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88 		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89 
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92 		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93 
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97 
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100 		 "Use memory registration even for contiguous memory regions");
101 
102 static const struct kernel_param_ops srp_tmo_ops;
103 
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106 		S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108 
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111 		S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113 		 "Number of seconds between the observation of a transport"
114 		 " layer error and failing all I/O. \"off\" means that this"
115 		 " functionality is disabled.");
116 
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119 		S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121 		 "Maximum number of seconds that the SRP transport should"
122 		 " insulate transport layer errors. After this time has been"
123 		 " exceeded the SCSI host is removed. Should be"
124 		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125 		 " if fast_io_fail_tmo has not been set. \"off\" means that"
126 		 " this functionality is disabled.");
127 
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131 		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132 
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138 
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141 
142 static struct ib_client srp_client = {
143 	.name   = "srp",
144 	.add    = srp_add_one,
145 	.remove = srp_remove_one
146 };
147 
148 static struct ib_sa_client srp_sa_client;
149 
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152 	int tmo = *(int *)kp->arg;
153 
154 	if (tmo >= 0)
155 		return sprintf(buffer, "%d", tmo);
156 	else
157 		return sprintf(buffer, "off");
158 }
159 
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162 	int tmo, res;
163 
164 	if (strncmp(val, "off", 3) != 0) {
165 		res = kstrtoint(val, 0, &tmo);
166 		if (res)
167 			goto out;
168 	} else {
169 		tmo = -1;
170 	}
171 	if (kp->arg == &srp_reconnect_delay)
172 		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
173 				    srp_dev_loss_tmo);
174 	else if (kp->arg == &srp_fast_io_fail_tmo)
175 		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
176 	else
177 		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
178 				    tmo);
179 	if (res)
180 		goto out;
181 	*(int *)kp->arg = tmo;
182 
183 out:
184 	return res;
185 }
186 
187 static const struct kernel_param_ops srp_tmo_ops = {
188 	.get = srp_tmo_get,
189 	.set = srp_tmo_set,
190 };
191 
192 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
193 {
194 	return (struct srp_target_port *) host->hostdata;
195 }
196 
197 static const char *srp_target_info(struct Scsi_Host *host)
198 {
199 	return host_to_target(host)->target_name;
200 }
201 
202 static int srp_target_is_topspin(struct srp_target_port *target)
203 {
204 	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
205 	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
206 
207 	return topspin_workarounds &&
208 		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
209 		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
210 }
211 
212 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
213 				   gfp_t gfp_mask,
214 				   enum dma_data_direction direction)
215 {
216 	struct srp_iu *iu;
217 
218 	iu = kmalloc(sizeof *iu, gfp_mask);
219 	if (!iu)
220 		goto out;
221 
222 	iu->buf = kzalloc(size, gfp_mask);
223 	if (!iu->buf)
224 		goto out_free_iu;
225 
226 	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
227 				    direction);
228 	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
229 		goto out_free_buf;
230 
231 	iu->size      = size;
232 	iu->direction = direction;
233 
234 	return iu;
235 
236 out_free_buf:
237 	kfree(iu->buf);
238 out_free_iu:
239 	kfree(iu);
240 out:
241 	return NULL;
242 }
243 
244 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
245 {
246 	if (!iu)
247 		return;
248 
249 	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
250 			    iu->direction);
251 	kfree(iu->buf);
252 	kfree(iu);
253 }
254 
255 static void srp_qp_event(struct ib_event *event, void *context)
256 {
257 	pr_debug("QP event %s (%d)\n",
258 		 ib_event_msg(event->event), event->event);
259 }
260 
261 static int srp_init_qp(struct srp_target_port *target,
262 		       struct ib_qp *qp)
263 {
264 	struct ib_qp_attr *attr;
265 	int ret;
266 
267 	attr = kmalloc(sizeof *attr, GFP_KERNEL);
268 	if (!attr)
269 		return -ENOMEM;
270 
271 	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
272 				  target->srp_host->port,
273 				  be16_to_cpu(target->pkey),
274 				  &attr->pkey_index);
275 	if (ret)
276 		goto out;
277 
278 	attr->qp_state        = IB_QPS_INIT;
279 	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
280 				    IB_ACCESS_REMOTE_WRITE);
281 	attr->port_num        = target->srp_host->port;
282 
283 	ret = ib_modify_qp(qp, attr,
284 			   IB_QP_STATE		|
285 			   IB_QP_PKEY_INDEX	|
286 			   IB_QP_ACCESS_FLAGS	|
287 			   IB_QP_PORT);
288 
289 out:
290 	kfree(attr);
291 	return ret;
292 }
293 
294 static int srp_new_cm_id(struct srp_rdma_ch *ch)
295 {
296 	struct srp_target_port *target = ch->target;
297 	struct ib_cm_id *new_cm_id;
298 
299 	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
300 				    srp_cm_handler, ch);
301 	if (IS_ERR(new_cm_id))
302 		return PTR_ERR(new_cm_id);
303 
304 	if (ch->cm_id)
305 		ib_destroy_cm_id(ch->cm_id);
306 	ch->cm_id = new_cm_id;
307 	ch->path.sgid = target->sgid;
308 	ch->path.dgid = target->orig_dgid;
309 	ch->path.pkey = target->pkey;
310 	ch->path.service_id = target->service_id;
311 
312 	return 0;
313 }
314 
315 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
316 {
317 	struct srp_device *dev = target->srp_host->srp_dev;
318 	struct ib_fmr_pool_param fmr_param;
319 
320 	memset(&fmr_param, 0, sizeof(fmr_param));
321 	fmr_param.pool_size	    = target->scsi_host->can_queue;
322 	fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
323 	fmr_param.cache		    = 1;
324 	fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
325 	fmr_param.page_shift	    = ilog2(dev->mr_page_size);
326 	fmr_param.access	    = (IB_ACCESS_LOCAL_WRITE |
327 				       IB_ACCESS_REMOTE_WRITE |
328 				       IB_ACCESS_REMOTE_READ);
329 
330 	return ib_create_fmr_pool(dev->pd, &fmr_param);
331 }
332 
333 /**
334  * srp_destroy_fr_pool() - free the resources owned by a pool
335  * @pool: Fast registration pool to be destroyed.
336  */
337 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
338 {
339 	int i;
340 	struct srp_fr_desc *d;
341 
342 	if (!pool)
343 		return;
344 
345 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
346 		if (d->frpl)
347 			ib_free_fast_reg_page_list(d->frpl);
348 		if (d->mr)
349 			ib_dereg_mr(d->mr);
350 	}
351 	kfree(pool);
352 }
353 
354 /**
355  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
356  * @device:            IB device to allocate fast registration descriptors for.
357  * @pd:                Protection domain associated with the FR descriptors.
358  * @pool_size:         Number of descriptors to allocate.
359  * @max_page_list_len: Maximum fast registration work request page list length.
360  */
361 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
362 					      struct ib_pd *pd, int pool_size,
363 					      int max_page_list_len)
364 {
365 	struct srp_fr_pool *pool;
366 	struct srp_fr_desc *d;
367 	struct ib_mr *mr;
368 	struct ib_fast_reg_page_list *frpl;
369 	int i, ret = -EINVAL;
370 
371 	if (pool_size <= 0)
372 		goto err;
373 	ret = -ENOMEM;
374 	pool = kzalloc(sizeof(struct srp_fr_pool) +
375 		       pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
376 	if (!pool)
377 		goto err;
378 	pool->size = pool_size;
379 	pool->max_page_list_len = max_page_list_len;
380 	spin_lock_init(&pool->lock);
381 	INIT_LIST_HEAD(&pool->free_list);
382 
383 	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
384 		mr = ib_alloc_fast_reg_mr(pd, max_page_list_len);
385 		if (IS_ERR(mr)) {
386 			ret = PTR_ERR(mr);
387 			goto destroy_pool;
388 		}
389 		d->mr = mr;
390 		frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
391 		if (IS_ERR(frpl)) {
392 			ret = PTR_ERR(frpl);
393 			goto destroy_pool;
394 		}
395 		d->frpl = frpl;
396 		list_add_tail(&d->entry, &pool->free_list);
397 	}
398 
399 out:
400 	return pool;
401 
402 destroy_pool:
403 	srp_destroy_fr_pool(pool);
404 
405 err:
406 	pool = ERR_PTR(ret);
407 	goto out;
408 }
409 
410 /**
411  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
412  * @pool: Pool to obtain descriptor from.
413  */
414 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
415 {
416 	struct srp_fr_desc *d = NULL;
417 	unsigned long flags;
418 
419 	spin_lock_irqsave(&pool->lock, flags);
420 	if (!list_empty(&pool->free_list)) {
421 		d = list_first_entry(&pool->free_list, typeof(*d), entry);
422 		list_del(&d->entry);
423 	}
424 	spin_unlock_irqrestore(&pool->lock, flags);
425 
426 	return d;
427 }
428 
429 /**
430  * srp_fr_pool_put() - put an FR descriptor back in the free list
431  * @pool: Pool the descriptor was allocated from.
432  * @desc: Pointer to an array of fast registration descriptor pointers.
433  * @n:    Number of descriptors to put back.
434  *
435  * Note: The caller must already have queued an invalidation request for
436  * desc->mr->rkey before calling this function.
437  */
438 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
439 			    int n)
440 {
441 	unsigned long flags;
442 	int i;
443 
444 	spin_lock_irqsave(&pool->lock, flags);
445 	for (i = 0; i < n; i++)
446 		list_add(&desc[i]->entry, &pool->free_list);
447 	spin_unlock_irqrestore(&pool->lock, flags);
448 }
449 
450 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
451 {
452 	struct srp_device *dev = target->srp_host->srp_dev;
453 
454 	return srp_create_fr_pool(dev->dev, dev->pd,
455 				  target->scsi_host->can_queue,
456 				  dev->max_pages_per_mr);
457 }
458 
459 /**
460  * srp_destroy_qp() - destroy an RDMA queue pair
461  * @ch: SRP RDMA channel.
462  *
463  * Change a queue pair into the error state and wait until all receive
464  * completions have been processed before destroying it. This avoids that
465  * the receive completion handler can access the queue pair while it is
466  * being destroyed.
467  */
468 static void srp_destroy_qp(struct srp_rdma_ch *ch)
469 {
470 	static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
471 	static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
472 	struct ib_recv_wr *bad_wr;
473 	int ret;
474 
475 	/* Destroying a QP and reusing ch->done is only safe if not connected */
476 	WARN_ON_ONCE(ch->connected);
477 
478 	ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
479 	WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
480 	if (ret)
481 		goto out;
482 
483 	init_completion(&ch->done);
484 	ret = ib_post_recv(ch->qp, &wr, &bad_wr);
485 	WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
486 	if (ret == 0)
487 		wait_for_completion(&ch->done);
488 
489 out:
490 	ib_destroy_qp(ch->qp);
491 }
492 
493 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
494 {
495 	struct srp_target_port *target = ch->target;
496 	struct srp_device *dev = target->srp_host->srp_dev;
497 	struct ib_qp_init_attr *init_attr;
498 	struct ib_cq *recv_cq, *send_cq;
499 	struct ib_qp *qp;
500 	struct ib_fmr_pool *fmr_pool = NULL;
501 	struct srp_fr_pool *fr_pool = NULL;
502 	const int m = 1 + dev->use_fast_reg;
503 	struct ib_cq_init_attr cq_attr = {};
504 	int ret;
505 
506 	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
507 	if (!init_attr)
508 		return -ENOMEM;
509 
510 	/* + 1 for SRP_LAST_WR_ID */
511 	cq_attr.cqe = target->queue_size + 1;
512 	cq_attr.comp_vector = ch->comp_vector;
513 	recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
514 			       &cq_attr);
515 	if (IS_ERR(recv_cq)) {
516 		ret = PTR_ERR(recv_cq);
517 		goto err;
518 	}
519 
520 	cq_attr.cqe = m * target->queue_size;
521 	cq_attr.comp_vector = ch->comp_vector;
522 	send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
523 			       &cq_attr);
524 	if (IS_ERR(send_cq)) {
525 		ret = PTR_ERR(send_cq);
526 		goto err_recv_cq;
527 	}
528 
529 	ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
530 
531 	init_attr->event_handler       = srp_qp_event;
532 	init_attr->cap.max_send_wr     = m * target->queue_size;
533 	init_attr->cap.max_recv_wr     = target->queue_size + 1;
534 	init_attr->cap.max_recv_sge    = 1;
535 	init_attr->cap.max_send_sge    = 1;
536 	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
537 	init_attr->qp_type             = IB_QPT_RC;
538 	init_attr->send_cq             = send_cq;
539 	init_attr->recv_cq             = recv_cq;
540 
541 	qp = ib_create_qp(dev->pd, init_attr);
542 	if (IS_ERR(qp)) {
543 		ret = PTR_ERR(qp);
544 		goto err_send_cq;
545 	}
546 
547 	ret = srp_init_qp(target, qp);
548 	if (ret)
549 		goto err_qp;
550 
551 	if (dev->use_fast_reg && dev->has_fr) {
552 		fr_pool = srp_alloc_fr_pool(target);
553 		if (IS_ERR(fr_pool)) {
554 			ret = PTR_ERR(fr_pool);
555 			shost_printk(KERN_WARNING, target->scsi_host, PFX
556 				     "FR pool allocation failed (%d)\n", ret);
557 			goto err_qp;
558 		}
559 		if (ch->fr_pool)
560 			srp_destroy_fr_pool(ch->fr_pool);
561 		ch->fr_pool = fr_pool;
562 	} else if (!dev->use_fast_reg && dev->has_fmr) {
563 		fmr_pool = srp_alloc_fmr_pool(target);
564 		if (IS_ERR(fmr_pool)) {
565 			ret = PTR_ERR(fmr_pool);
566 			shost_printk(KERN_WARNING, target->scsi_host, PFX
567 				     "FMR pool allocation failed (%d)\n", ret);
568 			goto err_qp;
569 		}
570 		if (ch->fmr_pool)
571 			ib_destroy_fmr_pool(ch->fmr_pool);
572 		ch->fmr_pool = fmr_pool;
573 	}
574 
575 	if (ch->qp)
576 		srp_destroy_qp(ch);
577 	if (ch->recv_cq)
578 		ib_destroy_cq(ch->recv_cq);
579 	if (ch->send_cq)
580 		ib_destroy_cq(ch->send_cq);
581 
582 	ch->qp = qp;
583 	ch->recv_cq = recv_cq;
584 	ch->send_cq = send_cq;
585 
586 	kfree(init_attr);
587 	return 0;
588 
589 err_qp:
590 	ib_destroy_qp(qp);
591 
592 err_send_cq:
593 	ib_destroy_cq(send_cq);
594 
595 err_recv_cq:
596 	ib_destroy_cq(recv_cq);
597 
598 err:
599 	kfree(init_attr);
600 	return ret;
601 }
602 
603 /*
604  * Note: this function may be called without srp_alloc_iu_bufs() having been
605  * invoked. Hence the ch->[rt]x_ring checks.
606  */
607 static void srp_free_ch_ib(struct srp_target_port *target,
608 			   struct srp_rdma_ch *ch)
609 {
610 	struct srp_device *dev = target->srp_host->srp_dev;
611 	int i;
612 
613 	if (!ch->target)
614 		return;
615 
616 	if (ch->cm_id) {
617 		ib_destroy_cm_id(ch->cm_id);
618 		ch->cm_id = NULL;
619 	}
620 
621 	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
622 	if (!ch->qp)
623 		return;
624 
625 	if (dev->use_fast_reg) {
626 		if (ch->fr_pool)
627 			srp_destroy_fr_pool(ch->fr_pool);
628 	} else {
629 		if (ch->fmr_pool)
630 			ib_destroy_fmr_pool(ch->fmr_pool);
631 	}
632 	srp_destroy_qp(ch);
633 	ib_destroy_cq(ch->send_cq);
634 	ib_destroy_cq(ch->recv_cq);
635 
636 	/*
637 	 * Avoid that the SCSI error handler tries to use this channel after
638 	 * it has been freed. The SCSI error handler can namely continue
639 	 * trying to perform recovery actions after scsi_remove_host()
640 	 * returned.
641 	 */
642 	ch->target = NULL;
643 
644 	ch->qp = NULL;
645 	ch->send_cq = ch->recv_cq = NULL;
646 
647 	if (ch->rx_ring) {
648 		for (i = 0; i < target->queue_size; ++i)
649 			srp_free_iu(target->srp_host, ch->rx_ring[i]);
650 		kfree(ch->rx_ring);
651 		ch->rx_ring = NULL;
652 	}
653 	if (ch->tx_ring) {
654 		for (i = 0; i < target->queue_size; ++i)
655 			srp_free_iu(target->srp_host, ch->tx_ring[i]);
656 		kfree(ch->tx_ring);
657 		ch->tx_ring = NULL;
658 	}
659 }
660 
661 static void srp_path_rec_completion(int status,
662 				    struct ib_sa_path_rec *pathrec,
663 				    void *ch_ptr)
664 {
665 	struct srp_rdma_ch *ch = ch_ptr;
666 	struct srp_target_port *target = ch->target;
667 
668 	ch->status = status;
669 	if (status)
670 		shost_printk(KERN_ERR, target->scsi_host,
671 			     PFX "Got failed path rec status %d\n", status);
672 	else
673 		ch->path = *pathrec;
674 	complete(&ch->done);
675 }
676 
677 static int srp_lookup_path(struct srp_rdma_ch *ch)
678 {
679 	struct srp_target_port *target = ch->target;
680 	int ret;
681 
682 	ch->path.numb_path = 1;
683 
684 	init_completion(&ch->done);
685 
686 	ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
687 					       target->srp_host->srp_dev->dev,
688 					       target->srp_host->port,
689 					       &ch->path,
690 					       IB_SA_PATH_REC_SERVICE_ID |
691 					       IB_SA_PATH_REC_DGID	 |
692 					       IB_SA_PATH_REC_SGID	 |
693 					       IB_SA_PATH_REC_NUMB_PATH	 |
694 					       IB_SA_PATH_REC_PKEY,
695 					       SRP_PATH_REC_TIMEOUT_MS,
696 					       GFP_KERNEL,
697 					       srp_path_rec_completion,
698 					       ch, &ch->path_query);
699 	if (ch->path_query_id < 0)
700 		return ch->path_query_id;
701 
702 	ret = wait_for_completion_interruptible(&ch->done);
703 	if (ret < 0)
704 		return ret;
705 
706 	if (ch->status < 0)
707 		shost_printk(KERN_WARNING, target->scsi_host,
708 			     PFX "Path record query failed\n");
709 
710 	return ch->status;
711 }
712 
713 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
714 {
715 	struct srp_target_port *target = ch->target;
716 	struct {
717 		struct ib_cm_req_param param;
718 		struct srp_login_req   priv;
719 	} *req = NULL;
720 	int status;
721 
722 	req = kzalloc(sizeof *req, GFP_KERNEL);
723 	if (!req)
724 		return -ENOMEM;
725 
726 	req->param.primary_path		      = &ch->path;
727 	req->param.alternate_path 	      = NULL;
728 	req->param.service_id 		      = target->service_id;
729 	req->param.qp_num		      = ch->qp->qp_num;
730 	req->param.qp_type		      = ch->qp->qp_type;
731 	req->param.private_data 	      = &req->priv;
732 	req->param.private_data_len 	      = sizeof req->priv;
733 	req->param.flow_control 	      = 1;
734 
735 	get_random_bytes(&req->param.starting_psn, 4);
736 	req->param.starting_psn 	     &= 0xffffff;
737 
738 	/*
739 	 * Pick some arbitrary defaults here; we could make these
740 	 * module parameters if anyone cared about setting them.
741 	 */
742 	req->param.responder_resources	      = 4;
743 	req->param.remote_cm_response_timeout = 20;
744 	req->param.local_cm_response_timeout  = 20;
745 	req->param.retry_count                = target->tl_retry_count;
746 	req->param.rnr_retry_count 	      = 7;
747 	req->param.max_cm_retries 	      = 15;
748 
749 	req->priv.opcode     	= SRP_LOGIN_REQ;
750 	req->priv.tag        	= 0;
751 	req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
752 	req->priv.req_buf_fmt 	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
753 					      SRP_BUF_FORMAT_INDIRECT);
754 	req->priv.req_flags	= (multich ? SRP_MULTICHAN_MULTI :
755 				   SRP_MULTICHAN_SINGLE);
756 	/*
757 	 * In the published SRP specification (draft rev. 16a), the
758 	 * port identifier format is 8 bytes of ID extension followed
759 	 * by 8 bytes of GUID.  Older drafts put the two halves in the
760 	 * opposite order, so that the GUID comes first.
761 	 *
762 	 * Targets conforming to these obsolete drafts can be
763 	 * recognized by the I/O Class they report.
764 	 */
765 	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
766 		memcpy(req->priv.initiator_port_id,
767 		       &target->sgid.global.interface_id, 8);
768 		memcpy(req->priv.initiator_port_id + 8,
769 		       &target->initiator_ext, 8);
770 		memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
771 		memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
772 	} else {
773 		memcpy(req->priv.initiator_port_id,
774 		       &target->initiator_ext, 8);
775 		memcpy(req->priv.initiator_port_id + 8,
776 		       &target->sgid.global.interface_id, 8);
777 		memcpy(req->priv.target_port_id,     &target->id_ext, 8);
778 		memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
779 	}
780 
781 	/*
782 	 * Topspin/Cisco SRP targets will reject our login unless we
783 	 * zero out the first 8 bytes of our initiator port ID and set
784 	 * the second 8 bytes to the local node GUID.
785 	 */
786 	if (srp_target_is_topspin(target)) {
787 		shost_printk(KERN_DEBUG, target->scsi_host,
788 			     PFX "Topspin/Cisco initiator port ID workaround "
789 			     "activated for target GUID %016llx\n",
790 			     be64_to_cpu(target->ioc_guid));
791 		memset(req->priv.initiator_port_id, 0, 8);
792 		memcpy(req->priv.initiator_port_id + 8,
793 		       &target->srp_host->srp_dev->dev->node_guid, 8);
794 	}
795 
796 	status = ib_send_cm_req(ch->cm_id, &req->param);
797 
798 	kfree(req);
799 
800 	return status;
801 }
802 
803 static bool srp_queue_remove_work(struct srp_target_port *target)
804 {
805 	bool changed = false;
806 
807 	spin_lock_irq(&target->lock);
808 	if (target->state != SRP_TARGET_REMOVED) {
809 		target->state = SRP_TARGET_REMOVED;
810 		changed = true;
811 	}
812 	spin_unlock_irq(&target->lock);
813 
814 	if (changed)
815 		queue_work(srp_remove_wq, &target->remove_work);
816 
817 	return changed;
818 }
819 
820 static void srp_disconnect_target(struct srp_target_port *target)
821 {
822 	struct srp_rdma_ch *ch;
823 	int i;
824 
825 	/* XXX should send SRP_I_LOGOUT request */
826 
827 	for (i = 0; i < target->ch_count; i++) {
828 		ch = &target->ch[i];
829 		ch->connected = false;
830 		if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
831 			shost_printk(KERN_DEBUG, target->scsi_host,
832 				     PFX "Sending CM DREQ failed\n");
833 		}
834 	}
835 }
836 
837 static void srp_free_req_data(struct srp_target_port *target,
838 			      struct srp_rdma_ch *ch)
839 {
840 	struct srp_device *dev = target->srp_host->srp_dev;
841 	struct ib_device *ibdev = dev->dev;
842 	struct srp_request *req;
843 	int i;
844 
845 	if (!ch->req_ring)
846 		return;
847 
848 	for (i = 0; i < target->req_ring_size; ++i) {
849 		req = &ch->req_ring[i];
850 		if (dev->use_fast_reg)
851 			kfree(req->fr_list);
852 		else
853 			kfree(req->fmr_list);
854 		kfree(req->map_page);
855 		if (req->indirect_dma_addr) {
856 			ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
857 					    target->indirect_size,
858 					    DMA_TO_DEVICE);
859 		}
860 		kfree(req->indirect_desc);
861 	}
862 
863 	kfree(ch->req_ring);
864 	ch->req_ring = NULL;
865 }
866 
867 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
868 {
869 	struct srp_target_port *target = ch->target;
870 	struct srp_device *srp_dev = target->srp_host->srp_dev;
871 	struct ib_device *ibdev = srp_dev->dev;
872 	struct srp_request *req;
873 	void *mr_list;
874 	dma_addr_t dma_addr;
875 	int i, ret = -ENOMEM;
876 
877 	ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
878 			       GFP_KERNEL);
879 	if (!ch->req_ring)
880 		goto out;
881 
882 	for (i = 0; i < target->req_ring_size; ++i) {
883 		req = &ch->req_ring[i];
884 		mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
885 				  GFP_KERNEL);
886 		if (!mr_list)
887 			goto out;
888 		if (srp_dev->use_fast_reg)
889 			req->fr_list = mr_list;
890 		else
891 			req->fmr_list = mr_list;
892 		req->map_page = kmalloc(srp_dev->max_pages_per_mr *
893 					sizeof(void *), GFP_KERNEL);
894 		if (!req->map_page)
895 			goto out;
896 		req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
897 		if (!req->indirect_desc)
898 			goto out;
899 
900 		dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
901 					     target->indirect_size,
902 					     DMA_TO_DEVICE);
903 		if (ib_dma_mapping_error(ibdev, dma_addr))
904 			goto out;
905 
906 		req->indirect_dma_addr = dma_addr;
907 	}
908 	ret = 0;
909 
910 out:
911 	return ret;
912 }
913 
914 /**
915  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
916  * @shost: SCSI host whose attributes to remove from sysfs.
917  *
918  * Note: Any attributes defined in the host template and that did not exist
919  * before invocation of this function will be ignored.
920  */
921 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
922 {
923 	struct device_attribute **attr;
924 
925 	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
926 		device_remove_file(&shost->shost_dev, *attr);
927 }
928 
929 static void srp_remove_target(struct srp_target_port *target)
930 {
931 	struct srp_rdma_ch *ch;
932 	int i;
933 
934 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
935 
936 	srp_del_scsi_host_attr(target->scsi_host);
937 	srp_rport_get(target->rport);
938 	srp_remove_host(target->scsi_host);
939 	scsi_remove_host(target->scsi_host);
940 	srp_stop_rport_timers(target->rport);
941 	srp_disconnect_target(target);
942 	for (i = 0; i < target->ch_count; i++) {
943 		ch = &target->ch[i];
944 		srp_free_ch_ib(target, ch);
945 	}
946 	cancel_work_sync(&target->tl_err_work);
947 	srp_rport_put(target->rport);
948 	for (i = 0; i < target->ch_count; i++) {
949 		ch = &target->ch[i];
950 		srp_free_req_data(target, ch);
951 	}
952 	kfree(target->ch);
953 	target->ch = NULL;
954 
955 	spin_lock(&target->srp_host->target_lock);
956 	list_del(&target->list);
957 	spin_unlock(&target->srp_host->target_lock);
958 
959 	scsi_host_put(target->scsi_host);
960 }
961 
962 static void srp_remove_work(struct work_struct *work)
963 {
964 	struct srp_target_port *target =
965 		container_of(work, struct srp_target_port, remove_work);
966 
967 	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
968 
969 	srp_remove_target(target);
970 }
971 
972 static void srp_rport_delete(struct srp_rport *rport)
973 {
974 	struct srp_target_port *target = rport->lld_data;
975 
976 	srp_queue_remove_work(target);
977 }
978 
979 /**
980  * srp_connected_ch() - number of connected channels
981  * @target: SRP target port.
982  */
983 static int srp_connected_ch(struct srp_target_port *target)
984 {
985 	int i, c = 0;
986 
987 	for (i = 0; i < target->ch_count; i++)
988 		c += target->ch[i].connected;
989 
990 	return c;
991 }
992 
993 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
994 {
995 	struct srp_target_port *target = ch->target;
996 	int ret;
997 
998 	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
999 
1000 	ret = srp_lookup_path(ch);
1001 	if (ret)
1002 		return ret;
1003 
1004 	while (1) {
1005 		init_completion(&ch->done);
1006 		ret = srp_send_req(ch, multich);
1007 		if (ret)
1008 			return ret;
1009 		ret = wait_for_completion_interruptible(&ch->done);
1010 		if (ret < 0)
1011 			return ret;
1012 
1013 		/*
1014 		 * The CM event handling code will set status to
1015 		 * SRP_PORT_REDIRECT if we get a port redirect REJ
1016 		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1017 		 * redirect REJ back.
1018 		 */
1019 		switch (ch->status) {
1020 		case 0:
1021 			ch->connected = true;
1022 			return 0;
1023 
1024 		case SRP_PORT_REDIRECT:
1025 			ret = srp_lookup_path(ch);
1026 			if (ret)
1027 				return ret;
1028 			break;
1029 
1030 		case SRP_DLID_REDIRECT:
1031 			break;
1032 
1033 		case SRP_STALE_CONN:
1034 			shost_printk(KERN_ERR, target->scsi_host, PFX
1035 				     "giving up on stale connection\n");
1036 			ch->status = -ECONNRESET;
1037 			return ch->status;
1038 
1039 		default:
1040 			return ch->status;
1041 		}
1042 	}
1043 }
1044 
1045 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1046 {
1047 	struct ib_send_wr *bad_wr;
1048 	struct ib_send_wr wr = {
1049 		.opcode		    = IB_WR_LOCAL_INV,
1050 		.wr_id		    = LOCAL_INV_WR_ID_MASK,
1051 		.next		    = NULL,
1052 		.num_sge	    = 0,
1053 		.send_flags	    = 0,
1054 		.ex.invalidate_rkey = rkey,
1055 	};
1056 
1057 	return ib_post_send(ch->qp, &wr, &bad_wr);
1058 }
1059 
1060 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1061 			   struct srp_rdma_ch *ch,
1062 			   struct srp_request *req)
1063 {
1064 	struct srp_target_port *target = ch->target;
1065 	struct srp_device *dev = target->srp_host->srp_dev;
1066 	struct ib_device *ibdev = dev->dev;
1067 	int i, res;
1068 
1069 	if (!scsi_sglist(scmnd) ||
1070 	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1071 	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
1072 		return;
1073 
1074 	if (dev->use_fast_reg) {
1075 		struct srp_fr_desc **pfr;
1076 
1077 		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1078 			res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1079 			if (res < 0) {
1080 				shost_printk(KERN_ERR, target->scsi_host, PFX
1081 				  "Queueing INV WR for rkey %#x failed (%d)\n",
1082 				  (*pfr)->mr->rkey, res);
1083 				queue_work(system_long_wq,
1084 					   &target->tl_err_work);
1085 			}
1086 		}
1087 		if (req->nmdesc)
1088 			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1089 					req->nmdesc);
1090 	} else {
1091 		struct ib_pool_fmr **pfmr;
1092 
1093 		for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1094 			ib_fmr_pool_unmap(*pfmr);
1095 	}
1096 
1097 	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1098 			scmnd->sc_data_direction);
1099 }
1100 
1101 /**
1102  * srp_claim_req - Take ownership of the scmnd associated with a request.
1103  * @ch: SRP RDMA channel.
1104  * @req: SRP request.
1105  * @sdev: If not NULL, only take ownership for this SCSI device.
1106  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1107  *         ownership of @req->scmnd if it equals @scmnd.
1108  *
1109  * Return value:
1110  * Either NULL or a pointer to the SCSI command the caller became owner of.
1111  */
1112 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1113 				       struct srp_request *req,
1114 				       struct scsi_device *sdev,
1115 				       struct scsi_cmnd *scmnd)
1116 {
1117 	unsigned long flags;
1118 
1119 	spin_lock_irqsave(&ch->lock, flags);
1120 	if (req->scmnd &&
1121 	    (!sdev || req->scmnd->device == sdev) &&
1122 	    (!scmnd || req->scmnd == scmnd)) {
1123 		scmnd = req->scmnd;
1124 		req->scmnd = NULL;
1125 	} else {
1126 		scmnd = NULL;
1127 	}
1128 	spin_unlock_irqrestore(&ch->lock, flags);
1129 
1130 	return scmnd;
1131 }
1132 
1133 /**
1134  * srp_free_req() - Unmap data and add request to the free request list.
1135  * @ch:     SRP RDMA channel.
1136  * @req:    Request to be freed.
1137  * @scmnd:  SCSI command associated with @req.
1138  * @req_lim_delta: Amount to be added to @target->req_lim.
1139  */
1140 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1141 			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1142 {
1143 	unsigned long flags;
1144 
1145 	srp_unmap_data(scmnd, ch, req);
1146 
1147 	spin_lock_irqsave(&ch->lock, flags);
1148 	ch->req_lim += req_lim_delta;
1149 	spin_unlock_irqrestore(&ch->lock, flags);
1150 }
1151 
1152 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1153 			   struct scsi_device *sdev, int result)
1154 {
1155 	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1156 
1157 	if (scmnd) {
1158 		srp_free_req(ch, req, scmnd, 0);
1159 		scmnd->result = result;
1160 		scmnd->scsi_done(scmnd);
1161 	}
1162 }
1163 
1164 static void srp_terminate_io(struct srp_rport *rport)
1165 {
1166 	struct srp_target_port *target = rport->lld_data;
1167 	struct srp_rdma_ch *ch;
1168 	struct Scsi_Host *shost = target->scsi_host;
1169 	struct scsi_device *sdev;
1170 	int i, j;
1171 
1172 	/*
1173 	 * Invoking srp_terminate_io() while srp_queuecommand() is running
1174 	 * is not safe. Hence the warning statement below.
1175 	 */
1176 	shost_for_each_device(sdev, shost)
1177 		WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1178 
1179 	for (i = 0; i < target->ch_count; i++) {
1180 		ch = &target->ch[i];
1181 
1182 		for (j = 0; j < target->req_ring_size; ++j) {
1183 			struct srp_request *req = &ch->req_ring[j];
1184 
1185 			srp_finish_req(ch, req, NULL,
1186 				       DID_TRANSPORT_FAILFAST << 16);
1187 		}
1188 	}
1189 }
1190 
1191 /*
1192  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1193  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1194  * srp_reset_device() or srp_reset_host() calls will occur while this function
1195  * is in progress. One way to realize that is not to call this function
1196  * directly but to call srp_reconnect_rport() instead since that last function
1197  * serializes calls of this function via rport->mutex and also blocks
1198  * srp_queuecommand() calls before invoking this function.
1199  */
1200 static int srp_rport_reconnect(struct srp_rport *rport)
1201 {
1202 	struct srp_target_port *target = rport->lld_data;
1203 	struct srp_rdma_ch *ch;
1204 	int i, j, ret = 0;
1205 	bool multich = false;
1206 
1207 	srp_disconnect_target(target);
1208 
1209 	if (target->state == SRP_TARGET_SCANNING)
1210 		return -ENODEV;
1211 
1212 	/*
1213 	 * Now get a new local CM ID so that we avoid confusing the target in
1214 	 * case things are really fouled up. Doing so also ensures that all CM
1215 	 * callbacks will have finished before a new QP is allocated.
1216 	 */
1217 	for (i = 0; i < target->ch_count; i++) {
1218 		ch = &target->ch[i];
1219 		ret += srp_new_cm_id(ch);
1220 	}
1221 	for (i = 0; i < target->ch_count; i++) {
1222 		ch = &target->ch[i];
1223 		for (j = 0; j < target->req_ring_size; ++j) {
1224 			struct srp_request *req = &ch->req_ring[j];
1225 
1226 			srp_finish_req(ch, req, NULL, DID_RESET << 16);
1227 		}
1228 	}
1229 	for (i = 0; i < target->ch_count; i++) {
1230 		ch = &target->ch[i];
1231 		/*
1232 		 * Whether or not creating a new CM ID succeeded, create a new
1233 		 * QP. This guarantees that all completion callback function
1234 		 * invocations have finished before request resetting starts.
1235 		 */
1236 		ret += srp_create_ch_ib(ch);
1237 
1238 		INIT_LIST_HEAD(&ch->free_tx);
1239 		for (j = 0; j < target->queue_size; ++j)
1240 			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1241 	}
1242 
1243 	target->qp_in_error = false;
1244 
1245 	for (i = 0; i < target->ch_count; i++) {
1246 		ch = &target->ch[i];
1247 		if (ret)
1248 			break;
1249 		ret = srp_connect_ch(ch, multich);
1250 		multich = true;
1251 	}
1252 
1253 	if (ret == 0)
1254 		shost_printk(KERN_INFO, target->scsi_host,
1255 			     PFX "reconnect succeeded\n");
1256 
1257 	return ret;
1258 }
1259 
1260 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1261 			 unsigned int dma_len, u32 rkey)
1262 {
1263 	struct srp_direct_buf *desc = state->desc;
1264 
1265 	desc->va = cpu_to_be64(dma_addr);
1266 	desc->key = cpu_to_be32(rkey);
1267 	desc->len = cpu_to_be32(dma_len);
1268 
1269 	state->total_len += dma_len;
1270 	state->desc++;
1271 	state->ndesc++;
1272 }
1273 
1274 static int srp_map_finish_fmr(struct srp_map_state *state,
1275 			      struct srp_rdma_ch *ch)
1276 {
1277 	struct ib_pool_fmr *fmr;
1278 	u64 io_addr = 0;
1279 
1280 	fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1281 				   state->npages, io_addr);
1282 	if (IS_ERR(fmr))
1283 		return PTR_ERR(fmr);
1284 
1285 	*state->next_fmr++ = fmr;
1286 	state->nmdesc++;
1287 
1288 	srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey);
1289 
1290 	return 0;
1291 }
1292 
1293 static int srp_map_finish_fr(struct srp_map_state *state,
1294 			     struct srp_rdma_ch *ch)
1295 {
1296 	struct srp_target_port *target = ch->target;
1297 	struct srp_device *dev = target->srp_host->srp_dev;
1298 	struct ib_send_wr *bad_wr;
1299 	struct ib_send_wr wr;
1300 	struct srp_fr_desc *desc;
1301 	u32 rkey;
1302 
1303 	desc = srp_fr_pool_get(ch->fr_pool);
1304 	if (!desc)
1305 		return -ENOMEM;
1306 
1307 	rkey = ib_inc_rkey(desc->mr->rkey);
1308 	ib_update_fast_reg_key(desc->mr, rkey);
1309 
1310 	memcpy(desc->frpl->page_list, state->pages,
1311 	       sizeof(state->pages[0]) * state->npages);
1312 
1313 	memset(&wr, 0, sizeof(wr));
1314 	wr.opcode = IB_WR_FAST_REG_MR;
1315 	wr.wr_id = FAST_REG_WR_ID_MASK;
1316 	wr.wr.fast_reg.iova_start = state->base_dma_addr;
1317 	wr.wr.fast_reg.page_list = desc->frpl;
1318 	wr.wr.fast_reg.page_list_len = state->npages;
1319 	wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1320 	wr.wr.fast_reg.length = state->dma_len;
1321 	wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1322 				       IB_ACCESS_REMOTE_READ |
1323 				       IB_ACCESS_REMOTE_WRITE);
1324 	wr.wr.fast_reg.rkey = desc->mr->lkey;
1325 
1326 	*state->next_fr++ = desc;
1327 	state->nmdesc++;
1328 
1329 	srp_map_desc(state, state->base_dma_addr, state->dma_len,
1330 		     desc->mr->rkey);
1331 
1332 	return ib_post_send(ch->qp, &wr, &bad_wr);
1333 }
1334 
1335 static int srp_finish_mapping(struct srp_map_state *state,
1336 			      struct srp_rdma_ch *ch)
1337 {
1338 	struct srp_target_port *target = ch->target;
1339 	int ret = 0;
1340 
1341 	if (state->npages == 0)
1342 		return 0;
1343 
1344 	if (state->npages == 1 && !register_always)
1345 		srp_map_desc(state, state->base_dma_addr, state->dma_len,
1346 			     target->rkey);
1347 	else
1348 		ret = target->srp_host->srp_dev->use_fast_reg ?
1349 			srp_map_finish_fr(state, ch) :
1350 			srp_map_finish_fmr(state, ch);
1351 
1352 	if (ret == 0) {
1353 		state->npages = 0;
1354 		state->dma_len = 0;
1355 	}
1356 
1357 	return ret;
1358 }
1359 
1360 static void srp_map_update_start(struct srp_map_state *state,
1361 				 struct scatterlist *sg, int sg_index,
1362 				 dma_addr_t dma_addr)
1363 {
1364 	state->unmapped_sg = sg;
1365 	state->unmapped_index = sg_index;
1366 	state->unmapped_addr = dma_addr;
1367 }
1368 
1369 static int srp_map_sg_entry(struct srp_map_state *state,
1370 			    struct srp_rdma_ch *ch,
1371 			    struct scatterlist *sg, int sg_index,
1372 			    bool use_mr)
1373 {
1374 	struct srp_target_port *target = ch->target;
1375 	struct srp_device *dev = target->srp_host->srp_dev;
1376 	struct ib_device *ibdev = dev->dev;
1377 	dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1378 	unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1379 	unsigned int len;
1380 	int ret;
1381 
1382 	if (!dma_len)
1383 		return 0;
1384 
1385 	if (!use_mr) {
1386 		/*
1387 		 * Once we're in direct map mode for a request, we don't
1388 		 * go back to FMR or FR mode, so no need to update anything
1389 		 * other than the descriptor.
1390 		 */
1391 		srp_map_desc(state, dma_addr, dma_len, target->rkey);
1392 		return 0;
1393 	}
1394 
1395 	/*
1396 	 * Since not all RDMA HW drivers support non-zero page offsets for
1397 	 * FMR, if we start at an offset into a page, don't merge into the
1398 	 * current FMR mapping. Finish it out, and use the kernel's MR for
1399 	 * this sg entry.
1400 	 */
1401 	if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) ||
1402 	    dma_len > dev->mr_max_size) {
1403 		ret = srp_finish_mapping(state, ch);
1404 		if (ret)
1405 			return ret;
1406 
1407 		srp_map_desc(state, dma_addr, dma_len, target->rkey);
1408 		srp_map_update_start(state, NULL, 0, 0);
1409 		return 0;
1410 	}
1411 
1412 	/*
1413 	 * If this is the first sg that will be mapped via FMR or via FR, save
1414 	 * our position. We need to know the first unmapped entry, its index,
1415 	 * and the first unmapped address within that entry to be able to
1416 	 * restart mapping after an error.
1417 	 */
1418 	if (!state->unmapped_sg)
1419 		srp_map_update_start(state, sg, sg_index, dma_addr);
1420 
1421 	while (dma_len) {
1422 		unsigned offset = dma_addr & ~dev->mr_page_mask;
1423 		if (state->npages == dev->max_pages_per_mr || offset != 0) {
1424 			ret = srp_finish_mapping(state, ch);
1425 			if (ret)
1426 				return ret;
1427 
1428 			srp_map_update_start(state, sg, sg_index, dma_addr);
1429 		}
1430 
1431 		len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1432 
1433 		if (!state->npages)
1434 			state->base_dma_addr = dma_addr;
1435 		state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1436 		state->dma_len += len;
1437 		dma_addr += len;
1438 		dma_len -= len;
1439 	}
1440 
1441 	/*
1442 	 * If the last entry of the MR wasn't a full page, then we need to
1443 	 * close it out and start a new one -- we can only merge at page
1444 	 * boundries.
1445 	 */
1446 	ret = 0;
1447 	if (len != dev->mr_page_size) {
1448 		ret = srp_finish_mapping(state, ch);
1449 		if (!ret)
1450 			srp_map_update_start(state, NULL, 0, 0);
1451 	}
1452 	return ret;
1453 }
1454 
1455 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1456 		      struct srp_request *req, struct scatterlist *scat,
1457 		      int count)
1458 {
1459 	struct srp_target_port *target = ch->target;
1460 	struct srp_device *dev = target->srp_host->srp_dev;
1461 	struct ib_device *ibdev = dev->dev;
1462 	struct scatterlist *sg;
1463 	int i;
1464 	bool use_mr;
1465 
1466 	state->desc	= req->indirect_desc;
1467 	state->pages	= req->map_page;
1468 	if (dev->use_fast_reg) {
1469 		state->next_fr = req->fr_list;
1470 		use_mr = !!ch->fr_pool;
1471 	} else {
1472 		state->next_fmr = req->fmr_list;
1473 		use_mr = !!ch->fmr_pool;
1474 	}
1475 
1476 	for_each_sg(scat, sg, count, i) {
1477 		if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1478 			/*
1479 			 * Memory registration failed, so backtrack to the
1480 			 * first unmapped entry and continue on without using
1481 			 * memory registration.
1482 			 */
1483 			dma_addr_t dma_addr;
1484 			unsigned int dma_len;
1485 
1486 backtrack:
1487 			sg = state->unmapped_sg;
1488 			i = state->unmapped_index;
1489 
1490 			dma_addr = ib_sg_dma_address(ibdev, sg);
1491 			dma_len = ib_sg_dma_len(ibdev, sg);
1492 			dma_len -= (state->unmapped_addr - dma_addr);
1493 			dma_addr = state->unmapped_addr;
1494 			use_mr = false;
1495 			srp_map_desc(state, dma_addr, dma_len, target->rkey);
1496 		}
1497 	}
1498 
1499 	if (use_mr && srp_finish_mapping(state, ch))
1500 		goto backtrack;
1501 
1502 	req->nmdesc = state->nmdesc;
1503 
1504 	return 0;
1505 }
1506 
1507 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1508 			struct srp_request *req)
1509 {
1510 	struct srp_target_port *target = ch->target;
1511 	struct scatterlist *scat;
1512 	struct srp_cmd *cmd = req->cmd->buf;
1513 	int len, nents, count;
1514 	struct srp_device *dev;
1515 	struct ib_device *ibdev;
1516 	struct srp_map_state state;
1517 	struct srp_indirect_buf *indirect_hdr;
1518 	u32 table_len;
1519 	u8 fmt;
1520 
1521 	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1522 		return sizeof (struct srp_cmd);
1523 
1524 	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1525 	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1526 		shost_printk(KERN_WARNING, target->scsi_host,
1527 			     PFX "Unhandled data direction %d\n",
1528 			     scmnd->sc_data_direction);
1529 		return -EINVAL;
1530 	}
1531 
1532 	nents = scsi_sg_count(scmnd);
1533 	scat  = scsi_sglist(scmnd);
1534 
1535 	dev = target->srp_host->srp_dev;
1536 	ibdev = dev->dev;
1537 
1538 	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1539 	if (unlikely(count == 0))
1540 		return -EIO;
1541 
1542 	fmt = SRP_DATA_DESC_DIRECT;
1543 	len = sizeof (struct srp_cmd) +	sizeof (struct srp_direct_buf);
1544 
1545 	if (count == 1 && !register_always) {
1546 		/*
1547 		 * The midlayer only generated a single gather/scatter
1548 		 * entry, or DMA mapping coalesced everything to a
1549 		 * single entry.  So a direct descriptor along with
1550 		 * the DMA MR suffices.
1551 		 */
1552 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1553 
1554 		buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1555 		buf->key = cpu_to_be32(target->rkey);
1556 		buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1557 
1558 		req->nmdesc = 0;
1559 		goto map_complete;
1560 	}
1561 
1562 	/*
1563 	 * We have more than one scatter/gather entry, so build our indirect
1564 	 * descriptor table, trying to merge as many entries as we can.
1565 	 */
1566 	indirect_hdr = (void *) cmd->add_data;
1567 
1568 	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1569 				   target->indirect_size, DMA_TO_DEVICE);
1570 
1571 	memset(&state, 0, sizeof(state));
1572 	srp_map_sg(&state, ch, req, scat, count);
1573 
1574 	/* We've mapped the request, now pull as much of the indirect
1575 	 * descriptor table as we can into the command buffer. If this
1576 	 * target is not using an external indirect table, we are
1577 	 * guaranteed to fit into the command, as the SCSI layer won't
1578 	 * give us more S/G entries than we allow.
1579 	 */
1580 	if (state.ndesc == 1) {
1581 		/*
1582 		 * Memory registration collapsed the sg-list into one entry,
1583 		 * so use a direct descriptor.
1584 		 */
1585 		struct srp_direct_buf *buf = (void *) cmd->add_data;
1586 
1587 		*buf = req->indirect_desc[0];
1588 		goto map_complete;
1589 	}
1590 
1591 	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1592 						!target->allow_ext_sg)) {
1593 		shost_printk(KERN_ERR, target->scsi_host,
1594 			     "Could not fit S/G list into SRP_CMD\n");
1595 		return -EIO;
1596 	}
1597 
1598 	count = min(state.ndesc, target->cmd_sg_cnt);
1599 	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1600 
1601 	fmt = SRP_DATA_DESC_INDIRECT;
1602 	len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1603 	len += count * sizeof (struct srp_direct_buf);
1604 
1605 	memcpy(indirect_hdr->desc_list, req->indirect_desc,
1606 	       count * sizeof (struct srp_direct_buf));
1607 
1608 	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1609 	indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1610 	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1611 	indirect_hdr->len = cpu_to_be32(state.total_len);
1612 
1613 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1614 		cmd->data_out_desc_cnt = count;
1615 	else
1616 		cmd->data_in_desc_cnt = count;
1617 
1618 	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1619 				      DMA_TO_DEVICE);
1620 
1621 map_complete:
1622 	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1623 		cmd->buf_fmt = fmt << 4;
1624 	else
1625 		cmd->buf_fmt = fmt;
1626 
1627 	return len;
1628 }
1629 
1630 /*
1631  * Return an IU and possible credit to the free pool
1632  */
1633 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1634 			  enum srp_iu_type iu_type)
1635 {
1636 	unsigned long flags;
1637 
1638 	spin_lock_irqsave(&ch->lock, flags);
1639 	list_add(&iu->list, &ch->free_tx);
1640 	if (iu_type != SRP_IU_RSP)
1641 		++ch->req_lim;
1642 	spin_unlock_irqrestore(&ch->lock, flags);
1643 }
1644 
1645 /*
1646  * Must be called with ch->lock held to protect req_lim and free_tx.
1647  * If IU is not sent, it must be returned using srp_put_tx_iu().
1648  *
1649  * Note:
1650  * An upper limit for the number of allocated information units for each
1651  * request type is:
1652  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1653  *   more than Scsi_Host.can_queue requests.
1654  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1655  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1656  *   one unanswered SRP request to an initiator.
1657  */
1658 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1659 				      enum srp_iu_type iu_type)
1660 {
1661 	struct srp_target_port *target = ch->target;
1662 	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1663 	struct srp_iu *iu;
1664 
1665 	srp_send_completion(ch->send_cq, ch);
1666 
1667 	if (list_empty(&ch->free_tx))
1668 		return NULL;
1669 
1670 	/* Initiator responses to target requests do not consume credits */
1671 	if (iu_type != SRP_IU_RSP) {
1672 		if (ch->req_lim <= rsv) {
1673 			++target->zero_req_lim;
1674 			return NULL;
1675 		}
1676 
1677 		--ch->req_lim;
1678 	}
1679 
1680 	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1681 	list_del(&iu->list);
1682 	return iu;
1683 }
1684 
1685 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1686 {
1687 	struct srp_target_port *target = ch->target;
1688 	struct ib_sge list;
1689 	struct ib_send_wr wr, *bad_wr;
1690 
1691 	list.addr   = iu->dma;
1692 	list.length = len;
1693 	list.lkey   = target->lkey;
1694 
1695 	wr.next       = NULL;
1696 	wr.wr_id      = (uintptr_t) iu;
1697 	wr.sg_list    = &list;
1698 	wr.num_sge    = 1;
1699 	wr.opcode     = IB_WR_SEND;
1700 	wr.send_flags = IB_SEND_SIGNALED;
1701 
1702 	return ib_post_send(ch->qp, &wr, &bad_wr);
1703 }
1704 
1705 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1706 {
1707 	struct srp_target_port *target = ch->target;
1708 	struct ib_recv_wr wr, *bad_wr;
1709 	struct ib_sge list;
1710 
1711 	list.addr   = iu->dma;
1712 	list.length = iu->size;
1713 	list.lkey   = target->lkey;
1714 
1715 	wr.next     = NULL;
1716 	wr.wr_id    = (uintptr_t) iu;
1717 	wr.sg_list  = &list;
1718 	wr.num_sge  = 1;
1719 
1720 	return ib_post_recv(ch->qp, &wr, &bad_wr);
1721 }
1722 
1723 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1724 {
1725 	struct srp_target_port *target = ch->target;
1726 	struct srp_request *req;
1727 	struct scsi_cmnd *scmnd;
1728 	unsigned long flags;
1729 
1730 	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1731 		spin_lock_irqsave(&ch->lock, flags);
1732 		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1733 		spin_unlock_irqrestore(&ch->lock, flags);
1734 
1735 		ch->tsk_mgmt_status = -1;
1736 		if (be32_to_cpu(rsp->resp_data_len) >= 4)
1737 			ch->tsk_mgmt_status = rsp->data[3];
1738 		complete(&ch->tsk_mgmt_done);
1739 	} else {
1740 		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1741 		if (scmnd) {
1742 			req = (void *)scmnd->host_scribble;
1743 			scmnd = srp_claim_req(ch, req, NULL, scmnd);
1744 		}
1745 		if (!scmnd) {
1746 			shost_printk(KERN_ERR, target->scsi_host,
1747 				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1748 				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1749 
1750 			spin_lock_irqsave(&ch->lock, flags);
1751 			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1752 			spin_unlock_irqrestore(&ch->lock, flags);
1753 
1754 			return;
1755 		}
1756 		scmnd->result = rsp->status;
1757 
1758 		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1759 			memcpy(scmnd->sense_buffer, rsp->data +
1760 			       be32_to_cpu(rsp->resp_data_len),
1761 			       min_t(int, be32_to_cpu(rsp->sense_data_len),
1762 				     SCSI_SENSE_BUFFERSIZE));
1763 		}
1764 
1765 		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1766 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1767 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1768 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1769 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1770 			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1771 		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1772 			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1773 
1774 		srp_free_req(ch, req, scmnd,
1775 			     be32_to_cpu(rsp->req_lim_delta));
1776 
1777 		scmnd->host_scribble = NULL;
1778 		scmnd->scsi_done(scmnd);
1779 	}
1780 }
1781 
1782 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1783 			       void *rsp, int len)
1784 {
1785 	struct srp_target_port *target = ch->target;
1786 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1787 	unsigned long flags;
1788 	struct srp_iu *iu;
1789 	int err;
1790 
1791 	spin_lock_irqsave(&ch->lock, flags);
1792 	ch->req_lim += req_delta;
1793 	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1794 	spin_unlock_irqrestore(&ch->lock, flags);
1795 
1796 	if (!iu) {
1797 		shost_printk(KERN_ERR, target->scsi_host, PFX
1798 			     "no IU available to send response\n");
1799 		return 1;
1800 	}
1801 
1802 	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1803 	memcpy(iu->buf, rsp, len);
1804 	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1805 
1806 	err = srp_post_send(ch, iu, len);
1807 	if (err) {
1808 		shost_printk(KERN_ERR, target->scsi_host, PFX
1809 			     "unable to post response: %d\n", err);
1810 		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1811 	}
1812 
1813 	return err;
1814 }
1815 
1816 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1817 				 struct srp_cred_req *req)
1818 {
1819 	struct srp_cred_rsp rsp = {
1820 		.opcode = SRP_CRED_RSP,
1821 		.tag = req->tag,
1822 	};
1823 	s32 delta = be32_to_cpu(req->req_lim_delta);
1824 
1825 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1826 		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1827 			     "problems processing SRP_CRED_REQ\n");
1828 }
1829 
1830 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1831 				struct srp_aer_req *req)
1832 {
1833 	struct srp_target_port *target = ch->target;
1834 	struct srp_aer_rsp rsp = {
1835 		.opcode = SRP_AER_RSP,
1836 		.tag = req->tag,
1837 	};
1838 	s32 delta = be32_to_cpu(req->req_lim_delta);
1839 
1840 	shost_printk(KERN_ERR, target->scsi_host, PFX
1841 		     "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1842 
1843 	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1844 		shost_printk(KERN_ERR, target->scsi_host, PFX
1845 			     "problems processing SRP_AER_REQ\n");
1846 }
1847 
1848 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1849 {
1850 	struct srp_target_port *target = ch->target;
1851 	struct ib_device *dev = target->srp_host->srp_dev->dev;
1852 	struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1853 	int res;
1854 	u8 opcode;
1855 
1856 	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1857 				   DMA_FROM_DEVICE);
1858 
1859 	opcode = *(u8 *) iu->buf;
1860 
1861 	if (0) {
1862 		shost_printk(KERN_ERR, target->scsi_host,
1863 			     PFX "recv completion, opcode 0x%02x\n", opcode);
1864 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1865 			       iu->buf, wc->byte_len, true);
1866 	}
1867 
1868 	switch (opcode) {
1869 	case SRP_RSP:
1870 		srp_process_rsp(ch, iu->buf);
1871 		break;
1872 
1873 	case SRP_CRED_REQ:
1874 		srp_process_cred_req(ch, iu->buf);
1875 		break;
1876 
1877 	case SRP_AER_REQ:
1878 		srp_process_aer_req(ch, iu->buf);
1879 		break;
1880 
1881 	case SRP_T_LOGOUT:
1882 		/* XXX Handle target logout */
1883 		shost_printk(KERN_WARNING, target->scsi_host,
1884 			     PFX "Got target logout request\n");
1885 		break;
1886 
1887 	default:
1888 		shost_printk(KERN_WARNING, target->scsi_host,
1889 			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1890 		break;
1891 	}
1892 
1893 	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1894 				      DMA_FROM_DEVICE);
1895 
1896 	res = srp_post_recv(ch, iu);
1897 	if (res != 0)
1898 		shost_printk(KERN_ERR, target->scsi_host,
1899 			     PFX "Recv failed with error code %d\n", res);
1900 }
1901 
1902 /**
1903  * srp_tl_err_work() - handle a transport layer error
1904  * @work: Work structure embedded in an SRP target port.
1905  *
1906  * Note: This function may get invoked before the rport has been created,
1907  * hence the target->rport test.
1908  */
1909 static void srp_tl_err_work(struct work_struct *work)
1910 {
1911 	struct srp_target_port *target;
1912 
1913 	target = container_of(work, struct srp_target_port, tl_err_work);
1914 	if (target->rport)
1915 		srp_start_tl_fail_timers(target->rport);
1916 }
1917 
1918 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1919 			      bool send_err, struct srp_rdma_ch *ch)
1920 {
1921 	struct srp_target_port *target = ch->target;
1922 
1923 	if (wr_id == SRP_LAST_WR_ID) {
1924 		complete(&ch->done);
1925 		return;
1926 	}
1927 
1928 	if (ch->connected && !target->qp_in_error) {
1929 		if (wr_id & LOCAL_INV_WR_ID_MASK) {
1930 			shost_printk(KERN_ERR, target->scsi_host, PFX
1931 				     "LOCAL_INV failed with status %s (%d)\n",
1932 				     ib_wc_status_msg(wc_status), wc_status);
1933 		} else if (wr_id & FAST_REG_WR_ID_MASK) {
1934 			shost_printk(KERN_ERR, target->scsi_host, PFX
1935 				     "FAST_REG_MR failed status %s (%d)\n",
1936 				     ib_wc_status_msg(wc_status), wc_status);
1937 		} else {
1938 			shost_printk(KERN_ERR, target->scsi_host,
1939 				     PFX "failed %s status %s (%d) for iu %p\n",
1940 				     send_err ? "send" : "receive",
1941 				     ib_wc_status_msg(wc_status), wc_status,
1942 				     (void *)(uintptr_t)wr_id);
1943 		}
1944 		queue_work(system_long_wq, &target->tl_err_work);
1945 	}
1946 	target->qp_in_error = true;
1947 }
1948 
1949 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1950 {
1951 	struct srp_rdma_ch *ch = ch_ptr;
1952 	struct ib_wc wc;
1953 
1954 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1955 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1956 		if (likely(wc.status == IB_WC_SUCCESS)) {
1957 			srp_handle_recv(ch, &wc);
1958 		} else {
1959 			srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1960 		}
1961 	}
1962 }
1963 
1964 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1965 {
1966 	struct srp_rdma_ch *ch = ch_ptr;
1967 	struct ib_wc wc;
1968 	struct srp_iu *iu;
1969 
1970 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1971 		if (likely(wc.status == IB_WC_SUCCESS)) {
1972 			iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1973 			list_add(&iu->list, &ch->free_tx);
1974 		} else {
1975 			srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1976 		}
1977 	}
1978 }
1979 
1980 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1981 {
1982 	struct srp_target_port *target = host_to_target(shost);
1983 	struct srp_rport *rport = target->rport;
1984 	struct srp_rdma_ch *ch;
1985 	struct srp_request *req;
1986 	struct srp_iu *iu;
1987 	struct srp_cmd *cmd;
1988 	struct ib_device *dev;
1989 	unsigned long flags;
1990 	u32 tag;
1991 	u16 idx;
1992 	int len, ret;
1993 	const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1994 
1995 	/*
1996 	 * The SCSI EH thread is the only context from which srp_queuecommand()
1997 	 * can get invoked for blocked devices (SDEV_BLOCK /
1998 	 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1999 	 * locking the rport mutex if invoked from inside the SCSI EH.
2000 	 */
2001 	if (in_scsi_eh)
2002 		mutex_lock(&rport->mutex);
2003 
2004 	scmnd->result = srp_chkready(target->rport);
2005 	if (unlikely(scmnd->result))
2006 		goto err;
2007 
2008 	WARN_ON_ONCE(scmnd->request->tag < 0);
2009 	tag = blk_mq_unique_tag(scmnd->request);
2010 	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2011 	idx = blk_mq_unique_tag_to_tag(tag);
2012 	WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2013 		  dev_name(&shost->shost_gendev), tag, idx,
2014 		  target->req_ring_size);
2015 
2016 	spin_lock_irqsave(&ch->lock, flags);
2017 	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2018 	spin_unlock_irqrestore(&ch->lock, flags);
2019 
2020 	if (!iu)
2021 		goto err;
2022 
2023 	req = &ch->req_ring[idx];
2024 	dev = target->srp_host->srp_dev->dev;
2025 	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2026 				   DMA_TO_DEVICE);
2027 
2028 	scmnd->host_scribble = (void *) req;
2029 
2030 	cmd = iu->buf;
2031 	memset(cmd, 0, sizeof *cmd);
2032 
2033 	cmd->opcode = SRP_CMD;
2034 	int_to_scsilun(scmnd->device->lun, &cmd->lun);
2035 	cmd->tag    = tag;
2036 	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2037 
2038 	req->scmnd    = scmnd;
2039 	req->cmd      = iu;
2040 
2041 	len = srp_map_data(scmnd, ch, req);
2042 	if (len < 0) {
2043 		shost_printk(KERN_ERR, target->scsi_host,
2044 			     PFX "Failed to map data (%d)\n", len);
2045 		/*
2046 		 * If we ran out of memory descriptors (-ENOMEM) because an
2047 		 * application is queuing many requests with more than
2048 		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2049 		 * to reduce queue depth temporarily.
2050 		 */
2051 		scmnd->result = len == -ENOMEM ?
2052 			DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2053 		goto err_iu;
2054 	}
2055 
2056 	ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2057 				      DMA_TO_DEVICE);
2058 
2059 	if (srp_post_send(ch, iu, len)) {
2060 		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2061 		goto err_unmap;
2062 	}
2063 
2064 	ret = 0;
2065 
2066 unlock_rport:
2067 	if (in_scsi_eh)
2068 		mutex_unlock(&rport->mutex);
2069 
2070 	return ret;
2071 
2072 err_unmap:
2073 	srp_unmap_data(scmnd, ch, req);
2074 
2075 err_iu:
2076 	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2077 
2078 	/*
2079 	 * Avoid that the loops that iterate over the request ring can
2080 	 * encounter a dangling SCSI command pointer.
2081 	 */
2082 	req->scmnd = NULL;
2083 
2084 err:
2085 	if (scmnd->result) {
2086 		scmnd->scsi_done(scmnd);
2087 		ret = 0;
2088 	} else {
2089 		ret = SCSI_MLQUEUE_HOST_BUSY;
2090 	}
2091 
2092 	goto unlock_rport;
2093 }
2094 
2095 /*
2096  * Note: the resources allocated in this function are freed in
2097  * srp_free_ch_ib().
2098  */
2099 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2100 {
2101 	struct srp_target_port *target = ch->target;
2102 	int i;
2103 
2104 	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2105 			      GFP_KERNEL);
2106 	if (!ch->rx_ring)
2107 		goto err_no_ring;
2108 	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2109 			      GFP_KERNEL);
2110 	if (!ch->tx_ring)
2111 		goto err_no_ring;
2112 
2113 	for (i = 0; i < target->queue_size; ++i) {
2114 		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2115 					      ch->max_ti_iu_len,
2116 					      GFP_KERNEL, DMA_FROM_DEVICE);
2117 		if (!ch->rx_ring[i])
2118 			goto err;
2119 	}
2120 
2121 	for (i = 0; i < target->queue_size; ++i) {
2122 		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2123 					      target->max_iu_len,
2124 					      GFP_KERNEL, DMA_TO_DEVICE);
2125 		if (!ch->tx_ring[i])
2126 			goto err;
2127 
2128 		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2129 	}
2130 
2131 	return 0;
2132 
2133 err:
2134 	for (i = 0; i < target->queue_size; ++i) {
2135 		srp_free_iu(target->srp_host, ch->rx_ring[i]);
2136 		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2137 	}
2138 
2139 
2140 err_no_ring:
2141 	kfree(ch->tx_ring);
2142 	ch->tx_ring = NULL;
2143 	kfree(ch->rx_ring);
2144 	ch->rx_ring = NULL;
2145 
2146 	return -ENOMEM;
2147 }
2148 
2149 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2150 {
2151 	uint64_t T_tr_ns, max_compl_time_ms;
2152 	uint32_t rq_tmo_jiffies;
2153 
2154 	/*
2155 	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2156 	 * table 91), both the QP timeout and the retry count have to be set
2157 	 * for RC QP's during the RTR to RTS transition.
2158 	 */
2159 	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2160 		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2161 
2162 	/*
2163 	 * Set target->rq_tmo_jiffies to one second more than the largest time
2164 	 * it can take before an error completion is generated. See also
2165 	 * C9-140..142 in the IBTA spec for more information about how to
2166 	 * convert the QP Local ACK Timeout value to nanoseconds.
2167 	 */
2168 	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2169 	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2170 	do_div(max_compl_time_ms, NSEC_PER_MSEC);
2171 	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2172 
2173 	return rq_tmo_jiffies;
2174 }
2175 
2176 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2177 			       struct srp_login_rsp *lrsp,
2178 			       struct srp_rdma_ch *ch)
2179 {
2180 	struct srp_target_port *target = ch->target;
2181 	struct ib_qp_attr *qp_attr = NULL;
2182 	int attr_mask = 0;
2183 	int ret;
2184 	int i;
2185 
2186 	if (lrsp->opcode == SRP_LOGIN_RSP) {
2187 		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2188 		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2189 
2190 		/*
2191 		 * Reserve credits for task management so we don't
2192 		 * bounce requests back to the SCSI mid-layer.
2193 		 */
2194 		target->scsi_host->can_queue
2195 			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2196 			      target->scsi_host->can_queue);
2197 		target->scsi_host->cmd_per_lun
2198 			= min_t(int, target->scsi_host->can_queue,
2199 				target->scsi_host->cmd_per_lun);
2200 	} else {
2201 		shost_printk(KERN_WARNING, target->scsi_host,
2202 			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2203 		ret = -ECONNRESET;
2204 		goto error;
2205 	}
2206 
2207 	if (!ch->rx_ring) {
2208 		ret = srp_alloc_iu_bufs(ch);
2209 		if (ret)
2210 			goto error;
2211 	}
2212 
2213 	ret = -ENOMEM;
2214 	qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2215 	if (!qp_attr)
2216 		goto error;
2217 
2218 	qp_attr->qp_state = IB_QPS_RTR;
2219 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2220 	if (ret)
2221 		goto error_free;
2222 
2223 	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2224 	if (ret)
2225 		goto error_free;
2226 
2227 	for (i = 0; i < target->queue_size; i++) {
2228 		struct srp_iu *iu = ch->rx_ring[i];
2229 
2230 		ret = srp_post_recv(ch, iu);
2231 		if (ret)
2232 			goto error_free;
2233 	}
2234 
2235 	qp_attr->qp_state = IB_QPS_RTS;
2236 	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2237 	if (ret)
2238 		goto error_free;
2239 
2240 	target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2241 
2242 	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2243 	if (ret)
2244 		goto error_free;
2245 
2246 	ret = ib_send_cm_rtu(cm_id, NULL, 0);
2247 
2248 error_free:
2249 	kfree(qp_attr);
2250 
2251 error:
2252 	ch->status = ret;
2253 }
2254 
2255 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2256 			       struct ib_cm_event *event,
2257 			       struct srp_rdma_ch *ch)
2258 {
2259 	struct srp_target_port *target = ch->target;
2260 	struct Scsi_Host *shost = target->scsi_host;
2261 	struct ib_class_port_info *cpi;
2262 	int opcode;
2263 
2264 	switch (event->param.rej_rcvd.reason) {
2265 	case IB_CM_REJ_PORT_CM_REDIRECT:
2266 		cpi = event->param.rej_rcvd.ari;
2267 		ch->path.dlid = cpi->redirect_lid;
2268 		ch->path.pkey = cpi->redirect_pkey;
2269 		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2270 		memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2271 
2272 		ch->status = ch->path.dlid ?
2273 			SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2274 		break;
2275 
2276 	case IB_CM_REJ_PORT_REDIRECT:
2277 		if (srp_target_is_topspin(target)) {
2278 			/*
2279 			 * Topspin/Cisco SRP gateways incorrectly send
2280 			 * reject reason code 25 when they mean 24
2281 			 * (port redirect).
2282 			 */
2283 			memcpy(ch->path.dgid.raw,
2284 			       event->param.rej_rcvd.ari, 16);
2285 
2286 			shost_printk(KERN_DEBUG, shost,
2287 				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2288 				     be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2289 				     be64_to_cpu(ch->path.dgid.global.interface_id));
2290 
2291 			ch->status = SRP_PORT_REDIRECT;
2292 		} else {
2293 			shost_printk(KERN_WARNING, shost,
2294 				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2295 			ch->status = -ECONNRESET;
2296 		}
2297 		break;
2298 
2299 	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2300 		shost_printk(KERN_WARNING, shost,
2301 			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2302 		ch->status = -ECONNRESET;
2303 		break;
2304 
2305 	case IB_CM_REJ_CONSUMER_DEFINED:
2306 		opcode = *(u8 *) event->private_data;
2307 		if (opcode == SRP_LOGIN_REJ) {
2308 			struct srp_login_rej *rej = event->private_data;
2309 			u32 reason = be32_to_cpu(rej->reason);
2310 
2311 			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2312 				shost_printk(KERN_WARNING, shost,
2313 					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2314 			else
2315 				shost_printk(KERN_WARNING, shost, PFX
2316 					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2317 					     target->sgid.raw,
2318 					     target->orig_dgid.raw, reason);
2319 		} else
2320 			shost_printk(KERN_WARNING, shost,
2321 				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2322 				     " opcode 0x%02x\n", opcode);
2323 		ch->status = -ECONNRESET;
2324 		break;
2325 
2326 	case IB_CM_REJ_STALE_CONN:
2327 		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2328 		ch->status = SRP_STALE_CONN;
2329 		break;
2330 
2331 	default:
2332 		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2333 			     event->param.rej_rcvd.reason);
2334 		ch->status = -ECONNRESET;
2335 	}
2336 }
2337 
2338 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2339 {
2340 	struct srp_rdma_ch *ch = cm_id->context;
2341 	struct srp_target_port *target = ch->target;
2342 	int comp = 0;
2343 
2344 	switch (event->event) {
2345 	case IB_CM_REQ_ERROR:
2346 		shost_printk(KERN_DEBUG, target->scsi_host,
2347 			     PFX "Sending CM REQ failed\n");
2348 		comp = 1;
2349 		ch->status = -ECONNRESET;
2350 		break;
2351 
2352 	case IB_CM_REP_RECEIVED:
2353 		comp = 1;
2354 		srp_cm_rep_handler(cm_id, event->private_data, ch);
2355 		break;
2356 
2357 	case IB_CM_REJ_RECEIVED:
2358 		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2359 		comp = 1;
2360 
2361 		srp_cm_rej_handler(cm_id, event, ch);
2362 		break;
2363 
2364 	case IB_CM_DREQ_RECEIVED:
2365 		shost_printk(KERN_WARNING, target->scsi_host,
2366 			     PFX "DREQ received - connection closed\n");
2367 		ch->connected = false;
2368 		if (ib_send_cm_drep(cm_id, NULL, 0))
2369 			shost_printk(KERN_ERR, target->scsi_host,
2370 				     PFX "Sending CM DREP failed\n");
2371 		queue_work(system_long_wq, &target->tl_err_work);
2372 		break;
2373 
2374 	case IB_CM_TIMEWAIT_EXIT:
2375 		shost_printk(KERN_ERR, target->scsi_host,
2376 			     PFX "connection closed\n");
2377 		comp = 1;
2378 
2379 		ch->status = 0;
2380 		break;
2381 
2382 	case IB_CM_MRA_RECEIVED:
2383 	case IB_CM_DREQ_ERROR:
2384 	case IB_CM_DREP_RECEIVED:
2385 		break;
2386 
2387 	default:
2388 		shost_printk(KERN_WARNING, target->scsi_host,
2389 			     PFX "Unhandled CM event %d\n", event->event);
2390 		break;
2391 	}
2392 
2393 	if (comp)
2394 		complete(&ch->done);
2395 
2396 	return 0;
2397 }
2398 
2399 /**
2400  * srp_change_queue_depth - setting device queue depth
2401  * @sdev: scsi device struct
2402  * @qdepth: requested queue depth
2403  *
2404  * Returns queue depth.
2405  */
2406 static int
2407 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2408 {
2409 	if (!sdev->tagged_supported)
2410 		qdepth = 1;
2411 	return scsi_change_queue_depth(sdev, qdepth);
2412 }
2413 
2414 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2415 			     u8 func)
2416 {
2417 	struct srp_target_port *target = ch->target;
2418 	struct srp_rport *rport = target->rport;
2419 	struct ib_device *dev = target->srp_host->srp_dev->dev;
2420 	struct srp_iu *iu;
2421 	struct srp_tsk_mgmt *tsk_mgmt;
2422 
2423 	if (!ch->connected || target->qp_in_error)
2424 		return -1;
2425 
2426 	init_completion(&ch->tsk_mgmt_done);
2427 
2428 	/*
2429 	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2430 	 * invoked while a task management function is being sent.
2431 	 */
2432 	mutex_lock(&rport->mutex);
2433 	spin_lock_irq(&ch->lock);
2434 	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2435 	spin_unlock_irq(&ch->lock);
2436 
2437 	if (!iu) {
2438 		mutex_unlock(&rport->mutex);
2439 
2440 		return -1;
2441 	}
2442 
2443 	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2444 				   DMA_TO_DEVICE);
2445 	tsk_mgmt = iu->buf;
2446 	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2447 
2448 	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2449 	int_to_scsilun(lun, &tsk_mgmt->lun);
2450 	tsk_mgmt->tag		= req_tag | SRP_TAG_TSK_MGMT;
2451 	tsk_mgmt->tsk_mgmt_func = func;
2452 	tsk_mgmt->task_tag	= req_tag;
2453 
2454 	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2455 				      DMA_TO_DEVICE);
2456 	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2457 		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2458 		mutex_unlock(&rport->mutex);
2459 
2460 		return -1;
2461 	}
2462 	mutex_unlock(&rport->mutex);
2463 
2464 	if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2465 					 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2466 		return -1;
2467 
2468 	return 0;
2469 }
2470 
2471 static int srp_abort(struct scsi_cmnd *scmnd)
2472 {
2473 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2474 	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2475 	u32 tag;
2476 	u16 ch_idx;
2477 	struct srp_rdma_ch *ch;
2478 	int ret;
2479 
2480 	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2481 
2482 	if (!req)
2483 		return SUCCESS;
2484 	tag = blk_mq_unique_tag(scmnd->request);
2485 	ch_idx = blk_mq_unique_tag_to_hwq(tag);
2486 	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2487 		return SUCCESS;
2488 	ch = &target->ch[ch_idx];
2489 	if (!srp_claim_req(ch, req, NULL, scmnd))
2490 		return SUCCESS;
2491 	shost_printk(KERN_ERR, target->scsi_host,
2492 		     "Sending SRP abort for tag %#x\n", tag);
2493 	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2494 			      SRP_TSK_ABORT_TASK) == 0)
2495 		ret = SUCCESS;
2496 	else if (target->rport->state == SRP_RPORT_LOST)
2497 		ret = FAST_IO_FAIL;
2498 	else
2499 		ret = FAILED;
2500 	srp_free_req(ch, req, scmnd, 0);
2501 	scmnd->result = DID_ABORT << 16;
2502 	scmnd->scsi_done(scmnd);
2503 
2504 	return ret;
2505 }
2506 
2507 static int srp_reset_device(struct scsi_cmnd *scmnd)
2508 {
2509 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2510 	struct srp_rdma_ch *ch;
2511 	int i;
2512 
2513 	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2514 
2515 	ch = &target->ch[0];
2516 	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2517 			      SRP_TSK_LUN_RESET))
2518 		return FAILED;
2519 	if (ch->tsk_mgmt_status)
2520 		return FAILED;
2521 
2522 	for (i = 0; i < target->ch_count; i++) {
2523 		ch = &target->ch[i];
2524 		for (i = 0; i < target->req_ring_size; ++i) {
2525 			struct srp_request *req = &ch->req_ring[i];
2526 
2527 			srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2528 		}
2529 	}
2530 
2531 	return SUCCESS;
2532 }
2533 
2534 static int srp_reset_host(struct scsi_cmnd *scmnd)
2535 {
2536 	struct srp_target_port *target = host_to_target(scmnd->device->host);
2537 
2538 	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2539 
2540 	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2541 }
2542 
2543 static int srp_slave_configure(struct scsi_device *sdev)
2544 {
2545 	struct Scsi_Host *shost = sdev->host;
2546 	struct srp_target_port *target = host_to_target(shost);
2547 	struct request_queue *q = sdev->request_queue;
2548 	unsigned long timeout;
2549 
2550 	if (sdev->type == TYPE_DISK) {
2551 		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2552 		blk_queue_rq_timeout(q, timeout);
2553 	}
2554 
2555 	return 0;
2556 }
2557 
2558 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2559 			   char *buf)
2560 {
2561 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2562 
2563 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2564 }
2565 
2566 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2567 			     char *buf)
2568 {
2569 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2570 
2571 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2572 }
2573 
2574 static ssize_t show_service_id(struct device *dev,
2575 			       struct device_attribute *attr, char *buf)
2576 {
2577 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2578 
2579 	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2580 }
2581 
2582 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2583 			 char *buf)
2584 {
2585 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2586 
2587 	return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2588 }
2589 
2590 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2591 			 char *buf)
2592 {
2593 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2594 
2595 	return sprintf(buf, "%pI6\n", target->sgid.raw);
2596 }
2597 
2598 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2599 			 char *buf)
2600 {
2601 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2602 	struct srp_rdma_ch *ch = &target->ch[0];
2603 
2604 	return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2605 }
2606 
2607 static ssize_t show_orig_dgid(struct device *dev,
2608 			      struct device_attribute *attr, char *buf)
2609 {
2610 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2611 
2612 	return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2613 }
2614 
2615 static ssize_t show_req_lim(struct device *dev,
2616 			    struct device_attribute *attr, char *buf)
2617 {
2618 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2619 	struct srp_rdma_ch *ch;
2620 	int i, req_lim = INT_MAX;
2621 
2622 	for (i = 0; i < target->ch_count; i++) {
2623 		ch = &target->ch[i];
2624 		req_lim = min(req_lim, ch->req_lim);
2625 	}
2626 	return sprintf(buf, "%d\n", req_lim);
2627 }
2628 
2629 static ssize_t show_zero_req_lim(struct device *dev,
2630 				 struct device_attribute *attr, char *buf)
2631 {
2632 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2633 
2634 	return sprintf(buf, "%d\n", target->zero_req_lim);
2635 }
2636 
2637 static ssize_t show_local_ib_port(struct device *dev,
2638 				  struct device_attribute *attr, char *buf)
2639 {
2640 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2641 
2642 	return sprintf(buf, "%d\n", target->srp_host->port);
2643 }
2644 
2645 static ssize_t show_local_ib_device(struct device *dev,
2646 				    struct device_attribute *attr, char *buf)
2647 {
2648 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2649 
2650 	return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2651 }
2652 
2653 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2654 			     char *buf)
2655 {
2656 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2657 
2658 	return sprintf(buf, "%d\n", target->ch_count);
2659 }
2660 
2661 static ssize_t show_comp_vector(struct device *dev,
2662 				struct device_attribute *attr, char *buf)
2663 {
2664 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2665 
2666 	return sprintf(buf, "%d\n", target->comp_vector);
2667 }
2668 
2669 static ssize_t show_tl_retry_count(struct device *dev,
2670 				   struct device_attribute *attr, char *buf)
2671 {
2672 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2673 
2674 	return sprintf(buf, "%d\n", target->tl_retry_count);
2675 }
2676 
2677 static ssize_t show_cmd_sg_entries(struct device *dev,
2678 				   struct device_attribute *attr, char *buf)
2679 {
2680 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2681 
2682 	return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2683 }
2684 
2685 static ssize_t show_allow_ext_sg(struct device *dev,
2686 				 struct device_attribute *attr, char *buf)
2687 {
2688 	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2689 
2690 	return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2691 }
2692 
2693 static DEVICE_ATTR(id_ext,	    S_IRUGO, show_id_ext,	   NULL);
2694 static DEVICE_ATTR(ioc_guid,	    S_IRUGO, show_ioc_guid,	   NULL);
2695 static DEVICE_ATTR(service_id,	    S_IRUGO, show_service_id,	   NULL);
2696 static DEVICE_ATTR(pkey,	    S_IRUGO, show_pkey,		   NULL);
2697 static DEVICE_ATTR(sgid,	    S_IRUGO, show_sgid,		   NULL);
2698 static DEVICE_ATTR(dgid,	    S_IRUGO, show_dgid,		   NULL);
2699 static DEVICE_ATTR(orig_dgid,	    S_IRUGO, show_orig_dgid,	   NULL);
2700 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2701 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,	   NULL);
2702 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2703 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2704 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2705 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2706 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2707 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2708 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2709 
2710 static struct device_attribute *srp_host_attrs[] = {
2711 	&dev_attr_id_ext,
2712 	&dev_attr_ioc_guid,
2713 	&dev_attr_service_id,
2714 	&dev_attr_pkey,
2715 	&dev_attr_sgid,
2716 	&dev_attr_dgid,
2717 	&dev_attr_orig_dgid,
2718 	&dev_attr_req_lim,
2719 	&dev_attr_zero_req_lim,
2720 	&dev_attr_local_ib_port,
2721 	&dev_attr_local_ib_device,
2722 	&dev_attr_ch_count,
2723 	&dev_attr_comp_vector,
2724 	&dev_attr_tl_retry_count,
2725 	&dev_attr_cmd_sg_entries,
2726 	&dev_attr_allow_ext_sg,
2727 	NULL
2728 };
2729 
2730 static struct scsi_host_template srp_template = {
2731 	.module				= THIS_MODULE,
2732 	.name				= "InfiniBand SRP initiator",
2733 	.proc_name			= DRV_NAME,
2734 	.slave_configure		= srp_slave_configure,
2735 	.info				= srp_target_info,
2736 	.queuecommand			= srp_queuecommand,
2737 	.change_queue_depth             = srp_change_queue_depth,
2738 	.eh_abort_handler		= srp_abort,
2739 	.eh_device_reset_handler	= srp_reset_device,
2740 	.eh_host_reset_handler		= srp_reset_host,
2741 	.skip_settle_delay		= true,
2742 	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
2743 	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
2744 	.this_id			= -1,
2745 	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
2746 	.use_clustering			= ENABLE_CLUSTERING,
2747 	.shost_attrs			= srp_host_attrs,
2748 	.use_blk_tags			= 1,
2749 	.track_queue_depth		= 1,
2750 };
2751 
2752 static int srp_sdev_count(struct Scsi_Host *host)
2753 {
2754 	struct scsi_device *sdev;
2755 	int c = 0;
2756 
2757 	shost_for_each_device(sdev, host)
2758 		c++;
2759 
2760 	return c;
2761 }
2762 
2763 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2764 {
2765 	struct srp_rport_identifiers ids;
2766 	struct srp_rport *rport;
2767 
2768 	target->state = SRP_TARGET_SCANNING;
2769 	sprintf(target->target_name, "SRP.T10:%016llX",
2770 		be64_to_cpu(target->id_ext));
2771 
2772 	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2773 		return -ENODEV;
2774 
2775 	memcpy(ids.port_id, &target->id_ext, 8);
2776 	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2777 	ids.roles = SRP_RPORT_ROLE_TARGET;
2778 	rport = srp_rport_add(target->scsi_host, &ids);
2779 	if (IS_ERR(rport)) {
2780 		scsi_remove_host(target->scsi_host);
2781 		return PTR_ERR(rport);
2782 	}
2783 
2784 	rport->lld_data = target;
2785 	target->rport = rport;
2786 
2787 	spin_lock(&host->target_lock);
2788 	list_add_tail(&target->list, &host->target_list);
2789 	spin_unlock(&host->target_lock);
2790 
2791 	scsi_scan_target(&target->scsi_host->shost_gendev,
2792 			 0, target->scsi_id, SCAN_WILD_CARD, 0);
2793 
2794 	if (srp_connected_ch(target) < target->ch_count ||
2795 	    target->qp_in_error) {
2796 		shost_printk(KERN_INFO, target->scsi_host,
2797 			     PFX "SCSI scan failed - removing SCSI host\n");
2798 		srp_queue_remove_work(target);
2799 		goto out;
2800 	}
2801 
2802 	pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2803 		 dev_name(&target->scsi_host->shost_gendev),
2804 		 srp_sdev_count(target->scsi_host));
2805 
2806 	spin_lock_irq(&target->lock);
2807 	if (target->state == SRP_TARGET_SCANNING)
2808 		target->state = SRP_TARGET_LIVE;
2809 	spin_unlock_irq(&target->lock);
2810 
2811 out:
2812 	return 0;
2813 }
2814 
2815 static void srp_release_dev(struct device *dev)
2816 {
2817 	struct srp_host *host =
2818 		container_of(dev, struct srp_host, dev);
2819 
2820 	complete(&host->released);
2821 }
2822 
2823 static struct class srp_class = {
2824 	.name    = "infiniband_srp",
2825 	.dev_release = srp_release_dev
2826 };
2827 
2828 /**
2829  * srp_conn_unique() - check whether the connection to a target is unique
2830  * @host:   SRP host.
2831  * @target: SRP target port.
2832  */
2833 static bool srp_conn_unique(struct srp_host *host,
2834 			    struct srp_target_port *target)
2835 {
2836 	struct srp_target_port *t;
2837 	bool ret = false;
2838 
2839 	if (target->state == SRP_TARGET_REMOVED)
2840 		goto out;
2841 
2842 	ret = true;
2843 
2844 	spin_lock(&host->target_lock);
2845 	list_for_each_entry(t, &host->target_list, list) {
2846 		if (t != target &&
2847 		    target->id_ext == t->id_ext &&
2848 		    target->ioc_guid == t->ioc_guid &&
2849 		    target->initiator_ext == t->initiator_ext) {
2850 			ret = false;
2851 			break;
2852 		}
2853 	}
2854 	spin_unlock(&host->target_lock);
2855 
2856 out:
2857 	return ret;
2858 }
2859 
2860 /*
2861  * Target ports are added by writing
2862  *
2863  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2864  *     pkey=<P_Key>,service_id=<service ID>
2865  *
2866  * to the add_target sysfs attribute.
2867  */
2868 enum {
2869 	SRP_OPT_ERR		= 0,
2870 	SRP_OPT_ID_EXT		= 1 << 0,
2871 	SRP_OPT_IOC_GUID	= 1 << 1,
2872 	SRP_OPT_DGID		= 1 << 2,
2873 	SRP_OPT_PKEY		= 1 << 3,
2874 	SRP_OPT_SERVICE_ID	= 1 << 4,
2875 	SRP_OPT_MAX_SECT	= 1 << 5,
2876 	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
2877 	SRP_OPT_IO_CLASS	= 1 << 7,
2878 	SRP_OPT_INITIATOR_EXT	= 1 << 8,
2879 	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
2880 	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
2881 	SRP_OPT_SG_TABLESIZE	= 1 << 11,
2882 	SRP_OPT_COMP_VECTOR	= 1 << 12,
2883 	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
2884 	SRP_OPT_QUEUE_SIZE	= 1 << 14,
2885 	SRP_OPT_ALL		= (SRP_OPT_ID_EXT	|
2886 				   SRP_OPT_IOC_GUID	|
2887 				   SRP_OPT_DGID		|
2888 				   SRP_OPT_PKEY		|
2889 				   SRP_OPT_SERVICE_ID),
2890 };
2891 
2892 static const match_table_t srp_opt_tokens = {
2893 	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
2894 	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
2895 	{ SRP_OPT_DGID,			"dgid=%s" 		},
2896 	{ SRP_OPT_PKEY,			"pkey=%x" 		},
2897 	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
2898 	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
2899 	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
2900 	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
2901 	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
2902 	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
2903 	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
2904 	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
2905 	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
2906 	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
2907 	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
2908 	{ SRP_OPT_ERR,			NULL 			}
2909 };
2910 
2911 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2912 {
2913 	char *options, *sep_opt;
2914 	char *p;
2915 	char dgid[3];
2916 	substring_t args[MAX_OPT_ARGS];
2917 	int opt_mask = 0;
2918 	int token;
2919 	int ret = -EINVAL;
2920 	int i;
2921 
2922 	options = kstrdup(buf, GFP_KERNEL);
2923 	if (!options)
2924 		return -ENOMEM;
2925 
2926 	sep_opt = options;
2927 	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2928 		if (!*p)
2929 			continue;
2930 
2931 		token = match_token(p, srp_opt_tokens, args);
2932 		opt_mask |= token;
2933 
2934 		switch (token) {
2935 		case SRP_OPT_ID_EXT:
2936 			p = match_strdup(args);
2937 			if (!p) {
2938 				ret = -ENOMEM;
2939 				goto out;
2940 			}
2941 			target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2942 			kfree(p);
2943 			break;
2944 
2945 		case SRP_OPT_IOC_GUID:
2946 			p = match_strdup(args);
2947 			if (!p) {
2948 				ret = -ENOMEM;
2949 				goto out;
2950 			}
2951 			target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2952 			kfree(p);
2953 			break;
2954 
2955 		case SRP_OPT_DGID:
2956 			p = match_strdup(args);
2957 			if (!p) {
2958 				ret = -ENOMEM;
2959 				goto out;
2960 			}
2961 			if (strlen(p) != 32) {
2962 				pr_warn("bad dest GID parameter '%s'\n", p);
2963 				kfree(p);
2964 				goto out;
2965 			}
2966 
2967 			for (i = 0; i < 16; ++i) {
2968 				strlcpy(dgid, p + i * 2, sizeof(dgid));
2969 				if (sscanf(dgid, "%hhx",
2970 					   &target->orig_dgid.raw[i]) < 1) {
2971 					ret = -EINVAL;
2972 					kfree(p);
2973 					goto out;
2974 				}
2975 			}
2976 			kfree(p);
2977 			break;
2978 
2979 		case SRP_OPT_PKEY:
2980 			if (match_hex(args, &token)) {
2981 				pr_warn("bad P_Key parameter '%s'\n", p);
2982 				goto out;
2983 			}
2984 			target->pkey = cpu_to_be16(token);
2985 			break;
2986 
2987 		case SRP_OPT_SERVICE_ID:
2988 			p = match_strdup(args);
2989 			if (!p) {
2990 				ret = -ENOMEM;
2991 				goto out;
2992 			}
2993 			target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2994 			kfree(p);
2995 			break;
2996 
2997 		case SRP_OPT_MAX_SECT:
2998 			if (match_int(args, &token)) {
2999 				pr_warn("bad max sect parameter '%s'\n", p);
3000 				goto out;
3001 			}
3002 			target->scsi_host->max_sectors = token;
3003 			break;
3004 
3005 		case SRP_OPT_QUEUE_SIZE:
3006 			if (match_int(args, &token) || token < 1) {
3007 				pr_warn("bad queue_size parameter '%s'\n", p);
3008 				goto out;
3009 			}
3010 			target->scsi_host->can_queue = token;
3011 			target->queue_size = token + SRP_RSP_SQ_SIZE +
3012 					     SRP_TSK_MGMT_SQ_SIZE;
3013 			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3014 				target->scsi_host->cmd_per_lun = token;
3015 			break;
3016 
3017 		case SRP_OPT_MAX_CMD_PER_LUN:
3018 			if (match_int(args, &token) || token < 1) {
3019 				pr_warn("bad max cmd_per_lun parameter '%s'\n",
3020 					p);
3021 				goto out;
3022 			}
3023 			target->scsi_host->cmd_per_lun = token;
3024 			break;
3025 
3026 		case SRP_OPT_IO_CLASS:
3027 			if (match_hex(args, &token)) {
3028 				pr_warn("bad IO class parameter '%s'\n", p);
3029 				goto out;
3030 			}
3031 			if (token != SRP_REV10_IB_IO_CLASS &&
3032 			    token != SRP_REV16A_IB_IO_CLASS) {
3033 				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3034 					token, SRP_REV10_IB_IO_CLASS,
3035 					SRP_REV16A_IB_IO_CLASS);
3036 				goto out;
3037 			}
3038 			target->io_class = token;
3039 			break;
3040 
3041 		case SRP_OPT_INITIATOR_EXT:
3042 			p = match_strdup(args);
3043 			if (!p) {
3044 				ret = -ENOMEM;
3045 				goto out;
3046 			}
3047 			target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3048 			kfree(p);
3049 			break;
3050 
3051 		case SRP_OPT_CMD_SG_ENTRIES:
3052 			if (match_int(args, &token) || token < 1 || token > 255) {
3053 				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3054 					p);
3055 				goto out;
3056 			}
3057 			target->cmd_sg_cnt = token;
3058 			break;
3059 
3060 		case SRP_OPT_ALLOW_EXT_SG:
3061 			if (match_int(args, &token)) {
3062 				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3063 				goto out;
3064 			}
3065 			target->allow_ext_sg = !!token;
3066 			break;
3067 
3068 		case SRP_OPT_SG_TABLESIZE:
3069 			if (match_int(args, &token) || token < 1 ||
3070 					token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3071 				pr_warn("bad max sg_tablesize parameter '%s'\n",
3072 					p);
3073 				goto out;
3074 			}
3075 			target->sg_tablesize = token;
3076 			break;
3077 
3078 		case SRP_OPT_COMP_VECTOR:
3079 			if (match_int(args, &token) || token < 0) {
3080 				pr_warn("bad comp_vector parameter '%s'\n", p);
3081 				goto out;
3082 			}
3083 			target->comp_vector = token;
3084 			break;
3085 
3086 		case SRP_OPT_TL_RETRY_COUNT:
3087 			if (match_int(args, &token) || token < 2 || token > 7) {
3088 				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3089 					p);
3090 				goto out;
3091 			}
3092 			target->tl_retry_count = token;
3093 			break;
3094 
3095 		default:
3096 			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3097 				p);
3098 			goto out;
3099 		}
3100 	}
3101 
3102 	if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3103 		ret = 0;
3104 	else
3105 		for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3106 			if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3107 			    !(srp_opt_tokens[i].token & opt_mask))
3108 				pr_warn("target creation request is missing parameter '%s'\n",
3109 					srp_opt_tokens[i].pattern);
3110 
3111 	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3112 	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3113 		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3114 			target->scsi_host->cmd_per_lun,
3115 			target->scsi_host->can_queue);
3116 
3117 out:
3118 	kfree(options);
3119 	return ret;
3120 }
3121 
3122 static ssize_t srp_create_target(struct device *dev,
3123 				 struct device_attribute *attr,
3124 				 const char *buf, size_t count)
3125 {
3126 	struct srp_host *host =
3127 		container_of(dev, struct srp_host, dev);
3128 	struct Scsi_Host *target_host;
3129 	struct srp_target_port *target;
3130 	struct srp_rdma_ch *ch;
3131 	struct srp_device *srp_dev = host->srp_dev;
3132 	struct ib_device *ibdev = srp_dev->dev;
3133 	int ret, node_idx, node, cpu, i;
3134 	bool multich = false;
3135 
3136 	target_host = scsi_host_alloc(&srp_template,
3137 				      sizeof (struct srp_target_port));
3138 	if (!target_host)
3139 		return -ENOMEM;
3140 
3141 	target_host->transportt  = ib_srp_transport_template;
3142 	target_host->max_channel = 0;
3143 	target_host->max_id      = 1;
3144 	target_host->max_lun     = -1LL;
3145 	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3146 
3147 	target = host_to_target(target_host);
3148 
3149 	target->io_class	= SRP_REV16A_IB_IO_CLASS;
3150 	target->scsi_host	= target_host;
3151 	target->srp_host	= host;
3152 	target->lkey		= host->srp_dev->mr->lkey;
3153 	target->rkey		= host->srp_dev->mr->rkey;
3154 	target->cmd_sg_cnt	= cmd_sg_entries;
3155 	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
3156 	target->allow_ext_sg	= allow_ext_sg;
3157 	target->tl_retry_count	= 7;
3158 	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3159 
3160 	/*
3161 	 * Avoid that the SCSI host can be removed by srp_remove_target()
3162 	 * before this function returns.
3163 	 */
3164 	scsi_host_get(target->scsi_host);
3165 
3166 	mutex_lock(&host->add_target_mutex);
3167 
3168 	ret = srp_parse_options(buf, target);
3169 	if (ret)
3170 		goto out;
3171 
3172 	ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3173 	if (ret)
3174 		goto out;
3175 
3176 	target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3177 
3178 	if (!srp_conn_unique(target->srp_host, target)) {
3179 		shost_printk(KERN_INFO, target->scsi_host,
3180 			     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3181 			     be64_to_cpu(target->id_ext),
3182 			     be64_to_cpu(target->ioc_guid),
3183 			     be64_to_cpu(target->initiator_ext));
3184 		ret = -EEXIST;
3185 		goto out;
3186 	}
3187 
3188 	if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3189 	    target->cmd_sg_cnt < target->sg_tablesize) {
3190 		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3191 		target->sg_tablesize = target->cmd_sg_cnt;
3192 	}
3193 
3194 	target_host->sg_tablesize = target->sg_tablesize;
3195 	target->indirect_size = target->sg_tablesize *
3196 				sizeof (struct srp_direct_buf);
3197 	target->max_iu_len = sizeof (struct srp_cmd) +
3198 			     sizeof (struct srp_indirect_buf) +
3199 			     target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3200 
3201 	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3202 	INIT_WORK(&target->remove_work, srp_remove_work);
3203 	spin_lock_init(&target->lock);
3204 	ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3205 	if (ret)
3206 		goto out;
3207 
3208 	ret = -ENOMEM;
3209 	target->ch_count = max_t(unsigned, num_online_nodes(),
3210 				 min(ch_count ? :
3211 				     min(4 * num_online_nodes(),
3212 					 ibdev->num_comp_vectors),
3213 				     num_online_cpus()));
3214 	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3215 			     GFP_KERNEL);
3216 	if (!target->ch)
3217 		goto out;
3218 
3219 	node_idx = 0;
3220 	for_each_online_node(node) {
3221 		const int ch_start = (node_idx * target->ch_count /
3222 				      num_online_nodes());
3223 		const int ch_end = ((node_idx + 1) * target->ch_count /
3224 				    num_online_nodes());
3225 		const int cv_start = (node_idx * ibdev->num_comp_vectors /
3226 				      num_online_nodes() + target->comp_vector)
3227 				     % ibdev->num_comp_vectors;
3228 		const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3229 				    num_online_nodes() + target->comp_vector)
3230 				   % ibdev->num_comp_vectors;
3231 		int cpu_idx = 0;
3232 
3233 		for_each_online_cpu(cpu) {
3234 			if (cpu_to_node(cpu) != node)
3235 				continue;
3236 			if (ch_start + cpu_idx >= ch_end)
3237 				continue;
3238 			ch = &target->ch[ch_start + cpu_idx];
3239 			ch->target = target;
3240 			ch->comp_vector = cv_start == cv_end ? cv_start :
3241 				cv_start + cpu_idx % (cv_end - cv_start);
3242 			spin_lock_init(&ch->lock);
3243 			INIT_LIST_HEAD(&ch->free_tx);
3244 			ret = srp_new_cm_id(ch);
3245 			if (ret)
3246 				goto err_disconnect;
3247 
3248 			ret = srp_create_ch_ib(ch);
3249 			if (ret)
3250 				goto err_disconnect;
3251 
3252 			ret = srp_alloc_req_data(ch);
3253 			if (ret)
3254 				goto err_disconnect;
3255 
3256 			ret = srp_connect_ch(ch, multich);
3257 			if (ret) {
3258 				shost_printk(KERN_ERR, target->scsi_host,
3259 					     PFX "Connection %d/%d failed\n",
3260 					     ch_start + cpu_idx,
3261 					     target->ch_count);
3262 				if (node_idx == 0 && cpu_idx == 0) {
3263 					goto err_disconnect;
3264 				} else {
3265 					srp_free_ch_ib(target, ch);
3266 					srp_free_req_data(target, ch);
3267 					target->ch_count = ch - target->ch;
3268 					break;
3269 				}
3270 			}
3271 
3272 			multich = true;
3273 			cpu_idx++;
3274 		}
3275 		node_idx++;
3276 	}
3277 
3278 	target->scsi_host->nr_hw_queues = target->ch_count;
3279 
3280 	ret = srp_add_target(host, target);
3281 	if (ret)
3282 		goto err_disconnect;
3283 
3284 	if (target->state != SRP_TARGET_REMOVED) {
3285 		shost_printk(KERN_DEBUG, target->scsi_host, PFX
3286 			     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3287 			     be64_to_cpu(target->id_ext),
3288 			     be64_to_cpu(target->ioc_guid),
3289 			     be16_to_cpu(target->pkey),
3290 			     be64_to_cpu(target->service_id),
3291 			     target->sgid.raw, target->orig_dgid.raw);
3292 	}
3293 
3294 	ret = count;
3295 
3296 out:
3297 	mutex_unlock(&host->add_target_mutex);
3298 
3299 	scsi_host_put(target->scsi_host);
3300 
3301 	return ret;
3302 
3303 err_disconnect:
3304 	srp_disconnect_target(target);
3305 
3306 	for (i = 0; i < target->ch_count; i++) {
3307 		ch = &target->ch[i];
3308 		srp_free_ch_ib(target, ch);
3309 		srp_free_req_data(target, ch);
3310 	}
3311 
3312 	kfree(target->ch);
3313 	goto out;
3314 }
3315 
3316 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3317 
3318 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3319 			  char *buf)
3320 {
3321 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3322 
3323 	return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3324 }
3325 
3326 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3327 
3328 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3329 			 char *buf)
3330 {
3331 	struct srp_host *host = container_of(dev, struct srp_host, dev);
3332 
3333 	return sprintf(buf, "%d\n", host->port);
3334 }
3335 
3336 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3337 
3338 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3339 {
3340 	struct srp_host *host;
3341 
3342 	host = kzalloc(sizeof *host, GFP_KERNEL);
3343 	if (!host)
3344 		return NULL;
3345 
3346 	INIT_LIST_HEAD(&host->target_list);
3347 	spin_lock_init(&host->target_lock);
3348 	init_completion(&host->released);
3349 	mutex_init(&host->add_target_mutex);
3350 	host->srp_dev = device;
3351 	host->port = port;
3352 
3353 	host->dev.class = &srp_class;
3354 	host->dev.parent = device->dev->dma_device;
3355 	dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3356 
3357 	if (device_register(&host->dev))
3358 		goto free_host;
3359 	if (device_create_file(&host->dev, &dev_attr_add_target))
3360 		goto err_class;
3361 	if (device_create_file(&host->dev, &dev_attr_ibdev))
3362 		goto err_class;
3363 	if (device_create_file(&host->dev, &dev_attr_port))
3364 		goto err_class;
3365 
3366 	return host;
3367 
3368 err_class:
3369 	device_unregister(&host->dev);
3370 
3371 free_host:
3372 	kfree(host);
3373 
3374 	return NULL;
3375 }
3376 
3377 static void srp_add_one(struct ib_device *device)
3378 {
3379 	struct srp_device *srp_dev;
3380 	struct ib_device_attr *dev_attr;
3381 	struct srp_host *host;
3382 	int mr_page_shift, s, e, p;
3383 	u64 max_pages_per_mr;
3384 
3385 	dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3386 	if (!dev_attr)
3387 		return;
3388 
3389 	if (ib_query_device(device, dev_attr)) {
3390 		pr_warn("Query device failed for %s\n", device->name);
3391 		goto free_attr;
3392 	}
3393 
3394 	srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3395 	if (!srp_dev)
3396 		goto free_attr;
3397 
3398 	srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3399 			    device->map_phys_fmr && device->unmap_fmr);
3400 	srp_dev->has_fr = (dev_attr->device_cap_flags &
3401 			   IB_DEVICE_MEM_MGT_EXTENSIONS);
3402 	if (!srp_dev->has_fmr && !srp_dev->has_fr)
3403 		dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3404 
3405 	srp_dev->use_fast_reg = (srp_dev->has_fr &&
3406 				 (!srp_dev->has_fmr || prefer_fr));
3407 
3408 	/*
3409 	 * Use the smallest page size supported by the HCA, down to a
3410 	 * minimum of 4096 bytes. We're unlikely to build large sglists
3411 	 * out of smaller entries.
3412 	 */
3413 	mr_page_shift		= max(12, ffs(dev_attr->page_size_cap) - 1);
3414 	srp_dev->mr_page_size	= 1 << mr_page_shift;
3415 	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
3416 	max_pages_per_mr	= dev_attr->max_mr_size;
3417 	do_div(max_pages_per_mr, srp_dev->mr_page_size);
3418 	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3419 					  max_pages_per_mr);
3420 	if (srp_dev->use_fast_reg) {
3421 		srp_dev->max_pages_per_mr =
3422 			min_t(u32, srp_dev->max_pages_per_mr,
3423 			      dev_attr->max_fast_reg_page_list_len);
3424 	}
3425 	srp_dev->mr_max_size	= srp_dev->mr_page_size *
3426 				   srp_dev->max_pages_per_mr;
3427 	pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3428 		 device->name, mr_page_shift, dev_attr->max_mr_size,
3429 		 dev_attr->max_fast_reg_page_list_len,
3430 		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3431 
3432 	INIT_LIST_HEAD(&srp_dev->dev_list);
3433 
3434 	srp_dev->dev = device;
3435 	srp_dev->pd  = ib_alloc_pd(device);
3436 	if (IS_ERR(srp_dev->pd))
3437 		goto free_dev;
3438 
3439 	srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3440 				    IB_ACCESS_LOCAL_WRITE |
3441 				    IB_ACCESS_REMOTE_READ |
3442 				    IB_ACCESS_REMOTE_WRITE);
3443 	if (IS_ERR(srp_dev->mr))
3444 		goto err_pd;
3445 
3446 	if (device->node_type == RDMA_NODE_IB_SWITCH) {
3447 		s = 0;
3448 		e = 0;
3449 	} else {
3450 		s = 1;
3451 		e = device->phys_port_cnt;
3452 	}
3453 
3454 	for (p = s; p <= e; ++p) {
3455 		host = srp_add_port(srp_dev, p);
3456 		if (host)
3457 			list_add_tail(&host->list, &srp_dev->dev_list);
3458 	}
3459 
3460 	ib_set_client_data(device, &srp_client, srp_dev);
3461 
3462 	goto free_attr;
3463 
3464 err_pd:
3465 	ib_dealloc_pd(srp_dev->pd);
3466 
3467 free_dev:
3468 	kfree(srp_dev);
3469 
3470 free_attr:
3471 	kfree(dev_attr);
3472 }
3473 
3474 static void srp_remove_one(struct ib_device *device)
3475 {
3476 	struct srp_device *srp_dev;
3477 	struct srp_host *host, *tmp_host;
3478 	struct srp_target_port *target;
3479 
3480 	srp_dev = ib_get_client_data(device, &srp_client);
3481 	if (!srp_dev)
3482 		return;
3483 
3484 	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3485 		device_unregister(&host->dev);
3486 		/*
3487 		 * Wait for the sysfs entry to go away, so that no new
3488 		 * target ports can be created.
3489 		 */
3490 		wait_for_completion(&host->released);
3491 
3492 		/*
3493 		 * Remove all target ports.
3494 		 */
3495 		spin_lock(&host->target_lock);
3496 		list_for_each_entry(target, &host->target_list, list)
3497 			srp_queue_remove_work(target);
3498 		spin_unlock(&host->target_lock);
3499 
3500 		/*
3501 		 * Wait for tl_err and target port removal tasks.
3502 		 */
3503 		flush_workqueue(system_long_wq);
3504 		flush_workqueue(srp_remove_wq);
3505 
3506 		kfree(host);
3507 	}
3508 
3509 	ib_dereg_mr(srp_dev->mr);
3510 	ib_dealloc_pd(srp_dev->pd);
3511 
3512 	kfree(srp_dev);
3513 }
3514 
3515 static struct srp_function_template ib_srp_transport_functions = {
3516 	.has_rport_state	 = true,
3517 	.reset_timer_if_blocked	 = true,
3518 	.reconnect_delay	 = &srp_reconnect_delay,
3519 	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
3520 	.dev_loss_tmo		 = &srp_dev_loss_tmo,
3521 	.reconnect		 = srp_rport_reconnect,
3522 	.rport_delete		 = srp_rport_delete,
3523 	.terminate_rport_io	 = srp_terminate_io,
3524 };
3525 
3526 static int __init srp_init_module(void)
3527 {
3528 	int ret;
3529 
3530 	BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3531 
3532 	if (srp_sg_tablesize) {
3533 		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3534 		if (!cmd_sg_entries)
3535 			cmd_sg_entries = srp_sg_tablesize;
3536 	}
3537 
3538 	if (!cmd_sg_entries)
3539 		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3540 
3541 	if (cmd_sg_entries > 255) {
3542 		pr_warn("Clamping cmd_sg_entries to 255\n");
3543 		cmd_sg_entries = 255;
3544 	}
3545 
3546 	if (!indirect_sg_entries)
3547 		indirect_sg_entries = cmd_sg_entries;
3548 	else if (indirect_sg_entries < cmd_sg_entries) {
3549 		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3550 			cmd_sg_entries);
3551 		indirect_sg_entries = cmd_sg_entries;
3552 	}
3553 
3554 	srp_remove_wq = create_workqueue("srp_remove");
3555 	if (!srp_remove_wq) {
3556 		ret = -ENOMEM;
3557 		goto out;
3558 	}
3559 
3560 	ret = -ENOMEM;
3561 	ib_srp_transport_template =
3562 		srp_attach_transport(&ib_srp_transport_functions);
3563 	if (!ib_srp_transport_template)
3564 		goto destroy_wq;
3565 
3566 	ret = class_register(&srp_class);
3567 	if (ret) {
3568 		pr_err("couldn't register class infiniband_srp\n");
3569 		goto release_tr;
3570 	}
3571 
3572 	ib_sa_register_client(&srp_sa_client);
3573 
3574 	ret = ib_register_client(&srp_client);
3575 	if (ret) {
3576 		pr_err("couldn't register IB client\n");
3577 		goto unreg_sa;
3578 	}
3579 
3580 out:
3581 	return ret;
3582 
3583 unreg_sa:
3584 	ib_sa_unregister_client(&srp_sa_client);
3585 	class_unregister(&srp_class);
3586 
3587 release_tr:
3588 	srp_release_transport(ib_srp_transport_template);
3589 
3590 destroy_wq:
3591 	destroy_workqueue(srp_remove_wq);
3592 	goto out;
3593 }
3594 
3595 static void __exit srp_cleanup_module(void)
3596 {
3597 	ib_unregister_client(&srp_client);
3598 	ib_sa_unregister_client(&srp_sa_client);
3599 	class_unregister(&srp_class);
3600 	srp_release_transport(ib_srp_transport_template);
3601 	destroy_workqueue(srp_remove_wq);
3602 }
3603 
3604 module_init(srp_init_module);
3605 module_exit(srp_cleanup_module);
3606