xref: /linux/drivers/infiniband/ulp/rtrs/rtrs-srv.c (revision d0e62bf7b575fbfe591f6f570e7595dd60a2f5eb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 
15 #include "rtrs-srv.h"
16 #include "rtrs-log.h"
17 #include <rdma/ib_cm.h>
18 #include <rdma/ib_verbs.h>
19 #include "rtrs-srv-trace.h"
20 
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23 
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28 
29 static struct rtrs_rdma_dev_pd dev_pd;
30 const struct class rtrs_dev_class = {
31 	.name = "rtrs-server",
32 };
33 static struct rtrs_srv_ib_ctx ib_ctx;
34 
35 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
36 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
37 
38 static bool always_invalidate = true;
39 module_param(always_invalidate, bool, 0444);
40 MODULE_PARM_DESC(always_invalidate,
41 		 "Invalidate memory registration for contiguous memory regions before accessing.");
42 
43 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
44 MODULE_PARM_DESC(max_chunk_size,
45 		 "Max size for each IO request, when change the unit is in byte (default: "
46 		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
47 
48 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
49 MODULE_PARM_DESC(sess_queue_depth,
50 		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
51 		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
52 		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
53 
54 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
55 
56 static struct workqueue_struct *rtrs_wq;
57 
58 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
59 {
60 	return container_of(c, struct rtrs_srv_con, c);
61 }
62 
63 static bool rtrs_srv_change_state(struct rtrs_srv_path *srv_path,
64 				  enum rtrs_srv_state new_state)
65 {
66 	enum rtrs_srv_state old_state;
67 	bool changed = false;
68 	unsigned long flags;
69 
70 	spin_lock_irqsave(&srv_path->state_lock, flags);
71 	old_state = srv_path->state;
72 	switch (new_state) {
73 	case RTRS_SRV_CONNECTED:
74 		if (old_state == RTRS_SRV_CONNECTING)
75 			changed = true;
76 		break;
77 	case RTRS_SRV_CLOSING:
78 		if (old_state == RTRS_SRV_CONNECTING ||
79 		    old_state == RTRS_SRV_CONNECTED)
80 			changed = true;
81 		break;
82 	case RTRS_SRV_CLOSED:
83 		if (old_state == RTRS_SRV_CLOSING)
84 			changed = true;
85 		break;
86 	default:
87 		break;
88 	}
89 	if (changed)
90 		srv_path->state = new_state;
91 	spin_unlock_irqrestore(&srv_path->state_lock, flags);
92 
93 	return changed;
94 }
95 
96 static void free_id(struct rtrs_srv_op *id)
97 {
98 	if (!id)
99 		return;
100 	kfree(id);
101 }
102 
103 static void rtrs_srv_free_ops_ids(struct rtrs_srv_path *srv_path)
104 {
105 	struct rtrs_srv_sess *srv = srv_path->srv;
106 	int i;
107 
108 	if (srv_path->ops_ids) {
109 		for (i = 0; i < srv->queue_depth; i++)
110 			free_id(srv_path->ops_ids[i]);
111 		kfree(srv_path->ops_ids);
112 		srv_path->ops_ids = NULL;
113 	}
114 }
115 
116 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
117 
118 static struct ib_cqe io_comp_cqe = {
119 	.done = rtrs_srv_rdma_done
120 };
121 
122 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref)
123 {
124 	struct rtrs_srv_path *srv_path = container_of(ref,
125 						      struct rtrs_srv_path,
126 						      ids_inflight_ref);
127 
128 	percpu_ref_exit(&srv_path->ids_inflight_ref);
129 	complete(&srv_path->complete_done);
130 }
131 
132 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_path *srv_path)
133 {
134 	struct rtrs_srv_sess *srv = srv_path->srv;
135 	struct rtrs_srv_op *id;
136 	int i, ret;
137 
138 	srv_path->ops_ids = kcalloc(srv->queue_depth,
139 				    sizeof(*srv_path->ops_ids),
140 				    GFP_KERNEL);
141 	if (!srv_path->ops_ids)
142 		goto err;
143 
144 	for (i = 0; i < srv->queue_depth; ++i) {
145 		id = kzalloc(sizeof(*id), GFP_KERNEL);
146 		if (!id)
147 			goto err;
148 
149 		srv_path->ops_ids[i] = id;
150 	}
151 
152 	ret = percpu_ref_init(&srv_path->ids_inflight_ref,
153 			      rtrs_srv_inflight_ref_release, 0, GFP_KERNEL);
154 	if (ret) {
155 		pr_err("Percpu reference init failed\n");
156 		goto err;
157 	}
158 	init_completion(&srv_path->complete_done);
159 
160 	return 0;
161 
162 err:
163 	rtrs_srv_free_ops_ids(srv_path);
164 	return -ENOMEM;
165 }
166 
167 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_path *srv_path)
168 {
169 	percpu_ref_get(&srv_path->ids_inflight_ref);
170 }
171 
172 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_path *srv_path)
173 {
174 	percpu_ref_put(&srv_path->ids_inflight_ref);
175 }
176 
177 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
178 {
179 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
180 	struct rtrs_path *s = con->c.path;
181 	struct rtrs_srv_path *srv_path = to_srv_path(s);
182 
183 	if (wc->status != IB_WC_SUCCESS) {
184 		rtrs_err(s, "REG MR failed: %s\n",
185 			  ib_wc_status_msg(wc->status));
186 		close_path(srv_path);
187 		return;
188 	}
189 }
190 
191 static struct ib_cqe local_reg_cqe = {
192 	.done = rtrs_srv_reg_mr_done
193 };
194 
195 static int rdma_write_sg(struct rtrs_srv_op *id)
196 {
197 	struct rtrs_path *s = id->con->c.path;
198 	struct rtrs_srv_path *srv_path = to_srv_path(s);
199 	dma_addr_t dma_addr = srv_path->dma_addr[id->msg_id];
200 	struct rtrs_srv_mr *srv_mr;
201 	struct ib_send_wr inv_wr;
202 	struct ib_rdma_wr imm_wr;
203 	struct ib_rdma_wr *wr = NULL;
204 	enum ib_send_flags flags;
205 	size_t sg_cnt;
206 	int err, offset;
207 	bool need_inval;
208 	u32 rkey = 0;
209 	struct ib_reg_wr rwr;
210 	struct ib_sge *plist;
211 	struct ib_sge list;
212 
213 	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
214 	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
215 	if (sg_cnt != 1)
216 		return -EINVAL;
217 
218 	offset = 0;
219 
220 	wr		= &id->tx_wr;
221 	plist		= &id->tx_sg;
222 	plist->addr	= dma_addr + offset;
223 	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);
224 
225 	/* WR will fail with length error
226 	 * if this is 0
227 	 */
228 	if (plist->length == 0) {
229 		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
230 		return -EINVAL;
231 	}
232 
233 	plist->lkey = srv_path->s.dev->ib_pd->local_dma_lkey;
234 	offset += plist->length;
235 
236 	wr->wr.sg_list	= plist;
237 	wr->wr.num_sge	= 1;
238 	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
239 	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
240 	if (rkey == 0)
241 		rkey = wr->rkey;
242 	else
243 		/* Only one key is actually used */
244 		WARN_ON_ONCE(rkey != wr->rkey);
245 
246 	wr->wr.opcode = IB_WR_RDMA_WRITE;
247 	wr->wr.wr_cqe   = &io_comp_cqe;
248 	wr->wr.ex.imm_data = 0;
249 	wr->wr.send_flags  = 0;
250 
251 	if (need_inval && always_invalidate) {
252 		wr->wr.next = &rwr.wr;
253 		rwr.wr.next = &inv_wr;
254 		inv_wr.next = &imm_wr.wr;
255 	} else if (always_invalidate) {
256 		wr->wr.next = &rwr.wr;
257 		rwr.wr.next = &imm_wr.wr;
258 	} else if (need_inval) {
259 		wr->wr.next = &inv_wr;
260 		inv_wr.next = &imm_wr.wr;
261 	} else {
262 		wr->wr.next = &imm_wr.wr;
263 	}
264 	/*
265 	 * From time to time we have to post signaled sends,
266 	 * or send queue will fill up and only QP reset can help.
267 	 */
268 	flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ?
269 		0 : IB_SEND_SIGNALED;
270 
271 	if (need_inval) {
272 		inv_wr.sg_list = NULL;
273 		inv_wr.num_sge = 0;
274 		inv_wr.opcode = IB_WR_SEND_WITH_INV;
275 		inv_wr.wr_cqe   = &io_comp_cqe;
276 		inv_wr.send_flags = 0;
277 		inv_wr.ex.invalidate_rkey = rkey;
278 	}
279 
280 	imm_wr.wr.next = NULL;
281 	if (always_invalidate) {
282 		struct rtrs_msg_rkey_rsp *msg;
283 
284 		srv_mr = &srv_path->mrs[id->msg_id];
285 		rwr.wr.opcode = IB_WR_REG_MR;
286 		rwr.wr.wr_cqe = &local_reg_cqe;
287 		rwr.wr.num_sge = 0;
288 		rwr.mr = srv_mr->mr;
289 		rwr.wr.send_flags = 0;
290 		rwr.key = srv_mr->mr->rkey;
291 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
292 			      IB_ACCESS_REMOTE_WRITE);
293 		msg = srv_mr->iu->buf;
294 		msg->buf_id = cpu_to_le16(id->msg_id);
295 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
296 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
297 
298 		list.addr   = srv_mr->iu->dma_addr;
299 		list.length = sizeof(*msg);
300 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
301 		imm_wr.wr.sg_list = &list;
302 		imm_wr.wr.num_sge = 1;
303 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
304 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
305 					      srv_mr->iu->dma_addr,
306 					      srv_mr->iu->size, DMA_TO_DEVICE);
307 	} else {
308 		imm_wr.wr.sg_list = NULL;
309 		imm_wr.wr.num_sge = 0;
310 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
311 	}
312 	imm_wr.wr.send_flags = flags;
313 	imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
314 							     0, need_inval));
315 
316 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
317 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, dma_addr,
318 				      offset, DMA_BIDIRECTIONAL);
319 
320 	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
321 	if (err)
322 		rtrs_err(s,
323 			  "Posting RDMA-Write-Request to QP failed, err: %d\n",
324 			  err);
325 
326 	return err;
327 }
328 
329 /**
330  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
331  *                      requests or on successful WRITE request.
332  * @con:	the connection to send back result
333  * @id:		the id associated with the IO
334  * @errno:	the error number of the IO.
335  *
336  * Return 0 on success, errno otherwise.
337  */
338 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
339 			    int errno)
340 {
341 	struct rtrs_path *s = con->c.path;
342 	struct rtrs_srv_path *srv_path = to_srv_path(s);
343 	struct ib_send_wr inv_wr, *wr = NULL;
344 	struct ib_rdma_wr imm_wr;
345 	struct ib_reg_wr rwr;
346 	struct rtrs_srv_mr *srv_mr;
347 	bool need_inval = false;
348 	enum ib_send_flags flags;
349 	u32 imm;
350 	int err;
351 
352 	if (id->dir == READ) {
353 		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
354 		size_t sg_cnt;
355 
356 		need_inval = le16_to_cpu(rd_msg->flags) &
357 				RTRS_MSG_NEED_INVAL_F;
358 		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
359 
360 		if (need_inval) {
361 			if (sg_cnt) {
362 				inv_wr.wr_cqe   = &io_comp_cqe;
363 				inv_wr.sg_list = NULL;
364 				inv_wr.num_sge = 0;
365 				inv_wr.opcode = IB_WR_SEND_WITH_INV;
366 				inv_wr.send_flags = 0;
367 				/* Only one key is actually used */
368 				inv_wr.ex.invalidate_rkey =
369 					le32_to_cpu(rd_msg->desc[0].key);
370 			} else {
371 				WARN_ON_ONCE(1);
372 				need_inval = false;
373 			}
374 		}
375 	}
376 
377 	trace_send_io_resp_imm(id, need_inval, always_invalidate, errno);
378 
379 	if (need_inval && always_invalidate) {
380 		wr = &inv_wr;
381 		inv_wr.next = &rwr.wr;
382 		rwr.wr.next = &imm_wr.wr;
383 	} else if (always_invalidate) {
384 		wr = &rwr.wr;
385 		rwr.wr.next = &imm_wr.wr;
386 	} else if (need_inval) {
387 		wr = &inv_wr;
388 		inv_wr.next = &imm_wr.wr;
389 	} else {
390 		wr = &imm_wr.wr;
391 	}
392 	/*
393 	 * From time to time we have to post signalled sends,
394 	 * or send queue will fill up and only QP reset can help.
395 	 */
396 	flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ?
397 		0 : IB_SEND_SIGNALED;
398 	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
399 	imm_wr.wr.next = NULL;
400 	if (always_invalidate) {
401 		struct ib_sge list;
402 		struct rtrs_msg_rkey_rsp *msg;
403 
404 		srv_mr = &srv_path->mrs[id->msg_id];
405 		rwr.wr.next = &imm_wr.wr;
406 		rwr.wr.opcode = IB_WR_REG_MR;
407 		rwr.wr.wr_cqe = &local_reg_cqe;
408 		rwr.wr.num_sge = 0;
409 		rwr.wr.send_flags = 0;
410 		rwr.mr = srv_mr->mr;
411 		rwr.key = srv_mr->mr->rkey;
412 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
413 			      IB_ACCESS_REMOTE_WRITE);
414 		msg = srv_mr->iu->buf;
415 		msg->buf_id = cpu_to_le16(id->msg_id);
416 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
417 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
418 
419 		list.addr   = srv_mr->iu->dma_addr;
420 		list.length = sizeof(*msg);
421 		list.lkey   = srv_path->s.dev->ib_pd->local_dma_lkey;
422 		imm_wr.wr.sg_list = &list;
423 		imm_wr.wr.num_sge = 1;
424 		imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM;
425 		ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
426 					      srv_mr->iu->dma_addr,
427 					      srv_mr->iu->size, DMA_TO_DEVICE);
428 	} else {
429 		imm_wr.wr.sg_list = NULL;
430 		imm_wr.wr.num_sge = 0;
431 		imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
432 	}
433 	imm_wr.wr.send_flags = flags;
434 	imm_wr.wr.wr_cqe   = &io_comp_cqe;
435 
436 	imm_wr.wr.ex.imm_data = cpu_to_be32(imm);
437 
438 	err = ib_post_send(id->con->c.qp, wr, NULL);
439 	if (err)
440 		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
441 			     err);
442 
443 	return err;
444 }
445 
446 void close_path(struct rtrs_srv_path *srv_path)
447 {
448 	if (rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSING))
449 		queue_work(rtrs_wq, &srv_path->close_work);
450 	WARN_ON(srv_path->state != RTRS_SRV_CLOSING);
451 }
452 
453 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
454 {
455 	switch (state) {
456 	case RTRS_SRV_CONNECTING:
457 		return "RTRS_SRV_CONNECTING";
458 	case RTRS_SRV_CONNECTED:
459 		return "RTRS_SRV_CONNECTED";
460 	case RTRS_SRV_CLOSING:
461 		return "RTRS_SRV_CLOSING";
462 	case RTRS_SRV_CLOSED:
463 		return "RTRS_SRV_CLOSED";
464 	default:
465 		return "UNKNOWN";
466 	}
467 }
468 
469 /**
470  * rtrs_srv_resp_rdma() - Finish an RDMA request
471  *
472  * @id:		Internal RTRS operation identifier
473  * @status:	Response Code sent to the other side for this operation.
474  *		0 = success, <=0 error
475  * Context: any
476  *
477  * Finish a RDMA operation. A message is sent to the client and the
478  * corresponding memory areas will be released.
479  */
480 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
481 {
482 	struct rtrs_srv_path *srv_path;
483 	struct rtrs_srv_con *con;
484 	struct rtrs_path *s;
485 	int err;
486 
487 	if (WARN_ON(!id))
488 		return true;
489 
490 	con = id->con;
491 	s = con->c.path;
492 	srv_path = to_srv_path(s);
493 
494 	id->status = status;
495 
496 	if (srv_path->state != RTRS_SRV_CONNECTED) {
497 		rtrs_err_rl(s,
498 			    "Sending I/O response failed,  server path %s is disconnected, path state %s\n",
499 			    kobject_name(&srv_path->kobj),
500 			    rtrs_srv_state_str(srv_path->state));
501 		goto out;
502 	}
503 	if (always_invalidate) {
504 		struct rtrs_srv_mr *mr = &srv_path->mrs[id->msg_id];
505 
506 		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
507 	}
508 	if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) {
509 		rtrs_err(s, "IB send queue full: srv_path=%s cid=%d\n",
510 			 kobject_name(&srv_path->kobj),
511 			 con->c.cid);
512 		atomic_add(1, &con->c.sq_wr_avail);
513 		spin_lock(&con->rsp_wr_wait_lock);
514 		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
515 		spin_unlock(&con->rsp_wr_wait_lock);
516 		return false;
517 	}
518 
519 	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
520 		err = send_io_resp_imm(con, id, status);
521 	else
522 		err = rdma_write_sg(id);
523 
524 	if (err) {
525 		rtrs_err_rl(s, "IO response failed: %d: srv_path=%s\n", err,
526 			    kobject_name(&srv_path->kobj));
527 		close_path(srv_path);
528 	}
529 out:
530 	rtrs_srv_put_ops_ids(srv_path);
531 	return true;
532 }
533 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
534 
535 /**
536  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
537  * @srv:	Session pointer
538  * @priv:	The private pointer that is associated with the session.
539  */
540 void rtrs_srv_set_sess_priv(struct rtrs_srv_sess *srv, void *priv)
541 {
542 	srv->priv = priv;
543 }
544 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
545 
546 static void unmap_cont_bufs(struct rtrs_srv_path *srv_path)
547 {
548 	int i;
549 
550 	for (i = 0; i < srv_path->mrs_num; i++) {
551 		struct rtrs_srv_mr *srv_mr;
552 
553 		srv_mr = &srv_path->mrs[i];
554 
555 		if (always_invalidate)
556 			rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1);
557 
558 		ib_dereg_mr(srv_mr->mr);
559 		ib_dma_unmap_sg(srv_path->s.dev->ib_dev, srv_mr->sgt.sgl,
560 				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
561 		sg_free_table(&srv_mr->sgt);
562 	}
563 	kfree(srv_path->mrs);
564 }
565 
566 static int map_cont_bufs(struct rtrs_srv_path *srv_path)
567 {
568 	struct rtrs_srv_sess *srv = srv_path->srv;
569 	struct rtrs_path *ss = &srv_path->s;
570 	int i, err, mrs_num;
571 	unsigned int chunk_bits;
572 	int chunks_per_mr = 1;
573 	struct ib_mr *mr;
574 	struct sg_table *sgt;
575 
576 	/*
577 	 * Here we map queue_depth chunks to MR.  Firstly we have to
578 	 * figure out how many chunks can we map per MR.
579 	 */
580 	if (always_invalidate) {
581 		/*
582 		 * in order to do invalidate for each chunks of memory, we needs
583 		 * more memory regions.
584 		 */
585 		mrs_num = srv->queue_depth;
586 	} else {
587 		chunks_per_mr =
588 			srv_path->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
589 		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
590 		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
591 	}
592 
593 	srv_path->mrs = kcalloc(mrs_num, sizeof(*srv_path->mrs), GFP_KERNEL);
594 	if (!srv_path->mrs)
595 		return -ENOMEM;
596 
597 	for (srv_path->mrs_num = 0; srv_path->mrs_num < mrs_num;
598 	     srv_path->mrs_num++) {
599 		struct rtrs_srv_mr *srv_mr = &srv_path->mrs[srv_path->mrs_num];
600 		struct scatterlist *s;
601 		int nr, nr_sgt, chunks;
602 
603 		sgt = &srv_mr->sgt;
604 		chunks = chunks_per_mr * srv_path->mrs_num;
605 		if (!always_invalidate)
606 			chunks_per_mr = min_t(int, chunks_per_mr,
607 					      srv->queue_depth - chunks);
608 
609 		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
610 		if (err)
611 			goto err;
612 
613 		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
614 			sg_set_page(s, srv->chunks[chunks + i],
615 				    max_chunk_size, 0);
616 
617 		nr_sgt = ib_dma_map_sg(srv_path->s.dev->ib_dev, sgt->sgl,
618 				   sgt->nents, DMA_BIDIRECTIONAL);
619 		if (!nr_sgt) {
620 			err = -EINVAL;
621 			goto free_sg;
622 		}
623 		mr = ib_alloc_mr(srv_path->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
624 				 nr_sgt);
625 		if (IS_ERR(mr)) {
626 			err = PTR_ERR(mr);
627 			goto unmap_sg;
628 		}
629 		nr = ib_map_mr_sg(mr, sgt->sgl, nr_sgt,
630 				  NULL, max_chunk_size);
631 		if (nr != nr_sgt) {
632 			err = nr < 0 ? nr : -EINVAL;
633 			goto dereg_mr;
634 		}
635 
636 		if (always_invalidate) {
637 			srv_mr->iu = rtrs_iu_alloc(1,
638 					sizeof(struct rtrs_msg_rkey_rsp),
639 					GFP_KERNEL, srv_path->s.dev->ib_dev,
640 					DMA_TO_DEVICE, rtrs_srv_rdma_done);
641 			if (!srv_mr->iu) {
642 				err = -ENOMEM;
643 				rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
644 				goto dereg_mr;
645 			}
646 		}
647 		/* Eventually dma addr for each chunk can be cached */
648 		for_each_sg(sgt->sgl, s, nr_sgt, i)
649 			srv_path->dma_addr[chunks + i] = sg_dma_address(s);
650 
651 		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
652 		srv_mr->mr = mr;
653 	}
654 
655 	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
656 	srv_path->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
657 
658 	return 0;
659 
660 dereg_mr:
661 	ib_dereg_mr(mr);
662 unmap_sg:
663 	ib_dma_unmap_sg(srv_path->s.dev->ib_dev, sgt->sgl,
664 			sgt->nents, DMA_BIDIRECTIONAL);
665 free_sg:
666 	sg_free_table(sgt);
667 err:
668 	unmap_cont_bufs(srv_path);
669 
670 	return err;
671 }
672 
673 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
674 {
675 	struct rtrs_srv_con *con = container_of(c, typeof(*con), c);
676 	struct rtrs_srv_path *srv_path = to_srv_path(con->c.path);
677 
678 	rtrs_err(con->c.path, "HB err handler for path=%s\n", kobject_name(&srv_path->kobj));
679 	close_path(to_srv_path(c->path));
680 }
681 
682 static void rtrs_srv_init_hb(struct rtrs_srv_path *srv_path)
683 {
684 	rtrs_init_hb(&srv_path->s, &io_comp_cqe,
685 		      RTRS_HB_INTERVAL_MS,
686 		      RTRS_HB_MISSED_MAX,
687 		      rtrs_srv_hb_err_handler,
688 		      rtrs_wq);
689 }
690 
691 static void rtrs_srv_start_hb(struct rtrs_srv_path *srv_path)
692 {
693 	rtrs_start_hb(&srv_path->s);
694 }
695 
696 static void rtrs_srv_stop_hb(struct rtrs_srv_path *srv_path)
697 {
698 	rtrs_stop_hb(&srv_path->s);
699 }
700 
701 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
702 {
703 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
704 	struct rtrs_path *s = con->c.path;
705 	struct rtrs_srv_path *srv_path = to_srv_path(s);
706 	struct rtrs_iu *iu;
707 
708 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
709 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
710 
711 	if (wc->status != IB_WC_SUCCESS) {
712 		rtrs_err(s, "Sess info response send failed: %s\n",
713 			  ib_wc_status_msg(wc->status));
714 		close_path(srv_path);
715 		return;
716 	}
717 	WARN_ON(wc->opcode != IB_WC_SEND);
718 }
719 
720 static int rtrs_srv_path_up(struct rtrs_srv_path *srv_path)
721 {
722 	struct rtrs_srv_sess *srv = srv_path->srv;
723 	struct rtrs_srv_ctx *ctx = srv->ctx;
724 	int up, ret = 0;
725 
726 	mutex_lock(&srv->paths_ev_mutex);
727 	up = ++srv->paths_up;
728 	if (up == 1)
729 		ret = ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
730 	mutex_unlock(&srv->paths_ev_mutex);
731 
732 	/* Mark session as established */
733 	if (!ret)
734 		srv_path->established = true;
735 
736 	return ret;
737 }
738 
739 static void rtrs_srv_path_down(struct rtrs_srv_path *srv_path)
740 {
741 	struct rtrs_srv_sess *srv = srv_path->srv;
742 	struct rtrs_srv_ctx *ctx = srv->ctx;
743 
744 	if (!srv_path->established)
745 		return;
746 
747 	srv_path->established = false;
748 	mutex_lock(&srv->paths_ev_mutex);
749 	WARN_ON(!srv->paths_up);
750 	if (--srv->paths_up == 0)
751 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
752 	mutex_unlock(&srv->paths_ev_mutex);
753 }
754 
755 static bool exist_pathname(struct rtrs_srv_ctx *ctx,
756 			   const char *pathname, const uuid_t *path_uuid)
757 {
758 	struct rtrs_srv_sess *srv;
759 	struct rtrs_srv_path *srv_path;
760 	bool found = false;
761 
762 	mutex_lock(&ctx->srv_mutex);
763 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
764 		mutex_lock(&srv->paths_mutex);
765 
766 		/* when a client with same uuid and same sessname tried to add a path */
767 		if (uuid_equal(&srv->paths_uuid, path_uuid)) {
768 			mutex_unlock(&srv->paths_mutex);
769 			continue;
770 		}
771 
772 		list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
773 			if (strlen(srv_path->s.sessname) == strlen(pathname) &&
774 			    !strcmp(srv_path->s.sessname, pathname)) {
775 				found = true;
776 				break;
777 			}
778 		}
779 		mutex_unlock(&srv->paths_mutex);
780 		if (found)
781 			break;
782 	}
783 	mutex_unlock(&ctx->srv_mutex);
784 	return found;
785 }
786 
787 static int post_recv_path(struct rtrs_srv_path *srv_path);
788 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno);
789 
790 static int process_info_req(struct rtrs_srv_con *con,
791 			    struct rtrs_msg_info_req *msg)
792 {
793 	struct rtrs_path *s = con->c.path;
794 	struct rtrs_srv_path *srv_path = to_srv_path(s);
795 	struct ib_send_wr *reg_wr = NULL;
796 	struct rtrs_msg_info_rsp *rsp;
797 	struct rtrs_iu *tx_iu;
798 	struct ib_reg_wr *rwr;
799 	int mri, err;
800 	size_t tx_sz;
801 
802 	err = post_recv_path(srv_path);
803 	if (err) {
804 		rtrs_err(s, "post_recv_path(), err: %d\n", err);
805 		return err;
806 	}
807 
808 	if (strchr(msg->pathname, '/') || strchr(msg->pathname, '.')) {
809 		rtrs_err(s, "pathname cannot contain / and .\n");
810 		return -EINVAL;
811 	}
812 
813 	if (exist_pathname(srv_path->srv->ctx,
814 			   msg->pathname, &srv_path->srv->paths_uuid)) {
815 		rtrs_err(s, "pathname is duplicated: %s\n", msg->pathname);
816 		return -EPERM;
817 	}
818 	strscpy(srv_path->s.sessname, msg->pathname,
819 		sizeof(srv_path->s.sessname));
820 
821 	rwr = kcalloc(srv_path->mrs_num, sizeof(*rwr), GFP_KERNEL);
822 	if (!rwr)
823 		return -ENOMEM;
824 
825 	tx_sz  = sizeof(*rsp);
826 	tx_sz += sizeof(rsp->desc[0]) * srv_path->mrs_num;
827 	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, srv_path->s.dev->ib_dev,
828 			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
829 	if (!tx_iu) {
830 		err = -ENOMEM;
831 		goto rwr_free;
832 	}
833 
834 	rsp = tx_iu->buf;
835 	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
836 	rsp->sg_cnt = cpu_to_le16(srv_path->mrs_num);
837 
838 	for (mri = 0; mri < srv_path->mrs_num; mri++) {
839 		struct ib_mr *mr = srv_path->mrs[mri].mr;
840 
841 		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
842 		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
843 		rsp->desc[mri].len  = cpu_to_le32(mr->length);
844 
845 		/*
846 		 * Fill in reg MR request and chain them *backwards*
847 		 */
848 		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
849 		rwr[mri].wr.opcode = IB_WR_REG_MR;
850 		rwr[mri].wr.wr_cqe = &local_reg_cqe;
851 		rwr[mri].wr.num_sge = 0;
852 		rwr[mri].wr.send_flags = 0;
853 		rwr[mri].mr = mr;
854 		rwr[mri].key = mr->rkey;
855 		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
856 				   IB_ACCESS_REMOTE_WRITE);
857 		reg_wr = &rwr[mri].wr;
858 	}
859 
860 	err = rtrs_srv_create_path_files(srv_path);
861 	if (err)
862 		goto iu_free;
863 	kobject_get(&srv_path->kobj);
864 	get_device(&srv_path->srv->dev);
865 	err = rtrs_srv_change_state(srv_path, RTRS_SRV_CONNECTED);
866 	if (!err) {
867 		rtrs_err(s, "rtrs_srv_change_state(), err: %d\n", err);
868 		goto iu_free;
869 	}
870 
871 	rtrs_srv_start_hb(srv_path);
872 
873 	/*
874 	 * We do not account number of established connections at the current
875 	 * moment, we rely on the client, which should send info request when
876 	 * all connections are successfully established.  Thus, simply notify
877 	 * listener with a proper event if we are the first path.
878 	 */
879 	err = rtrs_srv_path_up(srv_path);
880 	if (err) {
881 		rtrs_err(s, "rtrs_srv_path_up(), err: %d\n", err);
882 		goto iu_free;
883 	}
884 
885 	ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev,
886 				      tx_iu->dma_addr,
887 				      tx_iu->size, DMA_TO_DEVICE);
888 
889 	/* Send info response */
890 	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
891 	if (err) {
892 		rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
893 iu_free:
894 		rtrs_iu_free(tx_iu, srv_path->s.dev->ib_dev, 1);
895 	}
896 rwr_free:
897 	kfree(rwr);
898 
899 	return err;
900 }
901 
902 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
903 {
904 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
905 	struct rtrs_path *s = con->c.path;
906 	struct rtrs_srv_path *srv_path = to_srv_path(s);
907 	struct rtrs_msg_info_req *msg;
908 	struct rtrs_iu *iu;
909 	int err;
910 
911 	WARN_ON(con->c.cid);
912 
913 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
914 	if (wc->status != IB_WC_SUCCESS) {
915 		rtrs_err(s, "Sess info request receive failed: %s\n",
916 			  ib_wc_status_msg(wc->status));
917 		goto close;
918 	}
919 	WARN_ON(wc->opcode != IB_WC_RECV);
920 
921 	if (wc->byte_len < sizeof(*msg)) {
922 		rtrs_err(s, "Sess info request is malformed: size %d\n",
923 			  wc->byte_len);
924 		goto close;
925 	}
926 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, iu->dma_addr,
927 				   iu->size, DMA_FROM_DEVICE);
928 	msg = iu->buf;
929 	if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) {
930 		rtrs_err(s, "Sess info request is malformed: type %d\n",
931 			  le16_to_cpu(msg->type));
932 		goto close;
933 	}
934 	err = process_info_req(con, msg);
935 	if (err)
936 		goto close;
937 
938 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
939 	return;
940 close:
941 	rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1);
942 	close_path(srv_path);
943 }
944 
945 static int post_recv_info_req(struct rtrs_srv_con *con)
946 {
947 	struct rtrs_path *s = con->c.path;
948 	struct rtrs_srv_path *srv_path = to_srv_path(s);
949 	struct rtrs_iu *rx_iu;
950 	int err;
951 
952 	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
953 			       GFP_KERNEL, srv_path->s.dev->ib_dev,
954 			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
955 	if (!rx_iu)
956 		return -ENOMEM;
957 	/* Prepare for getting info response */
958 	err = rtrs_iu_post_recv(&con->c, rx_iu);
959 	if (err) {
960 		rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
961 		rtrs_iu_free(rx_iu, srv_path->s.dev->ib_dev, 1);
962 		return err;
963 	}
964 
965 	return 0;
966 }
967 
968 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
969 {
970 	int i, err;
971 
972 	for (i = 0; i < q_size; i++) {
973 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
974 		if (err)
975 			return err;
976 	}
977 
978 	return 0;
979 }
980 
981 static int post_recv_path(struct rtrs_srv_path *srv_path)
982 {
983 	struct rtrs_srv_sess *srv = srv_path->srv;
984 	struct rtrs_path *s = &srv_path->s;
985 	size_t q_size;
986 	int err, cid;
987 
988 	for (cid = 0; cid < srv_path->s.con_num; cid++) {
989 		if (cid == 0)
990 			q_size = SERVICE_CON_QUEUE_DEPTH;
991 		else
992 			q_size = srv->queue_depth;
993 		if (srv_path->state != RTRS_SRV_CONNECTING) {
994 			rtrs_err(s, "Path state invalid. state %s\n",
995 				 rtrs_srv_state_str(srv_path->state));
996 			return -EIO;
997 		}
998 
999 		if (!srv_path->s.con[cid]) {
1000 			rtrs_err(s, "Conn not set for %d\n", cid);
1001 			return -EIO;
1002 		}
1003 
1004 		err = post_recv_io(to_srv_con(srv_path->s.con[cid]), q_size);
1005 		if (err) {
1006 			rtrs_err(s, "post_recv_io(), err: %d\n", err);
1007 			return err;
1008 		}
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static void process_read(struct rtrs_srv_con *con,
1015 			 struct rtrs_msg_rdma_read *msg,
1016 			 u32 buf_id, u32 off)
1017 {
1018 	struct rtrs_path *s = con->c.path;
1019 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1020 	struct rtrs_srv_sess *srv = srv_path->srv;
1021 	struct rtrs_srv_ctx *ctx = srv->ctx;
1022 	struct rtrs_srv_op *id;
1023 
1024 	size_t usr_len, data_len;
1025 	void *data;
1026 	int ret;
1027 
1028 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1029 		rtrs_err_rl(s,
1030 			     "Processing read request failed,  session is disconnected, sess state %s\n",
1031 			     rtrs_srv_state_str(srv_path->state));
1032 		return;
1033 	}
1034 	if (msg->sg_cnt != 1 && msg->sg_cnt != 0) {
1035 		rtrs_err_rl(s,
1036 			    "Processing read request failed, invalid message\n");
1037 		return;
1038 	}
1039 	rtrs_srv_get_ops_ids(srv_path);
1040 	rtrs_srv_update_rdma_stats(srv_path->stats, off, READ);
1041 	id = srv_path->ops_ids[buf_id];
1042 	id->con		= con;
1043 	id->dir		= READ;
1044 	id->msg_id	= buf_id;
1045 	id->rd_msg	= msg;
1046 	usr_len = le16_to_cpu(msg->usr_len);
1047 	data_len = off - usr_len;
1048 	data = page_address(srv->chunks[buf_id]);
1049 	ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1050 			   data + data_len, usr_len);
1051 
1052 	if (ret) {
1053 		rtrs_err_rl(s,
1054 			     "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1055 			     buf_id, ret);
1056 		goto send_err_msg;
1057 	}
1058 
1059 	return;
1060 
1061 send_err_msg:
1062 	ret = send_io_resp_imm(con, id, ret);
1063 	if (ret < 0) {
1064 		rtrs_err_rl(s,
1065 			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1066 			     buf_id, ret);
1067 		close_path(srv_path);
1068 	}
1069 	rtrs_srv_put_ops_ids(srv_path);
1070 }
1071 
1072 static void process_write(struct rtrs_srv_con *con,
1073 			  struct rtrs_msg_rdma_write *req,
1074 			  u32 buf_id, u32 off)
1075 {
1076 	struct rtrs_path *s = con->c.path;
1077 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1078 	struct rtrs_srv_sess *srv = srv_path->srv;
1079 	struct rtrs_srv_ctx *ctx = srv->ctx;
1080 	struct rtrs_srv_op *id;
1081 
1082 	size_t data_len, usr_len;
1083 	void *data;
1084 	int ret;
1085 
1086 	if (srv_path->state != RTRS_SRV_CONNECTED) {
1087 		rtrs_err_rl(s,
1088 			     "Processing write request failed,  session is disconnected, sess state %s\n",
1089 			     rtrs_srv_state_str(srv_path->state));
1090 		return;
1091 	}
1092 	rtrs_srv_get_ops_ids(srv_path);
1093 	rtrs_srv_update_rdma_stats(srv_path->stats, off, WRITE);
1094 	id = srv_path->ops_ids[buf_id];
1095 	id->con    = con;
1096 	id->dir    = WRITE;
1097 	id->msg_id = buf_id;
1098 
1099 	usr_len = le16_to_cpu(req->usr_len);
1100 	data_len = off - usr_len;
1101 	data = page_address(srv->chunks[buf_id]);
1102 	ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len,
1103 			       data + data_len, usr_len);
1104 	if (ret) {
1105 		rtrs_err_rl(s,
1106 			     "Processing write request failed, user module callback reports err: %d\n",
1107 			     ret);
1108 		goto send_err_msg;
1109 	}
1110 
1111 	return;
1112 
1113 send_err_msg:
1114 	ret = send_io_resp_imm(con, id, ret);
1115 	if (ret < 0) {
1116 		rtrs_err_rl(s,
1117 			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1118 			     buf_id, ret);
1119 		close_path(srv_path);
1120 	}
1121 	rtrs_srv_put_ops_ids(srv_path);
1122 }
1123 
1124 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1125 			   u32 id, u32 off)
1126 {
1127 	struct rtrs_path *s = con->c.path;
1128 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1129 	struct rtrs_msg_rdma_hdr *hdr;
1130 	unsigned int type;
1131 
1132 	ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev,
1133 				   srv_path->dma_addr[id],
1134 				   max_chunk_size, DMA_BIDIRECTIONAL);
1135 	hdr = msg;
1136 	type = le16_to_cpu(hdr->type);
1137 
1138 	switch (type) {
1139 	case RTRS_MSG_WRITE:
1140 		process_write(con, msg, id, off);
1141 		break;
1142 	case RTRS_MSG_READ:
1143 		process_read(con, msg, id, off);
1144 		break;
1145 	default:
1146 		rtrs_err(s,
1147 			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
1148 			  type);
1149 		goto err;
1150 	}
1151 
1152 	return;
1153 
1154 err:
1155 	close_path(srv_path);
1156 }
1157 
1158 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1159 {
1160 	struct rtrs_srv_mr *mr =
1161 		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1162 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1163 	struct rtrs_path *s = con->c.path;
1164 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1165 	struct rtrs_srv_sess *srv = srv_path->srv;
1166 	u32 msg_id, off;
1167 	void *data;
1168 
1169 	if (wc->status != IB_WC_SUCCESS) {
1170 		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1171 			  ib_wc_status_msg(wc->status));
1172 		close_path(srv_path);
1173 	}
1174 	msg_id = mr->msg_id;
1175 	off = mr->msg_off;
1176 	data = page_address(srv->chunks[msg_id]) + off;
1177 	process_io_req(con, data, msg_id, off);
1178 }
1179 
1180 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1181 			      struct rtrs_srv_mr *mr)
1182 {
1183 	struct ib_send_wr wr = {
1184 		.opcode		    = IB_WR_LOCAL_INV,
1185 		.wr_cqe		    = &mr->inv_cqe,
1186 		.send_flags	    = IB_SEND_SIGNALED,
1187 		.ex.invalidate_rkey = mr->mr->rkey,
1188 	};
1189 	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1190 
1191 	return ib_post_send(con->c.qp, &wr, NULL);
1192 }
1193 
1194 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1195 {
1196 	spin_lock(&con->rsp_wr_wait_lock);
1197 	while (!list_empty(&con->rsp_wr_wait_list)) {
1198 		struct rtrs_srv_op *id;
1199 		int ret;
1200 
1201 		id = list_entry(con->rsp_wr_wait_list.next,
1202 				struct rtrs_srv_op, wait_list);
1203 		list_del(&id->wait_list);
1204 
1205 		spin_unlock(&con->rsp_wr_wait_lock);
1206 		ret = rtrs_srv_resp_rdma(id, id->status);
1207 		spin_lock(&con->rsp_wr_wait_lock);
1208 
1209 		if (!ret) {
1210 			list_add(&id->wait_list, &con->rsp_wr_wait_list);
1211 			break;
1212 		}
1213 	}
1214 	spin_unlock(&con->rsp_wr_wait_lock);
1215 }
1216 
1217 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1218 {
1219 	struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context);
1220 	struct rtrs_path *s = con->c.path;
1221 	struct rtrs_srv_path *srv_path = to_srv_path(s);
1222 	struct rtrs_srv_sess *srv = srv_path->srv;
1223 	u32 imm_type, imm_payload;
1224 	int err;
1225 
1226 	if (wc->status != IB_WC_SUCCESS) {
1227 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1228 			rtrs_err(s,
1229 				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1230 				  ib_wc_status_msg(wc->status), wc->wr_cqe,
1231 				  wc->opcode, wc->vendor_err, wc->byte_len);
1232 			close_path(srv_path);
1233 		}
1234 		return;
1235 	}
1236 
1237 	switch (wc->opcode) {
1238 	case IB_WC_RECV_RDMA_WITH_IMM:
1239 		/*
1240 		 * post_recv() RDMA write completions of IO reqs (read/write)
1241 		 * and hb
1242 		 */
1243 		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1244 			return;
1245 		srv_path->s.hb_missed_cnt = 0;
1246 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1247 		if (err) {
1248 			rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1249 			close_path(srv_path);
1250 			break;
1251 		}
1252 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1253 			       &imm_type, &imm_payload);
1254 		if (imm_type == RTRS_IO_REQ_IMM) {
1255 			u32 msg_id, off;
1256 			void *data;
1257 
1258 			msg_id = imm_payload >> srv_path->mem_bits;
1259 			off = imm_payload & ((1 << srv_path->mem_bits) - 1);
1260 			if (msg_id >= srv->queue_depth || off >= max_chunk_size) {
1261 				rtrs_err(s, "Wrong msg_id %u, off %u\n",
1262 					  msg_id, off);
1263 				close_path(srv_path);
1264 				return;
1265 			}
1266 			if (always_invalidate) {
1267 				struct rtrs_srv_mr *mr = &srv_path->mrs[msg_id];
1268 
1269 				mr->msg_off = off;
1270 				mr->msg_id = msg_id;
1271 				err = rtrs_srv_inv_rkey(con, mr);
1272 				if (err) {
1273 					rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1274 						  err);
1275 					close_path(srv_path);
1276 					break;
1277 				}
1278 			} else {
1279 				data = page_address(srv->chunks[msg_id]) + off;
1280 				process_io_req(con, data, msg_id, off);
1281 			}
1282 		} else if (imm_type == RTRS_HB_MSG_IMM) {
1283 			WARN_ON(con->c.cid);
1284 			rtrs_send_hb_ack(&srv_path->s);
1285 		} else if (imm_type == RTRS_HB_ACK_IMM) {
1286 			WARN_ON(con->c.cid);
1287 			srv_path->s.hb_missed_cnt = 0;
1288 		} else {
1289 			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1290 		}
1291 		break;
1292 	case IB_WC_RDMA_WRITE:
1293 	case IB_WC_SEND:
1294 		/*
1295 		 * post_send() RDMA write completions of IO reqs (read/write)
1296 		 * and hb.
1297 		 */
1298 		atomic_add(s->signal_interval, &con->c.sq_wr_avail);
1299 
1300 		if (!list_empty_careful(&con->rsp_wr_wait_list))
1301 			rtrs_rdma_process_wr_wait_list(con);
1302 
1303 		break;
1304 	default:
1305 		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1306 		return;
1307 	}
1308 }
1309 
1310 /**
1311  * rtrs_srv_get_path_name() - Get rtrs_srv peer hostname.
1312  * @srv:	Session
1313  * @pathname:	Pathname buffer
1314  * @len:	Length of sessname buffer
1315  */
1316 int rtrs_srv_get_path_name(struct rtrs_srv_sess *srv, char *pathname,
1317 			   size_t len)
1318 {
1319 	struct rtrs_srv_path *srv_path;
1320 	int err = -ENOTCONN;
1321 
1322 	mutex_lock(&srv->paths_mutex);
1323 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1324 		if (srv_path->state != RTRS_SRV_CONNECTED)
1325 			continue;
1326 		strscpy(pathname, srv_path->s.sessname,
1327 			min_t(size_t, sizeof(srv_path->s.sessname), len));
1328 		err = 0;
1329 		break;
1330 	}
1331 	mutex_unlock(&srv->paths_mutex);
1332 
1333 	return err;
1334 }
1335 EXPORT_SYMBOL(rtrs_srv_get_path_name);
1336 
1337 /**
1338  * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth.
1339  * @srv:	Session
1340  */
1341 int rtrs_srv_get_queue_depth(struct rtrs_srv_sess *srv)
1342 {
1343 	return srv->queue_depth;
1344 }
1345 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1346 
1347 static int find_next_bit_ring(struct rtrs_srv_path *srv_path)
1348 {
1349 	struct ib_device *ib_dev = srv_path->s.dev->ib_dev;
1350 	int v;
1351 
1352 	v = cpumask_next(srv_path->cur_cq_vector, &cq_affinity_mask);
1353 	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1354 		v = cpumask_first(&cq_affinity_mask);
1355 	return v;
1356 }
1357 
1358 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_path *srv_path)
1359 {
1360 	srv_path->cur_cq_vector = find_next_bit_ring(srv_path);
1361 
1362 	return srv_path->cur_cq_vector;
1363 }
1364 
1365 static void rtrs_srv_dev_release(struct device *dev)
1366 {
1367 	struct rtrs_srv_sess *srv = container_of(dev, struct rtrs_srv_sess,
1368 						 dev);
1369 
1370 	kfree(srv);
1371 }
1372 
1373 static void free_srv(struct rtrs_srv_sess *srv)
1374 {
1375 	int i;
1376 
1377 	WARN_ON(refcount_read(&srv->refcount));
1378 	for (i = 0; i < srv->queue_depth; i++)
1379 		__free_pages(srv->chunks[i], get_order(max_chunk_size));
1380 	kfree(srv->chunks);
1381 	mutex_destroy(&srv->paths_mutex);
1382 	mutex_destroy(&srv->paths_ev_mutex);
1383 	/* last put to release the srv structure */
1384 	put_device(&srv->dev);
1385 }
1386 
1387 static struct rtrs_srv_sess *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1388 					  const uuid_t *paths_uuid,
1389 					  bool first_conn)
1390 {
1391 	struct rtrs_srv_sess *srv;
1392 	int i;
1393 
1394 	mutex_lock(&ctx->srv_mutex);
1395 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1396 		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1397 		    refcount_inc_not_zero(&srv->refcount)) {
1398 			mutex_unlock(&ctx->srv_mutex);
1399 			return srv;
1400 		}
1401 	}
1402 	mutex_unlock(&ctx->srv_mutex);
1403 	/*
1404 	 * If this request is not the first connection request from the
1405 	 * client for this session then fail and return error.
1406 	 */
1407 	if (!first_conn) {
1408 		pr_err_ratelimited("Error: Not the first connection request for this session\n");
1409 		return ERR_PTR(-ENXIO);
1410 	}
1411 
1412 	/* need to allocate a new srv */
1413 	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1414 	if  (!srv)
1415 		return ERR_PTR(-ENOMEM);
1416 
1417 	INIT_LIST_HEAD(&srv->paths_list);
1418 	mutex_init(&srv->paths_mutex);
1419 	mutex_init(&srv->paths_ev_mutex);
1420 	uuid_copy(&srv->paths_uuid, paths_uuid);
1421 	srv->queue_depth = sess_queue_depth;
1422 	srv->ctx = ctx;
1423 	device_initialize(&srv->dev);
1424 	srv->dev.release = rtrs_srv_dev_release;
1425 
1426 	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1427 			      GFP_KERNEL);
1428 	if (!srv->chunks)
1429 		goto err_free_srv;
1430 
1431 	for (i = 0; i < srv->queue_depth; i++) {
1432 		srv->chunks[i] = alloc_pages(GFP_KERNEL,
1433 					     get_order(max_chunk_size));
1434 		if (!srv->chunks[i])
1435 			goto err_free_chunks;
1436 	}
1437 	refcount_set(&srv->refcount, 1);
1438 	mutex_lock(&ctx->srv_mutex);
1439 	list_add(&srv->ctx_list, &ctx->srv_list);
1440 	mutex_unlock(&ctx->srv_mutex);
1441 
1442 	return srv;
1443 
1444 err_free_chunks:
1445 	while (i--)
1446 		__free_pages(srv->chunks[i], get_order(max_chunk_size));
1447 	kfree(srv->chunks);
1448 
1449 err_free_srv:
1450 	kfree(srv);
1451 	return ERR_PTR(-ENOMEM);
1452 }
1453 
1454 static void put_srv(struct rtrs_srv_sess *srv)
1455 {
1456 	if (refcount_dec_and_test(&srv->refcount)) {
1457 		struct rtrs_srv_ctx *ctx = srv->ctx;
1458 
1459 		WARN_ON(srv->dev.kobj.state_in_sysfs);
1460 
1461 		mutex_lock(&ctx->srv_mutex);
1462 		list_del(&srv->ctx_list);
1463 		mutex_unlock(&ctx->srv_mutex);
1464 		free_srv(srv);
1465 	}
1466 }
1467 
1468 static void __add_path_to_srv(struct rtrs_srv_sess *srv,
1469 			      struct rtrs_srv_path *srv_path)
1470 {
1471 	list_add_tail(&srv_path->s.entry, &srv->paths_list);
1472 	srv->paths_num++;
1473 	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1474 }
1475 
1476 static void del_path_from_srv(struct rtrs_srv_path *srv_path)
1477 {
1478 	struct rtrs_srv_sess *srv = srv_path->srv;
1479 
1480 	if (WARN_ON(!srv))
1481 		return;
1482 
1483 	mutex_lock(&srv->paths_mutex);
1484 	list_del(&srv_path->s.entry);
1485 	WARN_ON(!srv->paths_num);
1486 	srv->paths_num--;
1487 	mutex_unlock(&srv->paths_mutex);
1488 }
1489 
1490 /* return true if addresses are the same, error other wise */
1491 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1492 {
1493 	switch (a->sa_family) {
1494 	case AF_IB:
1495 		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1496 			      &((struct sockaddr_ib *)b)->sib_addr,
1497 			      sizeof(struct ib_addr)) &&
1498 			(b->sa_family == AF_IB);
1499 	case AF_INET:
1500 		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1501 			      &((struct sockaddr_in *)b)->sin_addr,
1502 			      sizeof(struct in_addr)) &&
1503 			(b->sa_family == AF_INET);
1504 	case AF_INET6:
1505 		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1506 			      &((struct sockaddr_in6 *)b)->sin6_addr,
1507 			      sizeof(struct in6_addr)) &&
1508 			(b->sa_family == AF_INET6);
1509 	default:
1510 		return -ENOENT;
1511 	}
1512 }
1513 
1514 static bool __is_path_w_addr_exists(struct rtrs_srv_sess *srv,
1515 				    struct rdma_addr *addr)
1516 {
1517 	struct rtrs_srv_path *srv_path;
1518 
1519 	list_for_each_entry(srv_path, &srv->paths_list, s.entry)
1520 		if (!sockaddr_cmp((struct sockaddr *)&srv_path->s.dst_addr,
1521 				  (struct sockaddr *)&addr->dst_addr) &&
1522 		    !sockaddr_cmp((struct sockaddr *)&srv_path->s.src_addr,
1523 				  (struct sockaddr *)&addr->src_addr))
1524 			return true;
1525 
1526 	return false;
1527 }
1528 
1529 static void free_path(struct rtrs_srv_path *srv_path)
1530 {
1531 	if (srv_path->kobj.state_in_sysfs) {
1532 		kobject_del(&srv_path->kobj);
1533 		kobject_put(&srv_path->kobj);
1534 	} else {
1535 		free_percpu(srv_path->stats->rdma_stats);
1536 		kfree(srv_path->stats);
1537 		kfree(srv_path);
1538 	}
1539 }
1540 
1541 static void rtrs_srv_close_work(struct work_struct *work)
1542 {
1543 	struct rtrs_srv_path *srv_path;
1544 	struct rtrs_srv_con *con;
1545 	int i;
1546 
1547 	srv_path = container_of(work, typeof(*srv_path), close_work);
1548 
1549 	rtrs_srv_stop_hb(srv_path);
1550 
1551 	for (i = 0; i < srv_path->s.con_num; i++) {
1552 		if (!srv_path->s.con[i])
1553 			continue;
1554 		con = to_srv_con(srv_path->s.con[i]);
1555 		rdma_disconnect(con->c.cm_id);
1556 		ib_drain_qp(con->c.qp);
1557 	}
1558 
1559 	/*
1560 	 * Degrade ref count to the usual model with a single shared
1561 	 * atomic_t counter
1562 	 */
1563 	percpu_ref_kill(&srv_path->ids_inflight_ref);
1564 
1565 	/* Wait for all completion */
1566 	wait_for_completion(&srv_path->complete_done);
1567 
1568 	rtrs_srv_destroy_path_files(srv_path);
1569 
1570 	/* Notify upper layer if we are the last path */
1571 	rtrs_srv_path_down(srv_path);
1572 
1573 	unmap_cont_bufs(srv_path);
1574 	rtrs_srv_free_ops_ids(srv_path);
1575 
1576 	for (i = 0; i < srv_path->s.con_num; i++) {
1577 		if (!srv_path->s.con[i])
1578 			continue;
1579 		con = to_srv_con(srv_path->s.con[i]);
1580 		rtrs_cq_qp_destroy(&con->c);
1581 		rdma_destroy_id(con->c.cm_id);
1582 		kfree(con);
1583 	}
1584 	rtrs_ib_dev_put(srv_path->s.dev);
1585 
1586 	del_path_from_srv(srv_path);
1587 	put_srv(srv_path->srv);
1588 	srv_path->srv = NULL;
1589 	rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSED);
1590 
1591 	kfree(srv_path->dma_addr);
1592 	kfree(srv_path->s.con);
1593 	free_path(srv_path);
1594 }
1595 
1596 static int rtrs_rdma_do_accept(struct rtrs_srv_path *srv_path,
1597 			       struct rdma_cm_id *cm_id)
1598 {
1599 	struct rtrs_srv_sess *srv = srv_path->srv;
1600 	struct rtrs_msg_conn_rsp msg;
1601 	struct rdma_conn_param param;
1602 	int err;
1603 
1604 	param = (struct rdma_conn_param) {
1605 		.rnr_retry_count = 7,
1606 		.private_data = &msg,
1607 		.private_data_len = sizeof(msg),
1608 	};
1609 
1610 	msg = (struct rtrs_msg_conn_rsp) {
1611 		.magic = cpu_to_le16(RTRS_MAGIC),
1612 		.version = cpu_to_le16(RTRS_PROTO_VER),
1613 		.queue_depth = cpu_to_le16(srv->queue_depth),
1614 		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1615 		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1616 	};
1617 
1618 	if (always_invalidate)
1619 		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1620 
1621 	err = rdma_accept(cm_id, &param);
1622 	if (err)
1623 		pr_err("rdma_accept(), err: %d\n", err);
1624 
1625 	return err;
1626 }
1627 
1628 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1629 {
1630 	struct rtrs_msg_conn_rsp msg;
1631 	int err;
1632 
1633 	msg = (struct rtrs_msg_conn_rsp) {
1634 		.magic = cpu_to_le16(RTRS_MAGIC),
1635 		.version = cpu_to_le16(RTRS_PROTO_VER),
1636 		.errno = cpu_to_le16(errno),
1637 	};
1638 
1639 	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1640 	if (err)
1641 		pr_err("rdma_reject(), err: %d\n", err);
1642 
1643 	/* Bounce errno back */
1644 	return errno;
1645 }
1646 
1647 static struct rtrs_srv_path *
1648 __find_path(struct rtrs_srv_sess *srv, const uuid_t *sess_uuid)
1649 {
1650 	struct rtrs_srv_path *srv_path;
1651 
1652 	list_for_each_entry(srv_path, &srv->paths_list, s.entry) {
1653 		if (uuid_equal(&srv_path->s.uuid, sess_uuid))
1654 			return srv_path;
1655 	}
1656 
1657 	return NULL;
1658 }
1659 
1660 static int create_con(struct rtrs_srv_path *srv_path,
1661 		      struct rdma_cm_id *cm_id,
1662 		      unsigned int cid)
1663 {
1664 	struct rtrs_srv_sess *srv = srv_path->srv;
1665 	struct rtrs_path *s = &srv_path->s;
1666 	struct rtrs_srv_con *con;
1667 
1668 	u32 cq_num, max_send_wr, max_recv_wr, wr_limit;
1669 	int err, cq_vector;
1670 
1671 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1672 	if (!con) {
1673 		err = -ENOMEM;
1674 		goto err;
1675 	}
1676 
1677 	spin_lock_init(&con->rsp_wr_wait_lock);
1678 	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1679 	con->c.cm_id = cm_id;
1680 	con->c.path = &srv_path->s;
1681 	con->c.cid = cid;
1682 	atomic_set(&con->c.wr_cnt, 1);
1683 	wr_limit = srv_path->s.dev->ib_dev->attrs.max_qp_wr;
1684 
1685 	if (con->c.cid == 0) {
1686 		/*
1687 		 * All receive and all send (each requiring invalidate)
1688 		 * + 2 for drain and heartbeat
1689 		 */
1690 		max_send_wr = min_t(int, wr_limit,
1691 				    SERVICE_CON_QUEUE_DEPTH * 2 + 2);
1692 		max_recv_wr = max_send_wr;
1693 		s->signal_interval = min_not_zero(srv->queue_depth,
1694 						  (size_t)SERVICE_CON_QUEUE_DEPTH);
1695 	} else {
1696 		/* when always_invlaidate enalbed, we need linv+rinv+mr+imm */
1697 		if (always_invalidate)
1698 			max_send_wr =
1699 				min_t(int, wr_limit,
1700 				      srv->queue_depth * (1 + 4) + 1);
1701 		else
1702 			max_send_wr =
1703 				min_t(int, wr_limit,
1704 				      srv->queue_depth * (1 + 2) + 1);
1705 
1706 		max_recv_wr = srv->queue_depth + 1;
1707 	}
1708 	cq_num = max_send_wr + max_recv_wr;
1709 	atomic_set(&con->c.sq_wr_avail, max_send_wr);
1710 	cq_vector = rtrs_srv_get_next_cq_vector(srv_path);
1711 
1712 	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1713 	err = rtrs_cq_qp_create(&srv_path->s, &con->c, 1, cq_vector, cq_num,
1714 				 max_send_wr, max_recv_wr,
1715 				 IB_POLL_WORKQUEUE);
1716 	if (err) {
1717 		rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1718 		goto free_con;
1719 	}
1720 	if (con->c.cid == 0) {
1721 		err = post_recv_info_req(con);
1722 		if (err)
1723 			goto free_cqqp;
1724 	}
1725 	WARN_ON(srv_path->s.con[cid]);
1726 	srv_path->s.con[cid] = &con->c;
1727 
1728 	/*
1729 	 * Change context from server to current connection.  The other
1730 	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1731 	 */
1732 	cm_id->context = &con->c;
1733 
1734 	return 0;
1735 
1736 free_cqqp:
1737 	rtrs_cq_qp_destroy(&con->c);
1738 free_con:
1739 	kfree(con);
1740 
1741 err:
1742 	return err;
1743 }
1744 
1745 static struct rtrs_srv_path *__alloc_path(struct rtrs_srv_sess *srv,
1746 					   struct rdma_cm_id *cm_id,
1747 					   unsigned int con_num,
1748 					   unsigned int recon_cnt,
1749 					   const uuid_t *uuid)
1750 {
1751 	struct rtrs_srv_path *srv_path;
1752 	int err = -ENOMEM;
1753 	char str[NAME_MAX];
1754 	struct rtrs_addr path;
1755 
1756 	if (srv->paths_num >= MAX_PATHS_NUM) {
1757 		err = -ECONNRESET;
1758 		goto err;
1759 	}
1760 	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1761 		err = -EEXIST;
1762 		pr_err("Path with same addr exists\n");
1763 		goto err;
1764 	}
1765 	srv_path = kzalloc(sizeof(*srv_path), GFP_KERNEL);
1766 	if (!srv_path)
1767 		goto err;
1768 
1769 	srv_path->stats = kzalloc(sizeof(*srv_path->stats), GFP_KERNEL);
1770 	if (!srv_path->stats)
1771 		goto err_free_sess;
1772 
1773 	srv_path->stats->rdma_stats = alloc_percpu(struct rtrs_srv_stats_rdma_stats);
1774 	if (!srv_path->stats->rdma_stats)
1775 		goto err_free_stats;
1776 
1777 	srv_path->stats->srv_path = srv_path;
1778 
1779 	srv_path->dma_addr = kcalloc(srv->queue_depth,
1780 				     sizeof(*srv_path->dma_addr),
1781 				     GFP_KERNEL);
1782 	if (!srv_path->dma_addr)
1783 		goto err_free_percpu;
1784 
1785 	srv_path->s.con = kcalloc(con_num, sizeof(*srv_path->s.con),
1786 				  GFP_KERNEL);
1787 	if (!srv_path->s.con)
1788 		goto err_free_dma_addr;
1789 
1790 	srv_path->state = RTRS_SRV_CONNECTING;
1791 	srv_path->srv = srv;
1792 	srv_path->cur_cq_vector = -1;
1793 	srv_path->s.dst_addr = cm_id->route.addr.dst_addr;
1794 	srv_path->s.src_addr = cm_id->route.addr.src_addr;
1795 
1796 	/* temporary until receiving session-name from client */
1797 	path.src = &srv_path->s.src_addr;
1798 	path.dst = &srv_path->s.dst_addr;
1799 	rtrs_addr_to_str(&path, str, sizeof(str));
1800 	strscpy(srv_path->s.sessname, str, sizeof(srv_path->s.sessname));
1801 
1802 	srv_path->s.con_num = con_num;
1803 	srv_path->s.irq_con_num = con_num;
1804 	srv_path->s.recon_cnt = recon_cnt;
1805 	uuid_copy(&srv_path->s.uuid, uuid);
1806 	spin_lock_init(&srv_path->state_lock);
1807 	INIT_WORK(&srv_path->close_work, rtrs_srv_close_work);
1808 	rtrs_srv_init_hb(srv_path);
1809 
1810 	srv_path->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1811 	if (!srv_path->s.dev) {
1812 		err = -ENOMEM;
1813 		goto err_free_con;
1814 	}
1815 	err = map_cont_bufs(srv_path);
1816 	if (err)
1817 		goto err_put_dev;
1818 
1819 	err = rtrs_srv_alloc_ops_ids(srv_path);
1820 	if (err)
1821 		goto err_unmap_bufs;
1822 
1823 	__add_path_to_srv(srv, srv_path);
1824 
1825 	return srv_path;
1826 
1827 err_unmap_bufs:
1828 	unmap_cont_bufs(srv_path);
1829 err_put_dev:
1830 	rtrs_ib_dev_put(srv_path->s.dev);
1831 err_free_con:
1832 	kfree(srv_path->s.con);
1833 err_free_dma_addr:
1834 	kfree(srv_path->dma_addr);
1835 err_free_percpu:
1836 	free_percpu(srv_path->stats->rdma_stats);
1837 err_free_stats:
1838 	kfree(srv_path->stats);
1839 err_free_sess:
1840 	kfree(srv_path);
1841 err:
1842 	return ERR_PTR(err);
1843 }
1844 
1845 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1846 			      const struct rtrs_msg_conn_req *msg,
1847 			      size_t len)
1848 {
1849 	struct rtrs_srv_ctx *ctx = cm_id->context;
1850 	struct rtrs_srv_path *srv_path;
1851 	struct rtrs_srv_sess *srv;
1852 
1853 	u16 version, con_num, cid;
1854 	u16 recon_cnt;
1855 	int err = -ECONNRESET;
1856 
1857 	if (len < sizeof(*msg)) {
1858 		pr_err("Invalid RTRS connection request\n");
1859 		goto reject_w_err;
1860 	}
1861 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1862 		pr_err("Invalid RTRS magic\n");
1863 		goto reject_w_err;
1864 	}
1865 	version = le16_to_cpu(msg->version);
1866 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1867 		pr_err("Unsupported major RTRS version: %d, expected %d\n",
1868 		       version >> 8, RTRS_PROTO_VER_MAJOR);
1869 		goto reject_w_err;
1870 	}
1871 	con_num = le16_to_cpu(msg->cid_num);
1872 	if (con_num > 4096) {
1873 		/* Sanity check */
1874 		pr_err("Too many connections requested: %d\n", con_num);
1875 		goto reject_w_err;
1876 	}
1877 	cid = le16_to_cpu(msg->cid);
1878 	if (cid >= con_num) {
1879 		/* Sanity check */
1880 		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1881 		goto reject_w_err;
1882 	}
1883 	recon_cnt = le16_to_cpu(msg->recon_cnt);
1884 	srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn);
1885 	if (IS_ERR(srv)) {
1886 		err = PTR_ERR(srv);
1887 		pr_err("get_or_create_srv(), error %d\n", err);
1888 		goto reject_w_err;
1889 	}
1890 	mutex_lock(&srv->paths_mutex);
1891 	srv_path = __find_path(srv, &msg->sess_uuid);
1892 	if (srv_path) {
1893 		struct rtrs_path *s = &srv_path->s;
1894 
1895 		/* Session already holds a reference */
1896 		put_srv(srv);
1897 
1898 		if (srv_path->state != RTRS_SRV_CONNECTING) {
1899 			rtrs_err(s, "Session in wrong state: %s\n",
1900 				  rtrs_srv_state_str(srv_path->state));
1901 			mutex_unlock(&srv->paths_mutex);
1902 			goto reject_w_err;
1903 		}
1904 		/*
1905 		 * Sanity checks
1906 		 */
1907 		if (con_num != s->con_num || cid >= s->con_num) {
1908 			rtrs_err(s, "Incorrect request: %d, %d\n",
1909 				  cid, con_num);
1910 			mutex_unlock(&srv->paths_mutex);
1911 			goto reject_w_err;
1912 		}
1913 		if (s->con[cid]) {
1914 			rtrs_err(s, "Connection already exists: %d\n",
1915 				  cid);
1916 			mutex_unlock(&srv->paths_mutex);
1917 			goto reject_w_err;
1918 		}
1919 	} else {
1920 		srv_path = __alloc_path(srv, cm_id, con_num, recon_cnt,
1921 				    &msg->sess_uuid);
1922 		if (IS_ERR(srv_path)) {
1923 			mutex_unlock(&srv->paths_mutex);
1924 			put_srv(srv);
1925 			err = PTR_ERR(srv_path);
1926 			pr_err("RTRS server session allocation failed: %d\n", err);
1927 			goto reject_w_err;
1928 		}
1929 	}
1930 	err = create_con(srv_path, cm_id, cid);
1931 	if (err) {
1932 		rtrs_err((&srv_path->s), "create_con(), error %d\n", err);
1933 		rtrs_rdma_do_reject(cm_id, err);
1934 		/*
1935 		 * Since session has other connections we follow normal way
1936 		 * through workqueue, but still return an error to tell cma.c
1937 		 * to call rdma_destroy_id() for current connection.
1938 		 */
1939 		goto close_and_return_err;
1940 	}
1941 	err = rtrs_rdma_do_accept(srv_path, cm_id);
1942 	if (err) {
1943 		rtrs_err((&srv_path->s), "rtrs_rdma_do_accept(), error %d\n", err);
1944 		rtrs_rdma_do_reject(cm_id, err);
1945 		/*
1946 		 * Since current connection was successfully added to the
1947 		 * session we follow normal way through workqueue to close the
1948 		 * session, thus return 0 to tell cma.c we call
1949 		 * rdma_destroy_id() ourselves.
1950 		 */
1951 		err = 0;
1952 		goto close_and_return_err;
1953 	}
1954 	mutex_unlock(&srv->paths_mutex);
1955 
1956 	return 0;
1957 
1958 reject_w_err:
1959 	return rtrs_rdma_do_reject(cm_id, err);
1960 
1961 close_and_return_err:
1962 	mutex_unlock(&srv->paths_mutex);
1963 	close_path(srv_path);
1964 
1965 	return err;
1966 }
1967 
1968 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1969 				     struct rdma_cm_event *ev)
1970 {
1971 	struct rtrs_srv_path *srv_path = NULL;
1972 	struct rtrs_path *s = NULL;
1973 	struct rtrs_con *c = NULL;
1974 
1975 	if (ev->event == RDMA_CM_EVENT_CONNECT_REQUEST)
1976 		/*
1977 		 * In case of error cma.c will destroy cm_id,
1978 		 * see cma_process_remove()
1979 		 */
1980 		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1981 					  ev->param.conn.private_data_len);
1982 
1983 	c = cm_id->context;
1984 	s = c->path;
1985 	srv_path = to_srv_path(s);
1986 
1987 	switch (ev->event) {
1988 	case RDMA_CM_EVENT_ESTABLISHED:
1989 		/* Nothing here */
1990 		break;
1991 	case RDMA_CM_EVENT_REJECTED:
1992 	case RDMA_CM_EVENT_CONNECT_ERROR:
1993 	case RDMA_CM_EVENT_UNREACHABLE:
1994 		rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1995 			  rdma_event_msg(ev->event), ev->status);
1996 		fallthrough;
1997 	case RDMA_CM_EVENT_DISCONNECTED:
1998 	case RDMA_CM_EVENT_ADDR_CHANGE:
1999 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2000 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
2001 		close_path(srv_path);
2002 		break;
2003 	default:
2004 		pr_err("Ignoring unexpected CM event %s, err %d\n",
2005 		       rdma_event_msg(ev->event), ev->status);
2006 		break;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
2013 					    struct sockaddr *addr,
2014 					    enum rdma_ucm_port_space ps)
2015 {
2016 	struct rdma_cm_id *cm_id;
2017 	int ret;
2018 
2019 	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
2020 			       ctx, ps, IB_QPT_RC);
2021 	if (IS_ERR(cm_id)) {
2022 		ret = PTR_ERR(cm_id);
2023 		pr_err("Creating id for RDMA connection failed, err: %d\n",
2024 		       ret);
2025 		goto err_out;
2026 	}
2027 	ret = rdma_bind_addr(cm_id, addr);
2028 	if (ret) {
2029 		pr_err("Binding RDMA address failed, err: %d\n", ret);
2030 		goto err_cm;
2031 	}
2032 	ret = rdma_listen(cm_id, 64);
2033 	if (ret) {
2034 		pr_err("Listening on RDMA connection failed, err: %d\n",
2035 		       ret);
2036 		goto err_cm;
2037 	}
2038 
2039 	return cm_id;
2040 
2041 err_cm:
2042 	rdma_destroy_id(cm_id);
2043 err_out:
2044 
2045 	return ERR_PTR(ret);
2046 }
2047 
2048 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
2049 {
2050 	struct sockaddr_in6 sin = {
2051 		.sin6_family	= AF_INET6,
2052 		.sin6_addr	= IN6ADDR_ANY_INIT,
2053 		.sin6_port	= htons(port),
2054 	};
2055 	struct sockaddr_ib sib = {
2056 		.sib_family			= AF_IB,
2057 		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
2058 		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
2059 		.sib_pkey	= cpu_to_be16(0xffff),
2060 	};
2061 	struct rdma_cm_id *cm_ip, *cm_ib;
2062 	int ret;
2063 
2064 	/*
2065 	 * We accept both IPoIB and IB connections, so we need to keep
2066 	 * two cm id's, one for each socket type and port space.
2067 	 * If the cm initialization of one of the id's fails, we abort
2068 	 * everything.
2069 	 */
2070 	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
2071 	if (IS_ERR(cm_ip))
2072 		return PTR_ERR(cm_ip);
2073 
2074 	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
2075 	if (IS_ERR(cm_ib)) {
2076 		ret = PTR_ERR(cm_ib);
2077 		goto free_cm_ip;
2078 	}
2079 
2080 	ctx->cm_id_ip = cm_ip;
2081 	ctx->cm_id_ib = cm_ib;
2082 
2083 	return 0;
2084 
2085 free_cm_ip:
2086 	rdma_destroy_id(cm_ip);
2087 
2088 	return ret;
2089 }
2090 
2091 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
2092 {
2093 	struct rtrs_srv_ctx *ctx;
2094 
2095 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2096 	if (!ctx)
2097 		return NULL;
2098 
2099 	ctx->ops = *ops;
2100 	mutex_init(&ctx->srv_mutex);
2101 	INIT_LIST_HEAD(&ctx->srv_list);
2102 
2103 	return ctx;
2104 }
2105 
2106 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2107 {
2108 	WARN_ON(!list_empty(&ctx->srv_list));
2109 	mutex_destroy(&ctx->srv_mutex);
2110 	kfree(ctx);
2111 }
2112 
2113 static int rtrs_srv_add_one(struct ib_device *device)
2114 {
2115 	struct rtrs_srv_ctx *ctx;
2116 	int ret = 0;
2117 
2118 	mutex_lock(&ib_ctx.ib_dev_mutex);
2119 	if (ib_ctx.ib_dev_count)
2120 		goto out;
2121 
2122 	/*
2123 	 * Since our CM IDs are NOT bound to any ib device we will create them
2124 	 * only once
2125 	 */
2126 	ctx = ib_ctx.srv_ctx;
2127 	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2128 	if (ret) {
2129 		/*
2130 		 * We errored out here.
2131 		 * According to the ib code, if we encounter an error here then the
2132 		 * error code is ignored, and no more calls to our ops are made.
2133 		 */
2134 		pr_err("Failed to initialize RDMA connection");
2135 		goto err_out;
2136 	}
2137 
2138 out:
2139 	/*
2140 	 * Keep a track on the number of ib devices added
2141 	 */
2142 	ib_ctx.ib_dev_count++;
2143 
2144 err_out:
2145 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2146 	return ret;
2147 }
2148 
2149 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2150 {
2151 	struct rtrs_srv_ctx *ctx;
2152 
2153 	mutex_lock(&ib_ctx.ib_dev_mutex);
2154 	ib_ctx.ib_dev_count--;
2155 
2156 	if (ib_ctx.ib_dev_count)
2157 		goto out;
2158 
2159 	/*
2160 	 * Since our CM IDs are NOT bound to any ib device we will remove them
2161 	 * only once, when the last device is removed
2162 	 */
2163 	ctx = ib_ctx.srv_ctx;
2164 	rdma_destroy_id(ctx->cm_id_ip);
2165 	rdma_destroy_id(ctx->cm_id_ib);
2166 
2167 out:
2168 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2169 }
2170 
2171 static struct ib_client rtrs_srv_client = {
2172 	.name	= "rtrs_server",
2173 	.add	= rtrs_srv_add_one,
2174 	.remove	= rtrs_srv_remove_one
2175 };
2176 
2177 /**
2178  * rtrs_srv_open() - open RTRS server context
2179  * @ops:		callback functions
2180  * @port:               port to listen on
2181  *
2182  * Creates server context with specified callbacks.
2183  *
2184  * Return a valid pointer on success otherwise PTR_ERR.
2185  */
2186 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2187 {
2188 	struct rtrs_srv_ctx *ctx;
2189 	int err;
2190 
2191 	ctx = alloc_srv_ctx(ops);
2192 	if (!ctx)
2193 		return ERR_PTR(-ENOMEM);
2194 
2195 	mutex_init(&ib_ctx.ib_dev_mutex);
2196 	ib_ctx.srv_ctx = ctx;
2197 	ib_ctx.port = port;
2198 
2199 	err = ib_register_client(&rtrs_srv_client);
2200 	if (err) {
2201 		free_srv_ctx(ctx);
2202 		return ERR_PTR(err);
2203 	}
2204 
2205 	return ctx;
2206 }
2207 EXPORT_SYMBOL(rtrs_srv_open);
2208 
2209 static void close_paths(struct rtrs_srv_sess *srv)
2210 {
2211 	struct rtrs_srv_path *srv_path;
2212 
2213 	mutex_lock(&srv->paths_mutex);
2214 	list_for_each_entry(srv_path, &srv->paths_list, s.entry)
2215 		close_path(srv_path);
2216 	mutex_unlock(&srv->paths_mutex);
2217 }
2218 
2219 static void close_ctx(struct rtrs_srv_ctx *ctx)
2220 {
2221 	struct rtrs_srv_sess *srv;
2222 
2223 	mutex_lock(&ctx->srv_mutex);
2224 	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2225 		close_paths(srv);
2226 	mutex_unlock(&ctx->srv_mutex);
2227 	flush_workqueue(rtrs_wq);
2228 }
2229 
2230 /**
2231  * rtrs_srv_close() - close RTRS server context
2232  * @ctx: pointer to server context
2233  *
2234  * Closes RTRS server context with all client sessions.
2235  */
2236 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2237 {
2238 	ib_unregister_client(&rtrs_srv_client);
2239 	mutex_destroy(&ib_ctx.ib_dev_mutex);
2240 	close_ctx(ctx);
2241 	free_srv_ctx(ctx);
2242 }
2243 EXPORT_SYMBOL(rtrs_srv_close);
2244 
2245 static int check_module_params(void)
2246 {
2247 	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2248 		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2249 		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2250 		return -EINVAL;
2251 	}
2252 	if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) {
2253 		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2254 		       max_chunk_size, MIN_CHUNK_SIZE);
2255 		return -EINVAL;
2256 	}
2257 
2258 	/*
2259 	 * Check if IB immediate data size is enough to hold the mem_id and the
2260 	 * offset inside the memory chunk
2261 	 */
2262 	if ((ilog2(sess_queue_depth - 1) + 1) +
2263 	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2264 		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2265 		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2266 		return -EINVAL;
2267 	}
2268 
2269 	return 0;
2270 }
2271 
2272 static int __init rtrs_server_init(void)
2273 {
2274 	int err;
2275 
2276 	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2277 		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2278 		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2279 		sess_queue_depth, always_invalidate);
2280 
2281 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2282 
2283 	err = check_module_params();
2284 	if (err) {
2285 		pr_err("Failed to load module, invalid module parameters, err: %d\n",
2286 		       err);
2287 		return err;
2288 	}
2289 	err = class_register(&rtrs_dev_class);
2290 	if (err)
2291 		goto out_err;
2292 
2293 	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2294 	if (!rtrs_wq) {
2295 		err = -ENOMEM;
2296 		goto out_dev_class;
2297 	}
2298 
2299 	return 0;
2300 
2301 out_dev_class:
2302 	class_unregister(&rtrs_dev_class);
2303 out_err:
2304 	return err;
2305 }
2306 
2307 static void __exit rtrs_server_exit(void)
2308 {
2309 	destroy_workqueue(rtrs_wq);
2310 	class_unregister(&rtrs_dev_class);
2311 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2312 }
2313 
2314 module_init(rtrs_server_init);
2315 module_exit(rtrs_server_exit);
2316