xref: /linux/drivers/infiniband/ulp/rtrs/rtrs-srv.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9 
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/mempool.h>
15 
16 #include "rtrs-srv.h"
17 #include "rtrs-log.h"
18 #include <rdma/ib_cm.h>
19 #include <rdma/ib_verbs.h>
20 
21 MODULE_DESCRIPTION("RDMA Transport Server");
22 MODULE_LICENSE("GPL");
23 
24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */
25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10)
26 #define DEFAULT_SESS_QUEUE_DEPTH 512
27 #define MAX_HDR_SIZE PAGE_SIZE
28 
29 /* We guarantee to serve 10 paths at least */
30 #define CHUNK_POOL_SZ 10
31 
32 static struct rtrs_rdma_dev_pd dev_pd;
33 static mempool_t *chunk_pool;
34 struct class *rtrs_dev_class;
35 static struct rtrs_srv_ib_ctx ib_ctx;
36 
37 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE;
38 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH;
39 
40 static bool always_invalidate = true;
41 module_param(always_invalidate, bool, 0444);
42 MODULE_PARM_DESC(always_invalidate,
43 		 "Invalidate memory registration for contiguous memory regions before accessing.");
44 
45 module_param_named(max_chunk_size, max_chunk_size, int, 0444);
46 MODULE_PARM_DESC(max_chunk_size,
47 		 "Max size for each IO request, when change the unit is in byte (default: "
48 		 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)");
49 
50 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444);
51 MODULE_PARM_DESC(sess_queue_depth,
52 		 "Number of buffers for pending I/O requests to allocate per session. Maximum: "
53 		 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: "
54 		 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")");
55 
56 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL };
57 
58 static struct workqueue_struct *rtrs_wq;
59 
60 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c)
61 {
62 	return container_of(c, struct rtrs_srv_con, c);
63 }
64 
65 static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s)
66 {
67 	return container_of(s, struct rtrs_srv_sess, s);
68 }
69 
70 static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess,
71 				     enum rtrs_srv_state new_state)
72 {
73 	enum rtrs_srv_state old_state;
74 	bool changed = false;
75 
76 	lockdep_assert_held(&sess->state_lock);
77 	old_state = sess->state;
78 	switch (new_state) {
79 	case RTRS_SRV_CONNECTED:
80 		switch (old_state) {
81 		case RTRS_SRV_CONNECTING:
82 			changed = true;
83 			fallthrough;
84 		default:
85 			break;
86 		}
87 		break;
88 	case RTRS_SRV_CLOSING:
89 		switch (old_state) {
90 		case RTRS_SRV_CONNECTING:
91 		case RTRS_SRV_CONNECTED:
92 			changed = true;
93 			fallthrough;
94 		default:
95 			break;
96 		}
97 		break;
98 	case RTRS_SRV_CLOSED:
99 		switch (old_state) {
100 		case RTRS_SRV_CLOSING:
101 			changed = true;
102 			fallthrough;
103 		default:
104 			break;
105 		}
106 		break;
107 	default:
108 		break;
109 	}
110 	if (changed)
111 		sess->state = new_state;
112 
113 	return changed;
114 }
115 
116 static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess,
117 				   enum rtrs_srv_state new_state)
118 {
119 	bool changed;
120 
121 	spin_lock_irq(&sess->state_lock);
122 	changed = __rtrs_srv_change_state(sess, new_state);
123 	spin_unlock_irq(&sess->state_lock);
124 
125 	return changed;
126 }
127 
128 static void free_id(struct rtrs_srv_op *id)
129 {
130 	if (!id)
131 		return;
132 	kfree(id);
133 }
134 
135 static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess)
136 {
137 	struct rtrs_srv *srv = sess->srv;
138 	int i;
139 
140 	WARN_ON(atomic_read(&sess->ids_inflight));
141 	if (sess->ops_ids) {
142 		for (i = 0; i < srv->queue_depth; i++)
143 			free_id(sess->ops_ids[i]);
144 		kfree(sess->ops_ids);
145 		sess->ops_ids = NULL;
146 	}
147 }
148 
149 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
150 
151 static struct ib_cqe io_comp_cqe = {
152 	.done = rtrs_srv_rdma_done
153 };
154 
155 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess)
156 {
157 	struct rtrs_srv *srv = sess->srv;
158 	struct rtrs_srv_op *id;
159 	int i;
160 
161 	sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids),
162 				GFP_KERNEL);
163 	if (!sess->ops_ids)
164 		goto err;
165 
166 	for (i = 0; i < srv->queue_depth; ++i) {
167 		id = kzalloc(sizeof(*id), GFP_KERNEL);
168 		if (!id)
169 			goto err;
170 
171 		sess->ops_ids[i] = id;
172 	}
173 	init_waitqueue_head(&sess->ids_waitq);
174 	atomic_set(&sess->ids_inflight, 0);
175 
176 	return 0;
177 
178 err:
179 	rtrs_srv_free_ops_ids(sess);
180 	return -ENOMEM;
181 }
182 
183 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess)
184 {
185 	atomic_inc(&sess->ids_inflight);
186 }
187 
188 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess)
189 {
190 	if (atomic_dec_and_test(&sess->ids_inflight))
191 		wake_up(&sess->ids_waitq);
192 }
193 
194 static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess)
195 {
196 	wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight));
197 }
198 
199 
200 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc)
201 {
202 	struct rtrs_srv_con *con = cq->cq_context;
203 	struct rtrs_sess *s = con->c.sess;
204 	struct rtrs_srv_sess *sess = to_srv_sess(s);
205 
206 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
207 		rtrs_err(s, "REG MR failed: %s\n",
208 			  ib_wc_status_msg(wc->status));
209 		close_sess(sess);
210 		return;
211 	}
212 }
213 
214 static struct ib_cqe local_reg_cqe = {
215 	.done = rtrs_srv_reg_mr_done
216 };
217 
218 static int rdma_write_sg(struct rtrs_srv_op *id)
219 {
220 	struct rtrs_sess *s = id->con->c.sess;
221 	struct rtrs_srv_sess *sess = to_srv_sess(s);
222 	dma_addr_t dma_addr = sess->dma_addr[id->msg_id];
223 	struct rtrs_srv_mr *srv_mr;
224 	struct rtrs_srv *srv = sess->srv;
225 	struct ib_send_wr inv_wr, imm_wr;
226 	struct ib_rdma_wr *wr = NULL;
227 	enum ib_send_flags flags;
228 	size_t sg_cnt;
229 	int err, offset;
230 	bool need_inval;
231 	u32 rkey = 0;
232 	struct ib_reg_wr rwr;
233 	struct ib_sge *plist;
234 	struct ib_sge list;
235 
236 	sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt);
237 	need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F;
238 	if (unlikely(sg_cnt != 1))
239 		return -EINVAL;
240 
241 	offset = 0;
242 
243 	wr		= &id->tx_wr;
244 	plist		= &id->tx_sg;
245 	plist->addr	= dma_addr + offset;
246 	plist->length	= le32_to_cpu(id->rd_msg->desc[0].len);
247 
248 	/* WR will fail with length error
249 	 * if this is 0
250 	 */
251 	if (unlikely(plist->length == 0)) {
252 		rtrs_err(s, "Invalid RDMA-Write sg list length 0\n");
253 		return -EINVAL;
254 	}
255 
256 	plist->lkey = sess->s.dev->ib_pd->local_dma_lkey;
257 	offset += plist->length;
258 
259 	wr->wr.sg_list	= plist;
260 	wr->wr.num_sge	= 1;
261 	wr->remote_addr	= le64_to_cpu(id->rd_msg->desc[0].addr);
262 	wr->rkey	= le32_to_cpu(id->rd_msg->desc[0].key);
263 	if (rkey == 0)
264 		rkey = wr->rkey;
265 	else
266 		/* Only one key is actually used */
267 		WARN_ON_ONCE(rkey != wr->rkey);
268 
269 	wr->wr.opcode = IB_WR_RDMA_WRITE;
270 	wr->wr.ex.imm_data = 0;
271 	wr->wr.send_flags  = 0;
272 
273 	if (need_inval && always_invalidate) {
274 		wr->wr.next = &rwr.wr;
275 		rwr.wr.next = &inv_wr;
276 		inv_wr.next = &imm_wr;
277 	} else if (always_invalidate) {
278 		wr->wr.next = &rwr.wr;
279 		rwr.wr.next = &imm_wr;
280 	} else if (need_inval) {
281 		wr->wr.next = &inv_wr;
282 		inv_wr.next = &imm_wr;
283 	} else {
284 		wr->wr.next = &imm_wr;
285 	}
286 	/*
287 	 * From time to time we have to post signaled sends,
288 	 * or send queue will fill up and only QP reset can help.
289 	 */
290 	flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ?
291 		0 : IB_SEND_SIGNALED;
292 
293 	if (need_inval) {
294 		inv_wr.sg_list = NULL;
295 		inv_wr.num_sge = 0;
296 		inv_wr.opcode = IB_WR_SEND_WITH_INV;
297 		inv_wr.send_flags = 0;
298 		inv_wr.ex.invalidate_rkey = rkey;
299 	}
300 
301 	imm_wr.next = NULL;
302 	if (always_invalidate) {
303 		struct rtrs_msg_rkey_rsp *msg;
304 
305 		srv_mr = &sess->mrs[id->msg_id];
306 		rwr.wr.opcode = IB_WR_REG_MR;
307 		rwr.wr.num_sge = 0;
308 		rwr.mr = srv_mr->mr;
309 		rwr.wr.send_flags = 0;
310 		rwr.key = srv_mr->mr->rkey;
311 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
312 			      IB_ACCESS_REMOTE_WRITE);
313 		msg = srv_mr->iu->buf;
314 		msg->buf_id = cpu_to_le16(id->msg_id);
315 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
316 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
317 
318 		list.addr   = srv_mr->iu->dma_addr;
319 		list.length = sizeof(*msg);
320 		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
321 		imm_wr.sg_list = &list;
322 		imm_wr.num_sge = 1;
323 		imm_wr.opcode = IB_WR_SEND_WITH_IMM;
324 		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
325 					      srv_mr->iu->dma_addr,
326 					      srv_mr->iu->size, DMA_TO_DEVICE);
327 	} else {
328 		imm_wr.sg_list = NULL;
329 		imm_wr.num_sge = 0;
330 		imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
331 	}
332 	imm_wr.send_flags = flags;
333 	imm_wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id,
334 							     0, need_inval));
335 
336 	imm_wr.wr_cqe   = &io_comp_cqe;
337 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr,
338 				      offset, DMA_BIDIRECTIONAL);
339 
340 	err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL);
341 	if (unlikely(err))
342 		rtrs_err(s,
343 			  "Posting RDMA-Write-Request to QP failed, err: %d\n",
344 			  err);
345 
346 	return err;
347 }
348 
349 /**
350  * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE
351  *                      requests or on successful WRITE request.
352  * @con:	the connection to send back result
353  * @id:		the id associated with the IO
354  * @errno:	the error number of the IO.
355  *
356  * Return 0 on success, errno otherwise.
357  */
358 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id,
359 			    int errno)
360 {
361 	struct rtrs_sess *s = con->c.sess;
362 	struct rtrs_srv_sess *sess = to_srv_sess(s);
363 	struct ib_send_wr inv_wr, imm_wr, *wr = NULL;
364 	struct ib_reg_wr rwr;
365 	struct rtrs_srv *srv = sess->srv;
366 	struct rtrs_srv_mr *srv_mr;
367 	bool need_inval = false;
368 	enum ib_send_flags flags;
369 	u32 imm;
370 	int err;
371 
372 	if (id->dir == READ) {
373 		struct rtrs_msg_rdma_read *rd_msg = id->rd_msg;
374 		size_t sg_cnt;
375 
376 		need_inval = le16_to_cpu(rd_msg->flags) &
377 				RTRS_MSG_NEED_INVAL_F;
378 		sg_cnt = le16_to_cpu(rd_msg->sg_cnt);
379 
380 		if (need_inval) {
381 			if (likely(sg_cnt)) {
382 				inv_wr.sg_list = NULL;
383 				inv_wr.num_sge = 0;
384 				inv_wr.opcode = IB_WR_SEND_WITH_INV;
385 				inv_wr.send_flags = 0;
386 				/* Only one key is actually used */
387 				inv_wr.ex.invalidate_rkey =
388 					le32_to_cpu(rd_msg->desc[0].key);
389 			} else {
390 				WARN_ON_ONCE(1);
391 				need_inval = false;
392 			}
393 		}
394 	}
395 
396 	if (need_inval && always_invalidate) {
397 		wr = &inv_wr;
398 		inv_wr.next = &rwr.wr;
399 		rwr.wr.next = &imm_wr;
400 	} else if (always_invalidate) {
401 		wr = &rwr.wr;
402 		rwr.wr.next = &imm_wr;
403 	} else if (need_inval) {
404 		wr = &inv_wr;
405 		inv_wr.next = &imm_wr;
406 	} else {
407 		wr = &imm_wr;
408 	}
409 	/*
410 	 * From time to time we have to post signalled sends,
411 	 * or send queue will fill up and only QP reset can help.
412 	 */
413 	flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ?
414 		0 : IB_SEND_SIGNALED;
415 	imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval);
416 	imm_wr.next = NULL;
417 	if (always_invalidate) {
418 		struct ib_sge list;
419 		struct rtrs_msg_rkey_rsp *msg;
420 
421 		srv_mr = &sess->mrs[id->msg_id];
422 		rwr.wr.next = &imm_wr;
423 		rwr.wr.opcode = IB_WR_REG_MR;
424 		rwr.wr.num_sge = 0;
425 		rwr.wr.send_flags = 0;
426 		rwr.mr = srv_mr->mr;
427 		rwr.key = srv_mr->mr->rkey;
428 		rwr.access = (IB_ACCESS_LOCAL_WRITE |
429 			      IB_ACCESS_REMOTE_WRITE);
430 		msg = srv_mr->iu->buf;
431 		msg->buf_id = cpu_to_le16(id->msg_id);
432 		msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP);
433 		msg->rkey = cpu_to_le32(srv_mr->mr->rkey);
434 
435 		list.addr   = srv_mr->iu->dma_addr;
436 		list.length = sizeof(*msg);
437 		list.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
438 		imm_wr.sg_list = &list;
439 		imm_wr.num_sge = 1;
440 		imm_wr.opcode = IB_WR_SEND_WITH_IMM;
441 		ib_dma_sync_single_for_device(sess->s.dev->ib_dev,
442 					      srv_mr->iu->dma_addr,
443 					      srv_mr->iu->size, DMA_TO_DEVICE);
444 	} else {
445 		imm_wr.sg_list = NULL;
446 		imm_wr.num_sge = 0;
447 		imm_wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM;
448 	}
449 	imm_wr.send_flags = flags;
450 	imm_wr.wr_cqe   = &io_comp_cqe;
451 
452 	imm_wr.ex.imm_data = cpu_to_be32(imm);
453 
454 	err = ib_post_send(id->con->c.qp, wr, NULL);
455 	if (unlikely(err))
456 		rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n",
457 			     err);
458 
459 	return err;
460 }
461 
462 void close_sess(struct rtrs_srv_sess *sess)
463 {
464 	if (rtrs_srv_change_state(sess, RTRS_SRV_CLOSING))
465 		queue_work(rtrs_wq, &sess->close_work);
466 	WARN_ON(sess->state != RTRS_SRV_CLOSING);
467 }
468 
469 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state)
470 {
471 	switch (state) {
472 	case RTRS_SRV_CONNECTING:
473 		return "RTRS_SRV_CONNECTING";
474 	case RTRS_SRV_CONNECTED:
475 		return "RTRS_SRV_CONNECTED";
476 	case RTRS_SRV_CLOSING:
477 		return "RTRS_SRV_CLOSING";
478 	case RTRS_SRV_CLOSED:
479 		return "RTRS_SRV_CLOSED";
480 	default:
481 		return "UNKNOWN";
482 	}
483 }
484 
485 /**
486  * rtrs_srv_resp_rdma() - Finish an RDMA request
487  *
488  * @id:		Internal RTRS operation identifier
489  * @status:	Response Code sent to the other side for this operation.
490  *		0 = success, <=0 error
491  * Context: any
492  *
493  * Finish a RDMA operation. A message is sent to the client and the
494  * corresponding memory areas will be released.
495  */
496 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status)
497 {
498 	struct rtrs_srv_sess *sess;
499 	struct rtrs_srv_con *con;
500 	struct rtrs_sess *s;
501 	int err;
502 
503 	if (WARN_ON(!id))
504 		return true;
505 
506 	con = id->con;
507 	s = con->c.sess;
508 	sess = to_srv_sess(s);
509 
510 	id->status = status;
511 
512 	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
513 		rtrs_err_rl(s,
514 			     "Sending I/O response failed,  session is disconnected, sess state %s\n",
515 			     rtrs_srv_state_str(sess->state));
516 		goto out;
517 	}
518 	if (always_invalidate) {
519 		struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id];
520 
521 		ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey));
522 	}
523 	if (unlikely(atomic_sub_return(1,
524 				       &con->sq_wr_avail) < 0)) {
525 		pr_err("IB send queue full\n");
526 		atomic_add(1, &con->sq_wr_avail);
527 		spin_lock(&con->rsp_wr_wait_lock);
528 		list_add_tail(&id->wait_list, &con->rsp_wr_wait_list);
529 		spin_unlock(&con->rsp_wr_wait_lock);
530 		return false;
531 	}
532 
533 	if (status || id->dir == WRITE || !id->rd_msg->sg_cnt)
534 		err = send_io_resp_imm(con, id, status);
535 	else
536 		err = rdma_write_sg(id);
537 
538 	if (unlikely(err)) {
539 		rtrs_err_rl(s, "IO response failed: %d\n", err);
540 		close_sess(sess);
541 	}
542 out:
543 	rtrs_srv_put_ops_ids(sess);
544 	return true;
545 }
546 EXPORT_SYMBOL(rtrs_srv_resp_rdma);
547 
548 /**
549  * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv.
550  * @srv:	Session pointer
551  * @priv:	The private pointer that is associated with the session.
552  */
553 void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv)
554 {
555 	srv->priv = priv;
556 }
557 EXPORT_SYMBOL(rtrs_srv_set_sess_priv);
558 
559 static void unmap_cont_bufs(struct rtrs_srv_sess *sess)
560 {
561 	int i;
562 
563 	for (i = 0; i < sess->mrs_num; i++) {
564 		struct rtrs_srv_mr *srv_mr;
565 
566 		srv_mr = &sess->mrs[i];
567 		rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
568 		ib_dereg_mr(srv_mr->mr);
569 		ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl,
570 				srv_mr->sgt.nents, DMA_BIDIRECTIONAL);
571 		sg_free_table(&srv_mr->sgt);
572 	}
573 	kfree(sess->mrs);
574 }
575 
576 static int map_cont_bufs(struct rtrs_srv_sess *sess)
577 {
578 	struct rtrs_srv *srv = sess->srv;
579 	struct rtrs_sess *ss = &sess->s;
580 	int i, mri, err, mrs_num;
581 	unsigned int chunk_bits;
582 	int chunks_per_mr = 1;
583 
584 	/*
585 	 * Here we map queue_depth chunks to MR.  Firstly we have to
586 	 * figure out how many chunks can we map per MR.
587 	 */
588 	if (always_invalidate) {
589 		/*
590 		 * in order to do invalidate for each chunks of memory, we needs
591 		 * more memory regions.
592 		 */
593 		mrs_num = srv->queue_depth;
594 	} else {
595 		chunks_per_mr =
596 			sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len;
597 		mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr);
598 		chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num);
599 	}
600 
601 	sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL);
602 	if (!sess->mrs)
603 		return -ENOMEM;
604 
605 	sess->mrs_num = mrs_num;
606 
607 	for (mri = 0; mri < mrs_num; mri++) {
608 		struct rtrs_srv_mr *srv_mr = &sess->mrs[mri];
609 		struct sg_table *sgt = &srv_mr->sgt;
610 		struct scatterlist *s;
611 		struct ib_mr *mr;
612 		int nr, chunks;
613 
614 		chunks = chunks_per_mr * mri;
615 		if (!always_invalidate)
616 			chunks_per_mr = min_t(int, chunks_per_mr,
617 					      srv->queue_depth - chunks);
618 
619 		err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL);
620 		if (err)
621 			goto err;
622 
623 		for_each_sg(sgt->sgl, s, chunks_per_mr, i)
624 			sg_set_page(s, srv->chunks[chunks + i],
625 				    max_chunk_size, 0);
626 
627 		nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl,
628 				   sgt->nents, DMA_BIDIRECTIONAL);
629 		if (nr < sgt->nents) {
630 			err = nr < 0 ? nr : -EINVAL;
631 			goto free_sg;
632 		}
633 		mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
634 				 sgt->nents);
635 		if (IS_ERR(mr)) {
636 			err = PTR_ERR(mr);
637 			goto unmap_sg;
638 		}
639 		nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents,
640 				  NULL, max_chunk_size);
641 		if (nr < 0 || nr < sgt->nents) {
642 			err = nr < 0 ? nr : -EINVAL;
643 			goto dereg_mr;
644 		}
645 
646 		if (always_invalidate) {
647 			srv_mr->iu = rtrs_iu_alloc(1,
648 					sizeof(struct rtrs_msg_rkey_rsp),
649 					GFP_KERNEL, sess->s.dev->ib_dev,
650 					DMA_TO_DEVICE, rtrs_srv_rdma_done);
651 			if (!srv_mr->iu) {
652 				err = -ENOMEM;
653 				rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err);
654 				goto free_iu;
655 			}
656 		}
657 		/* Eventually dma addr for each chunk can be cached */
658 		for_each_sg(sgt->sgl, s, sgt->orig_nents, i)
659 			sess->dma_addr[chunks + i] = sg_dma_address(s);
660 
661 		ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey));
662 		srv_mr->mr = mr;
663 
664 		continue;
665 err:
666 		while (mri--) {
667 			srv_mr = &sess->mrs[mri];
668 			sgt = &srv_mr->sgt;
669 			mr = srv_mr->mr;
670 free_iu:
671 			rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1);
672 dereg_mr:
673 			ib_dereg_mr(mr);
674 unmap_sg:
675 			ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl,
676 					sgt->nents, DMA_BIDIRECTIONAL);
677 free_sg:
678 			sg_free_table(sgt);
679 		}
680 		kfree(sess->mrs);
681 
682 		return err;
683 	}
684 
685 	chunk_bits = ilog2(srv->queue_depth - 1) + 1;
686 	sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits);
687 
688 	return 0;
689 }
690 
691 static void rtrs_srv_hb_err_handler(struct rtrs_con *c)
692 {
693 	close_sess(to_srv_sess(c->sess));
694 }
695 
696 static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess)
697 {
698 	rtrs_init_hb(&sess->s, &io_comp_cqe,
699 		      RTRS_HB_INTERVAL_MS,
700 		      RTRS_HB_MISSED_MAX,
701 		      rtrs_srv_hb_err_handler,
702 		      rtrs_wq);
703 }
704 
705 static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess)
706 {
707 	rtrs_start_hb(&sess->s);
708 }
709 
710 static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess)
711 {
712 	rtrs_stop_hb(&sess->s);
713 }
714 
715 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
716 {
717 	struct rtrs_srv_con *con = cq->cq_context;
718 	struct rtrs_sess *s = con->c.sess;
719 	struct rtrs_srv_sess *sess = to_srv_sess(s);
720 	struct rtrs_iu *iu;
721 
722 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
723 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
724 
725 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
726 		rtrs_err(s, "Sess info response send failed: %s\n",
727 			  ib_wc_status_msg(wc->status));
728 		close_sess(sess);
729 		return;
730 	}
731 	WARN_ON(wc->opcode != IB_WC_SEND);
732 }
733 
734 static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess)
735 {
736 	struct rtrs_srv *srv = sess->srv;
737 	struct rtrs_srv_ctx *ctx = srv->ctx;
738 	int up;
739 
740 	mutex_lock(&srv->paths_ev_mutex);
741 	up = ++srv->paths_up;
742 	if (up == 1)
743 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL);
744 	mutex_unlock(&srv->paths_ev_mutex);
745 
746 	/* Mark session as established */
747 	sess->established = true;
748 }
749 
750 static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess)
751 {
752 	struct rtrs_srv *srv = sess->srv;
753 	struct rtrs_srv_ctx *ctx = srv->ctx;
754 
755 	if (!sess->established)
756 		return;
757 
758 	sess->established = false;
759 	mutex_lock(&srv->paths_ev_mutex);
760 	WARN_ON(!srv->paths_up);
761 	if (--srv->paths_up == 0)
762 		ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv);
763 	mutex_unlock(&srv->paths_ev_mutex);
764 }
765 
766 static int post_recv_sess(struct rtrs_srv_sess *sess);
767 
768 static int process_info_req(struct rtrs_srv_con *con,
769 			    struct rtrs_msg_info_req *msg)
770 {
771 	struct rtrs_sess *s = con->c.sess;
772 	struct rtrs_srv_sess *sess = to_srv_sess(s);
773 	struct ib_send_wr *reg_wr = NULL;
774 	struct rtrs_msg_info_rsp *rsp;
775 	struct rtrs_iu *tx_iu;
776 	struct ib_reg_wr *rwr;
777 	int mri, err;
778 	size_t tx_sz;
779 
780 	err = post_recv_sess(sess);
781 	if (unlikely(err)) {
782 		rtrs_err(s, "post_recv_sess(), err: %d\n", err);
783 		return err;
784 	}
785 	rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL);
786 	if (unlikely(!rwr))
787 		return -ENOMEM;
788 	strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname));
789 
790 	tx_sz  = sizeof(*rsp);
791 	tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num;
792 	tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
793 			       DMA_TO_DEVICE, rtrs_srv_info_rsp_done);
794 	if (unlikely(!tx_iu)) {
795 		err = -ENOMEM;
796 		goto rwr_free;
797 	}
798 
799 	rsp = tx_iu->buf;
800 	rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP);
801 	rsp->sg_cnt = cpu_to_le16(sess->mrs_num);
802 
803 	for (mri = 0; mri < sess->mrs_num; mri++) {
804 		struct ib_mr *mr = sess->mrs[mri].mr;
805 
806 		rsp->desc[mri].addr = cpu_to_le64(mr->iova);
807 		rsp->desc[mri].key  = cpu_to_le32(mr->rkey);
808 		rsp->desc[mri].len  = cpu_to_le32(mr->length);
809 
810 		/*
811 		 * Fill in reg MR request and chain them *backwards*
812 		 */
813 		rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL;
814 		rwr[mri].wr.opcode = IB_WR_REG_MR;
815 		rwr[mri].wr.wr_cqe = &local_reg_cqe;
816 		rwr[mri].wr.num_sge = 0;
817 		rwr[mri].wr.send_flags = mri ? 0 : IB_SEND_SIGNALED;
818 		rwr[mri].mr = mr;
819 		rwr[mri].key = mr->rkey;
820 		rwr[mri].access = (IB_ACCESS_LOCAL_WRITE |
821 				   IB_ACCESS_REMOTE_WRITE);
822 		reg_wr = &rwr[mri].wr;
823 	}
824 
825 	err = rtrs_srv_create_sess_files(sess);
826 	if (unlikely(err))
827 		goto iu_free;
828 	kobject_get(&sess->kobj);
829 	get_device(&sess->srv->dev);
830 	rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED);
831 	rtrs_srv_start_hb(sess);
832 
833 	/*
834 	 * We do not account number of established connections at the current
835 	 * moment, we rely on the client, which should send info request when
836 	 * all connections are successfully established.  Thus, simply notify
837 	 * listener with a proper event if we are the first path.
838 	 */
839 	rtrs_srv_sess_up(sess);
840 
841 	ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
842 				      tx_iu->size, DMA_TO_DEVICE);
843 
844 	/* Send info response */
845 	err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr);
846 	if (unlikely(err)) {
847 		rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err);
848 iu_free:
849 		rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
850 	}
851 rwr_free:
852 	kfree(rwr);
853 
854 	return err;
855 }
856 
857 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
858 {
859 	struct rtrs_srv_con *con = cq->cq_context;
860 	struct rtrs_sess *s = con->c.sess;
861 	struct rtrs_srv_sess *sess = to_srv_sess(s);
862 	struct rtrs_msg_info_req *msg;
863 	struct rtrs_iu *iu;
864 	int err;
865 
866 	WARN_ON(con->c.cid);
867 
868 	iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
869 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
870 		rtrs_err(s, "Sess info request receive failed: %s\n",
871 			  ib_wc_status_msg(wc->status));
872 		goto close;
873 	}
874 	WARN_ON(wc->opcode != IB_WC_RECV);
875 
876 	if (unlikely(wc->byte_len < sizeof(*msg))) {
877 		rtrs_err(s, "Sess info request is malformed: size %d\n",
878 			  wc->byte_len);
879 		goto close;
880 	}
881 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
882 				   iu->size, DMA_FROM_DEVICE);
883 	msg = iu->buf;
884 	if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) {
885 		rtrs_err(s, "Sess info request is malformed: type %d\n",
886 			  le16_to_cpu(msg->type));
887 		goto close;
888 	}
889 	err = process_info_req(con, msg);
890 	if (unlikely(err))
891 		goto close;
892 
893 out:
894 	rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
895 	return;
896 close:
897 	close_sess(sess);
898 	goto out;
899 }
900 
901 static int post_recv_info_req(struct rtrs_srv_con *con)
902 {
903 	struct rtrs_sess *s = con->c.sess;
904 	struct rtrs_srv_sess *sess = to_srv_sess(s);
905 	struct rtrs_iu *rx_iu;
906 	int err;
907 
908 	rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req),
909 			       GFP_KERNEL, sess->s.dev->ib_dev,
910 			       DMA_FROM_DEVICE, rtrs_srv_info_req_done);
911 	if (unlikely(!rx_iu))
912 		return -ENOMEM;
913 	/* Prepare for getting info response */
914 	err = rtrs_iu_post_recv(&con->c, rx_iu);
915 	if (unlikely(err)) {
916 		rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err);
917 		rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
918 		return err;
919 	}
920 
921 	return 0;
922 }
923 
924 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size)
925 {
926 	int i, err;
927 
928 	for (i = 0; i < q_size; i++) {
929 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
930 		if (unlikely(err))
931 			return err;
932 	}
933 
934 	return 0;
935 }
936 
937 static int post_recv_sess(struct rtrs_srv_sess *sess)
938 {
939 	struct rtrs_srv *srv = sess->srv;
940 	struct rtrs_sess *s = &sess->s;
941 	size_t q_size;
942 	int err, cid;
943 
944 	for (cid = 0; cid < sess->s.con_num; cid++) {
945 		if (cid == 0)
946 			q_size = SERVICE_CON_QUEUE_DEPTH;
947 		else
948 			q_size = srv->queue_depth;
949 
950 		err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size);
951 		if (unlikely(err)) {
952 			rtrs_err(s, "post_recv_io(), err: %d\n", err);
953 			return err;
954 		}
955 	}
956 
957 	return 0;
958 }
959 
960 static void process_read(struct rtrs_srv_con *con,
961 			 struct rtrs_msg_rdma_read *msg,
962 			 u32 buf_id, u32 off)
963 {
964 	struct rtrs_sess *s = con->c.sess;
965 	struct rtrs_srv_sess *sess = to_srv_sess(s);
966 	struct rtrs_srv *srv = sess->srv;
967 	struct rtrs_srv_ctx *ctx = srv->ctx;
968 	struct rtrs_srv_op *id;
969 
970 	size_t usr_len, data_len;
971 	void *data;
972 	int ret;
973 
974 	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
975 		rtrs_err_rl(s,
976 			     "Processing read request failed,  session is disconnected, sess state %s\n",
977 			     rtrs_srv_state_str(sess->state));
978 		return;
979 	}
980 	if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) {
981 		rtrs_err_rl(s,
982 			    "Processing read request failed, invalid message\n");
983 		return;
984 	}
985 	rtrs_srv_get_ops_ids(sess);
986 	rtrs_srv_update_rdma_stats(sess->stats, off, READ);
987 	id = sess->ops_ids[buf_id];
988 	id->con		= con;
989 	id->dir		= READ;
990 	id->msg_id	= buf_id;
991 	id->rd_msg	= msg;
992 	usr_len = le16_to_cpu(msg->usr_len);
993 	data_len = off - usr_len;
994 	data = page_address(srv->chunks[buf_id]);
995 	ret = ctx->ops.rdma_ev(srv, srv->priv, id, READ, data, data_len,
996 			   data + data_len, usr_len);
997 
998 	if (unlikely(ret)) {
999 		rtrs_err_rl(s,
1000 			     "Processing read request failed, user module cb reported for msg_id %d, err: %d\n",
1001 			     buf_id, ret);
1002 		goto send_err_msg;
1003 	}
1004 
1005 	return;
1006 
1007 send_err_msg:
1008 	ret = send_io_resp_imm(con, id, ret);
1009 	if (ret < 0) {
1010 		rtrs_err_rl(s,
1011 			     "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n",
1012 			     buf_id, ret);
1013 		close_sess(sess);
1014 	}
1015 	rtrs_srv_put_ops_ids(sess);
1016 }
1017 
1018 static void process_write(struct rtrs_srv_con *con,
1019 			  struct rtrs_msg_rdma_write *req,
1020 			  u32 buf_id, u32 off)
1021 {
1022 	struct rtrs_sess *s = con->c.sess;
1023 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1024 	struct rtrs_srv *srv = sess->srv;
1025 	struct rtrs_srv_ctx *ctx = srv->ctx;
1026 	struct rtrs_srv_op *id;
1027 
1028 	size_t data_len, usr_len;
1029 	void *data;
1030 	int ret;
1031 
1032 	if (unlikely(sess->state != RTRS_SRV_CONNECTED)) {
1033 		rtrs_err_rl(s,
1034 			     "Processing write request failed,  session is disconnected, sess state %s\n",
1035 			     rtrs_srv_state_str(sess->state));
1036 		return;
1037 	}
1038 	rtrs_srv_get_ops_ids(sess);
1039 	rtrs_srv_update_rdma_stats(sess->stats, off, WRITE);
1040 	id = sess->ops_ids[buf_id];
1041 	id->con    = con;
1042 	id->dir    = WRITE;
1043 	id->msg_id = buf_id;
1044 
1045 	usr_len = le16_to_cpu(req->usr_len);
1046 	data_len = off - usr_len;
1047 	data = page_address(srv->chunks[buf_id]);
1048 	ret = ctx->ops.rdma_ev(srv, srv->priv, id, WRITE, data, data_len,
1049 			   data + data_len, usr_len);
1050 	if (unlikely(ret)) {
1051 		rtrs_err_rl(s,
1052 			     "Processing write request failed, user module callback reports err: %d\n",
1053 			     ret);
1054 		goto send_err_msg;
1055 	}
1056 
1057 	return;
1058 
1059 send_err_msg:
1060 	ret = send_io_resp_imm(con, id, ret);
1061 	if (ret < 0) {
1062 		rtrs_err_rl(s,
1063 			     "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n",
1064 			     buf_id, ret);
1065 		close_sess(sess);
1066 	}
1067 	rtrs_srv_put_ops_ids(sess);
1068 }
1069 
1070 static void process_io_req(struct rtrs_srv_con *con, void *msg,
1071 			   u32 id, u32 off)
1072 {
1073 	struct rtrs_sess *s = con->c.sess;
1074 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1075 	struct rtrs_msg_rdma_hdr *hdr;
1076 	unsigned int type;
1077 
1078 	ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id],
1079 				   max_chunk_size, DMA_BIDIRECTIONAL);
1080 	hdr = msg;
1081 	type = le16_to_cpu(hdr->type);
1082 
1083 	switch (type) {
1084 	case RTRS_MSG_WRITE:
1085 		process_write(con, msg, id, off);
1086 		break;
1087 	case RTRS_MSG_READ:
1088 		process_read(con, msg, id, off);
1089 		break;
1090 	default:
1091 		rtrs_err(s,
1092 			  "Processing I/O request failed, unknown message type received: 0x%02x\n",
1093 			  type);
1094 		goto err;
1095 	}
1096 
1097 	return;
1098 
1099 err:
1100 	close_sess(sess);
1101 }
1102 
1103 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1104 {
1105 	struct rtrs_srv_mr *mr =
1106 		container_of(wc->wr_cqe, typeof(*mr), inv_cqe);
1107 	struct rtrs_srv_con *con = cq->cq_context;
1108 	struct rtrs_sess *s = con->c.sess;
1109 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1110 	struct rtrs_srv *srv = sess->srv;
1111 	u32 msg_id, off;
1112 	void *data;
1113 
1114 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1115 		rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n",
1116 			  ib_wc_status_msg(wc->status));
1117 		close_sess(sess);
1118 	}
1119 	msg_id = mr->msg_id;
1120 	off = mr->msg_off;
1121 	data = page_address(srv->chunks[msg_id]) + off;
1122 	process_io_req(con, data, msg_id, off);
1123 }
1124 
1125 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con,
1126 			      struct rtrs_srv_mr *mr)
1127 {
1128 	struct ib_send_wr wr = {
1129 		.opcode		    = IB_WR_LOCAL_INV,
1130 		.wr_cqe		    = &mr->inv_cqe,
1131 		.send_flags	    = IB_SEND_SIGNALED,
1132 		.ex.invalidate_rkey = mr->mr->rkey,
1133 	};
1134 	mr->inv_cqe.done = rtrs_srv_inv_rkey_done;
1135 
1136 	return ib_post_send(con->c.qp, &wr, NULL);
1137 }
1138 
1139 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con)
1140 {
1141 	spin_lock(&con->rsp_wr_wait_lock);
1142 	while (!list_empty(&con->rsp_wr_wait_list)) {
1143 		struct rtrs_srv_op *id;
1144 		int ret;
1145 
1146 		id = list_entry(con->rsp_wr_wait_list.next,
1147 				struct rtrs_srv_op, wait_list);
1148 		list_del(&id->wait_list);
1149 
1150 		spin_unlock(&con->rsp_wr_wait_lock);
1151 		ret = rtrs_srv_resp_rdma(id, id->status);
1152 		spin_lock(&con->rsp_wr_wait_lock);
1153 
1154 		if (!ret) {
1155 			list_add(&id->wait_list, &con->rsp_wr_wait_list);
1156 			break;
1157 		}
1158 	}
1159 	spin_unlock(&con->rsp_wr_wait_lock);
1160 }
1161 
1162 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
1163 {
1164 	struct rtrs_srv_con *con = cq->cq_context;
1165 	struct rtrs_sess *s = con->c.sess;
1166 	struct rtrs_srv_sess *sess = to_srv_sess(s);
1167 	struct rtrs_srv *srv = sess->srv;
1168 	u32 imm_type, imm_payload;
1169 	int err;
1170 
1171 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1172 		if (wc->status != IB_WC_WR_FLUSH_ERR) {
1173 			rtrs_err(s,
1174 				  "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n",
1175 				  ib_wc_status_msg(wc->status), wc->wr_cqe,
1176 				  wc->opcode, wc->vendor_err, wc->byte_len);
1177 			close_sess(sess);
1178 		}
1179 		return;
1180 	}
1181 
1182 	switch (wc->opcode) {
1183 	case IB_WC_RECV_RDMA_WITH_IMM:
1184 		/*
1185 		 * post_recv() RDMA write completions of IO reqs (read/write)
1186 		 * and hb
1187 		 */
1188 		if (WARN_ON(wc->wr_cqe != &io_comp_cqe))
1189 			return;
1190 		err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
1191 		if (unlikely(err)) {
1192 			rtrs_err(s, "rtrs_post_recv(), err: %d\n", err);
1193 			close_sess(sess);
1194 			break;
1195 		}
1196 		rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
1197 			       &imm_type, &imm_payload);
1198 		if (likely(imm_type == RTRS_IO_REQ_IMM)) {
1199 			u32 msg_id, off;
1200 			void *data;
1201 
1202 			msg_id = imm_payload >> sess->mem_bits;
1203 			off = imm_payload & ((1 << sess->mem_bits) - 1);
1204 			if (unlikely(msg_id >= srv->queue_depth ||
1205 				     off >= max_chunk_size)) {
1206 				rtrs_err(s, "Wrong msg_id %u, off %u\n",
1207 					  msg_id, off);
1208 				close_sess(sess);
1209 				return;
1210 			}
1211 			if (always_invalidate) {
1212 				struct rtrs_srv_mr *mr = &sess->mrs[msg_id];
1213 
1214 				mr->msg_off = off;
1215 				mr->msg_id = msg_id;
1216 				err = rtrs_srv_inv_rkey(con, mr);
1217 				if (unlikely(err)) {
1218 					rtrs_err(s, "rtrs_post_recv(), err: %d\n",
1219 						  err);
1220 					close_sess(sess);
1221 					break;
1222 				}
1223 			} else {
1224 				data = page_address(srv->chunks[msg_id]) + off;
1225 				process_io_req(con, data, msg_id, off);
1226 			}
1227 		} else if (imm_type == RTRS_HB_MSG_IMM) {
1228 			WARN_ON(con->c.cid);
1229 			rtrs_send_hb_ack(&sess->s);
1230 		} else if (imm_type == RTRS_HB_ACK_IMM) {
1231 			WARN_ON(con->c.cid);
1232 			sess->s.hb_missed_cnt = 0;
1233 		} else {
1234 			rtrs_wrn(s, "Unknown IMM type %u\n", imm_type);
1235 		}
1236 		break;
1237 	case IB_WC_RDMA_WRITE:
1238 	case IB_WC_SEND:
1239 		/*
1240 		 * post_send() RDMA write completions of IO reqs (read/write)
1241 		 * and hb
1242 		 */
1243 		atomic_add(srv->queue_depth, &con->sq_wr_avail);
1244 
1245 		if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list)))
1246 			rtrs_rdma_process_wr_wait_list(con);
1247 
1248 		break;
1249 	default:
1250 		rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode);
1251 		return;
1252 	}
1253 }
1254 
1255 /**
1256  * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname.
1257  * @srv:	Session
1258  * @sessname:	Sessname buffer
1259  * @len:	Length of sessname buffer
1260  */
1261 int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len)
1262 {
1263 	struct rtrs_srv_sess *sess;
1264 	int err = -ENOTCONN;
1265 
1266 	mutex_lock(&srv->paths_mutex);
1267 	list_for_each_entry(sess, &srv->paths_list, s.entry) {
1268 		if (sess->state != RTRS_SRV_CONNECTED)
1269 			continue;
1270 		strlcpy(sessname, sess->s.sessname,
1271 		       min_t(size_t, sizeof(sess->s.sessname), len));
1272 		err = 0;
1273 		break;
1274 	}
1275 	mutex_unlock(&srv->paths_mutex);
1276 
1277 	return err;
1278 }
1279 EXPORT_SYMBOL(rtrs_srv_get_sess_name);
1280 
1281 /**
1282  * rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth.
1283  * @srv:	Session
1284  */
1285 int rtrs_srv_get_queue_depth(struct rtrs_srv *srv)
1286 {
1287 	return srv->queue_depth;
1288 }
1289 EXPORT_SYMBOL(rtrs_srv_get_queue_depth);
1290 
1291 static int find_next_bit_ring(struct rtrs_srv_sess *sess)
1292 {
1293 	struct ib_device *ib_dev = sess->s.dev->ib_dev;
1294 	int v;
1295 
1296 	v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask);
1297 	if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors)
1298 		v = cpumask_first(&cq_affinity_mask);
1299 	return v;
1300 }
1301 
1302 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess)
1303 {
1304 	sess->cur_cq_vector = find_next_bit_ring(sess);
1305 
1306 	return sess->cur_cq_vector;
1307 }
1308 
1309 static void rtrs_srv_dev_release(struct device *dev)
1310 {
1311 	struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev);
1312 
1313 	kfree(srv);
1314 }
1315 
1316 static void free_srv(struct rtrs_srv *srv)
1317 {
1318 	int i;
1319 
1320 	WARN_ON(refcount_read(&srv->refcount));
1321 	for (i = 0; i < srv->queue_depth; i++)
1322 		mempool_free(srv->chunks[i], chunk_pool);
1323 	kfree(srv->chunks);
1324 	mutex_destroy(&srv->paths_mutex);
1325 	mutex_destroy(&srv->paths_ev_mutex);
1326 	/* last put to release the srv structure */
1327 	put_device(&srv->dev);
1328 }
1329 
1330 static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx,
1331 					   const uuid_t *paths_uuid)
1332 {
1333 	struct rtrs_srv *srv;
1334 	int i;
1335 
1336 	mutex_lock(&ctx->srv_mutex);
1337 	list_for_each_entry(srv, &ctx->srv_list, ctx_list) {
1338 		if (uuid_equal(&srv->paths_uuid, paths_uuid) &&
1339 		    refcount_inc_not_zero(&srv->refcount)) {
1340 			mutex_unlock(&ctx->srv_mutex);
1341 			return srv;
1342 		}
1343 	}
1344 
1345 	/* need to allocate a new srv */
1346 	srv = kzalloc(sizeof(*srv), GFP_KERNEL);
1347 	if  (!srv) {
1348 		mutex_unlock(&ctx->srv_mutex);
1349 		return NULL;
1350 	}
1351 
1352 	INIT_LIST_HEAD(&srv->paths_list);
1353 	mutex_init(&srv->paths_mutex);
1354 	mutex_init(&srv->paths_ev_mutex);
1355 	uuid_copy(&srv->paths_uuid, paths_uuid);
1356 	srv->queue_depth = sess_queue_depth;
1357 	srv->ctx = ctx;
1358 	device_initialize(&srv->dev);
1359 	srv->dev.release = rtrs_srv_dev_release;
1360 	list_add(&srv->ctx_list, &ctx->srv_list);
1361 	mutex_unlock(&ctx->srv_mutex);
1362 
1363 	srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks),
1364 			      GFP_KERNEL);
1365 	if (!srv->chunks)
1366 		goto err_free_srv;
1367 
1368 	for (i = 0; i < srv->queue_depth; i++) {
1369 		srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL);
1370 		if (!srv->chunks[i])
1371 			goto err_free_chunks;
1372 	}
1373 	refcount_set(&srv->refcount, 1);
1374 
1375 	return srv;
1376 
1377 err_free_chunks:
1378 	while (i--)
1379 		mempool_free(srv->chunks[i], chunk_pool);
1380 	kfree(srv->chunks);
1381 
1382 err_free_srv:
1383 	kfree(srv);
1384 	return NULL;
1385 }
1386 
1387 static void put_srv(struct rtrs_srv *srv)
1388 {
1389 	if (refcount_dec_and_test(&srv->refcount)) {
1390 		struct rtrs_srv_ctx *ctx = srv->ctx;
1391 
1392 		WARN_ON(srv->dev.kobj.state_in_sysfs);
1393 
1394 		mutex_lock(&ctx->srv_mutex);
1395 		list_del(&srv->ctx_list);
1396 		mutex_unlock(&ctx->srv_mutex);
1397 		free_srv(srv);
1398 	}
1399 }
1400 
1401 static void __add_path_to_srv(struct rtrs_srv *srv,
1402 			      struct rtrs_srv_sess *sess)
1403 {
1404 	list_add_tail(&sess->s.entry, &srv->paths_list);
1405 	srv->paths_num++;
1406 	WARN_ON(srv->paths_num >= MAX_PATHS_NUM);
1407 }
1408 
1409 static void del_path_from_srv(struct rtrs_srv_sess *sess)
1410 {
1411 	struct rtrs_srv *srv = sess->srv;
1412 
1413 	if (WARN_ON(!srv))
1414 		return;
1415 
1416 	mutex_lock(&srv->paths_mutex);
1417 	list_del(&sess->s.entry);
1418 	WARN_ON(!srv->paths_num);
1419 	srv->paths_num--;
1420 	mutex_unlock(&srv->paths_mutex);
1421 }
1422 
1423 /* return true if addresses are the same, error other wise */
1424 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b)
1425 {
1426 	switch (a->sa_family) {
1427 	case AF_IB:
1428 		return memcmp(&((struct sockaddr_ib *)a)->sib_addr,
1429 			      &((struct sockaddr_ib *)b)->sib_addr,
1430 			      sizeof(struct ib_addr)) &&
1431 			(b->sa_family == AF_IB);
1432 	case AF_INET:
1433 		return memcmp(&((struct sockaddr_in *)a)->sin_addr,
1434 			      &((struct sockaddr_in *)b)->sin_addr,
1435 			      sizeof(struct in_addr)) &&
1436 			(b->sa_family == AF_INET);
1437 	case AF_INET6:
1438 		return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr,
1439 			      &((struct sockaddr_in6 *)b)->sin6_addr,
1440 			      sizeof(struct in6_addr)) &&
1441 			(b->sa_family == AF_INET6);
1442 	default:
1443 		return -ENOENT;
1444 	}
1445 }
1446 
1447 static bool __is_path_w_addr_exists(struct rtrs_srv *srv,
1448 				    struct rdma_addr *addr)
1449 {
1450 	struct rtrs_srv_sess *sess;
1451 
1452 	list_for_each_entry(sess, &srv->paths_list, s.entry)
1453 		if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr,
1454 				  (struct sockaddr *)&addr->dst_addr) &&
1455 		    !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr,
1456 				  (struct sockaddr *)&addr->src_addr))
1457 			return true;
1458 
1459 	return false;
1460 }
1461 
1462 static void free_sess(struct rtrs_srv_sess *sess)
1463 {
1464 	if (sess->kobj.state_in_sysfs)
1465 		kobject_put(&sess->kobj);
1466 	else
1467 		kfree(sess);
1468 }
1469 
1470 static void rtrs_srv_close_work(struct work_struct *work)
1471 {
1472 	struct rtrs_srv_sess *sess;
1473 	struct rtrs_srv_con *con;
1474 	int i;
1475 
1476 	sess = container_of(work, typeof(*sess), close_work);
1477 
1478 	rtrs_srv_destroy_sess_files(sess);
1479 	rtrs_srv_stop_hb(sess);
1480 
1481 	for (i = 0; i < sess->s.con_num; i++) {
1482 		if (!sess->s.con[i])
1483 			continue;
1484 		con = to_srv_con(sess->s.con[i]);
1485 		rdma_disconnect(con->c.cm_id);
1486 		ib_drain_qp(con->c.qp);
1487 	}
1488 	/* Wait for all inflights */
1489 	rtrs_srv_wait_ops_ids(sess);
1490 
1491 	/* Notify upper layer if we are the last path */
1492 	rtrs_srv_sess_down(sess);
1493 
1494 	unmap_cont_bufs(sess);
1495 	rtrs_srv_free_ops_ids(sess);
1496 
1497 	for (i = 0; i < sess->s.con_num; i++) {
1498 		if (!sess->s.con[i])
1499 			continue;
1500 		con = to_srv_con(sess->s.con[i]);
1501 		rtrs_cq_qp_destroy(&con->c);
1502 		rdma_destroy_id(con->c.cm_id);
1503 		kfree(con);
1504 	}
1505 	rtrs_ib_dev_put(sess->s.dev);
1506 
1507 	del_path_from_srv(sess);
1508 	put_srv(sess->srv);
1509 	sess->srv = NULL;
1510 	rtrs_srv_change_state(sess, RTRS_SRV_CLOSED);
1511 
1512 	kfree(sess->dma_addr);
1513 	kfree(sess->s.con);
1514 	free_sess(sess);
1515 }
1516 
1517 static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess,
1518 			       struct rdma_cm_id *cm_id)
1519 {
1520 	struct rtrs_srv *srv = sess->srv;
1521 	struct rtrs_msg_conn_rsp msg;
1522 	struct rdma_conn_param param;
1523 	int err;
1524 
1525 	param = (struct rdma_conn_param) {
1526 		.rnr_retry_count = 7,
1527 		.private_data = &msg,
1528 		.private_data_len = sizeof(msg),
1529 	};
1530 
1531 	msg = (struct rtrs_msg_conn_rsp) {
1532 		.magic = cpu_to_le16(RTRS_MAGIC),
1533 		.version = cpu_to_le16(RTRS_PROTO_VER),
1534 		.queue_depth = cpu_to_le16(srv->queue_depth),
1535 		.max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE),
1536 		.max_hdr_size = cpu_to_le32(MAX_HDR_SIZE),
1537 	};
1538 
1539 	if (always_invalidate)
1540 		msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F);
1541 
1542 	err = rdma_accept(cm_id, &param);
1543 	if (err)
1544 		pr_err("rdma_accept(), err: %d\n", err);
1545 
1546 	return err;
1547 }
1548 
1549 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno)
1550 {
1551 	struct rtrs_msg_conn_rsp msg;
1552 	int err;
1553 
1554 	msg = (struct rtrs_msg_conn_rsp) {
1555 		.magic = cpu_to_le16(RTRS_MAGIC),
1556 		.version = cpu_to_le16(RTRS_PROTO_VER),
1557 		.errno = cpu_to_le16(errno),
1558 	};
1559 
1560 	err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED);
1561 	if (err)
1562 		pr_err("rdma_reject(), err: %d\n", err);
1563 
1564 	/* Bounce errno back */
1565 	return errno;
1566 }
1567 
1568 static struct rtrs_srv_sess *
1569 __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid)
1570 {
1571 	struct rtrs_srv_sess *sess;
1572 
1573 	list_for_each_entry(sess, &srv->paths_list, s.entry) {
1574 		if (uuid_equal(&sess->s.uuid, sess_uuid))
1575 			return sess;
1576 	}
1577 
1578 	return NULL;
1579 }
1580 
1581 static int create_con(struct rtrs_srv_sess *sess,
1582 		      struct rdma_cm_id *cm_id,
1583 		      unsigned int cid)
1584 {
1585 	struct rtrs_srv *srv = sess->srv;
1586 	struct rtrs_sess *s = &sess->s;
1587 	struct rtrs_srv_con *con;
1588 
1589 	u16 cq_size, wr_queue_size;
1590 	int err, cq_vector;
1591 
1592 	con = kzalloc(sizeof(*con), GFP_KERNEL);
1593 	if (!con) {
1594 		err = -ENOMEM;
1595 		goto err;
1596 	}
1597 
1598 	spin_lock_init(&con->rsp_wr_wait_lock);
1599 	INIT_LIST_HEAD(&con->rsp_wr_wait_list);
1600 	con->c.cm_id = cm_id;
1601 	con->c.sess = &sess->s;
1602 	con->c.cid = cid;
1603 	atomic_set(&con->wr_cnt, 0);
1604 
1605 	if (con->c.cid == 0) {
1606 		/*
1607 		 * All receive and all send (each requiring invalidate)
1608 		 * + 2 for drain and heartbeat
1609 		 */
1610 		wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1611 		cq_size = wr_queue_size;
1612 	} else {
1613 		/*
1614 		 * If we have all receive requests posted and
1615 		 * all write requests posted and each read request
1616 		 * requires an invalidate request + drain
1617 		 * and qp gets into error state.
1618 		 */
1619 		cq_size = srv->queue_depth * 3 + 1;
1620 		/*
1621 		 * In theory we might have queue_depth * 32
1622 		 * outstanding requests if an unsafe global key is used
1623 		 * and we have queue_depth read requests each consisting
1624 		 * of 32 different addresses. div 3 for mlx5.
1625 		 */
1626 		wr_queue_size = sess->s.dev->ib_dev->attrs.max_qp_wr / 3;
1627 	}
1628 	atomic_set(&con->sq_wr_avail, wr_queue_size);
1629 	cq_vector = rtrs_srv_get_next_cq_vector(sess);
1630 
1631 	/* TODO: SOFTIRQ can be faster, but be careful with softirq context */
1632 	err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size,
1633 				 wr_queue_size, IB_POLL_WORKQUEUE);
1634 	if (err) {
1635 		rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err);
1636 		goto free_con;
1637 	}
1638 	if (con->c.cid == 0) {
1639 		err = post_recv_info_req(con);
1640 		if (err)
1641 			goto free_cqqp;
1642 	}
1643 	WARN_ON(sess->s.con[cid]);
1644 	sess->s.con[cid] = &con->c;
1645 
1646 	/*
1647 	 * Change context from server to current connection.  The other
1648 	 * way is to use cm_id->qp->qp_context, which does not work on OFED.
1649 	 */
1650 	cm_id->context = &con->c;
1651 
1652 	return 0;
1653 
1654 free_cqqp:
1655 	rtrs_cq_qp_destroy(&con->c);
1656 free_con:
1657 	kfree(con);
1658 
1659 err:
1660 	return err;
1661 }
1662 
1663 static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv,
1664 					   struct rdma_cm_id *cm_id,
1665 					   unsigned int con_num,
1666 					   unsigned int recon_cnt,
1667 					   const uuid_t *uuid)
1668 {
1669 	struct rtrs_srv_sess *sess;
1670 	int err = -ENOMEM;
1671 
1672 	if (srv->paths_num >= MAX_PATHS_NUM) {
1673 		err = -ECONNRESET;
1674 		goto err;
1675 	}
1676 	if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) {
1677 		err = -EEXIST;
1678 		pr_err("Path with same addr exists\n");
1679 		goto err;
1680 	}
1681 	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1682 	if (!sess)
1683 		goto err;
1684 
1685 	sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1686 	if (!sess->stats)
1687 		goto err_free_sess;
1688 
1689 	sess->stats->sess = sess;
1690 
1691 	sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr),
1692 				 GFP_KERNEL);
1693 	if (!sess->dma_addr)
1694 		goto err_free_stats;
1695 
1696 	sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1697 	if (!sess->s.con)
1698 		goto err_free_dma_addr;
1699 
1700 	sess->state = RTRS_SRV_CONNECTING;
1701 	sess->srv = srv;
1702 	sess->cur_cq_vector = -1;
1703 	sess->s.dst_addr = cm_id->route.addr.dst_addr;
1704 	sess->s.src_addr = cm_id->route.addr.src_addr;
1705 	sess->s.con_num = con_num;
1706 	sess->s.recon_cnt = recon_cnt;
1707 	uuid_copy(&sess->s.uuid, uuid);
1708 	spin_lock_init(&sess->state_lock);
1709 	INIT_WORK(&sess->close_work, rtrs_srv_close_work);
1710 	rtrs_srv_init_hb(sess);
1711 
1712 	sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd);
1713 	if (!sess->s.dev) {
1714 		err = -ENOMEM;
1715 		goto err_free_con;
1716 	}
1717 	err = map_cont_bufs(sess);
1718 	if (err)
1719 		goto err_put_dev;
1720 
1721 	err = rtrs_srv_alloc_ops_ids(sess);
1722 	if (err)
1723 		goto err_unmap_bufs;
1724 
1725 	__add_path_to_srv(srv, sess);
1726 
1727 	return sess;
1728 
1729 err_unmap_bufs:
1730 	unmap_cont_bufs(sess);
1731 err_put_dev:
1732 	rtrs_ib_dev_put(sess->s.dev);
1733 err_free_con:
1734 	kfree(sess->s.con);
1735 err_free_dma_addr:
1736 	kfree(sess->dma_addr);
1737 err_free_stats:
1738 	kfree(sess->stats);
1739 err_free_sess:
1740 	kfree(sess);
1741 err:
1742 	return ERR_PTR(err);
1743 }
1744 
1745 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id,
1746 			      const struct rtrs_msg_conn_req *msg,
1747 			      size_t len)
1748 {
1749 	struct rtrs_srv_ctx *ctx = cm_id->context;
1750 	struct rtrs_srv_sess *sess;
1751 	struct rtrs_srv *srv;
1752 
1753 	u16 version, con_num, cid;
1754 	u16 recon_cnt;
1755 	int err;
1756 
1757 	if (len < sizeof(*msg)) {
1758 		pr_err("Invalid RTRS connection request\n");
1759 		goto reject_w_econnreset;
1760 	}
1761 	if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1762 		pr_err("Invalid RTRS magic\n");
1763 		goto reject_w_econnreset;
1764 	}
1765 	version = le16_to_cpu(msg->version);
1766 	if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1767 		pr_err("Unsupported major RTRS version: %d, expected %d\n",
1768 		       version >> 8, RTRS_PROTO_VER_MAJOR);
1769 		goto reject_w_econnreset;
1770 	}
1771 	con_num = le16_to_cpu(msg->cid_num);
1772 	if (con_num > 4096) {
1773 		/* Sanity check */
1774 		pr_err("Too many connections requested: %d\n", con_num);
1775 		goto reject_w_econnreset;
1776 	}
1777 	cid = le16_to_cpu(msg->cid);
1778 	if (cid >= con_num) {
1779 		/* Sanity check */
1780 		pr_err("Incorrect cid: %d >= %d\n", cid, con_num);
1781 		goto reject_w_econnreset;
1782 	}
1783 	recon_cnt = le16_to_cpu(msg->recon_cnt);
1784 	srv = get_or_create_srv(ctx, &msg->paths_uuid);
1785 	/*
1786 	 * "refcount == 0" happens if a previous thread calls get_or_create_srv
1787 	 * allocate srv, but chunks of srv are not allocated yet.
1788 	 */
1789 	if (!srv || refcount_read(&srv->refcount) == 0) {
1790 		err = -ENOMEM;
1791 		goto reject_w_err;
1792 	}
1793 	mutex_lock(&srv->paths_mutex);
1794 	sess = __find_sess(srv, &msg->sess_uuid);
1795 	if (sess) {
1796 		struct rtrs_sess *s = &sess->s;
1797 
1798 		/* Session already holds a reference */
1799 		put_srv(srv);
1800 
1801 		if (sess->state != RTRS_SRV_CONNECTING) {
1802 			rtrs_err(s, "Session in wrong state: %s\n",
1803 				  rtrs_srv_state_str(sess->state));
1804 			mutex_unlock(&srv->paths_mutex);
1805 			goto reject_w_econnreset;
1806 		}
1807 		/*
1808 		 * Sanity checks
1809 		 */
1810 		if (con_num != s->con_num || cid >= s->con_num) {
1811 			rtrs_err(s, "Incorrect request: %d, %d\n",
1812 				  cid, con_num);
1813 			mutex_unlock(&srv->paths_mutex);
1814 			goto reject_w_econnreset;
1815 		}
1816 		if (s->con[cid]) {
1817 			rtrs_err(s, "Connection already exists: %d\n",
1818 				  cid);
1819 			mutex_unlock(&srv->paths_mutex);
1820 			goto reject_w_econnreset;
1821 		}
1822 	} else {
1823 		sess = __alloc_sess(srv, cm_id, con_num, recon_cnt,
1824 				    &msg->sess_uuid);
1825 		if (IS_ERR(sess)) {
1826 			mutex_unlock(&srv->paths_mutex);
1827 			put_srv(srv);
1828 			err = PTR_ERR(sess);
1829 			goto reject_w_err;
1830 		}
1831 	}
1832 	err = create_con(sess, cm_id, cid);
1833 	if (err) {
1834 		(void)rtrs_rdma_do_reject(cm_id, err);
1835 		/*
1836 		 * Since session has other connections we follow normal way
1837 		 * through workqueue, but still return an error to tell cma.c
1838 		 * to call rdma_destroy_id() for current connection.
1839 		 */
1840 		goto close_and_return_err;
1841 	}
1842 	err = rtrs_rdma_do_accept(sess, cm_id);
1843 	if (err) {
1844 		(void)rtrs_rdma_do_reject(cm_id, err);
1845 		/*
1846 		 * Since current connection was successfully added to the
1847 		 * session we follow normal way through workqueue to close the
1848 		 * session, thus return 0 to tell cma.c we call
1849 		 * rdma_destroy_id() ourselves.
1850 		 */
1851 		err = 0;
1852 		goto close_and_return_err;
1853 	}
1854 	mutex_unlock(&srv->paths_mutex);
1855 
1856 	return 0;
1857 
1858 reject_w_err:
1859 	return rtrs_rdma_do_reject(cm_id, err);
1860 
1861 reject_w_econnreset:
1862 	return rtrs_rdma_do_reject(cm_id, -ECONNRESET);
1863 
1864 close_and_return_err:
1865 	close_sess(sess);
1866 	mutex_unlock(&srv->paths_mutex);
1867 
1868 	return err;
1869 }
1870 
1871 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id,
1872 				     struct rdma_cm_event *ev)
1873 {
1874 	struct rtrs_srv_sess *sess = NULL;
1875 	struct rtrs_sess *s = NULL;
1876 
1877 	if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
1878 		struct rtrs_con *c = cm_id->context;
1879 
1880 		s = c->sess;
1881 		sess = to_srv_sess(s);
1882 	}
1883 
1884 	switch (ev->event) {
1885 	case RDMA_CM_EVENT_CONNECT_REQUEST:
1886 		/*
1887 		 * In case of error cma.c will destroy cm_id,
1888 		 * see cma_process_remove()
1889 		 */
1890 		return rtrs_rdma_connect(cm_id, ev->param.conn.private_data,
1891 					  ev->param.conn.private_data_len);
1892 	case RDMA_CM_EVENT_ESTABLISHED:
1893 		/* Nothing here */
1894 		break;
1895 	case RDMA_CM_EVENT_REJECTED:
1896 	case RDMA_CM_EVENT_CONNECT_ERROR:
1897 	case RDMA_CM_EVENT_UNREACHABLE:
1898 		rtrs_err(s, "CM error (CM event: %s, err: %d)\n",
1899 			  rdma_event_msg(ev->event), ev->status);
1900 		close_sess(sess);
1901 		break;
1902 	case RDMA_CM_EVENT_DISCONNECTED:
1903 	case RDMA_CM_EVENT_ADDR_CHANGE:
1904 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1905 		close_sess(sess);
1906 		break;
1907 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1908 		close_sess(sess);
1909 		break;
1910 	default:
1911 		pr_err("Ignoring unexpected CM event %s, err %d\n",
1912 		       rdma_event_msg(ev->event), ev->status);
1913 		break;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx,
1920 					    struct sockaddr *addr,
1921 					    enum rdma_ucm_port_space ps)
1922 {
1923 	struct rdma_cm_id *cm_id;
1924 	int ret;
1925 
1926 	cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler,
1927 			       ctx, ps, IB_QPT_RC);
1928 	if (IS_ERR(cm_id)) {
1929 		ret = PTR_ERR(cm_id);
1930 		pr_err("Creating id for RDMA connection failed, err: %d\n",
1931 		       ret);
1932 		goto err_out;
1933 	}
1934 	ret = rdma_bind_addr(cm_id, addr);
1935 	if (ret) {
1936 		pr_err("Binding RDMA address failed, err: %d\n", ret);
1937 		goto err_cm;
1938 	}
1939 	ret = rdma_listen(cm_id, 64);
1940 	if (ret) {
1941 		pr_err("Listening on RDMA connection failed, err: %d\n",
1942 		       ret);
1943 		goto err_cm;
1944 	}
1945 
1946 	return cm_id;
1947 
1948 err_cm:
1949 	rdma_destroy_id(cm_id);
1950 err_out:
1951 
1952 	return ERR_PTR(ret);
1953 }
1954 
1955 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port)
1956 {
1957 	struct sockaddr_in6 sin = {
1958 		.sin6_family	= AF_INET6,
1959 		.sin6_addr	= IN6ADDR_ANY_INIT,
1960 		.sin6_port	= htons(port),
1961 	};
1962 	struct sockaddr_ib sib = {
1963 		.sib_family			= AF_IB,
1964 		.sib_sid	= cpu_to_be64(RDMA_IB_IP_PS_IB | port),
1965 		.sib_sid_mask	= cpu_to_be64(0xffffffffffffffffULL),
1966 		.sib_pkey	= cpu_to_be16(0xffff),
1967 	};
1968 	struct rdma_cm_id *cm_ip, *cm_ib;
1969 	int ret;
1970 
1971 	/*
1972 	 * We accept both IPoIB and IB connections, so we need to keep
1973 	 * two cm id's, one for each socket type and port space.
1974 	 * If the cm initialization of one of the id's fails, we abort
1975 	 * everything.
1976 	 */
1977 	cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP);
1978 	if (IS_ERR(cm_ip))
1979 		return PTR_ERR(cm_ip);
1980 
1981 	cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB);
1982 	if (IS_ERR(cm_ib)) {
1983 		ret = PTR_ERR(cm_ib);
1984 		goto free_cm_ip;
1985 	}
1986 
1987 	ctx->cm_id_ip = cm_ip;
1988 	ctx->cm_id_ib = cm_ib;
1989 
1990 	return 0;
1991 
1992 free_cm_ip:
1993 	rdma_destroy_id(cm_ip);
1994 
1995 	return ret;
1996 }
1997 
1998 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops)
1999 {
2000 	struct rtrs_srv_ctx *ctx;
2001 
2002 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2003 	if (!ctx)
2004 		return NULL;
2005 
2006 	ctx->ops = *ops;
2007 	mutex_init(&ctx->srv_mutex);
2008 	INIT_LIST_HEAD(&ctx->srv_list);
2009 
2010 	return ctx;
2011 }
2012 
2013 static void free_srv_ctx(struct rtrs_srv_ctx *ctx)
2014 {
2015 	WARN_ON(!list_empty(&ctx->srv_list));
2016 	mutex_destroy(&ctx->srv_mutex);
2017 	kfree(ctx);
2018 }
2019 
2020 static int rtrs_srv_add_one(struct ib_device *device)
2021 {
2022 	struct rtrs_srv_ctx *ctx;
2023 	int ret = 0;
2024 
2025 	mutex_lock(&ib_ctx.ib_dev_mutex);
2026 	if (ib_ctx.ib_dev_count)
2027 		goto out;
2028 
2029 	/*
2030 	 * Since our CM IDs are NOT bound to any ib device we will create them
2031 	 * only once
2032 	 */
2033 	ctx = ib_ctx.srv_ctx;
2034 	ret = rtrs_srv_rdma_init(ctx, ib_ctx.port);
2035 	if (ret) {
2036 		/*
2037 		 * We errored out here.
2038 		 * According to the ib code, if we encounter an error here then the
2039 		 * error code is ignored, and no more calls to our ops are made.
2040 		 */
2041 		pr_err("Failed to initialize RDMA connection");
2042 		goto err_out;
2043 	}
2044 
2045 out:
2046 	/*
2047 	 * Keep a track on the number of ib devices added
2048 	 */
2049 	ib_ctx.ib_dev_count++;
2050 
2051 err_out:
2052 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2053 	return ret;
2054 }
2055 
2056 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data)
2057 {
2058 	struct rtrs_srv_ctx *ctx;
2059 
2060 	mutex_lock(&ib_ctx.ib_dev_mutex);
2061 	ib_ctx.ib_dev_count--;
2062 
2063 	if (ib_ctx.ib_dev_count)
2064 		goto out;
2065 
2066 	/*
2067 	 * Since our CM IDs are NOT bound to any ib device we will remove them
2068 	 * only once, when the last device is removed
2069 	 */
2070 	ctx = ib_ctx.srv_ctx;
2071 	rdma_destroy_id(ctx->cm_id_ip);
2072 	rdma_destroy_id(ctx->cm_id_ib);
2073 
2074 out:
2075 	mutex_unlock(&ib_ctx.ib_dev_mutex);
2076 }
2077 
2078 static struct ib_client rtrs_srv_client = {
2079 	.name	= "rtrs_server",
2080 	.add	= rtrs_srv_add_one,
2081 	.remove	= rtrs_srv_remove_one
2082 };
2083 
2084 /**
2085  * rtrs_srv_open() - open RTRS server context
2086  * @ops:		callback functions
2087  * @port:               port to listen on
2088  *
2089  * Creates server context with specified callbacks.
2090  *
2091  * Return a valid pointer on success otherwise PTR_ERR.
2092  */
2093 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port)
2094 {
2095 	struct rtrs_srv_ctx *ctx;
2096 	int err;
2097 
2098 	ctx = alloc_srv_ctx(ops);
2099 	if (!ctx)
2100 		return ERR_PTR(-ENOMEM);
2101 
2102 	mutex_init(&ib_ctx.ib_dev_mutex);
2103 	ib_ctx.srv_ctx = ctx;
2104 	ib_ctx.port = port;
2105 
2106 	err = ib_register_client(&rtrs_srv_client);
2107 	if (err) {
2108 		free_srv_ctx(ctx);
2109 		return ERR_PTR(err);
2110 	}
2111 
2112 	return ctx;
2113 }
2114 EXPORT_SYMBOL(rtrs_srv_open);
2115 
2116 static void close_sessions(struct rtrs_srv *srv)
2117 {
2118 	struct rtrs_srv_sess *sess;
2119 
2120 	mutex_lock(&srv->paths_mutex);
2121 	list_for_each_entry(sess, &srv->paths_list, s.entry)
2122 		close_sess(sess);
2123 	mutex_unlock(&srv->paths_mutex);
2124 }
2125 
2126 static void close_ctx(struct rtrs_srv_ctx *ctx)
2127 {
2128 	struct rtrs_srv *srv;
2129 
2130 	mutex_lock(&ctx->srv_mutex);
2131 	list_for_each_entry(srv, &ctx->srv_list, ctx_list)
2132 		close_sessions(srv);
2133 	mutex_unlock(&ctx->srv_mutex);
2134 	flush_workqueue(rtrs_wq);
2135 }
2136 
2137 /**
2138  * rtrs_srv_close() - close RTRS server context
2139  * @ctx: pointer to server context
2140  *
2141  * Closes RTRS server context with all client sessions.
2142  */
2143 void rtrs_srv_close(struct rtrs_srv_ctx *ctx)
2144 {
2145 	ib_unregister_client(&rtrs_srv_client);
2146 	mutex_destroy(&ib_ctx.ib_dev_mutex);
2147 	close_ctx(ctx);
2148 	free_srv_ctx(ctx);
2149 }
2150 EXPORT_SYMBOL(rtrs_srv_close);
2151 
2152 static int check_module_params(void)
2153 {
2154 	if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) {
2155 		pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n",
2156 		       sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH);
2157 		return -EINVAL;
2158 	}
2159 	if (max_chunk_size < 4096 || !is_power_of_2(max_chunk_size)) {
2160 		pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n",
2161 		       max_chunk_size, 4096);
2162 		return -EINVAL;
2163 	}
2164 
2165 	/*
2166 	 * Check if IB immediate data size is enough to hold the mem_id and the
2167 	 * offset inside the memory chunk
2168 	 */
2169 	if ((ilog2(sess_queue_depth - 1) + 1) +
2170 	    (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) {
2171 		pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n",
2172 		       MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size);
2173 		return -EINVAL;
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 static int __init rtrs_server_init(void)
2180 {
2181 	int err;
2182 
2183 	pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n",
2184 		KBUILD_MODNAME, RTRS_PROTO_VER_STRING,
2185 		max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE,
2186 		sess_queue_depth, always_invalidate);
2187 
2188 	rtrs_rdma_dev_pd_init(0, &dev_pd);
2189 
2190 	err = check_module_params();
2191 	if (err) {
2192 		pr_err("Failed to load module, invalid module parameters, err: %d\n",
2193 		       err);
2194 		return err;
2195 	}
2196 	chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ,
2197 					      get_order(max_chunk_size));
2198 	if (!chunk_pool)
2199 		return -ENOMEM;
2200 	rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server");
2201 	if (IS_ERR(rtrs_dev_class)) {
2202 		err = PTR_ERR(rtrs_dev_class);
2203 		goto out_chunk_pool;
2204 	}
2205 	rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0);
2206 	if (!rtrs_wq) {
2207 		err = -ENOMEM;
2208 		goto out_dev_class;
2209 	}
2210 
2211 	return 0;
2212 
2213 out_dev_class:
2214 	class_destroy(rtrs_dev_class);
2215 out_chunk_pool:
2216 	mempool_destroy(chunk_pool);
2217 
2218 	return err;
2219 }
2220 
2221 static void __exit rtrs_server_exit(void)
2222 {
2223 	destroy_workqueue(rtrs_wq);
2224 	class_destroy(rtrs_dev_class);
2225 	mempool_destroy(chunk_pool);
2226 	rtrs_rdma_dev_pd_deinit(&dev_pd);
2227 }
2228 
2229 module_init(rtrs_server_init);
2230 module_exit(rtrs_server_exit);
2231