1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RDMA Transport Layer 4 * 5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. 6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. 7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. 8 */ 9 10 #undef pr_fmt 11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt 12 13 #include <linux/module.h> 14 15 #include "rtrs-srv.h" 16 #include "rtrs-log.h" 17 #include <rdma/ib_cm.h> 18 #include <rdma/ib_verbs.h> 19 #include "rtrs-srv-trace.h" 20 21 MODULE_DESCRIPTION("RDMA Transport Server"); 22 MODULE_LICENSE("GPL"); 23 24 /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */ 25 #define DEFAULT_MAX_CHUNK_SIZE (128 << 10) 26 #define DEFAULT_SESS_QUEUE_DEPTH 512 27 #define MAX_HDR_SIZE PAGE_SIZE 28 29 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops; 30 static struct rtrs_rdma_dev_pd dev_pd = { 31 .ops = &dev_pd_ops 32 }; 33 const struct class rtrs_dev_class = { 34 .name = "rtrs-server", 35 }; 36 static struct rtrs_srv_ib_ctx ib_ctx; 37 38 static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE; 39 static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH; 40 41 static bool always_invalidate = true; 42 module_param(always_invalidate, bool, 0444); 43 MODULE_PARM_DESC(always_invalidate, 44 "Invalidate memory registration for contiguous memory regions before accessing."); 45 46 module_param_named(max_chunk_size, max_chunk_size, int, 0444); 47 MODULE_PARM_DESC(max_chunk_size, 48 "Max size for each IO request, when change the unit is in byte (default: " 49 __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)"); 50 51 module_param_named(sess_queue_depth, sess_queue_depth, int, 0444); 52 MODULE_PARM_DESC(sess_queue_depth, 53 "Number of buffers for pending I/O requests to allocate per session. Maximum: " 54 __stringify(MAX_SESS_QUEUE_DEPTH) " (default: " 55 __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")"); 56 57 static cpumask_t cq_affinity_mask = { CPU_BITS_ALL }; 58 59 static struct workqueue_struct *rtrs_wq; 60 61 static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c) 62 { 63 return container_of(c, struct rtrs_srv_con, c); 64 } 65 66 static bool rtrs_srv_change_state(struct rtrs_srv_path *srv_path, 67 enum rtrs_srv_state new_state) 68 { 69 enum rtrs_srv_state old_state; 70 bool changed = false; 71 unsigned long flags; 72 73 spin_lock_irqsave(&srv_path->state_lock, flags); 74 old_state = srv_path->state; 75 switch (new_state) { 76 case RTRS_SRV_CONNECTED: 77 if (old_state == RTRS_SRV_CONNECTING) 78 changed = true; 79 break; 80 case RTRS_SRV_CLOSING: 81 if (old_state == RTRS_SRV_CONNECTING || 82 old_state == RTRS_SRV_CONNECTED) 83 changed = true; 84 break; 85 case RTRS_SRV_CLOSED: 86 if (old_state == RTRS_SRV_CLOSING) 87 changed = true; 88 break; 89 default: 90 break; 91 } 92 if (changed) 93 srv_path->state = new_state; 94 spin_unlock_irqrestore(&srv_path->state_lock, flags); 95 96 return changed; 97 } 98 99 static void free_id(struct rtrs_srv_op *id) 100 { 101 if (!id) 102 return; 103 kfree(id); 104 } 105 106 static void rtrs_srv_free_ops_ids(struct rtrs_srv_path *srv_path) 107 { 108 struct rtrs_srv_sess *srv = srv_path->srv; 109 int i; 110 111 if (srv_path->ops_ids) { 112 for (i = 0; i < srv->queue_depth; i++) 113 free_id(srv_path->ops_ids[i]); 114 kfree(srv_path->ops_ids); 115 srv_path->ops_ids = NULL; 116 } 117 } 118 119 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc); 120 121 static struct ib_cqe io_comp_cqe = { 122 .done = rtrs_srv_rdma_done 123 }; 124 125 static inline void rtrs_srv_inflight_ref_release(struct percpu_ref *ref) 126 { 127 struct rtrs_srv_path *srv_path = container_of(ref, 128 struct rtrs_srv_path, 129 ids_inflight_ref); 130 131 percpu_ref_exit(&srv_path->ids_inflight_ref); 132 complete(&srv_path->complete_done); 133 } 134 135 static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_path *srv_path) 136 { 137 struct rtrs_srv_sess *srv = srv_path->srv; 138 struct rtrs_srv_op *id; 139 int i, ret; 140 141 srv_path->ops_ids = kcalloc(srv->queue_depth, 142 sizeof(*srv_path->ops_ids), 143 GFP_KERNEL); 144 if (!srv_path->ops_ids) 145 goto err; 146 147 for (i = 0; i < srv->queue_depth; ++i) { 148 id = kzalloc(sizeof(*id), GFP_KERNEL); 149 if (!id) 150 goto err; 151 152 srv_path->ops_ids[i] = id; 153 } 154 155 ret = percpu_ref_init(&srv_path->ids_inflight_ref, 156 rtrs_srv_inflight_ref_release, 0, GFP_KERNEL); 157 if (ret) { 158 pr_err("Percpu reference init failed\n"); 159 goto err; 160 } 161 init_completion(&srv_path->complete_done); 162 163 return 0; 164 165 err: 166 rtrs_srv_free_ops_ids(srv_path); 167 return -ENOMEM; 168 } 169 170 static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_path *srv_path) 171 { 172 percpu_ref_get(&srv_path->ids_inflight_ref); 173 } 174 175 static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_path *srv_path) 176 { 177 percpu_ref_put(&srv_path->ids_inflight_ref); 178 } 179 180 static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc) 181 { 182 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 183 struct rtrs_path *s = con->c.path; 184 struct rtrs_srv_path *srv_path = to_srv_path(s); 185 186 if (wc->status != IB_WC_SUCCESS) { 187 rtrs_err(s, "REG MR failed: %s\n", 188 ib_wc_status_msg(wc->status)); 189 close_path(srv_path); 190 return; 191 } 192 } 193 194 static struct ib_cqe local_reg_cqe = { 195 .done = rtrs_srv_reg_mr_done 196 }; 197 198 static int rdma_write_sg(struct rtrs_srv_op *id) 199 { 200 struct rtrs_path *s = id->con->c.path; 201 struct rtrs_srv_path *srv_path = to_srv_path(s); 202 dma_addr_t dma_addr = srv_path->dma_addr[id->msg_id]; 203 struct rtrs_srv_mr *srv_mr; 204 struct ib_send_wr inv_wr; 205 struct ib_rdma_wr imm_wr; 206 struct ib_rdma_wr *wr = NULL; 207 enum ib_send_flags flags; 208 size_t sg_cnt; 209 int err, offset; 210 bool need_inval; 211 u32 rkey = 0; 212 struct ib_reg_wr rwr; 213 struct ib_sge *plist; 214 struct ib_sge list; 215 216 sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt); 217 need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F; 218 if (sg_cnt != 1) 219 return -EINVAL; 220 221 offset = 0; 222 223 wr = &id->tx_wr; 224 plist = &id->tx_sg; 225 plist->addr = dma_addr + offset; 226 plist->length = le32_to_cpu(id->rd_msg->desc[0].len); 227 228 /* WR will fail with length error 229 * if this is 0 230 */ 231 if (plist->length == 0) { 232 rtrs_err(s, "Invalid RDMA-Write sg list length 0\n"); 233 return -EINVAL; 234 } 235 236 plist->lkey = srv_path->s.dev->ib_pd->local_dma_lkey; 237 offset += plist->length; 238 239 wr->wr.sg_list = plist; 240 wr->wr.num_sge = 1; 241 wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr); 242 wr->rkey = le32_to_cpu(id->rd_msg->desc[0].key); 243 if (rkey == 0) 244 rkey = wr->rkey; 245 else 246 /* Only one key is actually used */ 247 WARN_ON_ONCE(rkey != wr->rkey); 248 249 wr->wr.opcode = IB_WR_RDMA_WRITE; 250 wr->wr.wr_cqe = &io_comp_cqe; 251 wr->wr.ex.imm_data = 0; 252 wr->wr.send_flags = 0; 253 254 if (need_inval && always_invalidate) { 255 wr->wr.next = &rwr.wr; 256 rwr.wr.next = &inv_wr; 257 inv_wr.next = &imm_wr.wr; 258 } else if (always_invalidate) { 259 wr->wr.next = &rwr.wr; 260 rwr.wr.next = &imm_wr.wr; 261 } else if (need_inval) { 262 wr->wr.next = &inv_wr; 263 inv_wr.next = &imm_wr.wr; 264 } else { 265 wr->wr.next = &imm_wr.wr; 266 } 267 /* 268 * From time to time we have to post signaled sends, 269 * or send queue will fill up and only QP reset can help. 270 */ 271 flags = (atomic_inc_return(&id->con->c.wr_cnt) % s->signal_interval) ? 272 0 : IB_SEND_SIGNALED; 273 274 if (need_inval) { 275 inv_wr.sg_list = NULL; 276 inv_wr.num_sge = 0; 277 inv_wr.opcode = IB_WR_SEND_WITH_INV; 278 inv_wr.wr_cqe = &io_comp_cqe; 279 inv_wr.send_flags = 0; 280 inv_wr.ex.invalidate_rkey = rkey; 281 } 282 283 imm_wr.wr.next = NULL; 284 if (always_invalidate) { 285 struct rtrs_msg_rkey_rsp *msg; 286 287 srv_mr = &srv_path->mrs[id->msg_id]; 288 rwr.wr.opcode = IB_WR_REG_MR; 289 rwr.wr.wr_cqe = &local_reg_cqe; 290 rwr.wr.num_sge = 0; 291 rwr.mr = srv_mr->mr; 292 rwr.wr.send_flags = 0; 293 rwr.key = srv_mr->mr->rkey; 294 rwr.access = (IB_ACCESS_LOCAL_WRITE | 295 IB_ACCESS_REMOTE_WRITE); 296 msg = srv_mr->iu->buf; 297 msg->buf_id = cpu_to_le16(id->msg_id); 298 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP); 299 msg->rkey = cpu_to_le32(srv_mr->mr->rkey); 300 301 list.addr = srv_mr->iu->dma_addr; 302 list.length = sizeof(*msg); 303 list.lkey = srv_path->s.dev->ib_pd->local_dma_lkey; 304 imm_wr.wr.sg_list = &list; 305 imm_wr.wr.num_sge = 1; 306 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM; 307 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, 308 srv_mr->iu->dma_addr, 309 srv_mr->iu->size, DMA_TO_DEVICE); 310 } else { 311 imm_wr.wr.sg_list = NULL; 312 imm_wr.wr.num_sge = 0; 313 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM; 314 } 315 imm_wr.wr.send_flags = flags; 316 imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id, 317 0, need_inval)); 318 319 imm_wr.wr.wr_cqe = &io_comp_cqe; 320 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, dma_addr, 321 offset, DMA_BIDIRECTIONAL); 322 323 err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL); 324 if (err) 325 rtrs_err(s, 326 "Posting RDMA-Write-Request to QP failed, err: %d\n", 327 err); 328 329 return err; 330 } 331 332 /** 333 * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE 334 * requests or on successful WRITE request. 335 * @con: the connection to send back result 336 * @id: the id associated with the IO 337 * @errno: the error number of the IO. 338 * 339 * Return 0 on success, errno otherwise. 340 */ 341 static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id, 342 int errno) 343 { 344 struct rtrs_path *s = con->c.path; 345 struct rtrs_srv_path *srv_path = to_srv_path(s); 346 struct ib_send_wr inv_wr, *wr = NULL; 347 struct ib_rdma_wr imm_wr; 348 struct ib_reg_wr rwr; 349 struct rtrs_srv_mr *srv_mr; 350 bool need_inval = false; 351 enum ib_send_flags flags; 352 u32 imm; 353 int err; 354 355 if (id->dir == READ) { 356 struct rtrs_msg_rdma_read *rd_msg = id->rd_msg; 357 size_t sg_cnt; 358 359 need_inval = le16_to_cpu(rd_msg->flags) & 360 RTRS_MSG_NEED_INVAL_F; 361 sg_cnt = le16_to_cpu(rd_msg->sg_cnt); 362 363 if (need_inval) { 364 if (sg_cnt) { 365 inv_wr.wr_cqe = &io_comp_cqe; 366 inv_wr.sg_list = NULL; 367 inv_wr.num_sge = 0; 368 inv_wr.opcode = IB_WR_SEND_WITH_INV; 369 inv_wr.send_flags = 0; 370 /* Only one key is actually used */ 371 inv_wr.ex.invalidate_rkey = 372 le32_to_cpu(rd_msg->desc[0].key); 373 } else { 374 WARN_ON_ONCE(1); 375 need_inval = false; 376 } 377 } 378 } 379 380 trace_send_io_resp_imm(id, need_inval, always_invalidate, errno); 381 382 if (need_inval && always_invalidate) { 383 wr = &inv_wr; 384 inv_wr.next = &rwr.wr; 385 rwr.wr.next = &imm_wr.wr; 386 } else if (always_invalidate) { 387 wr = &rwr.wr; 388 rwr.wr.next = &imm_wr.wr; 389 } else if (need_inval) { 390 wr = &inv_wr; 391 inv_wr.next = &imm_wr.wr; 392 } else { 393 wr = &imm_wr.wr; 394 } 395 /* 396 * From time to time we have to post signalled sends, 397 * or send queue will fill up and only QP reset can help. 398 */ 399 flags = (atomic_inc_return(&con->c.wr_cnt) % s->signal_interval) ? 400 0 : IB_SEND_SIGNALED; 401 imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval); 402 imm_wr.wr.next = NULL; 403 if (always_invalidate) { 404 struct ib_sge list; 405 struct rtrs_msg_rkey_rsp *msg; 406 407 srv_mr = &srv_path->mrs[id->msg_id]; 408 rwr.wr.next = &imm_wr.wr; 409 rwr.wr.opcode = IB_WR_REG_MR; 410 rwr.wr.wr_cqe = &local_reg_cqe; 411 rwr.wr.num_sge = 0; 412 rwr.wr.send_flags = 0; 413 rwr.mr = srv_mr->mr; 414 rwr.key = srv_mr->mr->rkey; 415 rwr.access = (IB_ACCESS_LOCAL_WRITE | 416 IB_ACCESS_REMOTE_WRITE); 417 msg = srv_mr->iu->buf; 418 msg->buf_id = cpu_to_le16(id->msg_id); 419 msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP); 420 msg->rkey = cpu_to_le32(srv_mr->mr->rkey); 421 422 list.addr = srv_mr->iu->dma_addr; 423 list.length = sizeof(*msg); 424 list.lkey = srv_path->s.dev->ib_pd->local_dma_lkey; 425 imm_wr.wr.sg_list = &list; 426 imm_wr.wr.num_sge = 1; 427 imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM; 428 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, 429 srv_mr->iu->dma_addr, 430 srv_mr->iu->size, DMA_TO_DEVICE); 431 } else { 432 imm_wr.wr.sg_list = NULL; 433 imm_wr.wr.num_sge = 0; 434 imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM; 435 } 436 imm_wr.wr.send_flags = flags; 437 imm_wr.wr.wr_cqe = &io_comp_cqe; 438 439 imm_wr.wr.ex.imm_data = cpu_to_be32(imm); 440 441 err = ib_post_send(id->con->c.qp, wr, NULL); 442 if (err) 443 rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n", 444 err); 445 446 return err; 447 } 448 449 void close_path(struct rtrs_srv_path *srv_path) 450 { 451 if (rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSING)) 452 queue_work(rtrs_wq, &srv_path->close_work); 453 WARN_ON(srv_path->state != RTRS_SRV_CLOSING); 454 } 455 456 static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state) 457 { 458 switch (state) { 459 case RTRS_SRV_CONNECTING: 460 return "RTRS_SRV_CONNECTING"; 461 case RTRS_SRV_CONNECTED: 462 return "RTRS_SRV_CONNECTED"; 463 case RTRS_SRV_CLOSING: 464 return "RTRS_SRV_CLOSING"; 465 case RTRS_SRV_CLOSED: 466 return "RTRS_SRV_CLOSED"; 467 default: 468 return "UNKNOWN"; 469 } 470 } 471 472 /** 473 * rtrs_srv_resp_rdma() - Finish an RDMA request 474 * 475 * @id: Internal RTRS operation identifier 476 * @status: Response Code sent to the other side for this operation. 477 * 0 = success, <=0 error 478 * Context: any 479 * 480 * Finish a RDMA operation. A message is sent to the client and the 481 * corresponding memory areas will be released. 482 */ 483 bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status) 484 { 485 struct rtrs_srv_path *srv_path; 486 struct rtrs_srv_con *con; 487 struct rtrs_path *s; 488 int err; 489 490 if (WARN_ON(!id)) 491 return true; 492 493 con = id->con; 494 s = con->c.path; 495 srv_path = to_srv_path(s); 496 497 id->status = status; 498 499 if (srv_path->state != RTRS_SRV_CONNECTED) { 500 rtrs_err_rl(s, 501 "Sending I/O response failed, server path %s is disconnected, path state %s\n", 502 kobject_name(&srv_path->kobj), 503 rtrs_srv_state_str(srv_path->state)); 504 goto out; 505 } 506 if (always_invalidate) { 507 struct rtrs_srv_mr *mr = &srv_path->mrs[id->msg_id]; 508 509 ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey)); 510 } 511 if (atomic_sub_return(1, &con->c.sq_wr_avail) < 0) { 512 rtrs_err(s, "IB send queue full: srv_path=%s cid=%d\n", 513 kobject_name(&srv_path->kobj), 514 con->c.cid); 515 atomic_add(1, &con->c.sq_wr_avail); 516 spin_lock(&con->rsp_wr_wait_lock); 517 list_add_tail(&id->wait_list, &con->rsp_wr_wait_list); 518 spin_unlock(&con->rsp_wr_wait_lock); 519 return false; 520 } 521 522 if (status || id->dir == WRITE || !id->rd_msg->sg_cnt) 523 err = send_io_resp_imm(con, id, status); 524 else 525 err = rdma_write_sg(id); 526 527 if (err) { 528 rtrs_err_rl(s, "IO response failed: %d: srv_path=%s\n", err, 529 kobject_name(&srv_path->kobj)); 530 close_path(srv_path); 531 } 532 out: 533 rtrs_srv_put_ops_ids(srv_path); 534 return true; 535 } 536 EXPORT_SYMBOL(rtrs_srv_resp_rdma); 537 538 /** 539 * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv. 540 * @srv: Session pointer 541 * @priv: The private pointer that is associated with the session. 542 */ 543 void rtrs_srv_set_sess_priv(struct rtrs_srv_sess *srv, void *priv) 544 { 545 srv->priv = priv; 546 } 547 EXPORT_SYMBOL(rtrs_srv_set_sess_priv); 548 549 static void unmap_cont_bufs(struct rtrs_srv_path *srv_path) 550 { 551 int i; 552 553 for (i = 0; i < srv_path->mrs_num; i++) { 554 struct rtrs_srv_mr *srv_mr; 555 556 srv_mr = &srv_path->mrs[i]; 557 558 if (always_invalidate) 559 rtrs_iu_free(srv_mr->iu, srv_path->s.dev->ib_dev, 1); 560 561 ib_dereg_mr(srv_mr->mr); 562 ib_dma_unmap_sg(srv_path->s.dev->ib_dev, srv_mr->sgt.sgl, 563 srv_mr->sgt.nents, DMA_BIDIRECTIONAL); 564 sg_free_table(&srv_mr->sgt); 565 } 566 kfree(srv_path->mrs); 567 } 568 569 static int map_cont_bufs(struct rtrs_srv_path *srv_path) 570 { 571 struct rtrs_srv_sess *srv = srv_path->srv; 572 struct rtrs_path *ss = &srv_path->s; 573 int i, err, mrs_num; 574 unsigned int chunk_bits; 575 int chunks_per_mr = 1; 576 struct ib_mr *mr; 577 struct sg_table *sgt; 578 579 /* 580 * Here we map queue_depth chunks to MR. Firstly we have to 581 * figure out how many chunks can we map per MR. 582 */ 583 if (always_invalidate) { 584 /* 585 * in order to do invalidate for each chunks of memory, we needs 586 * more memory regions. 587 */ 588 mrs_num = srv->queue_depth; 589 } else { 590 chunks_per_mr = 591 srv_path->s.dev->ib_dev->attrs.max_fast_reg_page_list_len; 592 mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr); 593 chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num); 594 } 595 596 srv_path->mrs = kcalloc(mrs_num, sizeof(*srv_path->mrs), GFP_KERNEL); 597 if (!srv_path->mrs) 598 return -ENOMEM; 599 600 for (srv_path->mrs_num = 0; srv_path->mrs_num < mrs_num; 601 srv_path->mrs_num++) { 602 struct rtrs_srv_mr *srv_mr = &srv_path->mrs[srv_path->mrs_num]; 603 struct scatterlist *s; 604 int nr, nr_sgt, chunks; 605 606 sgt = &srv_mr->sgt; 607 chunks = chunks_per_mr * srv_path->mrs_num; 608 if (!always_invalidate) 609 chunks_per_mr = min_t(int, chunks_per_mr, 610 srv->queue_depth - chunks); 611 612 err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL); 613 if (err) 614 goto err; 615 616 for_each_sg(sgt->sgl, s, chunks_per_mr, i) 617 sg_set_page(s, srv->chunks[chunks + i], 618 max_chunk_size, 0); 619 620 nr_sgt = ib_dma_map_sg(srv_path->s.dev->ib_dev, sgt->sgl, 621 sgt->nents, DMA_BIDIRECTIONAL); 622 if (!nr_sgt) { 623 err = -EINVAL; 624 goto free_sg; 625 } 626 mr = ib_alloc_mr(srv_path->s.dev->ib_pd, IB_MR_TYPE_MEM_REG, 627 nr_sgt); 628 if (IS_ERR(mr)) { 629 err = PTR_ERR(mr); 630 goto unmap_sg; 631 } 632 nr = ib_map_mr_sg(mr, sgt->sgl, nr_sgt, 633 NULL, max_chunk_size); 634 if (nr != nr_sgt) { 635 err = nr < 0 ? nr : -EINVAL; 636 goto dereg_mr; 637 } 638 639 if (always_invalidate) { 640 srv_mr->iu = rtrs_iu_alloc(1, 641 sizeof(struct rtrs_msg_rkey_rsp), 642 GFP_KERNEL, srv_path->s.dev->ib_dev, 643 DMA_TO_DEVICE, rtrs_srv_rdma_done); 644 if (!srv_mr->iu) { 645 err = -ENOMEM; 646 rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err); 647 goto dereg_mr; 648 } 649 } 650 /* Eventually dma addr for each chunk can be cached */ 651 for_each_sg(sgt->sgl, s, nr_sgt, i) 652 srv_path->dma_addr[chunks + i] = sg_dma_address(s); 653 654 ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey)); 655 srv_mr->mr = mr; 656 } 657 658 chunk_bits = ilog2(srv->queue_depth - 1) + 1; 659 srv_path->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits); 660 661 return 0; 662 663 dereg_mr: 664 ib_dereg_mr(mr); 665 unmap_sg: 666 ib_dma_unmap_sg(srv_path->s.dev->ib_dev, sgt->sgl, 667 sgt->nents, DMA_BIDIRECTIONAL); 668 free_sg: 669 sg_free_table(sgt); 670 err: 671 unmap_cont_bufs(srv_path); 672 673 return err; 674 } 675 676 static void rtrs_srv_hb_err_handler(struct rtrs_con *c) 677 { 678 struct rtrs_srv_con *con = container_of(c, typeof(*con), c); 679 struct rtrs_srv_path *srv_path = to_srv_path(con->c.path); 680 681 rtrs_err(con->c.path, "HB err handler for path=%s\n", kobject_name(&srv_path->kobj)); 682 close_path(to_srv_path(c->path)); 683 } 684 685 static void rtrs_srv_init_hb(struct rtrs_srv_path *srv_path) 686 { 687 rtrs_init_hb(&srv_path->s, &io_comp_cqe, 688 RTRS_HB_INTERVAL_MS, 689 RTRS_HB_MISSED_MAX, 690 rtrs_srv_hb_err_handler, 691 rtrs_wq); 692 } 693 694 static void rtrs_srv_start_hb(struct rtrs_srv_path *srv_path) 695 { 696 rtrs_start_hb(&srv_path->s); 697 } 698 699 static void rtrs_srv_stop_hb(struct rtrs_srv_path *srv_path) 700 { 701 rtrs_stop_hb(&srv_path->s); 702 } 703 704 static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc) 705 { 706 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 707 struct rtrs_path *s = con->c.path; 708 struct rtrs_srv_path *srv_path = to_srv_path(s); 709 struct rtrs_iu *iu; 710 711 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 712 rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1); 713 714 if (wc->status != IB_WC_SUCCESS) { 715 rtrs_err(s, "Sess info response send failed: %s\n", 716 ib_wc_status_msg(wc->status)); 717 close_path(srv_path); 718 return; 719 } 720 WARN_ON(wc->opcode != IB_WC_SEND); 721 } 722 723 static int rtrs_srv_path_up(struct rtrs_srv_path *srv_path) 724 { 725 struct rtrs_srv_sess *srv = srv_path->srv; 726 struct rtrs_srv_ctx *ctx = srv->ctx; 727 int up, ret = 0; 728 729 mutex_lock(&srv->paths_ev_mutex); 730 up = ++srv->paths_up; 731 if (up == 1) 732 ret = ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL); 733 mutex_unlock(&srv->paths_ev_mutex); 734 735 /* Mark session as established */ 736 if (!ret) 737 srv_path->established = true; 738 739 return ret; 740 } 741 742 static void rtrs_srv_path_down(struct rtrs_srv_path *srv_path) 743 { 744 struct rtrs_srv_sess *srv = srv_path->srv; 745 struct rtrs_srv_ctx *ctx = srv->ctx; 746 747 if (!srv_path->established) 748 return; 749 750 srv_path->established = false; 751 mutex_lock(&srv->paths_ev_mutex); 752 WARN_ON(!srv->paths_up); 753 if (--srv->paths_up == 0) 754 ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv); 755 mutex_unlock(&srv->paths_ev_mutex); 756 } 757 758 static bool exist_pathname(struct rtrs_srv_ctx *ctx, 759 const char *pathname, const uuid_t *path_uuid) 760 { 761 struct rtrs_srv_sess *srv; 762 struct rtrs_srv_path *srv_path; 763 bool found = false; 764 765 mutex_lock(&ctx->srv_mutex); 766 list_for_each_entry(srv, &ctx->srv_list, ctx_list) { 767 mutex_lock(&srv->paths_mutex); 768 769 /* when a client with same uuid and same sessname tried to add a path */ 770 if (uuid_equal(&srv->paths_uuid, path_uuid)) { 771 mutex_unlock(&srv->paths_mutex); 772 continue; 773 } 774 775 list_for_each_entry(srv_path, &srv->paths_list, s.entry) { 776 if (strlen(srv_path->s.sessname) == strlen(pathname) && 777 !strcmp(srv_path->s.sessname, pathname)) { 778 found = true; 779 break; 780 } 781 } 782 mutex_unlock(&srv->paths_mutex); 783 if (found) 784 break; 785 } 786 mutex_unlock(&ctx->srv_mutex); 787 return found; 788 } 789 790 static int post_recv_path(struct rtrs_srv_path *srv_path); 791 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno); 792 793 static int process_info_req(struct rtrs_srv_con *con, 794 struct rtrs_msg_info_req *msg) 795 { 796 struct rtrs_path *s = con->c.path; 797 struct rtrs_srv_path *srv_path = to_srv_path(s); 798 struct ib_send_wr *reg_wr = NULL; 799 struct rtrs_msg_info_rsp *rsp; 800 struct rtrs_iu *tx_iu; 801 struct ib_reg_wr *rwr; 802 int mri, err; 803 size_t tx_sz; 804 805 err = post_recv_path(srv_path); 806 if (err) { 807 rtrs_err(s, "post_recv_path(), err: %d\n", err); 808 return err; 809 } 810 811 if (strchr(msg->pathname, '/') || strchr(msg->pathname, '.')) { 812 rtrs_err(s, "pathname cannot contain / and .\n"); 813 return -EINVAL; 814 } 815 816 if (exist_pathname(srv_path->srv->ctx, 817 msg->pathname, &srv_path->srv->paths_uuid)) { 818 rtrs_err(s, "pathname is duplicated: %s\n", msg->pathname); 819 return -EPERM; 820 } 821 strscpy(srv_path->s.sessname, msg->pathname, 822 sizeof(srv_path->s.sessname)); 823 824 rwr = kcalloc(srv_path->mrs_num, sizeof(*rwr), GFP_KERNEL); 825 if (!rwr) 826 return -ENOMEM; 827 828 tx_sz = sizeof(*rsp); 829 tx_sz += sizeof(rsp->desc[0]) * srv_path->mrs_num; 830 tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, srv_path->s.dev->ib_dev, 831 DMA_TO_DEVICE, rtrs_srv_info_rsp_done); 832 if (!tx_iu) { 833 err = -ENOMEM; 834 goto rwr_free; 835 } 836 837 rsp = tx_iu->buf; 838 rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP); 839 rsp->sg_cnt = cpu_to_le16(srv_path->mrs_num); 840 841 for (mri = 0; mri < srv_path->mrs_num; mri++) { 842 struct ib_mr *mr = srv_path->mrs[mri].mr; 843 844 rsp->desc[mri].addr = cpu_to_le64(mr->iova); 845 rsp->desc[mri].key = cpu_to_le32(mr->rkey); 846 rsp->desc[mri].len = cpu_to_le32(mr->length); 847 848 /* 849 * Fill in reg MR request and chain them *backwards* 850 */ 851 rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL; 852 rwr[mri].wr.opcode = IB_WR_REG_MR; 853 rwr[mri].wr.wr_cqe = &local_reg_cqe; 854 rwr[mri].wr.num_sge = 0; 855 rwr[mri].wr.send_flags = 0; 856 rwr[mri].mr = mr; 857 rwr[mri].key = mr->rkey; 858 rwr[mri].access = (IB_ACCESS_LOCAL_WRITE | 859 IB_ACCESS_REMOTE_WRITE); 860 reg_wr = &rwr[mri].wr; 861 } 862 863 err = rtrs_srv_create_path_files(srv_path); 864 if (err) 865 goto iu_free; 866 kobject_get(&srv_path->kobj); 867 get_device(&srv_path->srv->dev); 868 err = rtrs_srv_change_state(srv_path, RTRS_SRV_CONNECTED); 869 if (!err) { 870 rtrs_err(s, "rtrs_srv_change_state(), err: %d\n", err); 871 goto iu_free; 872 } 873 874 rtrs_srv_start_hb(srv_path); 875 876 /* 877 * We do not account number of established connections at the current 878 * moment, we rely on the client, which should send info request when 879 * all connections are successfully established. Thus, simply notify 880 * listener with a proper event if we are the first path. 881 */ 882 err = rtrs_srv_path_up(srv_path); 883 if (err) { 884 rtrs_err(s, "rtrs_srv_path_up(), err: %d\n", err); 885 goto iu_free; 886 } 887 888 ib_dma_sync_single_for_device(srv_path->s.dev->ib_dev, 889 tx_iu->dma_addr, 890 tx_iu->size, DMA_TO_DEVICE); 891 892 /* Send info response */ 893 err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr); 894 if (err) { 895 rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err); 896 iu_free: 897 rtrs_iu_free(tx_iu, srv_path->s.dev->ib_dev, 1); 898 } 899 rwr_free: 900 kfree(rwr); 901 902 return err; 903 } 904 905 static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc) 906 { 907 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 908 struct rtrs_path *s = con->c.path; 909 struct rtrs_srv_path *srv_path = to_srv_path(s); 910 struct rtrs_msg_info_req *msg; 911 struct rtrs_iu *iu; 912 int err; 913 914 WARN_ON(con->c.cid); 915 916 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 917 if (wc->status != IB_WC_SUCCESS) { 918 rtrs_err(s, "Sess info request receive failed: %s\n", 919 ib_wc_status_msg(wc->status)); 920 goto close; 921 } 922 WARN_ON(wc->opcode != IB_WC_RECV); 923 924 if (wc->byte_len < sizeof(*msg)) { 925 rtrs_err(s, "Sess info request is malformed: size %d\n", 926 wc->byte_len); 927 goto close; 928 } 929 ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, iu->dma_addr, 930 iu->size, DMA_FROM_DEVICE); 931 msg = iu->buf; 932 if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ) { 933 rtrs_err(s, "Sess info request is malformed: type %d\n", 934 le16_to_cpu(msg->type)); 935 goto close; 936 } 937 err = process_info_req(con, msg); 938 if (err) 939 goto close; 940 941 rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1); 942 return; 943 close: 944 rtrs_iu_free(iu, srv_path->s.dev->ib_dev, 1); 945 close_path(srv_path); 946 } 947 948 static int post_recv_info_req(struct rtrs_srv_con *con) 949 { 950 struct rtrs_path *s = con->c.path; 951 struct rtrs_srv_path *srv_path = to_srv_path(s); 952 struct rtrs_iu *rx_iu; 953 int err; 954 955 rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), 956 GFP_KERNEL, srv_path->s.dev->ib_dev, 957 DMA_FROM_DEVICE, rtrs_srv_info_req_done); 958 if (!rx_iu) 959 return -ENOMEM; 960 /* Prepare for getting info response */ 961 err = rtrs_iu_post_recv(&con->c, rx_iu); 962 if (err) { 963 rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err); 964 rtrs_iu_free(rx_iu, srv_path->s.dev->ib_dev, 1); 965 return err; 966 } 967 968 return 0; 969 } 970 971 static int post_recv_io(struct rtrs_srv_con *con, size_t q_size) 972 { 973 int i, err; 974 975 for (i = 0; i < q_size; i++) { 976 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 977 if (err) 978 return err; 979 } 980 981 return 0; 982 } 983 984 static int post_recv_path(struct rtrs_srv_path *srv_path) 985 { 986 struct rtrs_srv_sess *srv = srv_path->srv; 987 struct rtrs_path *s = &srv_path->s; 988 size_t q_size; 989 int err, cid; 990 991 for (cid = 0; cid < srv_path->s.con_num; cid++) { 992 if (cid == 0) 993 q_size = SERVICE_CON_QUEUE_DEPTH; 994 else 995 q_size = srv->queue_depth; 996 if (srv_path->state != RTRS_SRV_CONNECTING) { 997 rtrs_err(s, "Path state invalid. state %s\n", 998 rtrs_srv_state_str(srv_path->state)); 999 return -EIO; 1000 } 1001 1002 if (!srv_path->s.con[cid]) { 1003 rtrs_err(s, "Conn not set for %d\n", cid); 1004 return -EIO; 1005 } 1006 1007 err = post_recv_io(to_srv_con(srv_path->s.con[cid]), q_size); 1008 if (err) { 1009 rtrs_err(s, "post_recv_io(), err: %d\n", err); 1010 return err; 1011 } 1012 } 1013 1014 return 0; 1015 } 1016 1017 static void process_read(struct rtrs_srv_con *con, 1018 struct rtrs_msg_rdma_read *msg, 1019 u32 buf_id, u32 off) 1020 { 1021 struct rtrs_path *s = con->c.path; 1022 struct rtrs_srv_path *srv_path = to_srv_path(s); 1023 struct rtrs_srv_sess *srv = srv_path->srv; 1024 struct rtrs_srv_ctx *ctx = srv->ctx; 1025 struct rtrs_srv_op *id; 1026 1027 size_t usr_len, data_len; 1028 void *data; 1029 int ret; 1030 1031 if (srv_path->state != RTRS_SRV_CONNECTED) { 1032 rtrs_err_rl(s, 1033 "Processing read request failed, session is disconnected, sess state %s\n", 1034 rtrs_srv_state_str(srv_path->state)); 1035 return; 1036 } 1037 if (msg->sg_cnt != 1 && msg->sg_cnt != 0) { 1038 rtrs_err_rl(s, 1039 "Processing read request failed, invalid message\n"); 1040 return; 1041 } 1042 rtrs_srv_get_ops_ids(srv_path); 1043 rtrs_srv_update_rdma_stats(srv_path->stats, off, READ); 1044 id = srv_path->ops_ids[buf_id]; 1045 id->con = con; 1046 id->dir = READ; 1047 id->msg_id = buf_id; 1048 id->rd_msg = msg; 1049 usr_len = le16_to_cpu(msg->usr_len); 1050 data_len = off - usr_len; 1051 data = page_address(srv->chunks[buf_id]); 1052 ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len, 1053 data + data_len, usr_len); 1054 1055 if (ret) { 1056 rtrs_err_rl(s, 1057 "Processing read request failed, user module cb reported for msg_id %d, err: %d\n", 1058 buf_id, ret); 1059 goto send_err_msg; 1060 } 1061 1062 return; 1063 1064 send_err_msg: 1065 ret = send_io_resp_imm(con, id, ret); 1066 if (ret < 0) { 1067 rtrs_err_rl(s, 1068 "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n", 1069 buf_id, ret); 1070 close_path(srv_path); 1071 } 1072 rtrs_srv_put_ops_ids(srv_path); 1073 } 1074 1075 static void process_write(struct rtrs_srv_con *con, 1076 struct rtrs_msg_rdma_write *req, 1077 u32 buf_id, u32 off) 1078 { 1079 struct rtrs_path *s = con->c.path; 1080 struct rtrs_srv_path *srv_path = to_srv_path(s); 1081 struct rtrs_srv_sess *srv = srv_path->srv; 1082 struct rtrs_srv_ctx *ctx = srv->ctx; 1083 struct rtrs_srv_op *id; 1084 1085 size_t data_len, usr_len; 1086 void *data; 1087 int ret; 1088 1089 if (srv_path->state != RTRS_SRV_CONNECTED) { 1090 rtrs_err_rl(s, 1091 "Processing write request failed, session is disconnected, sess state %s\n", 1092 rtrs_srv_state_str(srv_path->state)); 1093 return; 1094 } 1095 rtrs_srv_get_ops_ids(srv_path); 1096 rtrs_srv_update_rdma_stats(srv_path->stats, off, WRITE); 1097 id = srv_path->ops_ids[buf_id]; 1098 id->con = con; 1099 id->dir = WRITE; 1100 id->msg_id = buf_id; 1101 1102 usr_len = le16_to_cpu(req->usr_len); 1103 data_len = off - usr_len; 1104 data = page_address(srv->chunks[buf_id]); 1105 ret = ctx->ops.rdma_ev(srv->priv, id, data, data_len, 1106 data + data_len, usr_len); 1107 if (ret) { 1108 rtrs_err_rl(s, 1109 "Processing write request failed, user module callback reports err: %d\n", 1110 ret); 1111 goto send_err_msg; 1112 } 1113 1114 return; 1115 1116 send_err_msg: 1117 ret = send_io_resp_imm(con, id, ret); 1118 if (ret < 0) { 1119 rtrs_err_rl(s, 1120 "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n", 1121 buf_id, ret); 1122 close_path(srv_path); 1123 } 1124 rtrs_srv_put_ops_ids(srv_path); 1125 } 1126 1127 static void process_io_req(struct rtrs_srv_con *con, void *msg, 1128 u32 id, u32 off) 1129 { 1130 struct rtrs_path *s = con->c.path; 1131 struct rtrs_srv_path *srv_path = to_srv_path(s); 1132 struct rtrs_msg_rdma_hdr *hdr; 1133 unsigned int type; 1134 1135 ib_dma_sync_single_for_cpu(srv_path->s.dev->ib_dev, 1136 srv_path->dma_addr[id], 1137 max_chunk_size, DMA_BIDIRECTIONAL); 1138 hdr = msg; 1139 type = le16_to_cpu(hdr->type); 1140 1141 switch (type) { 1142 case RTRS_MSG_WRITE: 1143 process_write(con, msg, id, off); 1144 break; 1145 case RTRS_MSG_READ: 1146 process_read(con, msg, id, off); 1147 break; 1148 default: 1149 rtrs_err(s, 1150 "Processing I/O request failed, unknown message type received: 0x%02x\n", 1151 type); 1152 goto err; 1153 } 1154 1155 return; 1156 1157 err: 1158 close_path(srv_path); 1159 } 1160 1161 static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1162 { 1163 struct rtrs_srv_mr *mr = 1164 container_of(wc->wr_cqe, typeof(*mr), inv_cqe); 1165 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 1166 struct rtrs_path *s = con->c.path; 1167 struct rtrs_srv_path *srv_path = to_srv_path(s); 1168 struct rtrs_srv_sess *srv = srv_path->srv; 1169 u32 msg_id, off; 1170 void *data; 1171 1172 if (wc->status != IB_WC_SUCCESS) { 1173 rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n", 1174 ib_wc_status_msg(wc->status)); 1175 close_path(srv_path); 1176 } 1177 msg_id = mr->msg_id; 1178 off = mr->msg_off; 1179 data = page_address(srv->chunks[msg_id]) + off; 1180 process_io_req(con, data, msg_id, off); 1181 } 1182 1183 static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con, 1184 struct rtrs_srv_mr *mr) 1185 { 1186 struct ib_send_wr wr = { 1187 .opcode = IB_WR_LOCAL_INV, 1188 .wr_cqe = &mr->inv_cqe, 1189 .send_flags = IB_SEND_SIGNALED, 1190 .ex.invalidate_rkey = mr->mr->rkey, 1191 }; 1192 mr->inv_cqe.done = rtrs_srv_inv_rkey_done; 1193 1194 return ib_post_send(con->c.qp, &wr, NULL); 1195 } 1196 1197 static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con) 1198 { 1199 spin_lock(&con->rsp_wr_wait_lock); 1200 while (!list_empty(&con->rsp_wr_wait_list)) { 1201 struct rtrs_srv_op *id; 1202 int ret; 1203 1204 id = list_entry(con->rsp_wr_wait_list.next, 1205 struct rtrs_srv_op, wait_list); 1206 list_del(&id->wait_list); 1207 1208 spin_unlock(&con->rsp_wr_wait_lock); 1209 ret = rtrs_srv_resp_rdma(id, id->status); 1210 spin_lock(&con->rsp_wr_wait_lock); 1211 1212 if (!ret) { 1213 list_add(&id->wait_list, &con->rsp_wr_wait_list); 1214 break; 1215 } 1216 } 1217 spin_unlock(&con->rsp_wr_wait_lock); 1218 } 1219 1220 static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc) 1221 { 1222 struct rtrs_srv_con *con = to_srv_con(wc->qp->qp_context); 1223 struct rtrs_path *s = con->c.path; 1224 struct rtrs_srv_path *srv_path = to_srv_path(s); 1225 struct rtrs_srv_sess *srv = srv_path->srv; 1226 u32 imm_type, imm_payload; 1227 int err; 1228 1229 if (wc->status != IB_WC_SUCCESS) { 1230 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1231 rtrs_err(s, 1232 "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n", 1233 ib_wc_status_msg(wc->status), wc->wr_cqe, 1234 wc->opcode, wc->vendor_err, wc->byte_len); 1235 close_path(srv_path); 1236 } 1237 return; 1238 } 1239 1240 switch (wc->opcode) { 1241 case IB_WC_RECV_RDMA_WITH_IMM: 1242 /* 1243 * post_recv() RDMA write completions of IO reqs (read/write) 1244 * and hb 1245 */ 1246 if (WARN_ON(wc->wr_cqe != &io_comp_cqe)) 1247 return; 1248 srv_path->s.hb_missed_cnt = 0; 1249 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 1250 if (err) { 1251 rtrs_err(s, "rtrs_post_recv(), err: %d\n", err); 1252 close_path(srv_path); 1253 break; 1254 } 1255 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), 1256 &imm_type, &imm_payload); 1257 if (imm_type == RTRS_IO_REQ_IMM) { 1258 u32 msg_id, off; 1259 void *data; 1260 1261 msg_id = imm_payload >> srv_path->mem_bits; 1262 off = imm_payload & ((1 << srv_path->mem_bits) - 1); 1263 if (msg_id >= srv->queue_depth || off >= max_chunk_size) { 1264 rtrs_err(s, "Wrong msg_id %u, off %u\n", 1265 msg_id, off); 1266 close_path(srv_path); 1267 return; 1268 } 1269 if (always_invalidate) { 1270 struct rtrs_srv_mr *mr = &srv_path->mrs[msg_id]; 1271 1272 mr->msg_off = off; 1273 mr->msg_id = msg_id; 1274 err = rtrs_srv_inv_rkey(con, mr); 1275 if (err) { 1276 rtrs_err(s, "rtrs_post_recv(), err: %d\n", 1277 err); 1278 close_path(srv_path); 1279 break; 1280 } 1281 } else { 1282 data = page_address(srv->chunks[msg_id]) + off; 1283 process_io_req(con, data, msg_id, off); 1284 } 1285 } else if (imm_type == RTRS_HB_MSG_IMM) { 1286 WARN_ON(con->c.cid); 1287 rtrs_send_hb_ack(&srv_path->s); 1288 } else if (imm_type == RTRS_HB_ACK_IMM) { 1289 WARN_ON(con->c.cid); 1290 srv_path->s.hb_missed_cnt = 0; 1291 } else { 1292 rtrs_wrn(s, "Unknown IMM type %u\n", imm_type); 1293 } 1294 break; 1295 case IB_WC_RDMA_WRITE: 1296 case IB_WC_SEND: 1297 /* 1298 * post_send() RDMA write completions of IO reqs (read/write) 1299 * and hb. 1300 */ 1301 atomic_add(s->signal_interval, &con->c.sq_wr_avail); 1302 1303 if (!list_empty_careful(&con->rsp_wr_wait_list)) 1304 rtrs_rdma_process_wr_wait_list(con); 1305 1306 break; 1307 default: 1308 rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode); 1309 return; 1310 } 1311 } 1312 1313 /** 1314 * rtrs_srv_get_path_name() - Get rtrs_srv peer hostname. 1315 * @srv: Session 1316 * @pathname: Pathname buffer 1317 * @len: Length of sessname buffer 1318 */ 1319 int rtrs_srv_get_path_name(struct rtrs_srv_sess *srv, char *pathname, 1320 size_t len) 1321 { 1322 struct rtrs_srv_path *srv_path; 1323 int err = -ENOTCONN; 1324 1325 mutex_lock(&srv->paths_mutex); 1326 list_for_each_entry(srv_path, &srv->paths_list, s.entry) { 1327 if (srv_path->state != RTRS_SRV_CONNECTED) 1328 continue; 1329 strscpy(pathname, srv_path->s.sessname, 1330 min_t(size_t, sizeof(srv_path->s.sessname), len)); 1331 err = 0; 1332 break; 1333 } 1334 mutex_unlock(&srv->paths_mutex); 1335 1336 return err; 1337 } 1338 EXPORT_SYMBOL(rtrs_srv_get_path_name); 1339 1340 /** 1341 * rtrs_srv_get_queue_depth() - Get rtrs_srv qdepth. 1342 * @srv: Session 1343 */ 1344 int rtrs_srv_get_queue_depth(struct rtrs_srv_sess *srv) 1345 { 1346 return srv->queue_depth; 1347 } 1348 EXPORT_SYMBOL(rtrs_srv_get_queue_depth); 1349 1350 static int find_next_bit_ring(struct rtrs_srv_path *srv_path) 1351 { 1352 struct ib_device *ib_dev = srv_path->s.dev->ib_dev; 1353 int v; 1354 1355 v = cpumask_next(srv_path->cur_cq_vector, &cq_affinity_mask); 1356 if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors) 1357 v = cpumask_first(&cq_affinity_mask); 1358 return v; 1359 } 1360 1361 static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_path *srv_path) 1362 { 1363 srv_path->cur_cq_vector = find_next_bit_ring(srv_path); 1364 1365 return srv_path->cur_cq_vector; 1366 } 1367 1368 static void rtrs_srv_dev_release(struct device *dev) 1369 { 1370 struct rtrs_srv_sess *srv = container_of(dev, struct rtrs_srv_sess, 1371 dev); 1372 1373 kfree(srv); 1374 } 1375 1376 static void free_srv(struct rtrs_srv_sess *srv) 1377 { 1378 int i; 1379 1380 WARN_ON(refcount_read(&srv->refcount)); 1381 for (i = 0; i < srv->queue_depth; i++) 1382 __free_pages(srv->chunks[i], get_order(max_chunk_size)); 1383 kfree(srv->chunks); 1384 mutex_destroy(&srv->paths_mutex); 1385 mutex_destroy(&srv->paths_ev_mutex); 1386 /* last put to release the srv structure */ 1387 put_device(&srv->dev); 1388 } 1389 1390 static struct rtrs_srv_sess *get_or_create_srv(struct rtrs_srv_ctx *ctx, 1391 const uuid_t *paths_uuid, 1392 bool first_conn) 1393 { 1394 struct rtrs_srv_sess *srv; 1395 int i; 1396 1397 mutex_lock(&ctx->srv_mutex); 1398 list_for_each_entry(srv, &ctx->srv_list, ctx_list) { 1399 if (uuid_equal(&srv->paths_uuid, paths_uuid) && 1400 refcount_inc_not_zero(&srv->refcount)) { 1401 mutex_unlock(&ctx->srv_mutex); 1402 return srv; 1403 } 1404 } 1405 mutex_unlock(&ctx->srv_mutex); 1406 /* 1407 * If this request is not the first connection request from the 1408 * client for this session then fail and return error. 1409 */ 1410 if (!first_conn) { 1411 pr_err_ratelimited("Error: Not the first connection request for this session\n"); 1412 return ERR_PTR(-ENXIO); 1413 } 1414 1415 /* need to allocate a new srv */ 1416 srv = kzalloc(sizeof(*srv), GFP_KERNEL); 1417 if (!srv) 1418 return ERR_PTR(-ENOMEM); 1419 1420 INIT_LIST_HEAD(&srv->paths_list); 1421 mutex_init(&srv->paths_mutex); 1422 mutex_init(&srv->paths_ev_mutex); 1423 uuid_copy(&srv->paths_uuid, paths_uuid); 1424 srv->queue_depth = sess_queue_depth; 1425 srv->ctx = ctx; 1426 device_initialize(&srv->dev); 1427 srv->dev.release = rtrs_srv_dev_release; 1428 1429 srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks), 1430 GFP_KERNEL); 1431 if (!srv->chunks) 1432 goto err_free_srv; 1433 1434 for (i = 0; i < srv->queue_depth; i++) { 1435 srv->chunks[i] = alloc_pages(GFP_KERNEL, 1436 get_order(max_chunk_size)); 1437 if (!srv->chunks[i]) 1438 goto err_free_chunks; 1439 } 1440 refcount_set(&srv->refcount, 1); 1441 mutex_lock(&ctx->srv_mutex); 1442 list_add(&srv->ctx_list, &ctx->srv_list); 1443 mutex_unlock(&ctx->srv_mutex); 1444 1445 return srv; 1446 1447 err_free_chunks: 1448 while (i--) 1449 __free_pages(srv->chunks[i], get_order(max_chunk_size)); 1450 kfree(srv->chunks); 1451 1452 err_free_srv: 1453 kfree(srv); 1454 return ERR_PTR(-ENOMEM); 1455 } 1456 1457 static void put_srv(struct rtrs_srv_sess *srv) 1458 { 1459 if (refcount_dec_and_test(&srv->refcount)) { 1460 struct rtrs_srv_ctx *ctx = srv->ctx; 1461 1462 WARN_ON(srv->dev.kobj.state_in_sysfs); 1463 1464 mutex_lock(&ctx->srv_mutex); 1465 list_del(&srv->ctx_list); 1466 mutex_unlock(&ctx->srv_mutex); 1467 free_srv(srv); 1468 } 1469 } 1470 1471 static void __add_path_to_srv(struct rtrs_srv_sess *srv, 1472 struct rtrs_srv_path *srv_path) 1473 { 1474 list_add_tail(&srv_path->s.entry, &srv->paths_list); 1475 srv->paths_num++; 1476 WARN_ON(srv->paths_num >= MAX_PATHS_NUM); 1477 } 1478 1479 static void del_path_from_srv(struct rtrs_srv_path *srv_path) 1480 { 1481 struct rtrs_srv_sess *srv = srv_path->srv; 1482 1483 if (WARN_ON(!srv)) 1484 return; 1485 1486 mutex_lock(&srv->paths_mutex); 1487 list_del(&srv_path->s.entry); 1488 WARN_ON(!srv->paths_num); 1489 srv->paths_num--; 1490 mutex_unlock(&srv->paths_mutex); 1491 } 1492 1493 /* return true if addresses are the same, error other wise */ 1494 static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b) 1495 { 1496 switch (a->sa_family) { 1497 case AF_IB: 1498 return memcmp(&((struct sockaddr_ib *)a)->sib_addr, 1499 &((struct sockaddr_ib *)b)->sib_addr, 1500 sizeof(struct ib_addr)) && 1501 (b->sa_family == AF_IB); 1502 case AF_INET: 1503 return memcmp(&((struct sockaddr_in *)a)->sin_addr, 1504 &((struct sockaddr_in *)b)->sin_addr, 1505 sizeof(struct in_addr)) && 1506 (b->sa_family == AF_INET); 1507 case AF_INET6: 1508 return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr, 1509 &((struct sockaddr_in6 *)b)->sin6_addr, 1510 sizeof(struct in6_addr)) && 1511 (b->sa_family == AF_INET6); 1512 default: 1513 return -ENOENT; 1514 } 1515 } 1516 1517 static bool __is_path_w_addr_exists(struct rtrs_srv_sess *srv, 1518 struct rdma_addr *addr) 1519 { 1520 struct rtrs_srv_path *srv_path; 1521 1522 list_for_each_entry(srv_path, &srv->paths_list, s.entry) 1523 if (!sockaddr_cmp((struct sockaddr *)&srv_path->s.dst_addr, 1524 (struct sockaddr *)&addr->dst_addr) && 1525 !sockaddr_cmp((struct sockaddr *)&srv_path->s.src_addr, 1526 (struct sockaddr *)&addr->src_addr)) 1527 return true; 1528 1529 return false; 1530 } 1531 1532 static void free_path(struct rtrs_srv_path *srv_path) 1533 { 1534 if (srv_path->kobj.state_in_sysfs) { 1535 kobject_del(&srv_path->kobj); 1536 kobject_put(&srv_path->kobj); 1537 } else { 1538 free_percpu(srv_path->stats->rdma_stats); 1539 kfree(srv_path->stats); 1540 kfree(srv_path); 1541 } 1542 } 1543 1544 static void rtrs_srv_close_work(struct work_struct *work) 1545 { 1546 struct rtrs_srv_path *srv_path; 1547 struct rtrs_srv_con *con; 1548 int i; 1549 1550 srv_path = container_of(work, typeof(*srv_path), close_work); 1551 1552 rtrs_srv_stop_hb(srv_path); 1553 1554 for (i = 0; i < srv_path->s.con_num; i++) { 1555 if (!srv_path->s.con[i]) 1556 continue; 1557 con = to_srv_con(srv_path->s.con[i]); 1558 rdma_disconnect(con->c.cm_id); 1559 ib_drain_qp(con->c.qp); 1560 } 1561 1562 /* 1563 * Degrade ref count to the usual model with a single shared 1564 * atomic_t counter 1565 */ 1566 percpu_ref_kill(&srv_path->ids_inflight_ref); 1567 1568 /* Wait for all completion */ 1569 wait_for_completion(&srv_path->complete_done); 1570 1571 rtrs_srv_destroy_path_files(srv_path); 1572 1573 /* Notify upper layer if we are the last path */ 1574 rtrs_srv_path_down(srv_path); 1575 1576 unmap_cont_bufs(srv_path); 1577 rtrs_srv_free_ops_ids(srv_path); 1578 1579 for (i = 0; i < srv_path->s.con_num; i++) { 1580 if (!srv_path->s.con[i]) 1581 continue; 1582 con = to_srv_con(srv_path->s.con[i]); 1583 rtrs_cq_qp_destroy(&con->c); 1584 rdma_destroy_id(con->c.cm_id); 1585 kfree(con); 1586 } 1587 rtrs_ib_dev_put(srv_path->s.dev); 1588 1589 del_path_from_srv(srv_path); 1590 put_srv(srv_path->srv); 1591 srv_path->srv = NULL; 1592 rtrs_srv_change_state(srv_path, RTRS_SRV_CLOSED); 1593 1594 kfree(srv_path->dma_addr); 1595 kfree(srv_path->s.con); 1596 free_path(srv_path); 1597 } 1598 1599 static int rtrs_rdma_do_accept(struct rtrs_srv_path *srv_path, 1600 struct rdma_cm_id *cm_id) 1601 { 1602 struct rtrs_srv_sess *srv = srv_path->srv; 1603 struct rtrs_msg_conn_rsp msg; 1604 struct rdma_conn_param param; 1605 int err; 1606 1607 param = (struct rdma_conn_param) { 1608 .rnr_retry_count = 7, 1609 .private_data = &msg, 1610 .private_data_len = sizeof(msg), 1611 }; 1612 1613 msg = (struct rtrs_msg_conn_rsp) { 1614 .magic = cpu_to_le16(RTRS_MAGIC), 1615 .version = cpu_to_le16(RTRS_PROTO_VER), 1616 .queue_depth = cpu_to_le16(srv->queue_depth), 1617 .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE), 1618 .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE), 1619 }; 1620 1621 if (always_invalidate) 1622 msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F); 1623 1624 err = rdma_accept(cm_id, ¶m); 1625 if (err) 1626 pr_err("rdma_accept(), err: %d\n", err); 1627 1628 return err; 1629 } 1630 1631 static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno) 1632 { 1633 struct rtrs_msg_conn_rsp msg; 1634 int err; 1635 1636 msg = (struct rtrs_msg_conn_rsp) { 1637 .magic = cpu_to_le16(RTRS_MAGIC), 1638 .version = cpu_to_le16(RTRS_PROTO_VER), 1639 .errno = cpu_to_le16(errno), 1640 }; 1641 1642 err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED); 1643 if (err) 1644 pr_err("rdma_reject(), err: %d\n", err); 1645 1646 /* Bounce errno back */ 1647 return errno; 1648 } 1649 1650 static struct rtrs_srv_path * 1651 __find_path(struct rtrs_srv_sess *srv, const uuid_t *sess_uuid) 1652 { 1653 struct rtrs_srv_path *srv_path; 1654 1655 list_for_each_entry(srv_path, &srv->paths_list, s.entry) { 1656 if (uuid_equal(&srv_path->s.uuid, sess_uuid)) 1657 return srv_path; 1658 } 1659 1660 return NULL; 1661 } 1662 1663 static int create_con(struct rtrs_srv_path *srv_path, 1664 struct rdma_cm_id *cm_id, 1665 unsigned int cid) 1666 { 1667 struct rtrs_srv_sess *srv = srv_path->srv; 1668 struct rtrs_path *s = &srv_path->s; 1669 struct rtrs_srv_con *con; 1670 1671 u32 cq_num, max_send_wr, max_recv_wr, wr_limit; 1672 int err, cq_vector; 1673 1674 con = kzalloc(sizeof(*con), GFP_KERNEL); 1675 if (!con) { 1676 err = -ENOMEM; 1677 goto err; 1678 } 1679 1680 spin_lock_init(&con->rsp_wr_wait_lock); 1681 INIT_LIST_HEAD(&con->rsp_wr_wait_list); 1682 con->c.cm_id = cm_id; 1683 con->c.path = &srv_path->s; 1684 con->c.cid = cid; 1685 atomic_set(&con->c.wr_cnt, 1); 1686 wr_limit = srv_path->s.dev->ib_dev->attrs.max_qp_wr; 1687 1688 if (con->c.cid == 0) { 1689 /* 1690 * All receive and all send (each requiring invalidate) 1691 * + 2 for drain and heartbeat 1692 */ 1693 max_send_wr = min_t(int, wr_limit, 1694 SERVICE_CON_QUEUE_DEPTH * 2 + 2); 1695 max_recv_wr = max_send_wr; 1696 s->signal_interval = min_not_zero(srv->queue_depth, 1697 (size_t)SERVICE_CON_QUEUE_DEPTH); 1698 } else { 1699 /* when always_invlaidate enalbed, we need linv+rinv+mr+imm */ 1700 if (always_invalidate) 1701 max_send_wr = 1702 min_t(int, wr_limit, 1703 srv->queue_depth * (1 + 4) + 1); 1704 else 1705 max_send_wr = 1706 min_t(int, wr_limit, 1707 srv->queue_depth * (1 + 2) + 1); 1708 1709 max_recv_wr = srv->queue_depth + 1; 1710 } 1711 cq_num = max_send_wr + max_recv_wr; 1712 atomic_set(&con->c.sq_wr_avail, max_send_wr); 1713 cq_vector = rtrs_srv_get_next_cq_vector(srv_path); 1714 1715 /* TODO: SOFTIRQ can be faster, but be careful with softirq context */ 1716 err = rtrs_cq_qp_create(&srv_path->s, &con->c, 1, cq_vector, cq_num, 1717 max_send_wr, max_recv_wr, 1718 IB_POLL_WORKQUEUE); 1719 if (err) { 1720 rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err); 1721 goto free_con; 1722 } 1723 if (con->c.cid == 0) { 1724 err = post_recv_info_req(con); 1725 if (err) 1726 goto free_cqqp; 1727 } 1728 WARN_ON(srv_path->s.con[cid]); 1729 srv_path->s.con[cid] = &con->c; 1730 1731 /* 1732 * Change context from server to current connection. The other 1733 * way is to use cm_id->qp->qp_context, which does not work on OFED. 1734 */ 1735 cm_id->context = &con->c; 1736 1737 return 0; 1738 1739 free_cqqp: 1740 rtrs_cq_qp_destroy(&con->c); 1741 free_con: 1742 kfree(con); 1743 1744 err: 1745 return err; 1746 } 1747 1748 static struct rtrs_srv_path *__alloc_path(struct rtrs_srv_sess *srv, 1749 struct rdma_cm_id *cm_id, 1750 unsigned int con_num, 1751 unsigned int recon_cnt, 1752 const uuid_t *uuid) 1753 { 1754 struct rtrs_srv_path *srv_path; 1755 int err = -ENOMEM; 1756 char str[NAME_MAX]; 1757 struct rtrs_addr path; 1758 1759 if (srv->paths_num >= MAX_PATHS_NUM) { 1760 err = -ECONNRESET; 1761 goto err; 1762 } 1763 if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) { 1764 err = -EEXIST; 1765 pr_err("Path with same addr exists\n"); 1766 goto err; 1767 } 1768 srv_path = kzalloc(sizeof(*srv_path), GFP_KERNEL); 1769 if (!srv_path) 1770 goto err; 1771 1772 srv_path->stats = kzalloc(sizeof(*srv_path->stats), GFP_KERNEL); 1773 if (!srv_path->stats) 1774 goto err_free_sess; 1775 1776 srv_path->stats->rdma_stats = alloc_percpu(struct rtrs_srv_stats_rdma_stats); 1777 if (!srv_path->stats->rdma_stats) 1778 goto err_free_stats; 1779 1780 srv_path->stats->srv_path = srv_path; 1781 1782 srv_path->dma_addr = kcalloc(srv->queue_depth, 1783 sizeof(*srv_path->dma_addr), 1784 GFP_KERNEL); 1785 if (!srv_path->dma_addr) 1786 goto err_free_percpu; 1787 1788 srv_path->s.con = kcalloc(con_num, sizeof(*srv_path->s.con), 1789 GFP_KERNEL); 1790 if (!srv_path->s.con) 1791 goto err_free_dma_addr; 1792 1793 srv_path->state = RTRS_SRV_CONNECTING; 1794 srv_path->srv = srv; 1795 srv_path->cur_cq_vector = -1; 1796 srv_path->s.dst_addr = cm_id->route.addr.dst_addr; 1797 srv_path->s.src_addr = cm_id->route.addr.src_addr; 1798 1799 /* temporary until receiving session-name from client */ 1800 path.src = &srv_path->s.src_addr; 1801 path.dst = &srv_path->s.dst_addr; 1802 rtrs_addr_to_str(&path, str, sizeof(str)); 1803 strscpy(srv_path->s.sessname, str, sizeof(srv_path->s.sessname)); 1804 1805 srv_path->s.con_num = con_num; 1806 srv_path->s.irq_con_num = con_num; 1807 srv_path->s.recon_cnt = recon_cnt; 1808 uuid_copy(&srv_path->s.uuid, uuid); 1809 spin_lock_init(&srv_path->state_lock); 1810 INIT_WORK(&srv_path->close_work, rtrs_srv_close_work); 1811 rtrs_srv_init_hb(srv_path); 1812 1813 srv_path->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd); 1814 if (!srv_path->s.dev) { 1815 err = -ENOMEM; 1816 goto err_free_con; 1817 } 1818 err = map_cont_bufs(srv_path); 1819 if (err) 1820 goto err_put_dev; 1821 1822 err = rtrs_srv_alloc_ops_ids(srv_path); 1823 if (err) 1824 goto err_unmap_bufs; 1825 1826 __add_path_to_srv(srv, srv_path); 1827 1828 return srv_path; 1829 1830 err_unmap_bufs: 1831 unmap_cont_bufs(srv_path); 1832 err_put_dev: 1833 rtrs_ib_dev_put(srv_path->s.dev); 1834 err_free_con: 1835 kfree(srv_path->s.con); 1836 err_free_dma_addr: 1837 kfree(srv_path->dma_addr); 1838 err_free_percpu: 1839 free_percpu(srv_path->stats->rdma_stats); 1840 err_free_stats: 1841 kfree(srv_path->stats); 1842 err_free_sess: 1843 kfree(srv_path); 1844 err: 1845 return ERR_PTR(err); 1846 } 1847 1848 static int rtrs_rdma_connect(struct rdma_cm_id *cm_id, 1849 const struct rtrs_msg_conn_req *msg, 1850 size_t len) 1851 { 1852 struct rtrs_srv_ctx *ctx = cm_id->context; 1853 struct rtrs_srv_path *srv_path; 1854 struct rtrs_srv_sess *srv; 1855 1856 u16 version, con_num, cid; 1857 u16 recon_cnt; 1858 int err = -ECONNRESET; 1859 1860 if (len < sizeof(*msg)) { 1861 pr_err("Invalid RTRS connection request\n"); 1862 goto reject_w_err; 1863 } 1864 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) { 1865 pr_err("Invalid RTRS magic\n"); 1866 goto reject_w_err; 1867 } 1868 version = le16_to_cpu(msg->version); 1869 if (version >> 8 != RTRS_PROTO_VER_MAJOR) { 1870 pr_err("Unsupported major RTRS version: %d, expected %d\n", 1871 version >> 8, RTRS_PROTO_VER_MAJOR); 1872 goto reject_w_err; 1873 } 1874 con_num = le16_to_cpu(msg->cid_num); 1875 if (con_num > 4096) { 1876 /* Sanity check */ 1877 pr_err("Too many connections requested: %d\n", con_num); 1878 goto reject_w_err; 1879 } 1880 cid = le16_to_cpu(msg->cid); 1881 if (cid >= con_num) { 1882 /* Sanity check */ 1883 pr_err("Incorrect cid: %d >= %d\n", cid, con_num); 1884 goto reject_w_err; 1885 } 1886 recon_cnt = le16_to_cpu(msg->recon_cnt); 1887 srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn); 1888 if (IS_ERR(srv)) { 1889 err = PTR_ERR(srv); 1890 pr_err("get_or_create_srv(), error %d\n", err); 1891 goto reject_w_err; 1892 } 1893 mutex_lock(&srv->paths_mutex); 1894 srv_path = __find_path(srv, &msg->sess_uuid); 1895 if (srv_path) { 1896 struct rtrs_path *s = &srv_path->s; 1897 1898 /* Session already holds a reference */ 1899 put_srv(srv); 1900 1901 if (srv_path->state != RTRS_SRV_CONNECTING) { 1902 rtrs_err(s, "Session in wrong state: %s\n", 1903 rtrs_srv_state_str(srv_path->state)); 1904 mutex_unlock(&srv->paths_mutex); 1905 goto reject_w_err; 1906 } 1907 /* 1908 * Sanity checks 1909 */ 1910 if (con_num != s->con_num || cid >= s->con_num) { 1911 rtrs_err(s, "Incorrect request: %d, %d\n", 1912 cid, con_num); 1913 mutex_unlock(&srv->paths_mutex); 1914 goto reject_w_err; 1915 } 1916 if (s->con[cid]) { 1917 rtrs_err(s, "Connection already exists: %d\n", 1918 cid); 1919 mutex_unlock(&srv->paths_mutex); 1920 goto reject_w_err; 1921 } 1922 } else { 1923 srv_path = __alloc_path(srv, cm_id, con_num, recon_cnt, 1924 &msg->sess_uuid); 1925 if (IS_ERR(srv_path)) { 1926 mutex_unlock(&srv->paths_mutex); 1927 put_srv(srv); 1928 err = PTR_ERR(srv_path); 1929 pr_err("RTRS server session allocation failed: %d\n", err); 1930 goto reject_w_err; 1931 } 1932 } 1933 err = create_con(srv_path, cm_id, cid); 1934 if (err) { 1935 rtrs_err((&srv_path->s), "create_con(), error %d\n", err); 1936 rtrs_rdma_do_reject(cm_id, err); 1937 /* 1938 * Since session has other connections we follow normal way 1939 * through workqueue, but still return an error to tell cma.c 1940 * to call rdma_destroy_id() for current connection. 1941 */ 1942 goto close_and_return_err; 1943 } 1944 err = rtrs_rdma_do_accept(srv_path, cm_id); 1945 if (err) { 1946 rtrs_err((&srv_path->s), "rtrs_rdma_do_accept(), error %d\n", err); 1947 rtrs_rdma_do_reject(cm_id, err); 1948 /* 1949 * Since current connection was successfully added to the 1950 * session we follow normal way through workqueue to close the 1951 * session, thus return 0 to tell cma.c we call 1952 * rdma_destroy_id() ourselves. 1953 */ 1954 err = 0; 1955 goto close_and_return_err; 1956 } 1957 mutex_unlock(&srv->paths_mutex); 1958 1959 return 0; 1960 1961 reject_w_err: 1962 return rtrs_rdma_do_reject(cm_id, err); 1963 1964 close_and_return_err: 1965 mutex_unlock(&srv->paths_mutex); 1966 close_path(srv_path); 1967 1968 return err; 1969 } 1970 1971 static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id, 1972 struct rdma_cm_event *ev) 1973 { 1974 struct rtrs_srv_path *srv_path = NULL; 1975 struct rtrs_path *s = NULL; 1976 struct rtrs_con *c = NULL; 1977 1978 if (ev->event == RDMA_CM_EVENT_CONNECT_REQUEST) 1979 /* 1980 * In case of error cma.c will destroy cm_id, 1981 * see cma_process_remove() 1982 */ 1983 return rtrs_rdma_connect(cm_id, ev->param.conn.private_data, 1984 ev->param.conn.private_data_len); 1985 1986 c = cm_id->context; 1987 s = c->path; 1988 srv_path = to_srv_path(s); 1989 1990 switch (ev->event) { 1991 case RDMA_CM_EVENT_ESTABLISHED: 1992 /* Nothing here */ 1993 break; 1994 case RDMA_CM_EVENT_REJECTED: 1995 case RDMA_CM_EVENT_CONNECT_ERROR: 1996 case RDMA_CM_EVENT_UNREACHABLE: 1997 rtrs_err(s, "CM error (CM event: %s, err: %d)\n", 1998 rdma_event_msg(ev->event), ev->status); 1999 fallthrough; 2000 case RDMA_CM_EVENT_DISCONNECTED: 2001 case RDMA_CM_EVENT_ADDR_CHANGE: 2002 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2003 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2004 close_path(srv_path); 2005 break; 2006 default: 2007 pr_err("Ignoring unexpected CM event %s, err %d\n", 2008 rdma_event_msg(ev->event), ev->status); 2009 break; 2010 } 2011 2012 return 0; 2013 } 2014 2015 static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx, 2016 struct sockaddr *addr, 2017 enum rdma_ucm_port_space ps) 2018 { 2019 struct rdma_cm_id *cm_id; 2020 int ret; 2021 2022 cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler, 2023 ctx, ps, IB_QPT_RC); 2024 if (IS_ERR(cm_id)) { 2025 ret = PTR_ERR(cm_id); 2026 pr_err("Creating id for RDMA connection failed, err: %d\n", 2027 ret); 2028 goto err_out; 2029 } 2030 ret = rdma_bind_addr(cm_id, addr); 2031 if (ret) { 2032 pr_err("Binding RDMA address failed, err: %d\n", ret); 2033 goto err_cm; 2034 } 2035 ret = rdma_listen(cm_id, 64); 2036 if (ret) { 2037 pr_err("Listening on RDMA connection failed, err: %d\n", 2038 ret); 2039 goto err_cm; 2040 } 2041 2042 return cm_id; 2043 2044 err_cm: 2045 rdma_destroy_id(cm_id); 2046 err_out: 2047 2048 return ERR_PTR(ret); 2049 } 2050 2051 static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port) 2052 { 2053 struct sockaddr_in6 sin = { 2054 .sin6_family = AF_INET6, 2055 .sin6_addr = IN6ADDR_ANY_INIT, 2056 .sin6_port = htons(port), 2057 }; 2058 struct sockaddr_ib sib = { 2059 .sib_family = AF_IB, 2060 .sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port), 2061 .sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL), 2062 .sib_pkey = cpu_to_be16(0xffff), 2063 }; 2064 struct rdma_cm_id *cm_ip, *cm_ib; 2065 int ret; 2066 2067 /* 2068 * We accept both IPoIB and IB connections, so we need to keep 2069 * two cm id's, one for each socket type and port space. 2070 * If the cm initialization of one of the id's fails, we abort 2071 * everything. 2072 */ 2073 cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP); 2074 if (IS_ERR(cm_ip)) 2075 return PTR_ERR(cm_ip); 2076 2077 cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB); 2078 if (IS_ERR(cm_ib)) { 2079 ret = PTR_ERR(cm_ib); 2080 goto free_cm_ip; 2081 } 2082 2083 ctx->cm_id_ip = cm_ip; 2084 ctx->cm_id_ib = cm_ib; 2085 2086 return 0; 2087 2088 free_cm_ip: 2089 rdma_destroy_id(cm_ip); 2090 2091 return ret; 2092 } 2093 2094 static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops) 2095 { 2096 struct rtrs_srv_ctx *ctx; 2097 2098 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2099 if (!ctx) 2100 return NULL; 2101 2102 ctx->ops = *ops; 2103 mutex_init(&ctx->srv_mutex); 2104 INIT_LIST_HEAD(&ctx->srv_list); 2105 2106 return ctx; 2107 } 2108 2109 static void free_srv_ctx(struct rtrs_srv_ctx *ctx) 2110 { 2111 WARN_ON(!list_empty(&ctx->srv_list)); 2112 mutex_destroy(&ctx->srv_mutex); 2113 kfree(ctx); 2114 } 2115 2116 static int rtrs_srv_add_one(struct ib_device *device) 2117 { 2118 struct rtrs_srv_ctx *ctx; 2119 int ret = 0; 2120 2121 mutex_lock(&ib_ctx.ib_dev_mutex); 2122 if (ib_ctx.ib_dev_count) 2123 goto out; 2124 2125 /* 2126 * Since our CM IDs are NOT bound to any ib device we will create them 2127 * only once 2128 */ 2129 ctx = ib_ctx.srv_ctx; 2130 ret = rtrs_srv_rdma_init(ctx, ib_ctx.port); 2131 if (ret) { 2132 /* 2133 * We errored out here. 2134 * According to the ib code, if we encounter an error here then the 2135 * error code is ignored, and no more calls to our ops are made. 2136 */ 2137 pr_err("Failed to initialize RDMA connection"); 2138 goto err_out; 2139 } 2140 2141 out: 2142 /* 2143 * Keep a track on the number of ib devices added 2144 */ 2145 ib_ctx.ib_dev_count++; 2146 2147 err_out: 2148 mutex_unlock(&ib_ctx.ib_dev_mutex); 2149 return ret; 2150 } 2151 2152 static void rtrs_srv_remove_one(struct ib_device *device, void *client_data) 2153 { 2154 struct rtrs_srv_ctx *ctx; 2155 2156 mutex_lock(&ib_ctx.ib_dev_mutex); 2157 ib_ctx.ib_dev_count--; 2158 2159 if (ib_ctx.ib_dev_count) 2160 goto out; 2161 2162 /* 2163 * Since our CM IDs are NOT bound to any ib device we will remove them 2164 * only once, when the last device is removed 2165 */ 2166 ctx = ib_ctx.srv_ctx; 2167 rdma_destroy_id(ctx->cm_id_ip); 2168 rdma_destroy_id(ctx->cm_id_ib); 2169 2170 out: 2171 mutex_unlock(&ib_ctx.ib_dev_mutex); 2172 } 2173 2174 static struct ib_client rtrs_srv_client = { 2175 .name = "rtrs_server", 2176 .add = rtrs_srv_add_one, 2177 .remove = rtrs_srv_remove_one 2178 }; 2179 2180 /** 2181 * rtrs_srv_open() - open RTRS server context 2182 * @ops: callback functions 2183 * @port: port to listen on 2184 * 2185 * Creates server context with specified callbacks. 2186 * 2187 * Return a valid pointer on success otherwise PTR_ERR. 2188 */ 2189 struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port) 2190 { 2191 struct rtrs_srv_ctx *ctx; 2192 int err; 2193 2194 ctx = alloc_srv_ctx(ops); 2195 if (!ctx) 2196 return ERR_PTR(-ENOMEM); 2197 2198 mutex_init(&ib_ctx.ib_dev_mutex); 2199 ib_ctx.srv_ctx = ctx; 2200 ib_ctx.port = port; 2201 2202 err = ib_register_client(&rtrs_srv_client); 2203 if (err) { 2204 free_srv_ctx(ctx); 2205 return ERR_PTR(err); 2206 } 2207 2208 return ctx; 2209 } 2210 EXPORT_SYMBOL(rtrs_srv_open); 2211 2212 static void close_paths(struct rtrs_srv_sess *srv) 2213 { 2214 struct rtrs_srv_path *srv_path; 2215 2216 mutex_lock(&srv->paths_mutex); 2217 list_for_each_entry(srv_path, &srv->paths_list, s.entry) 2218 close_path(srv_path); 2219 mutex_unlock(&srv->paths_mutex); 2220 } 2221 2222 static void close_ctx(struct rtrs_srv_ctx *ctx) 2223 { 2224 struct rtrs_srv_sess *srv; 2225 2226 mutex_lock(&ctx->srv_mutex); 2227 list_for_each_entry(srv, &ctx->srv_list, ctx_list) 2228 close_paths(srv); 2229 mutex_unlock(&ctx->srv_mutex); 2230 flush_workqueue(rtrs_wq); 2231 } 2232 2233 /** 2234 * rtrs_srv_close() - close RTRS server context 2235 * @ctx: pointer to server context 2236 * 2237 * Closes RTRS server context with all client sessions. 2238 */ 2239 void rtrs_srv_close(struct rtrs_srv_ctx *ctx) 2240 { 2241 ib_unregister_client(&rtrs_srv_client); 2242 mutex_destroy(&ib_ctx.ib_dev_mutex); 2243 close_ctx(ctx); 2244 free_srv_ctx(ctx); 2245 } 2246 EXPORT_SYMBOL(rtrs_srv_close); 2247 2248 static int check_module_params(void) 2249 { 2250 if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) { 2251 pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n", 2252 sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH); 2253 return -EINVAL; 2254 } 2255 if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) { 2256 pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n", 2257 max_chunk_size, MIN_CHUNK_SIZE); 2258 return -EINVAL; 2259 } 2260 2261 /* 2262 * Check if IB immediate data size is enough to hold the mem_id and the 2263 * offset inside the memory chunk 2264 */ 2265 if ((ilog2(sess_queue_depth - 1) + 1) + 2266 (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) { 2267 pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n", 2268 MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size); 2269 return -EINVAL; 2270 } 2271 2272 return 0; 2273 } 2274 2275 void rtrs_srv_ib_event_handler(struct ib_event_handler *handler, 2276 struct ib_event *ibevent) 2277 { 2278 pr_info("Handling event: %s (%d).\n", ib_event_msg(ibevent->event), 2279 ibevent->event); 2280 } 2281 2282 static int rtrs_srv_ib_dev_init(struct rtrs_ib_dev *dev) 2283 { 2284 INIT_IB_EVENT_HANDLER(&dev->event_handler, dev->ib_dev, 2285 rtrs_srv_ib_event_handler); 2286 ib_register_event_handler(&dev->event_handler); 2287 2288 return 0; 2289 } 2290 2291 static void rtrs_srv_ib_dev_deinit(struct rtrs_ib_dev *dev) 2292 { 2293 ib_unregister_event_handler(&dev->event_handler); 2294 } 2295 2296 2297 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = { 2298 .init = rtrs_srv_ib_dev_init, 2299 .deinit = rtrs_srv_ib_dev_deinit 2300 }; 2301 2302 2303 static int __init rtrs_server_init(void) 2304 { 2305 int err; 2306 2307 pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n", 2308 KBUILD_MODNAME, RTRS_PROTO_VER_STRING, 2309 max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE, 2310 sess_queue_depth, always_invalidate); 2311 2312 rtrs_rdma_dev_pd_init(0, &dev_pd); 2313 2314 err = check_module_params(); 2315 if (err) { 2316 pr_err("Failed to load module, invalid module parameters, err: %d\n", 2317 err); 2318 return err; 2319 } 2320 err = class_register(&rtrs_dev_class); 2321 if (err) 2322 goto out_err; 2323 2324 rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0); 2325 if (!rtrs_wq) { 2326 err = -ENOMEM; 2327 goto out_dev_class; 2328 } 2329 2330 return 0; 2331 2332 out_dev_class: 2333 class_unregister(&rtrs_dev_class); 2334 out_err: 2335 return err; 2336 } 2337 2338 static void __exit rtrs_server_exit(void) 2339 { 2340 destroy_workqueue(rtrs_wq); 2341 class_unregister(&rtrs_dev_class); 2342 rtrs_rdma_dev_pd_deinit(&dev_pd); 2343 } 2344 2345 module_init(rtrs_server_init); 2346 module_exit(rtrs_server_exit); 2347