1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RDMA Transport Layer 4 * 5 * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. 6 * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. 7 * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. 8 */ 9 10 #undef pr_fmt 11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/rculist.h> 15 #include <linux/random.h> 16 17 #include "rtrs-clt.h" 18 #include "rtrs-log.h" 19 #include "rtrs-clt-trace.h" 20 21 #define RTRS_CONNECT_TIMEOUT_MS 30000 22 /* 23 * Wait a bit before trying to reconnect after a failure 24 * in order to give server time to finish clean up which 25 * leads to "false positives" failed reconnect attempts 26 */ 27 #define RTRS_RECONNECT_BACKOFF 1000 28 /* 29 * Wait for additional random time between 0 and 8 seconds 30 * before starting to reconnect to avoid clients reconnecting 31 * all at once in case of a major network outage 32 */ 33 #define RTRS_RECONNECT_SEED 8 34 35 #define FIRST_CONN 0x01 36 /* limit to 128 * 4k = 512k max IO */ 37 #define RTRS_MAX_SEGMENTS 128 38 39 MODULE_DESCRIPTION("RDMA Transport Client"); 40 MODULE_LICENSE("GPL"); 41 42 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops; 43 static struct rtrs_rdma_dev_pd dev_pd = { 44 .ops = &dev_pd_ops 45 }; 46 47 static struct workqueue_struct *rtrs_wq; 48 static struct class *rtrs_clt_dev_class; 49 50 static inline bool rtrs_clt_is_connected(const struct rtrs_clt_sess *clt) 51 { 52 struct rtrs_clt_path *clt_path; 53 bool connected = false; 54 55 rcu_read_lock(); 56 list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) 57 if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED) { 58 connected = true; 59 break; 60 } 61 rcu_read_unlock(); 62 63 return connected; 64 } 65 66 static struct rtrs_permit * 67 __rtrs_get_permit(struct rtrs_clt_sess *clt, enum rtrs_clt_con_type con_type) 68 { 69 size_t max_depth = clt->queue_depth; 70 struct rtrs_permit *permit; 71 int bit; 72 73 /* 74 * Adapted from null_blk get_tag(). Callers from different cpus may 75 * grab the same bit, since find_first_zero_bit is not atomic. 76 * But then the test_and_set_bit_lock will fail for all the 77 * callers but one, so that they will loop again. 78 * This way an explicit spinlock is not required. 79 */ 80 do { 81 bit = find_first_zero_bit(clt->permits_map, max_depth); 82 if (bit >= max_depth) 83 return NULL; 84 } while (test_and_set_bit_lock(bit, clt->permits_map)); 85 86 permit = get_permit(clt, bit); 87 WARN_ON(permit->mem_id != bit); 88 permit->cpu_id = raw_smp_processor_id(); 89 permit->con_type = con_type; 90 91 return permit; 92 } 93 94 static inline void __rtrs_put_permit(struct rtrs_clt_sess *clt, 95 struct rtrs_permit *permit) 96 { 97 clear_bit_unlock(permit->mem_id, clt->permits_map); 98 } 99 100 /** 101 * rtrs_clt_get_permit() - allocates permit for future RDMA operation 102 * @clt: Current session 103 * @con_type: Type of connection to use with the permit 104 * @can_wait: Wait type 105 * 106 * Description: 107 * Allocates permit for the following RDMA operation. Permit is used 108 * to preallocate all resources and to propagate memory pressure 109 * up earlier. 110 * 111 * Context: 112 * Can sleep if @wait == RTRS_PERMIT_WAIT 113 */ 114 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt_sess *clt, 115 enum rtrs_clt_con_type con_type, 116 enum wait_type can_wait) 117 { 118 struct rtrs_permit *permit; 119 DEFINE_WAIT(wait); 120 121 permit = __rtrs_get_permit(clt, con_type); 122 if (permit || !can_wait) 123 return permit; 124 125 do { 126 prepare_to_wait(&clt->permits_wait, &wait, 127 TASK_UNINTERRUPTIBLE); 128 permit = __rtrs_get_permit(clt, con_type); 129 if (permit) 130 break; 131 132 io_schedule(); 133 } while (1); 134 135 finish_wait(&clt->permits_wait, &wait); 136 137 return permit; 138 } 139 EXPORT_SYMBOL(rtrs_clt_get_permit); 140 141 /** 142 * rtrs_clt_put_permit() - puts allocated permit 143 * @clt: Current session 144 * @permit: Permit to be freed 145 * 146 * Context: 147 * Does not matter 148 */ 149 void rtrs_clt_put_permit(struct rtrs_clt_sess *clt, 150 struct rtrs_permit *permit) 151 { 152 if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map))) 153 return; 154 155 __rtrs_put_permit(clt, permit); 156 157 /* 158 * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list 159 * before calling schedule(). So if rtrs_clt_get_permit() is sleeping 160 * it must have added itself to &clt->permits_wait before 161 * __rtrs_put_permit() finished. 162 * Hence it is safe to guard wake_up() with a waitqueue_active() test. 163 */ 164 if (waitqueue_active(&clt->permits_wait)) 165 wake_up(&clt->permits_wait); 166 } 167 EXPORT_SYMBOL(rtrs_clt_put_permit); 168 169 /** 170 * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit 171 * @clt_path: client path pointer 172 * @permit: permit for the allocation of the RDMA buffer 173 * Note: 174 * IO connection starts from 1. 175 * 0 connection is for user messages. 176 */ 177 static 178 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_path *clt_path, 179 struct rtrs_permit *permit) 180 { 181 int id = 0; 182 183 if (permit->con_type == RTRS_IO_CON) 184 id = (permit->cpu_id % (clt_path->s.irq_con_num - 1)) + 1; 185 186 return to_clt_con(clt_path->s.con[id]); 187 } 188 189 /** 190 * rtrs_clt_change_state() - change the session state through session state 191 * machine. 192 * 193 * @clt_path: client path to change the state of. 194 * @new_state: state to change to. 195 * 196 * returns true if sess's state is changed to new state, otherwise return false. 197 * 198 * Locks: 199 * state_wq lock must be hold. 200 */ 201 static bool rtrs_clt_change_state(struct rtrs_clt_path *clt_path, 202 enum rtrs_clt_state new_state) 203 { 204 enum rtrs_clt_state old_state; 205 bool changed = false; 206 207 lockdep_assert_held(&clt_path->state_wq.lock); 208 209 old_state = clt_path->state; 210 switch (new_state) { 211 case RTRS_CLT_CONNECTING: 212 switch (old_state) { 213 case RTRS_CLT_RECONNECTING: 214 changed = true; 215 fallthrough; 216 default: 217 break; 218 } 219 break; 220 case RTRS_CLT_RECONNECTING: 221 switch (old_state) { 222 case RTRS_CLT_CONNECTED: 223 case RTRS_CLT_CONNECTING_ERR: 224 case RTRS_CLT_CLOSED: 225 changed = true; 226 fallthrough; 227 default: 228 break; 229 } 230 break; 231 case RTRS_CLT_CONNECTED: 232 switch (old_state) { 233 case RTRS_CLT_CONNECTING: 234 changed = true; 235 fallthrough; 236 default: 237 break; 238 } 239 break; 240 case RTRS_CLT_CONNECTING_ERR: 241 switch (old_state) { 242 case RTRS_CLT_CONNECTING: 243 changed = true; 244 fallthrough; 245 default: 246 break; 247 } 248 break; 249 case RTRS_CLT_CLOSING: 250 switch (old_state) { 251 case RTRS_CLT_CONNECTING: 252 case RTRS_CLT_CONNECTING_ERR: 253 case RTRS_CLT_RECONNECTING: 254 case RTRS_CLT_CONNECTED: 255 changed = true; 256 fallthrough; 257 default: 258 break; 259 } 260 break; 261 case RTRS_CLT_CLOSED: 262 switch (old_state) { 263 case RTRS_CLT_CLOSING: 264 changed = true; 265 fallthrough; 266 default: 267 break; 268 } 269 break; 270 case RTRS_CLT_DEAD: 271 switch (old_state) { 272 case RTRS_CLT_CLOSED: 273 changed = true; 274 fallthrough; 275 default: 276 break; 277 } 278 break; 279 default: 280 break; 281 } 282 if (changed) { 283 clt_path->state = new_state; 284 wake_up_locked(&clt_path->state_wq); 285 } 286 287 return changed; 288 } 289 290 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_path *clt_path, 291 enum rtrs_clt_state old_state, 292 enum rtrs_clt_state new_state) 293 { 294 bool changed = false; 295 296 spin_lock_irq(&clt_path->state_wq.lock); 297 if (clt_path->state == old_state) 298 changed = rtrs_clt_change_state(clt_path, new_state); 299 spin_unlock_irq(&clt_path->state_wq.lock); 300 301 return changed; 302 } 303 304 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path); 305 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con) 306 { 307 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 308 309 trace_rtrs_rdma_error_recovery(clt_path); 310 311 if (rtrs_clt_change_state_from_to(clt_path, 312 RTRS_CLT_CONNECTED, 313 RTRS_CLT_RECONNECTING)) { 314 queue_work(rtrs_wq, &clt_path->err_recovery_work); 315 } else { 316 /* 317 * Error can happen just on establishing new connection, 318 * so notify waiter with error state, waiter is responsible 319 * for cleaning the rest and reconnect if needed. 320 */ 321 rtrs_clt_change_state_from_to(clt_path, 322 RTRS_CLT_CONNECTING, 323 RTRS_CLT_CONNECTING_ERR); 324 } 325 } 326 327 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc) 328 { 329 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 330 331 if (wc->status != IB_WC_SUCCESS) { 332 rtrs_err(con->c.path, "Failed IB_WR_REG_MR: %s\n", 333 ib_wc_status_msg(wc->status)); 334 rtrs_rdma_error_recovery(con); 335 } 336 } 337 338 static struct ib_cqe fast_reg_cqe = { 339 .done = rtrs_clt_fast_reg_done 340 }; 341 342 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, 343 bool notify, bool can_wait); 344 345 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 346 { 347 struct rtrs_clt_io_req *req = 348 container_of(wc->wr_cqe, typeof(*req), inv_cqe); 349 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 350 351 if (wc->status != IB_WC_SUCCESS) { 352 rtrs_err(con->c.path, "Failed IB_WR_LOCAL_INV: %s\n", 353 ib_wc_status_msg(wc->status)); 354 rtrs_rdma_error_recovery(con); 355 } 356 req->need_inv = false; 357 if (req->need_inv_comp) 358 complete(&req->inv_comp); 359 else 360 /* Complete request from INV callback */ 361 complete_rdma_req(req, req->inv_errno, true, false); 362 } 363 364 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req) 365 { 366 struct rtrs_clt_con *con = req->con; 367 struct ib_send_wr wr = { 368 .opcode = IB_WR_LOCAL_INV, 369 .wr_cqe = &req->inv_cqe, 370 .send_flags = IB_SEND_SIGNALED, 371 .ex.invalidate_rkey = req->mr->rkey, 372 }; 373 req->inv_cqe.done = rtrs_clt_inv_rkey_done; 374 375 return ib_post_send(con->c.qp, &wr, NULL); 376 } 377 378 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno, 379 bool notify, bool can_wait) 380 { 381 struct rtrs_clt_con *con = req->con; 382 struct rtrs_clt_path *clt_path; 383 int err; 384 385 if (WARN_ON(!req->in_use)) 386 return; 387 if (WARN_ON(!req->con)) 388 return; 389 clt_path = to_clt_path(con->c.path); 390 391 if (req->sg_cnt) { 392 if (req->dir == DMA_FROM_DEVICE && req->need_inv) { 393 /* 394 * We are here to invalidate read requests 395 * ourselves. In normal scenario server should 396 * send INV for all read requests, but 397 * we are here, thus two things could happen: 398 * 399 * 1. this is failover, when errno != 0 400 * and can_wait == 1, 401 * 402 * 2. something totally bad happened and 403 * server forgot to send INV, so we 404 * should do that ourselves. 405 */ 406 407 if (can_wait) { 408 req->need_inv_comp = true; 409 } else { 410 /* This should be IO path, so always notify */ 411 WARN_ON(!notify); 412 /* Save errno for INV callback */ 413 req->inv_errno = errno; 414 } 415 416 refcount_inc(&req->ref); 417 err = rtrs_inv_rkey(req); 418 if (err) { 419 rtrs_err(con->c.path, "Send INV WR key=%#x: %d\n", 420 req->mr->rkey, err); 421 } else if (can_wait) { 422 wait_for_completion(&req->inv_comp); 423 } else { 424 /* 425 * Something went wrong, so request will be 426 * completed from INV callback. 427 */ 428 WARN_ON_ONCE(1); 429 430 return; 431 } 432 if (!refcount_dec_and_test(&req->ref)) 433 return; 434 } 435 ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist, 436 req->sg_cnt, req->dir); 437 } 438 if (!refcount_dec_and_test(&req->ref)) 439 return; 440 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT) 441 atomic_dec(&clt_path->stats->inflight); 442 443 req->in_use = false; 444 req->con = NULL; 445 446 if (errno) { 447 rtrs_err_rl(con->c.path, "IO request failed: error=%d path=%s [%s:%u] notify=%d\n", 448 errno, kobject_name(&clt_path->kobj), clt_path->hca_name, 449 clt_path->hca_port, notify); 450 } 451 452 if (notify) 453 req->conf(req->priv, errno); 454 } 455 456 static int rtrs_post_send_rdma(struct rtrs_clt_con *con, 457 struct rtrs_clt_io_req *req, 458 struct rtrs_rbuf *rbuf, u32 off, 459 u32 imm, struct ib_send_wr *wr) 460 { 461 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 462 enum ib_send_flags flags; 463 struct ib_sge sge; 464 465 if (!req->sg_size) { 466 rtrs_wrn(con->c.path, 467 "Doing RDMA Write failed, no data supplied\n"); 468 return -EINVAL; 469 } 470 471 /* user data and user message in the first list element */ 472 sge.addr = req->iu->dma_addr; 473 sge.length = req->sg_size; 474 sge.lkey = clt_path->s.dev->ib_pd->local_dma_lkey; 475 476 /* 477 * From time to time we have to post signalled sends, 478 * or send queue will fill up and only QP reset can help. 479 */ 480 flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ? 481 0 : IB_SEND_SIGNALED; 482 483 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, 484 req->iu->dma_addr, 485 req->sg_size, DMA_TO_DEVICE); 486 487 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1, 488 rbuf->rkey, rbuf->addr + off, 489 imm, flags, wr, NULL); 490 } 491 492 static void process_io_rsp(struct rtrs_clt_path *clt_path, u32 msg_id, 493 s16 errno, bool w_inval) 494 { 495 struct rtrs_clt_io_req *req; 496 497 if (WARN_ON(msg_id >= clt_path->queue_depth)) 498 return; 499 500 req = &clt_path->reqs[msg_id]; 501 /* Drop need_inv if server responded with send with invalidation */ 502 req->need_inv &= !w_inval; 503 complete_rdma_req(req, errno, true, false); 504 } 505 506 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc) 507 { 508 struct rtrs_iu *iu; 509 int err; 510 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 511 512 WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0); 513 iu = container_of(wc->wr_cqe, struct rtrs_iu, 514 cqe); 515 err = rtrs_iu_post_recv(&con->c, iu); 516 if (err) { 517 rtrs_err(con->c.path, "post iu failed %d\n", err); 518 rtrs_rdma_error_recovery(con); 519 } 520 } 521 522 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc) 523 { 524 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 525 struct rtrs_msg_rkey_rsp *msg; 526 u32 imm_type, imm_payload; 527 bool w_inval = false; 528 struct rtrs_iu *iu; 529 u32 buf_id; 530 int err; 531 532 WARN_ON((clt_path->flags & RTRS_MSG_NEW_RKEY_F) == 0); 533 534 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 535 536 if (wc->byte_len < sizeof(*msg)) { 537 rtrs_err(con->c.path, "rkey response is malformed: size %d\n", 538 wc->byte_len); 539 goto out; 540 } 541 ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr, 542 iu->size, DMA_FROM_DEVICE); 543 msg = iu->buf; 544 if (le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP) { 545 rtrs_err(clt_path->clt, 546 "rkey response is malformed: type %d\n", 547 le16_to_cpu(msg->type)); 548 goto out; 549 } 550 buf_id = le16_to_cpu(msg->buf_id); 551 if (WARN_ON(buf_id >= clt_path->queue_depth)) 552 goto out; 553 554 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload); 555 if (imm_type == RTRS_IO_RSP_IMM || 556 imm_type == RTRS_IO_RSP_W_INV_IMM) { 557 u32 msg_id; 558 559 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); 560 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); 561 562 if (WARN_ON(buf_id != msg_id)) 563 goto out; 564 clt_path->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey); 565 process_io_rsp(clt_path, msg_id, err, w_inval); 566 } 567 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, iu->dma_addr, 568 iu->size, DMA_FROM_DEVICE); 569 return rtrs_clt_recv_done(con, wc); 570 out: 571 rtrs_rdma_error_recovery(con); 572 } 573 574 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc); 575 576 static struct ib_cqe io_comp_cqe = { 577 .done = rtrs_clt_rdma_done 578 }; 579 580 /* 581 * Post x2 empty WRs: first is for this RDMA with IMM, 582 * second is for RECV with INV, which happened earlier. 583 */ 584 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe) 585 { 586 struct ib_recv_wr wr_arr[2], *wr; 587 int i; 588 589 memset(wr_arr, 0, sizeof(wr_arr)); 590 for (i = 0; i < ARRAY_SIZE(wr_arr); i++) { 591 wr = &wr_arr[i]; 592 wr->wr_cqe = cqe; 593 if (i) 594 /* Chain backwards */ 595 wr->next = &wr_arr[i - 1]; 596 } 597 598 return ib_post_recv(con->qp, wr, NULL); 599 } 600 601 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc) 602 { 603 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 604 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 605 u32 imm_type, imm_payload; 606 bool w_inval = false; 607 int err; 608 609 if (wc->status != IB_WC_SUCCESS) { 610 if (wc->status != IB_WC_WR_FLUSH_ERR) { 611 rtrs_err(clt_path->clt, "RDMA failed: %s\n", 612 ib_wc_status_msg(wc->status)); 613 rtrs_rdma_error_recovery(con); 614 } 615 return; 616 } 617 rtrs_clt_update_wc_stats(con); 618 619 switch (wc->opcode) { 620 case IB_WC_RECV_RDMA_WITH_IMM: 621 /* 622 * post_recv() RDMA write completions of IO reqs (read/write) 623 * and hb 624 */ 625 if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done)) 626 return; 627 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), 628 &imm_type, &imm_payload); 629 if (imm_type == RTRS_IO_RSP_IMM || 630 imm_type == RTRS_IO_RSP_W_INV_IMM) { 631 u32 msg_id; 632 633 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM); 634 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err); 635 636 process_io_rsp(clt_path, msg_id, err, w_inval); 637 } else if (imm_type == RTRS_HB_MSG_IMM) { 638 WARN_ON(con->c.cid); 639 rtrs_send_hb_ack(&clt_path->s); 640 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) 641 return rtrs_clt_recv_done(con, wc); 642 } else if (imm_type == RTRS_HB_ACK_IMM) { 643 WARN_ON(con->c.cid); 644 clt_path->s.hb_missed_cnt = 0; 645 clt_path->s.hb_cur_latency = 646 ktime_sub(ktime_get(), clt_path->s.hb_last_sent); 647 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) 648 return rtrs_clt_recv_done(con, wc); 649 } else { 650 rtrs_wrn(con->c.path, "Unknown IMM type %u\n", 651 imm_type); 652 } 653 if (w_inval) 654 /* 655 * Post x2 empty WRs: first is for this RDMA with IMM, 656 * second is for RECV with INV, which happened earlier. 657 */ 658 err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe); 659 else 660 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 661 if (err) { 662 rtrs_err(con->c.path, "rtrs_post_recv_empty(): %d\n", 663 err); 664 rtrs_rdma_error_recovery(con); 665 } 666 break; 667 case IB_WC_RECV: 668 /* 669 * Key invalidations from server side 670 */ 671 WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE || 672 wc->wc_flags & IB_WC_WITH_IMM)); 673 WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done); 674 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) { 675 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) 676 return rtrs_clt_recv_done(con, wc); 677 678 return rtrs_clt_rkey_rsp_done(con, wc); 679 } 680 break; 681 case IB_WC_RDMA_WRITE: 682 /* 683 * post_send() RDMA write completions of IO reqs (read/write) 684 * and hb. 685 */ 686 break; 687 688 default: 689 rtrs_wrn(clt_path->clt, "Unexpected WC type: %d\n", wc->opcode); 690 return; 691 } 692 } 693 694 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size) 695 { 696 int err, i; 697 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 698 699 for (i = 0; i < q_size; i++) { 700 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F) { 701 struct rtrs_iu *iu = &con->rsp_ius[i]; 702 703 err = rtrs_iu_post_recv(&con->c, iu); 704 } else { 705 err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); 706 } 707 if (err) 708 return err; 709 } 710 711 return 0; 712 } 713 714 static int post_recv_path(struct rtrs_clt_path *clt_path) 715 { 716 size_t q_size = 0; 717 int err, cid; 718 719 for (cid = 0; cid < clt_path->s.con_num; cid++) { 720 if (cid == 0) 721 q_size = SERVICE_CON_QUEUE_DEPTH; 722 else 723 q_size = clt_path->queue_depth; 724 725 /* 726 * x2 for RDMA read responses + FR key invalidations, 727 * RDMA writes do not require any FR registrations. 728 */ 729 q_size *= 2; 730 731 err = post_recv_io(to_clt_con(clt_path->s.con[cid]), q_size); 732 if (err) { 733 rtrs_err(clt_path->clt, "post_recv_io(), err: %d\n", 734 err); 735 return err; 736 } 737 } 738 739 return 0; 740 } 741 742 struct path_it { 743 int i; 744 struct list_head skip_list; 745 struct rtrs_clt_sess *clt; 746 struct rtrs_clt_path *(*next_path)(struct path_it *it); 747 }; 748 749 /* 750 * rtrs_clt_get_next_path_or_null - get clt path from the list or return NULL 751 * @head: the head for the list. 752 * @clt_path: The element to take the next clt_path from. 753 * 754 * Next clt path returned in round-robin fashion, i.e. head will be skipped, 755 * but if list is observed as empty, NULL will be returned. 756 * 757 * This function may safely run concurrently with the _rcu list-mutation 758 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 759 */ 760 static inline struct rtrs_clt_path * 761 rtrs_clt_get_next_path_or_null(struct list_head *head, struct rtrs_clt_path *clt_path) 762 { 763 return list_next_or_null_rcu(head, &clt_path->s.entry, typeof(*clt_path), s.entry) ?: 764 list_next_or_null_rcu(head, 765 READ_ONCE((&clt_path->s.entry)->next), 766 typeof(*clt_path), s.entry); 767 } 768 769 /** 770 * get_next_path_rr() - Returns path in round-robin fashion. 771 * @it: the path pointer 772 * 773 * Related to @MP_POLICY_RR 774 * 775 * Locks: 776 * rcu_read_lock() must be hold. 777 */ 778 static struct rtrs_clt_path *get_next_path_rr(struct path_it *it) 779 { 780 struct rtrs_clt_path __rcu **ppcpu_path; 781 struct rtrs_clt_path *path; 782 struct rtrs_clt_sess *clt; 783 784 clt = it->clt; 785 786 /* 787 * Here we use two RCU objects: @paths_list and @pcpu_path 788 * pointer. See rtrs_clt_remove_path_from_arr() for details 789 * how that is handled. 790 */ 791 792 ppcpu_path = this_cpu_ptr(clt->pcpu_path); 793 path = rcu_dereference(*ppcpu_path); 794 if (!path) 795 path = list_first_or_null_rcu(&clt->paths_list, 796 typeof(*path), s.entry); 797 else 798 path = rtrs_clt_get_next_path_or_null(&clt->paths_list, path); 799 800 rcu_assign_pointer(*ppcpu_path, path); 801 802 return path; 803 } 804 805 /** 806 * get_next_path_min_inflight() - Returns path with minimal inflight count. 807 * @it: the path pointer 808 * 809 * Related to @MP_POLICY_MIN_INFLIGHT 810 * 811 * Locks: 812 * rcu_read_lock() must be hold. 813 */ 814 static struct rtrs_clt_path *get_next_path_min_inflight(struct path_it *it) 815 { 816 struct rtrs_clt_path *min_path = NULL; 817 struct rtrs_clt_sess *clt = it->clt; 818 struct rtrs_clt_path *clt_path; 819 int min_inflight = INT_MAX; 820 int inflight; 821 822 list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) { 823 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) 824 continue; 825 826 if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry))) 827 continue; 828 829 inflight = atomic_read(&clt_path->stats->inflight); 830 831 if (inflight < min_inflight) { 832 min_inflight = inflight; 833 min_path = clt_path; 834 } 835 } 836 837 /* 838 * add the path to the skip list, so that next time we can get 839 * a different one 840 */ 841 if (min_path) 842 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list); 843 844 return min_path; 845 } 846 847 /** 848 * get_next_path_min_latency() - Returns path with minimal latency. 849 * @it: the path pointer 850 * 851 * Return: a path with the lowest latency or NULL if all paths are tried 852 * 853 * Locks: 854 * rcu_read_lock() must be hold. 855 * 856 * Related to @MP_POLICY_MIN_LATENCY 857 * 858 * This DOES skip an already-tried path. 859 * There is a skip-list to skip a path if the path has tried but failed. 860 * It will try the minimum latency path and then the second minimum latency 861 * path and so on. Finally it will return NULL if all paths are tried. 862 * Therefore the caller MUST check the returned 863 * path is NULL and trigger the IO error. 864 */ 865 static struct rtrs_clt_path *get_next_path_min_latency(struct path_it *it) 866 { 867 struct rtrs_clt_path *min_path = NULL; 868 struct rtrs_clt_sess *clt = it->clt; 869 struct rtrs_clt_path *clt_path; 870 ktime_t min_latency = KTIME_MAX; 871 ktime_t latency; 872 873 list_for_each_entry_rcu(clt_path, &clt->paths_list, s.entry) { 874 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) 875 continue; 876 877 if (!list_empty(raw_cpu_ptr(clt_path->mp_skip_entry))) 878 continue; 879 880 latency = clt_path->s.hb_cur_latency; 881 882 if (latency < min_latency) { 883 min_latency = latency; 884 min_path = clt_path; 885 } 886 } 887 888 /* 889 * add the path to the skip list, so that next time we can get 890 * a different one 891 */ 892 if (min_path) 893 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list); 894 895 return min_path; 896 } 897 898 static inline void path_it_init(struct path_it *it, struct rtrs_clt_sess *clt) 899 { 900 INIT_LIST_HEAD(&it->skip_list); 901 it->clt = clt; 902 it->i = 0; 903 904 if (clt->mp_policy == MP_POLICY_RR) 905 it->next_path = get_next_path_rr; 906 else if (clt->mp_policy == MP_POLICY_MIN_INFLIGHT) 907 it->next_path = get_next_path_min_inflight; 908 else 909 it->next_path = get_next_path_min_latency; 910 } 911 912 static inline void path_it_deinit(struct path_it *it) 913 { 914 struct list_head *skip, *tmp; 915 /* 916 * The skip_list is used only for the MIN_INFLIGHT and MIN_LATENCY policies. 917 * We need to remove paths from it, so that next IO can insert 918 * paths (->mp_skip_entry) into a skip_list again. 919 */ 920 list_for_each_safe(skip, tmp, &it->skip_list) 921 list_del_init(skip); 922 } 923 924 /** 925 * rtrs_clt_init_req() - Initialize an rtrs_clt_io_req holding information 926 * about an inflight IO. 927 * The user buffer holding user control message (not data) is copied into 928 * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will 929 * also hold the control message of rtrs. 930 * @req: an io request holding information about IO. 931 * @clt_path: client path 932 * @conf: conformation callback function to notify upper layer. 933 * @permit: permit for allocation of RDMA remote buffer 934 * @priv: private pointer 935 * @vec: kernel vector containing control message 936 * @usr_len: length of the user message 937 * @sg: scater list for IO data 938 * @sg_cnt: number of scater list entries 939 * @data_len: length of the IO data 940 * @dir: direction of the IO. 941 */ 942 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req, 943 struct rtrs_clt_path *clt_path, 944 void (*conf)(void *priv, int errno), 945 struct rtrs_permit *permit, void *priv, 946 const struct kvec *vec, size_t usr_len, 947 struct scatterlist *sg, size_t sg_cnt, 948 size_t data_len, int dir) 949 { 950 struct iov_iter iter; 951 size_t len; 952 953 req->permit = permit; 954 req->in_use = true; 955 req->usr_len = usr_len; 956 req->data_len = data_len; 957 req->sglist = sg; 958 req->sg_cnt = sg_cnt; 959 req->priv = priv; 960 req->dir = dir; 961 req->con = rtrs_permit_to_clt_con(clt_path, permit); 962 req->conf = conf; 963 req->need_inv = false; 964 req->need_inv_comp = false; 965 req->inv_errno = 0; 966 refcount_set(&req->ref, 1); 967 req->mp_policy = clt_path->clt->mp_policy; 968 969 iov_iter_kvec(&iter, READ, vec, 1, usr_len); 970 len = _copy_from_iter(req->iu->buf, usr_len, &iter); 971 WARN_ON(len != usr_len); 972 973 reinit_completion(&req->inv_comp); 974 } 975 976 static struct rtrs_clt_io_req * 977 rtrs_clt_get_req(struct rtrs_clt_path *clt_path, 978 void (*conf)(void *priv, int errno), 979 struct rtrs_permit *permit, void *priv, 980 const struct kvec *vec, size_t usr_len, 981 struct scatterlist *sg, size_t sg_cnt, 982 size_t data_len, int dir) 983 { 984 struct rtrs_clt_io_req *req; 985 986 req = &clt_path->reqs[permit->mem_id]; 987 rtrs_clt_init_req(req, clt_path, conf, permit, priv, vec, usr_len, 988 sg, sg_cnt, data_len, dir); 989 return req; 990 } 991 992 static struct rtrs_clt_io_req * 993 rtrs_clt_get_copy_req(struct rtrs_clt_path *alive_path, 994 struct rtrs_clt_io_req *fail_req) 995 { 996 struct rtrs_clt_io_req *req; 997 struct kvec vec = { 998 .iov_base = fail_req->iu->buf, 999 .iov_len = fail_req->usr_len 1000 }; 1001 1002 req = &alive_path->reqs[fail_req->permit->mem_id]; 1003 rtrs_clt_init_req(req, alive_path, fail_req->conf, fail_req->permit, 1004 fail_req->priv, &vec, fail_req->usr_len, 1005 fail_req->sglist, fail_req->sg_cnt, 1006 fail_req->data_len, fail_req->dir); 1007 return req; 1008 } 1009 1010 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con, 1011 struct rtrs_clt_io_req *req, 1012 struct rtrs_rbuf *rbuf, bool fr_en, 1013 u32 count, u32 size, u32 imm, 1014 struct ib_send_wr *wr, 1015 struct ib_send_wr *tail) 1016 { 1017 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 1018 struct ib_sge *sge = req->sge; 1019 enum ib_send_flags flags; 1020 struct scatterlist *sg; 1021 size_t num_sge; 1022 int i; 1023 struct ib_send_wr *ptail = NULL; 1024 1025 if (fr_en) { 1026 i = 0; 1027 sge[i].addr = req->mr->iova; 1028 sge[i].length = req->mr->length; 1029 sge[i].lkey = req->mr->lkey; 1030 i++; 1031 num_sge = 2; 1032 ptail = tail; 1033 } else { 1034 for_each_sg(req->sglist, sg, count, i) { 1035 sge[i].addr = sg_dma_address(sg); 1036 sge[i].length = sg_dma_len(sg); 1037 sge[i].lkey = clt_path->s.dev->ib_pd->local_dma_lkey; 1038 } 1039 num_sge = 1 + count; 1040 } 1041 sge[i].addr = req->iu->dma_addr; 1042 sge[i].length = size; 1043 sge[i].lkey = clt_path->s.dev->ib_pd->local_dma_lkey; 1044 1045 /* 1046 * From time to time we have to post signalled sends, 1047 * or send queue will fill up and only QP reset can help. 1048 */ 1049 flags = atomic_inc_return(&con->c.wr_cnt) % clt_path->s.signal_interval ? 1050 0 : IB_SEND_SIGNALED; 1051 1052 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, 1053 req->iu->dma_addr, 1054 size, DMA_TO_DEVICE); 1055 1056 return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge, 1057 rbuf->rkey, rbuf->addr, imm, 1058 flags, wr, ptail); 1059 } 1060 1061 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count) 1062 { 1063 int nr; 1064 1065 /* Align the MR to a 4K page size to match the block virt boundary */ 1066 nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K); 1067 if (nr < 0) 1068 return nr; 1069 if (nr < req->sg_cnt) 1070 return -EINVAL; 1071 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1072 1073 return nr; 1074 } 1075 1076 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req) 1077 { 1078 struct rtrs_clt_con *con = req->con; 1079 struct rtrs_path *s = con->c.path; 1080 struct rtrs_clt_path *clt_path = to_clt_path(s); 1081 struct rtrs_msg_rdma_write *msg; 1082 1083 struct rtrs_rbuf *rbuf; 1084 int ret, count = 0; 1085 u32 imm, buf_id; 1086 struct ib_reg_wr rwr; 1087 struct ib_send_wr inv_wr; 1088 struct ib_send_wr *wr = NULL; 1089 bool fr_en = false; 1090 1091 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; 1092 1093 if (tsize > clt_path->chunk_size) { 1094 rtrs_wrn(s, "Write request failed, size too big %zu > %d\n", 1095 tsize, clt_path->chunk_size); 1096 return -EMSGSIZE; 1097 } 1098 if (req->sg_cnt) { 1099 count = ib_dma_map_sg(clt_path->s.dev->ib_dev, req->sglist, 1100 req->sg_cnt, req->dir); 1101 if (!count) { 1102 rtrs_wrn(s, "Write request failed, map failed\n"); 1103 return -EINVAL; 1104 } 1105 } 1106 /* put rtrs msg after sg and user message */ 1107 msg = req->iu->buf + req->usr_len; 1108 msg->type = cpu_to_le16(RTRS_MSG_WRITE); 1109 msg->usr_len = cpu_to_le16(req->usr_len); 1110 1111 /* rtrs message on server side will be after user data and message */ 1112 imm = req->permit->mem_off + req->data_len + req->usr_len; 1113 imm = rtrs_to_io_req_imm(imm); 1114 buf_id = req->permit->mem_id; 1115 req->sg_size = tsize; 1116 rbuf = &clt_path->rbufs[buf_id]; 1117 1118 if (count) { 1119 ret = rtrs_map_sg_fr(req, count); 1120 if (ret < 0) { 1121 rtrs_err_rl(s, 1122 "Write request failed, failed to map fast reg. data, err: %d\n", 1123 ret); 1124 ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist, 1125 req->sg_cnt, req->dir); 1126 return ret; 1127 } 1128 inv_wr = (struct ib_send_wr) { 1129 .opcode = IB_WR_LOCAL_INV, 1130 .wr_cqe = &req->inv_cqe, 1131 .send_flags = IB_SEND_SIGNALED, 1132 .ex.invalidate_rkey = req->mr->rkey, 1133 }; 1134 req->inv_cqe.done = rtrs_clt_inv_rkey_done; 1135 rwr = (struct ib_reg_wr) { 1136 .wr.opcode = IB_WR_REG_MR, 1137 .wr.wr_cqe = &fast_reg_cqe, 1138 .mr = req->mr, 1139 .key = req->mr->rkey, 1140 .access = (IB_ACCESS_LOCAL_WRITE), 1141 }; 1142 wr = &rwr.wr; 1143 fr_en = true; 1144 refcount_inc(&req->ref); 1145 } 1146 /* 1147 * Update stats now, after request is successfully sent it is not 1148 * safe anymore to touch it. 1149 */ 1150 rtrs_clt_update_all_stats(req, WRITE); 1151 1152 ret = rtrs_post_rdma_write_sg(req->con, req, rbuf, fr_en, count, 1153 req->usr_len + sizeof(*msg), 1154 imm, wr, &inv_wr); 1155 if (ret) { 1156 rtrs_err_rl(s, 1157 "Write request failed: error=%d path=%s [%s:%u]\n", 1158 ret, kobject_name(&clt_path->kobj), clt_path->hca_name, 1159 clt_path->hca_port); 1160 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT) 1161 atomic_dec(&clt_path->stats->inflight); 1162 if (req->sg_cnt) 1163 ib_dma_unmap_sg(clt_path->s.dev->ib_dev, req->sglist, 1164 req->sg_cnt, req->dir); 1165 } 1166 1167 return ret; 1168 } 1169 1170 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req) 1171 { 1172 struct rtrs_clt_con *con = req->con; 1173 struct rtrs_path *s = con->c.path; 1174 struct rtrs_clt_path *clt_path = to_clt_path(s); 1175 struct rtrs_msg_rdma_read *msg; 1176 struct rtrs_ib_dev *dev = clt_path->s.dev; 1177 1178 struct ib_reg_wr rwr; 1179 struct ib_send_wr *wr = NULL; 1180 1181 int ret, count = 0; 1182 u32 imm, buf_id; 1183 1184 const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len; 1185 1186 if (tsize > clt_path->chunk_size) { 1187 rtrs_wrn(s, 1188 "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n", 1189 tsize, clt_path->chunk_size); 1190 return -EMSGSIZE; 1191 } 1192 1193 if (req->sg_cnt) { 1194 count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt, 1195 req->dir); 1196 if (!count) { 1197 rtrs_wrn(s, 1198 "Read request failed, dma map failed\n"); 1199 return -EINVAL; 1200 } 1201 } 1202 /* put our message into req->buf after user message*/ 1203 msg = req->iu->buf + req->usr_len; 1204 msg->type = cpu_to_le16(RTRS_MSG_READ); 1205 msg->usr_len = cpu_to_le16(req->usr_len); 1206 1207 if (count) { 1208 ret = rtrs_map_sg_fr(req, count); 1209 if (ret < 0) { 1210 rtrs_err_rl(s, 1211 "Read request failed, failed to map fast reg. data, err: %d\n", 1212 ret); 1213 ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt, 1214 req->dir); 1215 return ret; 1216 } 1217 rwr = (struct ib_reg_wr) { 1218 .wr.opcode = IB_WR_REG_MR, 1219 .wr.wr_cqe = &fast_reg_cqe, 1220 .mr = req->mr, 1221 .key = req->mr->rkey, 1222 .access = (IB_ACCESS_LOCAL_WRITE | 1223 IB_ACCESS_REMOTE_WRITE), 1224 }; 1225 wr = &rwr.wr; 1226 1227 msg->sg_cnt = cpu_to_le16(1); 1228 msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F); 1229 1230 msg->desc[0].addr = cpu_to_le64(req->mr->iova); 1231 msg->desc[0].key = cpu_to_le32(req->mr->rkey); 1232 msg->desc[0].len = cpu_to_le32(req->mr->length); 1233 1234 /* Further invalidation is required */ 1235 req->need_inv = !!RTRS_MSG_NEED_INVAL_F; 1236 1237 } else { 1238 msg->sg_cnt = 0; 1239 msg->flags = 0; 1240 } 1241 /* 1242 * rtrs message will be after the space reserved for disk data and 1243 * user message 1244 */ 1245 imm = req->permit->mem_off + req->data_len + req->usr_len; 1246 imm = rtrs_to_io_req_imm(imm); 1247 buf_id = req->permit->mem_id; 1248 1249 req->sg_size = sizeof(*msg); 1250 req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc); 1251 req->sg_size += req->usr_len; 1252 1253 /* 1254 * Update stats now, after request is successfully sent it is not 1255 * safe anymore to touch it. 1256 */ 1257 rtrs_clt_update_all_stats(req, READ); 1258 1259 ret = rtrs_post_send_rdma(req->con, req, &clt_path->rbufs[buf_id], 1260 req->data_len, imm, wr); 1261 if (ret) { 1262 rtrs_err_rl(s, 1263 "Read request failed: error=%d path=%s [%s:%u]\n", 1264 ret, kobject_name(&clt_path->kobj), clt_path->hca_name, 1265 clt_path->hca_port); 1266 if (req->mp_policy == MP_POLICY_MIN_INFLIGHT) 1267 atomic_dec(&clt_path->stats->inflight); 1268 req->need_inv = false; 1269 if (req->sg_cnt) 1270 ib_dma_unmap_sg(dev->ib_dev, req->sglist, 1271 req->sg_cnt, req->dir); 1272 } 1273 1274 return ret; 1275 } 1276 1277 /** 1278 * rtrs_clt_failover_req() - Try to find an active path for a failed request 1279 * @clt: clt context 1280 * @fail_req: a failed io request. 1281 */ 1282 static int rtrs_clt_failover_req(struct rtrs_clt_sess *clt, 1283 struct rtrs_clt_io_req *fail_req) 1284 { 1285 struct rtrs_clt_path *alive_path; 1286 struct rtrs_clt_io_req *req; 1287 int err = -ECONNABORTED; 1288 struct path_it it; 1289 1290 rcu_read_lock(); 1291 for (path_it_init(&it, clt); 1292 (alive_path = it.next_path(&it)) && it.i < it.clt->paths_num; 1293 it.i++) { 1294 if (READ_ONCE(alive_path->state) != RTRS_CLT_CONNECTED) 1295 continue; 1296 req = rtrs_clt_get_copy_req(alive_path, fail_req); 1297 if (req->dir == DMA_TO_DEVICE) 1298 err = rtrs_clt_write_req(req); 1299 else 1300 err = rtrs_clt_read_req(req); 1301 if (err) { 1302 req->in_use = false; 1303 continue; 1304 } 1305 /* Success path */ 1306 rtrs_clt_inc_failover_cnt(alive_path->stats); 1307 break; 1308 } 1309 path_it_deinit(&it); 1310 rcu_read_unlock(); 1311 1312 return err; 1313 } 1314 1315 static void fail_all_outstanding_reqs(struct rtrs_clt_path *clt_path) 1316 { 1317 struct rtrs_clt_sess *clt = clt_path->clt; 1318 struct rtrs_clt_io_req *req; 1319 int i, err; 1320 1321 if (!clt_path->reqs) 1322 return; 1323 for (i = 0; i < clt_path->queue_depth; ++i) { 1324 req = &clt_path->reqs[i]; 1325 if (!req->in_use) 1326 continue; 1327 1328 /* 1329 * Safely (without notification) complete failed request. 1330 * After completion this request is still useble and can 1331 * be failovered to another path. 1332 */ 1333 complete_rdma_req(req, -ECONNABORTED, false, true); 1334 1335 err = rtrs_clt_failover_req(clt, req); 1336 if (err) 1337 /* Failover failed, notify anyway */ 1338 req->conf(req->priv, err); 1339 } 1340 } 1341 1342 static void free_path_reqs(struct rtrs_clt_path *clt_path) 1343 { 1344 struct rtrs_clt_io_req *req; 1345 int i; 1346 1347 if (!clt_path->reqs) 1348 return; 1349 for (i = 0; i < clt_path->queue_depth; ++i) { 1350 req = &clt_path->reqs[i]; 1351 if (req->mr) 1352 ib_dereg_mr(req->mr); 1353 kfree(req->sge); 1354 rtrs_iu_free(req->iu, clt_path->s.dev->ib_dev, 1); 1355 } 1356 kfree(clt_path->reqs); 1357 clt_path->reqs = NULL; 1358 } 1359 1360 static int alloc_path_reqs(struct rtrs_clt_path *clt_path) 1361 { 1362 struct rtrs_clt_io_req *req; 1363 int i, err = -ENOMEM; 1364 1365 clt_path->reqs = kcalloc(clt_path->queue_depth, 1366 sizeof(*clt_path->reqs), 1367 GFP_KERNEL); 1368 if (!clt_path->reqs) 1369 return -ENOMEM; 1370 1371 for (i = 0; i < clt_path->queue_depth; ++i) { 1372 req = &clt_path->reqs[i]; 1373 req->iu = rtrs_iu_alloc(1, clt_path->max_hdr_size, GFP_KERNEL, 1374 clt_path->s.dev->ib_dev, 1375 DMA_TO_DEVICE, 1376 rtrs_clt_rdma_done); 1377 if (!req->iu) 1378 goto out; 1379 1380 req->sge = kcalloc(2, sizeof(*req->sge), GFP_KERNEL); 1381 if (!req->sge) 1382 goto out; 1383 1384 req->mr = ib_alloc_mr(clt_path->s.dev->ib_pd, 1385 IB_MR_TYPE_MEM_REG, 1386 clt_path->max_pages_per_mr); 1387 if (IS_ERR(req->mr)) { 1388 err = PTR_ERR(req->mr); 1389 req->mr = NULL; 1390 pr_err("Failed to alloc clt_path->max_pages_per_mr %d\n", 1391 clt_path->max_pages_per_mr); 1392 goto out; 1393 } 1394 1395 init_completion(&req->inv_comp); 1396 } 1397 1398 return 0; 1399 1400 out: 1401 free_path_reqs(clt_path); 1402 1403 return err; 1404 } 1405 1406 static int alloc_permits(struct rtrs_clt_sess *clt) 1407 { 1408 unsigned int chunk_bits; 1409 int err, i; 1410 1411 clt->permits_map = bitmap_zalloc(clt->queue_depth, GFP_KERNEL); 1412 if (!clt->permits_map) { 1413 err = -ENOMEM; 1414 goto out_err; 1415 } 1416 clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL); 1417 if (!clt->permits) { 1418 err = -ENOMEM; 1419 goto err_map; 1420 } 1421 chunk_bits = ilog2(clt->queue_depth - 1) + 1; 1422 for (i = 0; i < clt->queue_depth; i++) { 1423 struct rtrs_permit *permit; 1424 1425 permit = get_permit(clt, i); 1426 permit->mem_id = i; 1427 permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits); 1428 } 1429 1430 return 0; 1431 1432 err_map: 1433 bitmap_free(clt->permits_map); 1434 clt->permits_map = NULL; 1435 out_err: 1436 return err; 1437 } 1438 1439 static void free_permits(struct rtrs_clt_sess *clt) 1440 { 1441 if (clt->permits_map) 1442 wait_event(clt->permits_wait, 1443 bitmap_empty(clt->permits_map, clt->queue_depth)); 1444 1445 bitmap_free(clt->permits_map); 1446 clt->permits_map = NULL; 1447 kfree(clt->permits); 1448 clt->permits = NULL; 1449 } 1450 1451 static void query_fast_reg_mode(struct rtrs_clt_path *clt_path) 1452 { 1453 struct ib_device *ib_dev; 1454 u64 max_pages_per_mr; 1455 int mr_page_shift; 1456 1457 ib_dev = clt_path->s.dev->ib_dev; 1458 1459 /* 1460 * Use the smallest page size supported by the HCA, down to a 1461 * minimum of 4096 bytes. We're unlikely to build large sglists 1462 * out of smaller entries. 1463 */ 1464 mr_page_shift = max(12, ffs(ib_dev->attrs.page_size_cap) - 1); 1465 max_pages_per_mr = ib_dev->attrs.max_mr_size; 1466 do_div(max_pages_per_mr, (1ull << mr_page_shift)); 1467 clt_path->max_pages_per_mr = 1468 min3(clt_path->max_pages_per_mr, (u32)max_pages_per_mr, 1469 ib_dev->attrs.max_fast_reg_page_list_len); 1470 clt_path->clt->max_segments = 1471 min(clt_path->max_pages_per_mr, clt_path->clt->max_segments); 1472 } 1473 1474 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_path *clt_path, 1475 enum rtrs_clt_state new_state, 1476 enum rtrs_clt_state *old_state) 1477 { 1478 bool changed; 1479 1480 spin_lock_irq(&clt_path->state_wq.lock); 1481 if (old_state) 1482 *old_state = clt_path->state; 1483 changed = rtrs_clt_change_state(clt_path, new_state); 1484 spin_unlock_irq(&clt_path->state_wq.lock); 1485 1486 return changed; 1487 } 1488 1489 static void rtrs_clt_hb_err_handler(struct rtrs_con *c) 1490 { 1491 struct rtrs_clt_con *con = container_of(c, typeof(*con), c); 1492 1493 rtrs_rdma_error_recovery(con); 1494 } 1495 1496 static void rtrs_clt_init_hb(struct rtrs_clt_path *clt_path) 1497 { 1498 rtrs_init_hb(&clt_path->s, &io_comp_cqe, 1499 RTRS_HB_INTERVAL_MS, 1500 RTRS_HB_MISSED_MAX, 1501 rtrs_clt_hb_err_handler, 1502 rtrs_wq); 1503 } 1504 1505 static void rtrs_clt_reconnect_work(struct work_struct *work); 1506 static void rtrs_clt_close_work(struct work_struct *work); 1507 1508 static void rtrs_clt_err_recovery_work(struct work_struct *work) 1509 { 1510 struct rtrs_clt_path *clt_path; 1511 struct rtrs_clt_sess *clt; 1512 int delay_ms; 1513 1514 clt_path = container_of(work, struct rtrs_clt_path, err_recovery_work); 1515 clt = clt_path->clt; 1516 delay_ms = clt->reconnect_delay_sec * 1000; 1517 rtrs_clt_stop_and_destroy_conns(clt_path); 1518 queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 1519 msecs_to_jiffies(delay_ms + 1520 prandom_u32_max(RTRS_RECONNECT_SEED))); 1521 } 1522 1523 static struct rtrs_clt_path *alloc_path(struct rtrs_clt_sess *clt, 1524 const struct rtrs_addr *path, 1525 size_t con_num, u32 nr_poll_queues) 1526 { 1527 struct rtrs_clt_path *clt_path; 1528 int err = -ENOMEM; 1529 int cpu; 1530 size_t total_con; 1531 1532 clt_path = kzalloc(sizeof(*clt_path), GFP_KERNEL); 1533 if (!clt_path) 1534 goto err; 1535 1536 /* 1537 * irqmode and poll 1538 * +1: Extra connection for user messages 1539 */ 1540 total_con = con_num + nr_poll_queues + 1; 1541 clt_path->s.con = kcalloc(total_con, sizeof(*clt_path->s.con), 1542 GFP_KERNEL); 1543 if (!clt_path->s.con) 1544 goto err_free_path; 1545 1546 clt_path->s.con_num = total_con; 1547 clt_path->s.irq_con_num = con_num + 1; 1548 1549 clt_path->stats = kzalloc(sizeof(*clt_path->stats), GFP_KERNEL); 1550 if (!clt_path->stats) 1551 goto err_free_con; 1552 1553 mutex_init(&clt_path->init_mutex); 1554 uuid_gen(&clt_path->s.uuid); 1555 memcpy(&clt_path->s.dst_addr, path->dst, 1556 rdma_addr_size((struct sockaddr *)path->dst)); 1557 1558 /* 1559 * rdma_resolve_addr() passes src_addr to cma_bind_addr, which 1560 * checks the sa_family to be non-zero. If user passed src_addr=NULL 1561 * the sess->src_addr will contain only zeros, which is then fine. 1562 */ 1563 if (path->src) 1564 memcpy(&clt_path->s.src_addr, path->src, 1565 rdma_addr_size((struct sockaddr *)path->src)); 1566 strscpy(clt_path->s.sessname, clt->sessname, 1567 sizeof(clt_path->s.sessname)); 1568 clt_path->clt = clt; 1569 clt_path->max_pages_per_mr = RTRS_MAX_SEGMENTS; 1570 init_waitqueue_head(&clt_path->state_wq); 1571 clt_path->state = RTRS_CLT_CONNECTING; 1572 atomic_set(&clt_path->connected_cnt, 0); 1573 INIT_WORK(&clt_path->close_work, rtrs_clt_close_work); 1574 INIT_WORK(&clt_path->err_recovery_work, rtrs_clt_err_recovery_work); 1575 INIT_DELAYED_WORK(&clt_path->reconnect_dwork, rtrs_clt_reconnect_work); 1576 rtrs_clt_init_hb(clt_path); 1577 1578 clt_path->mp_skip_entry = alloc_percpu(typeof(*clt_path->mp_skip_entry)); 1579 if (!clt_path->mp_skip_entry) 1580 goto err_free_stats; 1581 1582 for_each_possible_cpu(cpu) 1583 INIT_LIST_HEAD(per_cpu_ptr(clt_path->mp_skip_entry, cpu)); 1584 1585 err = rtrs_clt_init_stats(clt_path->stats); 1586 if (err) 1587 goto err_free_percpu; 1588 1589 return clt_path; 1590 1591 err_free_percpu: 1592 free_percpu(clt_path->mp_skip_entry); 1593 err_free_stats: 1594 kfree(clt_path->stats); 1595 err_free_con: 1596 kfree(clt_path->s.con); 1597 err_free_path: 1598 kfree(clt_path); 1599 err: 1600 return ERR_PTR(err); 1601 } 1602 1603 void free_path(struct rtrs_clt_path *clt_path) 1604 { 1605 free_percpu(clt_path->mp_skip_entry); 1606 mutex_destroy(&clt_path->init_mutex); 1607 kfree(clt_path->s.con); 1608 kfree(clt_path->rbufs); 1609 kfree(clt_path); 1610 } 1611 1612 static int create_con(struct rtrs_clt_path *clt_path, unsigned int cid) 1613 { 1614 struct rtrs_clt_con *con; 1615 1616 con = kzalloc(sizeof(*con), GFP_KERNEL); 1617 if (!con) 1618 return -ENOMEM; 1619 1620 /* Map first two connections to the first CPU */ 1621 con->cpu = (cid ? cid - 1 : 0) % nr_cpu_ids; 1622 con->c.cid = cid; 1623 con->c.path = &clt_path->s; 1624 /* Align with srv, init as 1 */ 1625 atomic_set(&con->c.wr_cnt, 1); 1626 mutex_init(&con->con_mutex); 1627 1628 clt_path->s.con[cid] = &con->c; 1629 1630 return 0; 1631 } 1632 1633 static void destroy_con(struct rtrs_clt_con *con) 1634 { 1635 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 1636 1637 clt_path->s.con[con->c.cid] = NULL; 1638 mutex_destroy(&con->con_mutex); 1639 kfree(con); 1640 } 1641 1642 static int create_con_cq_qp(struct rtrs_clt_con *con) 1643 { 1644 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 1645 u32 max_send_wr, max_recv_wr, cq_num, max_send_sge, wr_limit; 1646 int err, cq_vector; 1647 struct rtrs_msg_rkey_rsp *rsp; 1648 1649 lockdep_assert_held(&con->con_mutex); 1650 if (con->c.cid == 0) { 1651 max_send_sge = 1; 1652 /* We must be the first here */ 1653 if (WARN_ON(clt_path->s.dev)) 1654 return -EINVAL; 1655 1656 /* 1657 * The whole session uses device from user connection. 1658 * Be careful not to close user connection before ib dev 1659 * is gracefully put. 1660 */ 1661 clt_path->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device, 1662 &dev_pd); 1663 if (!clt_path->s.dev) { 1664 rtrs_wrn(clt_path->clt, 1665 "rtrs_ib_dev_find_get_or_add(): no memory\n"); 1666 return -ENOMEM; 1667 } 1668 clt_path->s.dev_ref = 1; 1669 query_fast_reg_mode(clt_path); 1670 wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr; 1671 /* 1672 * Two (request + registration) completion for send 1673 * Two for recv if always_invalidate is set on server 1674 * or one for recv. 1675 * + 2 for drain and heartbeat 1676 * in case qp gets into error state. 1677 */ 1678 max_send_wr = 1679 min_t(int, wr_limit, SERVICE_CON_QUEUE_DEPTH * 2 + 2); 1680 max_recv_wr = max_send_wr; 1681 } else { 1682 /* 1683 * Here we assume that session members are correctly set. 1684 * This is always true if user connection (cid == 0) is 1685 * established first. 1686 */ 1687 if (WARN_ON(!clt_path->s.dev)) 1688 return -EINVAL; 1689 if (WARN_ON(!clt_path->queue_depth)) 1690 return -EINVAL; 1691 1692 wr_limit = clt_path->s.dev->ib_dev->attrs.max_qp_wr; 1693 /* Shared between connections */ 1694 clt_path->s.dev_ref++; 1695 max_send_wr = min_t(int, wr_limit, 1696 /* QD * (REQ + RSP + FR REGS or INVS) + drain */ 1697 clt_path->queue_depth * 3 + 1); 1698 max_recv_wr = min_t(int, wr_limit, 1699 clt_path->queue_depth * 3 + 1); 1700 max_send_sge = 2; 1701 } 1702 atomic_set(&con->c.sq_wr_avail, max_send_wr); 1703 cq_num = max_send_wr + max_recv_wr; 1704 /* alloc iu to recv new rkey reply when server reports flags set */ 1705 if (clt_path->flags & RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) { 1706 con->rsp_ius = rtrs_iu_alloc(cq_num, sizeof(*rsp), 1707 GFP_KERNEL, 1708 clt_path->s.dev->ib_dev, 1709 DMA_FROM_DEVICE, 1710 rtrs_clt_rdma_done); 1711 if (!con->rsp_ius) 1712 return -ENOMEM; 1713 con->queue_num = cq_num; 1714 } 1715 cq_num = max_send_wr + max_recv_wr; 1716 cq_vector = con->cpu % clt_path->s.dev->ib_dev->num_comp_vectors; 1717 if (con->c.cid >= clt_path->s.irq_con_num) 1718 err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge, 1719 cq_vector, cq_num, max_send_wr, 1720 max_recv_wr, IB_POLL_DIRECT); 1721 else 1722 err = rtrs_cq_qp_create(&clt_path->s, &con->c, max_send_sge, 1723 cq_vector, cq_num, max_send_wr, 1724 max_recv_wr, IB_POLL_SOFTIRQ); 1725 /* 1726 * In case of error we do not bother to clean previous allocations, 1727 * since destroy_con_cq_qp() must be called. 1728 */ 1729 return err; 1730 } 1731 1732 static void destroy_con_cq_qp(struct rtrs_clt_con *con) 1733 { 1734 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 1735 1736 /* 1737 * Be careful here: destroy_con_cq_qp() can be called even 1738 * create_con_cq_qp() failed, see comments there. 1739 */ 1740 lockdep_assert_held(&con->con_mutex); 1741 rtrs_cq_qp_destroy(&con->c); 1742 if (con->rsp_ius) { 1743 rtrs_iu_free(con->rsp_ius, clt_path->s.dev->ib_dev, 1744 con->queue_num); 1745 con->rsp_ius = NULL; 1746 con->queue_num = 0; 1747 } 1748 if (clt_path->s.dev_ref && !--clt_path->s.dev_ref) { 1749 rtrs_ib_dev_put(clt_path->s.dev); 1750 clt_path->s.dev = NULL; 1751 } 1752 } 1753 1754 static void stop_cm(struct rtrs_clt_con *con) 1755 { 1756 rdma_disconnect(con->c.cm_id); 1757 if (con->c.qp) 1758 ib_drain_qp(con->c.qp); 1759 } 1760 1761 static void destroy_cm(struct rtrs_clt_con *con) 1762 { 1763 rdma_destroy_id(con->c.cm_id); 1764 con->c.cm_id = NULL; 1765 } 1766 1767 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con) 1768 { 1769 struct rtrs_path *s = con->c.path; 1770 int err; 1771 1772 mutex_lock(&con->con_mutex); 1773 err = create_con_cq_qp(con); 1774 mutex_unlock(&con->con_mutex); 1775 if (err) { 1776 rtrs_err(s, "create_con_cq_qp(), err: %d\n", err); 1777 return err; 1778 } 1779 err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS); 1780 if (err) 1781 rtrs_err(s, "Resolving route failed, err: %d\n", err); 1782 1783 return err; 1784 } 1785 1786 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con) 1787 { 1788 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 1789 struct rtrs_clt_sess *clt = clt_path->clt; 1790 struct rtrs_msg_conn_req msg; 1791 struct rdma_conn_param param; 1792 1793 int err; 1794 1795 param = (struct rdma_conn_param) { 1796 .retry_count = 7, 1797 .rnr_retry_count = 7, 1798 .private_data = &msg, 1799 .private_data_len = sizeof(msg), 1800 }; 1801 1802 msg = (struct rtrs_msg_conn_req) { 1803 .magic = cpu_to_le16(RTRS_MAGIC), 1804 .version = cpu_to_le16(RTRS_PROTO_VER), 1805 .cid = cpu_to_le16(con->c.cid), 1806 .cid_num = cpu_to_le16(clt_path->s.con_num), 1807 .recon_cnt = cpu_to_le16(clt_path->s.recon_cnt), 1808 }; 1809 msg.first_conn = clt_path->for_new_clt ? FIRST_CONN : 0; 1810 uuid_copy(&msg.sess_uuid, &clt_path->s.uuid); 1811 uuid_copy(&msg.paths_uuid, &clt->paths_uuid); 1812 1813 err = rdma_connect_locked(con->c.cm_id, ¶m); 1814 if (err) 1815 rtrs_err(clt, "rdma_connect_locked(): %d\n", err); 1816 1817 return err; 1818 } 1819 1820 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con, 1821 struct rdma_cm_event *ev) 1822 { 1823 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 1824 struct rtrs_clt_sess *clt = clt_path->clt; 1825 const struct rtrs_msg_conn_rsp *msg; 1826 u16 version, queue_depth; 1827 int errno; 1828 u8 len; 1829 1830 msg = ev->param.conn.private_data; 1831 len = ev->param.conn.private_data_len; 1832 if (len < sizeof(*msg)) { 1833 rtrs_err(clt, "Invalid RTRS connection response\n"); 1834 return -ECONNRESET; 1835 } 1836 if (le16_to_cpu(msg->magic) != RTRS_MAGIC) { 1837 rtrs_err(clt, "Invalid RTRS magic\n"); 1838 return -ECONNRESET; 1839 } 1840 version = le16_to_cpu(msg->version); 1841 if (version >> 8 != RTRS_PROTO_VER_MAJOR) { 1842 rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n", 1843 version >> 8, RTRS_PROTO_VER_MAJOR); 1844 return -ECONNRESET; 1845 } 1846 errno = le16_to_cpu(msg->errno); 1847 if (errno) { 1848 rtrs_err(clt, "Invalid RTRS message: errno %d\n", 1849 errno); 1850 return -ECONNRESET; 1851 } 1852 if (con->c.cid == 0) { 1853 queue_depth = le16_to_cpu(msg->queue_depth); 1854 1855 if (clt_path->queue_depth > 0 && queue_depth != clt_path->queue_depth) { 1856 rtrs_err(clt, "Error: queue depth changed\n"); 1857 1858 /* 1859 * Stop any more reconnection attempts 1860 */ 1861 clt_path->reconnect_attempts = -1; 1862 rtrs_err(clt, 1863 "Disabling auto-reconnect. Trigger a manual reconnect after issue is resolved\n"); 1864 return -ECONNRESET; 1865 } 1866 1867 if (!clt_path->rbufs) { 1868 clt_path->rbufs = kcalloc(queue_depth, 1869 sizeof(*clt_path->rbufs), 1870 GFP_KERNEL); 1871 if (!clt_path->rbufs) 1872 return -ENOMEM; 1873 } 1874 clt_path->queue_depth = queue_depth; 1875 clt_path->s.signal_interval = min_not_zero(queue_depth, 1876 (unsigned short) SERVICE_CON_QUEUE_DEPTH); 1877 clt_path->max_hdr_size = le32_to_cpu(msg->max_hdr_size); 1878 clt_path->max_io_size = le32_to_cpu(msg->max_io_size); 1879 clt_path->flags = le32_to_cpu(msg->flags); 1880 clt_path->chunk_size = clt_path->max_io_size + clt_path->max_hdr_size; 1881 1882 /* 1883 * Global IO size is always a minimum. 1884 * If while a reconnection server sends us a value a bit 1885 * higher - client does not care and uses cached minimum. 1886 * 1887 * Since we can have several sessions (paths) restablishing 1888 * connections in parallel, use lock. 1889 */ 1890 mutex_lock(&clt->paths_mutex); 1891 clt->queue_depth = clt_path->queue_depth; 1892 clt->max_io_size = min_not_zero(clt_path->max_io_size, 1893 clt->max_io_size); 1894 mutex_unlock(&clt->paths_mutex); 1895 1896 /* 1897 * Cache the hca_port and hca_name for sysfs 1898 */ 1899 clt_path->hca_port = con->c.cm_id->port_num; 1900 scnprintf(clt_path->hca_name, sizeof(clt_path->hca_name), 1901 clt_path->s.dev->ib_dev->name); 1902 clt_path->s.src_addr = con->c.cm_id->route.addr.src_addr; 1903 /* set for_new_clt, to allow future reconnect on any path */ 1904 clt_path->for_new_clt = 1; 1905 } 1906 1907 return 0; 1908 } 1909 1910 static inline void flag_success_on_conn(struct rtrs_clt_con *con) 1911 { 1912 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 1913 1914 atomic_inc(&clt_path->connected_cnt); 1915 con->cm_err = 1; 1916 } 1917 1918 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con, 1919 struct rdma_cm_event *ev) 1920 { 1921 struct rtrs_path *s = con->c.path; 1922 const struct rtrs_msg_conn_rsp *msg; 1923 const char *rej_msg; 1924 int status, errno; 1925 u8 data_len; 1926 1927 status = ev->status; 1928 rej_msg = rdma_reject_msg(con->c.cm_id, status); 1929 msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len); 1930 1931 if (msg && data_len >= sizeof(*msg)) { 1932 errno = (int16_t)le16_to_cpu(msg->errno); 1933 if (errno == -EBUSY) 1934 rtrs_err(s, 1935 "Previous session is still exists on the server, please reconnect later\n"); 1936 else 1937 rtrs_err(s, 1938 "Connect rejected: status %d (%s), rtrs errno %d\n", 1939 status, rej_msg, errno); 1940 } else { 1941 rtrs_err(s, 1942 "Connect rejected but with malformed message: status %d (%s)\n", 1943 status, rej_msg); 1944 } 1945 1946 return -ECONNRESET; 1947 } 1948 1949 void rtrs_clt_close_conns(struct rtrs_clt_path *clt_path, bool wait) 1950 { 1951 trace_rtrs_clt_close_conns(clt_path); 1952 1953 if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSING, NULL)) 1954 queue_work(rtrs_wq, &clt_path->close_work); 1955 if (wait) 1956 flush_work(&clt_path->close_work); 1957 } 1958 1959 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err) 1960 { 1961 if (con->cm_err == 1) { 1962 struct rtrs_clt_path *clt_path; 1963 1964 clt_path = to_clt_path(con->c.path); 1965 if (atomic_dec_and_test(&clt_path->connected_cnt)) 1966 1967 wake_up(&clt_path->state_wq); 1968 } 1969 con->cm_err = cm_err; 1970 } 1971 1972 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id, 1973 struct rdma_cm_event *ev) 1974 { 1975 struct rtrs_clt_con *con = cm_id->context; 1976 struct rtrs_path *s = con->c.path; 1977 struct rtrs_clt_path *clt_path = to_clt_path(s); 1978 int cm_err = 0; 1979 1980 switch (ev->event) { 1981 case RDMA_CM_EVENT_ADDR_RESOLVED: 1982 cm_err = rtrs_rdma_addr_resolved(con); 1983 break; 1984 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1985 cm_err = rtrs_rdma_route_resolved(con); 1986 break; 1987 case RDMA_CM_EVENT_ESTABLISHED: 1988 cm_err = rtrs_rdma_conn_established(con, ev); 1989 if (!cm_err) { 1990 /* 1991 * Report success and wake up. Here we abuse state_wq, 1992 * i.e. wake up without state change, but we set cm_err. 1993 */ 1994 flag_success_on_conn(con); 1995 wake_up(&clt_path->state_wq); 1996 return 0; 1997 } 1998 break; 1999 case RDMA_CM_EVENT_REJECTED: 2000 cm_err = rtrs_rdma_conn_rejected(con, ev); 2001 break; 2002 case RDMA_CM_EVENT_DISCONNECTED: 2003 /* No message for disconnecting */ 2004 cm_err = -ECONNRESET; 2005 break; 2006 case RDMA_CM_EVENT_CONNECT_ERROR: 2007 case RDMA_CM_EVENT_UNREACHABLE: 2008 case RDMA_CM_EVENT_ADDR_CHANGE: 2009 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 2010 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n", 2011 rdma_event_msg(ev->event), ev->status); 2012 cm_err = -ECONNRESET; 2013 break; 2014 case RDMA_CM_EVENT_ADDR_ERROR: 2015 case RDMA_CM_EVENT_ROUTE_ERROR: 2016 rtrs_wrn(s, "CM error (CM event: %s, err: %d)\n", 2017 rdma_event_msg(ev->event), ev->status); 2018 cm_err = -EHOSTUNREACH; 2019 break; 2020 case RDMA_CM_EVENT_DEVICE_REMOVAL: 2021 /* 2022 * Device removal is a special case. Queue close and return 0. 2023 */ 2024 rtrs_clt_close_conns(clt_path, false); 2025 return 0; 2026 default: 2027 rtrs_err(s, "Unexpected RDMA CM error (CM event: %s, err: %d)\n", 2028 rdma_event_msg(ev->event), ev->status); 2029 cm_err = -ECONNRESET; 2030 break; 2031 } 2032 2033 if (cm_err) { 2034 /* 2035 * cm error makes sense only on connection establishing, 2036 * in other cases we rely on normal procedure of reconnecting. 2037 */ 2038 flag_error_on_conn(con, cm_err); 2039 rtrs_rdma_error_recovery(con); 2040 } 2041 2042 return 0; 2043 } 2044 2045 static int create_cm(struct rtrs_clt_con *con) 2046 { 2047 struct rtrs_path *s = con->c.path; 2048 struct rtrs_clt_path *clt_path = to_clt_path(s); 2049 struct rdma_cm_id *cm_id; 2050 int err; 2051 2052 cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con, 2053 clt_path->s.dst_addr.ss_family == AF_IB ? 2054 RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC); 2055 if (IS_ERR(cm_id)) { 2056 err = PTR_ERR(cm_id); 2057 rtrs_err(s, "Failed to create CM ID, err: %d\n", err); 2058 2059 return err; 2060 } 2061 con->c.cm_id = cm_id; 2062 con->cm_err = 0; 2063 /* allow the port to be reused */ 2064 err = rdma_set_reuseaddr(cm_id, 1); 2065 if (err != 0) { 2066 rtrs_err(s, "Set address reuse failed, err: %d\n", err); 2067 goto destroy_cm; 2068 } 2069 err = rdma_resolve_addr(cm_id, (struct sockaddr *)&clt_path->s.src_addr, 2070 (struct sockaddr *)&clt_path->s.dst_addr, 2071 RTRS_CONNECT_TIMEOUT_MS); 2072 if (err) { 2073 rtrs_err(s, "Failed to resolve address, err: %d\n", err); 2074 goto destroy_cm; 2075 } 2076 /* 2077 * Combine connection status and session events. This is needed 2078 * for waiting two possible cases: cm_err has something meaningful 2079 * or session state was really changed to error by device removal. 2080 */ 2081 err = wait_event_interruptible_timeout( 2082 clt_path->state_wq, 2083 con->cm_err || clt_path->state != RTRS_CLT_CONNECTING, 2084 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); 2085 if (err == 0 || err == -ERESTARTSYS) { 2086 if (err == 0) 2087 err = -ETIMEDOUT; 2088 /* Timedout or interrupted */ 2089 goto errr; 2090 } 2091 if (con->cm_err < 0) { 2092 err = con->cm_err; 2093 goto errr; 2094 } 2095 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTING) { 2096 /* Device removal */ 2097 err = -ECONNABORTED; 2098 goto errr; 2099 } 2100 2101 return 0; 2102 2103 errr: 2104 stop_cm(con); 2105 mutex_lock(&con->con_mutex); 2106 destroy_con_cq_qp(con); 2107 mutex_unlock(&con->con_mutex); 2108 destroy_cm: 2109 destroy_cm(con); 2110 2111 return err; 2112 } 2113 2114 static void rtrs_clt_path_up(struct rtrs_clt_path *clt_path) 2115 { 2116 struct rtrs_clt_sess *clt = clt_path->clt; 2117 int up; 2118 2119 /* 2120 * We can fire RECONNECTED event only when all paths were 2121 * connected on rtrs_clt_open(), then each was disconnected 2122 * and the first one connected again. That's why this nasty 2123 * game with counter value. 2124 */ 2125 2126 mutex_lock(&clt->paths_ev_mutex); 2127 up = ++clt->paths_up; 2128 /* 2129 * Here it is safe to access paths num directly since up counter 2130 * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is 2131 * in progress, thus paths removals are impossible. 2132 */ 2133 if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num) 2134 clt->paths_up = clt->paths_num; 2135 else if (up == 1) 2136 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED); 2137 mutex_unlock(&clt->paths_ev_mutex); 2138 2139 /* Mark session as established */ 2140 clt_path->established = true; 2141 clt_path->reconnect_attempts = 0; 2142 clt_path->stats->reconnects.successful_cnt++; 2143 } 2144 2145 static void rtrs_clt_path_down(struct rtrs_clt_path *clt_path) 2146 { 2147 struct rtrs_clt_sess *clt = clt_path->clt; 2148 2149 if (!clt_path->established) 2150 return; 2151 2152 clt_path->established = false; 2153 mutex_lock(&clt->paths_ev_mutex); 2154 WARN_ON(!clt->paths_up); 2155 if (--clt->paths_up == 0) 2156 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED); 2157 mutex_unlock(&clt->paths_ev_mutex); 2158 } 2159 2160 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_path *clt_path) 2161 { 2162 struct rtrs_clt_con *con; 2163 unsigned int cid; 2164 2165 WARN_ON(READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTED); 2166 2167 /* 2168 * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes 2169 * exactly in between. Start destroying after it finishes. 2170 */ 2171 mutex_lock(&clt_path->init_mutex); 2172 mutex_unlock(&clt_path->init_mutex); 2173 2174 /* 2175 * All IO paths must observe !CONNECTED state before we 2176 * free everything. 2177 */ 2178 synchronize_rcu(); 2179 2180 rtrs_stop_hb(&clt_path->s); 2181 2182 /* 2183 * The order it utterly crucial: firstly disconnect and complete all 2184 * rdma requests with error (thus set in_use=false for requests), 2185 * then fail outstanding requests checking in_use for each, and 2186 * eventually notify upper layer about session disconnection. 2187 */ 2188 2189 for (cid = 0; cid < clt_path->s.con_num; cid++) { 2190 if (!clt_path->s.con[cid]) 2191 break; 2192 con = to_clt_con(clt_path->s.con[cid]); 2193 stop_cm(con); 2194 } 2195 fail_all_outstanding_reqs(clt_path); 2196 free_path_reqs(clt_path); 2197 rtrs_clt_path_down(clt_path); 2198 2199 /* 2200 * Wait for graceful shutdown, namely when peer side invokes 2201 * rdma_disconnect(). 'connected_cnt' is decremented only on 2202 * CM events, thus if other side had crashed and hb has detected 2203 * something is wrong, here we will stuck for exactly timeout ms, 2204 * since CM does not fire anything. That is fine, we are not in 2205 * hurry. 2206 */ 2207 wait_event_timeout(clt_path->state_wq, 2208 !atomic_read(&clt_path->connected_cnt), 2209 msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS)); 2210 2211 for (cid = 0; cid < clt_path->s.con_num; cid++) { 2212 if (!clt_path->s.con[cid]) 2213 break; 2214 con = to_clt_con(clt_path->s.con[cid]); 2215 mutex_lock(&con->con_mutex); 2216 destroy_con_cq_qp(con); 2217 mutex_unlock(&con->con_mutex); 2218 destroy_cm(con); 2219 destroy_con(con); 2220 } 2221 } 2222 2223 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_path *clt_path) 2224 { 2225 struct rtrs_clt_sess *clt = clt_path->clt; 2226 struct rtrs_clt_path *next; 2227 bool wait_for_grace = false; 2228 int cpu; 2229 2230 mutex_lock(&clt->paths_mutex); 2231 list_del_rcu(&clt_path->s.entry); 2232 2233 /* Make sure everybody observes path removal. */ 2234 synchronize_rcu(); 2235 2236 /* 2237 * At this point nobody sees @sess in the list, but still we have 2238 * dangling pointer @pcpu_path which _can_ point to @sess. Since 2239 * nobody can observe @sess in the list, we guarantee that IO path 2240 * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal 2241 * to @sess, but can never again become @sess. 2242 */ 2243 2244 /* 2245 * Decrement paths number only after grace period, because 2246 * caller of do_each_path() must firstly observe list without 2247 * path and only then decremented paths number. 2248 * 2249 * Otherwise there can be the following situation: 2250 * o Two paths exist and IO is coming. 2251 * o One path is removed: 2252 * CPU#0 CPU#1 2253 * do_each_path(): rtrs_clt_remove_path_from_arr(): 2254 * path = get_next_path() 2255 * ^^^ list_del_rcu(path) 2256 * [!CONNECTED path] clt->paths_num-- 2257 * ^^^^^^^^^ 2258 * load clt->paths_num from 2 to 1 2259 * ^^^^^^^^^ 2260 * sees 1 2261 * 2262 * path is observed as !CONNECTED, but do_each_path() loop 2263 * ends, because expression i < clt->paths_num is false. 2264 */ 2265 clt->paths_num--; 2266 2267 /* 2268 * Get @next connection from current @sess which is going to be 2269 * removed. If @sess is the last element, then @next is NULL. 2270 */ 2271 rcu_read_lock(); 2272 next = rtrs_clt_get_next_path_or_null(&clt->paths_list, clt_path); 2273 rcu_read_unlock(); 2274 2275 /* 2276 * @pcpu paths can still point to the path which is going to be 2277 * removed, so change the pointer manually. 2278 */ 2279 for_each_possible_cpu(cpu) { 2280 struct rtrs_clt_path __rcu **ppcpu_path; 2281 2282 ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu); 2283 if (rcu_dereference_protected(*ppcpu_path, 2284 lockdep_is_held(&clt->paths_mutex)) != clt_path) 2285 /* 2286 * synchronize_rcu() was called just after deleting 2287 * entry from the list, thus IO code path cannot 2288 * change pointer back to the pointer which is going 2289 * to be removed, we are safe here. 2290 */ 2291 continue; 2292 2293 /* 2294 * We race with IO code path, which also changes pointer, 2295 * thus we have to be careful not to overwrite it. 2296 */ 2297 if (try_cmpxchg((struct rtrs_clt_path **)ppcpu_path, &clt_path, 2298 next)) 2299 /* 2300 * @ppcpu_path was successfully replaced with @next, 2301 * that means that someone could also pick up the 2302 * @sess and dereferencing it right now, so wait for 2303 * a grace period is required. 2304 */ 2305 wait_for_grace = true; 2306 } 2307 if (wait_for_grace) 2308 synchronize_rcu(); 2309 2310 mutex_unlock(&clt->paths_mutex); 2311 } 2312 2313 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_path *clt_path) 2314 { 2315 struct rtrs_clt_sess *clt = clt_path->clt; 2316 2317 mutex_lock(&clt->paths_mutex); 2318 clt->paths_num++; 2319 2320 list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list); 2321 mutex_unlock(&clt->paths_mutex); 2322 } 2323 2324 static void rtrs_clt_close_work(struct work_struct *work) 2325 { 2326 struct rtrs_clt_path *clt_path; 2327 2328 clt_path = container_of(work, struct rtrs_clt_path, close_work); 2329 2330 cancel_work_sync(&clt_path->err_recovery_work); 2331 cancel_delayed_work_sync(&clt_path->reconnect_dwork); 2332 rtrs_clt_stop_and_destroy_conns(clt_path); 2333 rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CLOSED, NULL); 2334 } 2335 2336 static int init_conns(struct rtrs_clt_path *clt_path) 2337 { 2338 unsigned int cid; 2339 int err; 2340 2341 /* 2342 * On every new session connections increase reconnect counter 2343 * to avoid clashes with previous sessions not yet closed 2344 * sessions on a server side. 2345 */ 2346 clt_path->s.recon_cnt++; 2347 2348 /* Establish all RDMA connections */ 2349 for (cid = 0; cid < clt_path->s.con_num; cid++) { 2350 err = create_con(clt_path, cid); 2351 if (err) 2352 goto destroy; 2353 2354 err = create_cm(to_clt_con(clt_path->s.con[cid])); 2355 if (err) { 2356 destroy_con(to_clt_con(clt_path->s.con[cid])); 2357 goto destroy; 2358 } 2359 } 2360 err = alloc_path_reqs(clt_path); 2361 if (err) 2362 goto destroy; 2363 2364 rtrs_start_hb(&clt_path->s); 2365 2366 return 0; 2367 2368 destroy: 2369 while (cid--) { 2370 struct rtrs_clt_con *con = to_clt_con(clt_path->s.con[cid]); 2371 2372 stop_cm(con); 2373 2374 mutex_lock(&con->con_mutex); 2375 destroy_con_cq_qp(con); 2376 mutex_unlock(&con->con_mutex); 2377 destroy_cm(con); 2378 destroy_con(con); 2379 } 2380 /* 2381 * If we've never taken async path and got an error, say, 2382 * doing rdma_resolve_addr(), switch to CONNECTION_ERR state 2383 * manually to keep reconnecting. 2384 */ 2385 rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL); 2386 2387 return err; 2388 } 2389 2390 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc) 2391 { 2392 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 2393 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 2394 struct rtrs_iu *iu; 2395 2396 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 2397 rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1); 2398 2399 if (wc->status != IB_WC_SUCCESS) { 2400 rtrs_err(clt_path->clt, "Path info request send failed: %s\n", 2401 ib_wc_status_msg(wc->status)); 2402 rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING_ERR, NULL); 2403 return; 2404 } 2405 2406 rtrs_clt_update_wc_stats(con); 2407 } 2408 2409 static int process_info_rsp(struct rtrs_clt_path *clt_path, 2410 const struct rtrs_msg_info_rsp *msg) 2411 { 2412 unsigned int sg_cnt, total_len; 2413 int i, sgi; 2414 2415 sg_cnt = le16_to_cpu(msg->sg_cnt); 2416 if (!sg_cnt || (clt_path->queue_depth % sg_cnt)) { 2417 rtrs_err(clt_path->clt, 2418 "Incorrect sg_cnt %d, is not multiple\n", 2419 sg_cnt); 2420 return -EINVAL; 2421 } 2422 2423 /* 2424 * Check if IB immediate data size is enough to hold the mem_id and 2425 * the offset inside the memory chunk. 2426 */ 2427 if ((ilog2(sg_cnt - 1) + 1) + (ilog2(clt_path->chunk_size - 1) + 1) > 2428 MAX_IMM_PAYL_BITS) { 2429 rtrs_err(clt_path->clt, 2430 "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n", 2431 MAX_IMM_PAYL_BITS, sg_cnt, clt_path->chunk_size); 2432 return -EINVAL; 2433 } 2434 total_len = 0; 2435 for (sgi = 0, i = 0; sgi < sg_cnt && i < clt_path->queue_depth; sgi++) { 2436 const struct rtrs_sg_desc *desc = &msg->desc[sgi]; 2437 u32 len, rkey; 2438 u64 addr; 2439 2440 addr = le64_to_cpu(desc->addr); 2441 rkey = le32_to_cpu(desc->key); 2442 len = le32_to_cpu(desc->len); 2443 2444 total_len += len; 2445 2446 if (!len || (len % clt_path->chunk_size)) { 2447 rtrs_err(clt_path->clt, "Incorrect [%d].len %d\n", 2448 sgi, 2449 len); 2450 return -EINVAL; 2451 } 2452 for ( ; len && i < clt_path->queue_depth; i++) { 2453 clt_path->rbufs[i].addr = addr; 2454 clt_path->rbufs[i].rkey = rkey; 2455 2456 len -= clt_path->chunk_size; 2457 addr += clt_path->chunk_size; 2458 } 2459 } 2460 /* Sanity check */ 2461 if (sgi != sg_cnt || i != clt_path->queue_depth) { 2462 rtrs_err(clt_path->clt, 2463 "Incorrect sg vector, not fully mapped\n"); 2464 return -EINVAL; 2465 } 2466 if (total_len != clt_path->chunk_size * clt_path->queue_depth) { 2467 rtrs_err(clt_path->clt, "Incorrect total_len %d\n", total_len); 2468 return -EINVAL; 2469 } 2470 2471 return 0; 2472 } 2473 2474 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc) 2475 { 2476 struct rtrs_clt_con *con = to_clt_con(wc->qp->qp_context); 2477 struct rtrs_clt_path *clt_path = to_clt_path(con->c.path); 2478 struct rtrs_msg_info_rsp *msg; 2479 enum rtrs_clt_state state; 2480 struct rtrs_iu *iu; 2481 size_t rx_sz; 2482 int err; 2483 2484 state = RTRS_CLT_CONNECTING_ERR; 2485 2486 WARN_ON(con->c.cid); 2487 iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); 2488 if (wc->status != IB_WC_SUCCESS) { 2489 rtrs_err(clt_path->clt, "Path info response recv failed: %s\n", 2490 ib_wc_status_msg(wc->status)); 2491 goto out; 2492 } 2493 WARN_ON(wc->opcode != IB_WC_RECV); 2494 2495 if (wc->byte_len < sizeof(*msg)) { 2496 rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n", 2497 wc->byte_len); 2498 goto out; 2499 } 2500 ib_dma_sync_single_for_cpu(clt_path->s.dev->ib_dev, iu->dma_addr, 2501 iu->size, DMA_FROM_DEVICE); 2502 msg = iu->buf; 2503 if (le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP) { 2504 rtrs_err(clt_path->clt, "Path info response is malformed: type %d\n", 2505 le16_to_cpu(msg->type)); 2506 goto out; 2507 } 2508 rx_sz = sizeof(*msg); 2509 rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt); 2510 if (wc->byte_len < rx_sz) { 2511 rtrs_err(clt_path->clt, "Path info response is malformed: size %d\n", 2512 wc->byte_len); 2513 goto out; 2514 } 2515 err = process_info_rsp(clt_path, msg); 2516 if (err) 2517 goto out; 2518 2519 err = post_recv_path(clt_path); 2520 if (err) 2521 goto out; 2522 2523 state = RTRS_CLT_CONNECTED; 2524 2525 out: 2526 rtrs_clt_update_wc_stats(con); 2527 rtrs_iu_free(iu, clt_path->s.dev->ib_dev, 1); 2528 rtrs_clt_change_state_get_old(clt_path, state, NULL); 2529 } 2530 2531 static int rtrs_send_path_info(struct rtrs_clt_path *clt_path) 2532 { 2533 struct rtrs_clt_con *usr_con = to_clt_con(clt_path->s.con[0]); 2534 struct rtrs_msg_info_req *msg; 2535 struct rtrs_iu *tx_iu, *rx_iu; 2536 size_t rx_sz; 2537 int err; 2538 2539 rx_sz = sizeof(struct rtrs_msg_info_rsp); 2540 rx_sz += sizeof(struct rtrs_sg_desc) * clt_path->queue_depth; 2541 2542 tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL, 2543 clt_path->s.dev->ib_dev, DMA_TO_DEVICE, 2544 rtrs_clt_info_req_done); 2545 rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, clt_path->s.dev->ib_dev, 2546 DMA_FROM_DEVICE, rtrs_clt_info_rsp_done); 2547 if (!tx_iu || !rx_iu) { 2548 err = -ENOMEM; 2549 goto out; 2550 } 2551 /* Prepare for getting info response */ 2552 err = rtrs_iu_post_recv(&usr_con->c, rx_iu); 2553 if (err) { 2554 rtrs_err(clt_path->clt, "rtrs_iu_post_recv(), err: %d\n", err); 2555 goto out; 2556 } 2557 rx_iu = NULL; 2558 2559 msg = tx_iu->buf; 2560 msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ); 2561 memcpy(msg->pathname, clt_path->s.sessname, sizeof(msg->pathname)); 2562 2563 ib_dma_sync_single_for_device(clt_path->s.dev->ib_dev, 2564 tx_iu->dma_addr, 2565 tx_iu->size, DMA_TO_DEVICE); 2566 2567 /* Send info request */ 2568 err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL); 2569 if (err) { 2570 rtrs_err(clt_path->clt, "rtrs_iu_post_send(), err: %d\n", err); 2571 goto out; 2572 } 2573 tx_iu = NULL; 2574 2575 /* Wait for state change */ 2576 wait_event_interruptible_timeout(clt_path->state_wq, 2577 clt_path->state != RTRS_CLT_CONNECTING, 2578 msecs_to_jiffies( 2579 RTRS_CONNECT_TIMEOUT_MS)); 2580 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) { 2581 if (READ_ONCE(clt_path->state) == RTRS_CLT_CONNECTING_ERR) 2582 err = -ECONNRESET; 2583 else 2584 err = -ETIMEDOUT; 2585 } 2586 2587 out: 2588 if (tx_iu) 2589 rtrs_iu_free(tx_iu, clt_path->s.dev->ib_dev, 1); 2590 if (rx_iu) 2591 rtrs_iu_free(rx_iu, clt_path->s.dev->ib_dev, 1); 2592 if (err) 2593 /* If we've never taken async path because of malloc problems */ 2594 rtrs_clt_change_state_get_old(clt_path, 2595 RTRS_CLT_CONNECTING_ERR, NULL); 2596 2597 return err; 2598 } 2599 2600 /** 2601 * init_path() - establishes all path connections and does handshake 2602 * @clt_path: client path. 2603 * In case of error full close or reconnect procedure should be taken, 2604 * because reconnect or close async works can be started. 2605 */ 2606 static int init_path(struct rtrs_clt_path *clt_path) 2607 { 2608 int err; 2609 char str[NAME_MAX]; 2610 struct rtrs_addr path = { 2611 .src = &clt_path->s.src_addr, 2612 .dst = &clt_path->s.dst_addr, 2613 }; 2614 2615 rtrs_addr_to_str(&path, str, sizeof(str)); 2616 2617 mutex_lock(&clt_path->init_mutex); 2618 err = init_conns(clt_path); 2619 if (err) { 2620 rtrs_err(clt_path->clt, 2621 "init_conns() failed: err=%d path=%s [%s:%u]\n", err, 2622 str, clt_path->hca_name, clt_path->hca_port); 2623 goto out; 2624 } 2625 err = rtrs_send_path_info(clt_path); 2626 if (err) { 2627 rtrs_err(clt_path->clt, 2628 "rtrs_send_path_info() failed: err=%d path=%s [%s:%u]\n", 2629 err, str, clt_path->hca_name, clt_path->hca_port); 2630 goto out; 2631 } 2632 rtrs_clt_path_up(clt_path); 2633 out: 2634 mutex_unlock(&clt_path->init_mutex); 2635 2636 return err; 2637 } 2638 2639 static void rtrs_clt_reconnect_work(struct work_struct *work) 2640 { 2641 struct rtrs_clt_path *clt_path; 2642 struct rtrs_clt_sess *clt; 2643 int err; 2644 2645 clt_path = container_of(to_delayed_work(work), struct rtrs_clt_path, 2646 reconnect_dwork); 2647 clt = clt_path->clt; 2648 2649 trace_rtrs_clt_reconnect_work(clt_path); 2650 2651 if (READ_ONCE(clt_path->state) != RTRS_CLT_RECONNECTING) 2652 return; 2653 2654 if (clt_path->reconnect_attempts >= clt->max_reconnect_attempts) { 2655 /* Close a path completely if max attempts is reached */ 2656 rtrs_clt_close_conns(clt_path, false); 2657 return; 2658 } 2659 clt_path->reconnect_attempts++; 2660 2661 msleep(RTRS_RECONNECT_BACKOFF); 2662 if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_CONNECTING, NULL)) { 2663 err = init_path(clt_path); 2664 if (err) 2665 goto reconnect_again; 2666 } 2667 2668 return; 2669 2670 reconnect_again: 2671 if (rtrs_clt_change_state_get_old(clt_path, RTRS_CLT_RECONNECTING, NULL)) { 2672 clt_path->stats->reconnects.fail_cnt++; 2673 queue_work(rtrs_wq, &clt_path->err_recovery_work); 2674 } 2675 } 2676 2677 static void rtrs_clt_dev_release(struct device *dev) 2678 { 2679 struct rtrs_clt_sess *clt = container_of(dev, struct rtrs_clt_sess, 2680 dev); 2681 2682 mutex_destroy(&clt->paths_ev_mutex); 2683 mutex_destroy(&clt->paths_mutex); 2684 kfree(clt); 2685 } 2686 2687 static struct rtrs_clt_sess *alloc_clt(const char *sessname, size_t paths_num, 2688 u16 port, size_t pdu_sz, void *priv, 2689 void (*link_ev)(void *priv, 2690 enum rtrs_clt_link_ev ev), 2691 unsigned int reconnect_delay_sec, 2692 unsigned int max_reconnect_attempts) 2693 { 2694 struct rtrs_clt_sess *clt; 2695 int err; 2696 2697 if (!paths_num || paths_num > MAX_PATHS_NUM) 2698 return ERR_PTR(-EINVAL); 2699 2700 if (strlen(sessname) >= sizeof(clt->sessname)) 2701 return ERR_PTR(-EINVAL); 2702 2703 clt = kzalloc(sizeof(*clt), GFP_KERNEL); 2704 if (!clt) 2705 return ERR_PTR(-ENOMEM); 2706 2707 clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path)); 2708 if (!clt->pcpu_path) { 2709 kfree(clt); 2710 return ERR_PTR(-ENOMEM); 2711 } 2712 2713 clt->dev.class = rtrs_clt_dev_class; 2714 clt->dev.release = rtrs_clt_dev_release; 2715 uuid_gen(&clt->paths_uuid); 2716 INIT_LIST_HEAD_RCU(&clt->paths_list); 2717 clt->paths_num = paths_num; 2718 clt->paths_up = MAX_PATHS_NUM; 2719 clt->port = port; 2720 clt->pdu_sz = pdu_sz; 2721 clt->max_segments = RTRS_MAX_SEGMENTS; 2722 clt->reconnect_delay_sec = reconnect_delay_sec; 2723 clt->max_reconnect_attempts = max_reconnect_attempts; 2724 clt->priv = priv; 2725 clt->link_ev = link_ev; 2726 clt->mp_policy = MP_POLICY_MIN_INFLIGHT; 2727 strscpy(clt->sessname, sessname, sizeof(clt->sessname)); 2728 init_waitqueue_head(&clt->permits_wait); 2729 mutex_init(&clt->paths_ev_mutex); 2730 mutex_init(&clt->paths_mutex); 2731 device_initialize(&clt->dev); 2732 2733 err = dev_set_name(&clt->dev, "%s", sessname); 2734 if (err) 2735 goto err_put; 2736 2737 /* 2738 * Suppress user space notification until 2739 * sysfs files are created 2740 */ 2741 dev_set_uevent_suppress(&clt->dev, true); 2742 err = device_add(&clt->dev); 2743 if (err) 2744 goto err_put; 2745 2746 clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj); 2747 if (!clt->kobj_paths) { 2748 err = -ENOMEM; 2749 goto err_del; 2750 } 2751 err = rtrs_clt_create_sysfs_root_files(clt); 2752 if (err) { 2753 kobject_del(clt->kobj_paths); 2754 kobject_put(clt->kobj_paths); 2755 goto err_del; 2756 } 2757 dev_set_uevent_suppress(&clt->dev, false); 2758 kobject_uevent(&clt->dev.kobj, KOBJ_ADD); 2759 2760 return clt; 2761 err_del: 2762 device_del(&clt->dev); 2763 err_put: 2764 free_percpu(clt->pcpu_path); 2765 put_device(&clt->dev); 2766 return ERR_PTR(err); 2767 } 2768 2769 static void free_clt(struct rtrs_clt_sess *clt) 2770 { 2771 free_percpu(clt->pcpu_path); 2772 2773 /* 2774 * release callback will free clt and destroy mutexes in last put 2775 */ 2776 device_unregister(&clt->dev); 2777 } 2778 2779 /** 2780 * rtrs_clt_open() - Open a path to an RTRS server 2781 * @ops: holds the link event callback and the private pointer. 2782 * @pathname: name of the path to an RTRS server 2783 * @paths: Paths to be established defined by their src and dst addresses 2784 * @paths_num: Number of elements in the @paths array 2785 * @port: port to be used by the RTRS session 2786 * @pdu_sz: Size of extra payload which can be accessed after permit allocation. 2787 * @reconnect_delay_sec: time between reconnect tries 2788 * @max_reconnect_attempts: Number of times to reconnect on error before giving 2789 * up, 0 for * disabled, -1 for forever 2790 * @nr_poll_queues: number of polling mode connection using IB_POLL_DIRECT flag 2791 * 2792 * Starts session establishment with the rtrs_server. The function can block 2793 * up to ~2000ms before it returns. 2794 * 2795 * Return a valid pointer on success otherwise PTR_ERR. 2796 */ 2797 struct rtrs_clt_sess *rtrs_clt_open(struct rtrs_clt_ops *ops, 2798 const char *pathname, 2799 const struct rtrs_addr *paths, 2800 size_t paths_num, u16 port, 2801 size_t pdu_sz, u8 reconnect_delay_sec, 2802 s16 max_reconnect_attempts, u32 nr_poll_queues) 2803 { 2804 struct rtrs_clt_path *clt_path, *tmp; 2805 struct rtrs_clt_sess *clt; 2806 int err, i; 2807 2808 if (strchr(pathname, '/') || strchr(pathname, '.')) { 2809 pr_err("pathname cannot contain / and .\n"); 2810 err = -EINVAL; 2811 goto out; 2812 } 2813 2814 clt = alloc_clt(pathname, paths_num, port, pdu_sz, ops->priv, 2815 ops->link_ev, 2816 reconnect_delay_sec, 2817 max_reconnect_attempts); 2818 if (IS_ERR(clt)) { 2819 err = PTR_ERR(clt); 2820 goto out; 2821 } 2822 for (i = 0; i < paths_num; i++) { 2823 struct rtrs_clt_path *clt_path; 2824 2825 clt_path = alloc_path(clt, &paths[i], nr_cpu_ids, 2826 nr_poll_queues); 2827 if (IS_ERR(clt_path)) { 2828 err = PTR_ERR(clt_path); 2829 goto close_all_path; 2830 } 2831 if (!i) 2832 clt_path->for_new_clt = 1; 2833 list_add_tail_rcu(&clt_path->s.entry, &clt->paths_list); 2834 2835 err = init_path(clt_path); 2836 if (err) { 2837 list_del_rcu(&clt_path->s.entry); 2838 rtrs_clt_close_conns(clt_path, true); 2839 free_percpu(clt_path->stats->pcpu_stats); 2840 kfree(clt_path->stats); 2841 free_path(clt_path); 2842 goto close_all_path; 2843 } 2844 2845 err = rtrs_clt_create_path_files(clt_path); 2846 if (err) { 2847 list_del_rcu(&clt_path->s.entry); 2848 rtrs_clt_close_conns(clt_path, true); 2849 free_percpu(clt_path->stats->pcpu_stats); 2850 kfree(clt_path->stats); 2851 free_path(clt_path); 2852 goto close_all_path; 2853 } 2854 } 2855 err = alloc_permits(clt); 2856 if (err) 2857 goto close_all_path; 2858 2859 return clt; 2860 2861 close_all_path: 2862 list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) { 2863 rtrs_clt_destroy_path_files(clt_path, NULL); 2864 rtrs_clt_close_conns(clt_path, true); 2865 kobject_put(&clt_path->kobj); 2866 } 2867 rtrs_clt_destroy_sysfs_root(clt); 2868 free_clt(clt); 2869 2870 out: 2871 return ERR_PTR(err); 2872 } 2873 EXPORT_SYMBOL(rtrs_clt_open); 2874 2875 /** 2876 * rtrs_clt_close() - Close a path 2877 * @clt: Session handle. Session is freed upon return. 2878 */ 2879 void rtrs_clt_close(struct rtrs_clt_sess *clt) 2880 { 2881 struct rtrs_clt_path *clt_path, *tmp; 2882 2883 /* Firstly forbid sysfs access */ 2884 rtrs_clt_destroy_sysfs_root(clt); 2885 2886 /* Now it is safe to iterate over all paths without locks */ 2887 list_for_each_entry_safe(clt_path, tmp, &clt->paths_list, s.entry) { 2888 rtrs_clt_close_conns(clt_path, true); 2889 rtrs_clt_destroy_path_files(clt_path, NULL); 2890 kobject_put(&clt_path->kobj); 2891 } 2892 free_permits(clt); 2893 free_clt(clt); 2894 } 2895 EXPORT_SYMBOL(rtrs_clt_close); 2896 2897 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_path *clt_path) 2898 { 2899 enum rtrs_clt_state old_state; 2900 int err = -EBUSY; 2901 bool changed; 2902 2903 changed = rtrs_clt_change_state_get_old(clt_path, 2904 RTRS_CLT_RECONNECTING, 2905 &old_state); 2906 if (changed) { 2907 clt_path->reconnect_attempts = 0; 2908 rtrs_clt_stop_and_destroy_conns(clt_path); 2909 queue_delayed_work(rtrs_wq, &clt_path->reconnect_dwork, 0); 2910 } 2911 if (changed || old_state == RTRS_CLT_RECONNECTING) { 2912 /* 2913 * flush_delayed_work() queues pending work for immediate 2914 * execution, so do the flush if we have queued something 2915 * right now or work is pending. 2916 */ 2917 flush_delayed_work(&clt_path->reconnect_dwork); 2918 err = (READ_ONCE(clt_path->state) == 2919 RTRS_CLT_CONNECTED ? 0 : -ENOTCONN); 2920 } 2921 2922 return err; 2923 } 2924 2925 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_path *clt_path, 2926 const struct attribute *sysfs_self) 2927 { 2928 enum rtrs_clt_state old_state; 2929 bool changed; 2930 2931 /* 2932 * Continue stopping path till state was changed to DEAD or 2933 * state was observed as DEAD: 2934 * 1. State was changed to DEAD - we were fast and nobody 2935 * invoked rtrs_clt_reconnect(), which can again start 2936 * reconnecting. 2937 * 2. State was observed as DEAD - we have someone in parallel 2938 * removing the path. 2939 */ 2940 do { 2941 rtrs_clt_close_conns(clt_path, true); 2942 changed = rtrs_clt_change_state_get_old(clt_path, 2943 RTRS_CLT_DEAD, 2944 &old_state); 2945 } while (!changed && old_state != RTRS_CLT_DEAD); 2946 2947 if (changed) { 2948 rtrs_clt_remove_path_from_arr(clt_path); 2949 rtrs_clt_destroy_path_files(clt_path, sysfs_self); 2950 kobject_put(&clt_path->kobj); 2951 } 2952 2953 return 0; 2954 } 2955 2956 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt_sess *clt, int value) 2957 { 2958 clt->max_reconnect_attempts = (unsigned int)value; 2959 } 2960 2961 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt_sess *clt) 2962 { 2963 return (int)clt->max_reconnect_attempts; 2964 } 2965 2966 /** 2967 * rtrs_clt_request() - Request data transfer to/from server via RDMA. 2968 * 2969 * @dir: READ/WRITE 2970 * @ops: callback function to be called as confirmation, and the pointer. 2971 * @clt: Session 2972 * @permit: Preallocated permit 2973 * @vec: Message that is sent to server together with the request. 2974 * Sum of len of all @vec elements limited to <= IO_MSG_SIZE. 2975 * Since the msg is copied internally it can be allocated on stack. 2976 * @nr: Number of elements in @vec. 2977 * @data_len: length of data sent to/from server 2978 * @sg: Pages to be sent/received to/from server. 2979 * @sg_cnt: Number of elements in the @sg 2980 * 2981 * Return: 2982 * 0: Success 2983 * <0: Error 2984 * 2985 * On dir=READ rtrs client will request a data transfer from Server to client. 2986 * The data that the server will respond with will be stored in @sg when 2987 * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event. 2988 * On dir=WRITE rtrs client will rdma write data in sg to server side. 2989 */ 2990 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops, 2991 struct rtrs_clt_sess *clt, struct rtrs_permit *permit, 2992 const struct kvec *vec, size_t nr, size_t data_len, 2993 struct scatterlist *sg, unsigned int sg_cnt) 2994 { 2995 struct rtrs_clt_io_req *req; 2996 struct rtrs_clt_path *clt_path; 2997 2998 enum dma_data_direction dma_dir; 2999 int err = -ECONNABORTED, i; 3000 size_t usr_len, hdr_len; 3001 struct path_it it; 3002 3003 /* Get kvec length */ 3004 for (i = 0, usr_len = 0; i < nr; i++) 3005 usr_len += vec[i].iov_len; 3006 3007 if (dir == READ) { 3008 hdr_len = sizeof(struct rtrs_msg_rdma_read) + 3009 sg_cnt * sizeof(struct rtrs_sg_desc); 3010 dma_dir = DMA_FROM_DEVICE; 3011 } else { 3012 hdr_len = sizeof(struct rtrs_msg_rdma_write); 3013 dma_dir = DMA_TO_DEVICE; 3014 } 3015 3016 rcu_read_lock(); 3017 for (path_it_init(&it, clt); 3018 (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) { 3019 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) 3020 continue; 3021 3022 if (usr_len + hdr_len > clt_path->max_hdr_size) { 3023 rtrs_wrn_rl(clt_path->clt, 3024 "%s request failed, user message size is %zu and header length %zu, but max size is %u\n", 3025 dir == READ ? "Read" : "Write", 3026 usr_len, hdr_len, clt_path->max_hdr_size); 3027 err = -EMSGSIZE; 3028 break; 3029 } 3030 req = rtrs_clt_get_req(clt_path, ops->conf_fn, permit, ops->priv, 3031 vec, usr_len, sg, sg_cnt, data_len, 3032 dma_dir); 3033 if (dir == READ) 3034 err = rtrs_clt_read_req(req); 3035 else 3036 err = rtrs_clt_write_req(req); 3037 if (err) { 3038 req->in_use = false; 3039 continue; 3040 } 3041 /* Success path */ 3042 break; 3043 } 3044 path_it_deinit(&it); 3045 rcu_read_unlock(); 3046 3047 return err; 3048 } 3049 EXPORT_SYMBOL(rtrs_clt_request); 3050 3051 int rtrs_clt_rdma_cq_direct(struct rtrs_clt_sess *clt, unsigned int index) 3052 { 3053 /* If no path, return -1 for block layer not to try again */ 3054 int cnt = -1; 3055 struct rtrs_con *con; 3056 struct rtrs_clt_path *clt_path; 3057 struct path_it it; 3058 3059 rcu_read_lock(); 3060 for (path_it_init(&it, clt); 3061 (clt_path = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) { 3062 if (READ_ONCE(clt_path->state) != RTRS_CLT_CONNECTED) 3063 continue; 3064 3065 con = clt_path->s.con[index + 1]; 3066 cnt = ib_process_cq_direct(con->cq, -1); 3067 if (cnt) 3068 break; 3069 } 3070 path_it_deinit(&it); 3071 rcu_read_unlock(); 3072 3073 return cnt; 3074 } 3075 EXPORT_SYMBOL(rtrs_clt_rdma_cq_direct); 3076 3077 /** 3078 * rtrs_clt_query() - queries RTRS session attributes 3079 *@clt: session pointer 3080 *@attr: query results for session attributes. 3081 * Returns: 3082 * 0 on success 3083 * -ECOMM no connection to the server 3084 */ 3085 int rtrs_clt_query(struct rtrs_clt_sess *clt, struct rtrs_attrs *attr) 3086 { 3087 if (!rtrs_clt_is_connected(clt)) 3088 return -ECOMM; 3089 3090 attr->queue_depth = clt->queue_depth; 3091 attr->max_segments = clt->max_segments; 3092 /* Cap max_io_size to min of remote buffer size and the fr pages */ 3093 attr->max_io_size = min_t(int, clt->max_io_size, 3094 clt->max_segments * SZ_4K); 3095 3096 return 0; 3097 } 3098 EXPORT_SYMBOL(rtrs_clt_query); 3099 3100 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt_sess *clt, 3101 struct rtrs_addr *addr) 3102 { 3103 struct rtrs_clt_path *clt_path; 3104 int err; 3105 3106 clt_path = alloc_path(clt, addr, nr_cpu_ids, 0); 3107 if (IS_ERR(clt_path)) 3108 return PTR_ERR(clt_path); 3109 3110 mutex_lock(&clt->paths_mutex); 3111 if (clt->paths_num == 0) { 3112 /* 3113 * When all the paths are removed for a session, 3114 * the addition of the first path is like a new session for 3115 * the storage server 3116 */ 3117 clt_path->for_new_clt = 1; 3118 } 3119 3120 mutex_unlock(&clt->paths_mutex); 3121 3122 /* 3123 * It is totally safe to add path in CONNECTING state: coming 3124 * IO will never grab it. Also it is very important to add 3125 * path before init, since init fires LINK_CONNECTED event. 3126 */ 3127 rtrs_clt_add_path_to_arr(clt_path); 3128 3129 err = init_path(clt_path); 3130 if (err) 3131 goto close_path; 3132 3133 err = rtrs_clt_create_path_files(clt_path); 3134 if (err) 3135 goto close_path; 3136 3137 return 0; 3138 3139 close_path: 3140 rtrs_clt_remove_path_from_arr(clt_path); 3141 rtrs_clt_close_conns(clt_path, true); 3142 free_percpu(clt_path->stats->pcpu_stats); 3143 kfree(clt_path->stats); 3144 free_path(clt_path); 3145 3146 return err; 3147 } 3148 3149 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev) 3150 { 3151 if (!(dev->ib_dev->attrs.device_cap_flags & 3152 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 3153 pr_err("Memory registrations not supported.\n"); 3154 return -ENOTSUPP; 3155 } 3156 3157 return 0; 3158 } 3159 3160 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = { 3161 .init = rtrs_clt_ib_dev_init 3162 }; 3163 3164 static int __init rtrs_client_init(void) 3165 { 3166 rtrs_rdma_dev_pd_init(0, &dev_pd); 3167 3168 rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client"); 3169 if (IS_ERR(rtrs_clt_dev_class)) { 3170 pr_err("Failed to create rtrs-client dev class\n"); 3171 return PTR_ERR(rtrs_clt_dev_class); 3172 } 3173 rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0); 3174 if (!rtrs_wq) { 3175 class_destroy(rtrs_clt_dev_class); 3176 return -ENOMEM; 3177 } 3178 3179 return 0; 3180 } 3181 3182 static void __exit rtrs_client_exit(void) 3183 { 3184 destroy_workqueue(rtrs_wq); 3185 class_destroy(rtrs_clt_dev_class); 3186 rtrs_rdma_dev_pd_deinit(&dev_pd); 3187 } 3188 3189 module_init(rtrs_client_init); 3190 module_exit(rtrs_client_exit); 3191