1 /* 2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. 3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/delay.h> 38 39 #include "iscsi_iser.h" 40 41 #define ISCSI_ISER_MAX_CONN 8 42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN) 43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN) 44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \ 45 ISCSI_ISER_MAX_CONN) 46 47 static int iser_cq_poll_limit = 512; 48 49 static void iser_cq_tasklet_fn(unsigned long data); 50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context); 51 52 static void iser_cq_event_callback(struct ib_event *cause, void *context) 53 { 54 iser_err("cq event %s (%d)\n", 55 ib_event_msg(cause->event), cause->event); 56 } 57 58 static void iser_qp_event_callback(struct ib_event *cause, void *context) 59 { 60 iser_err("qp event %s (%d)\n", 61 ib_event_msg(cause->event), cause->event); 62 } 63 64 static void iser_event_handler(struct ib_event_handler *handler, 65 struct ib_event *event) 66 { 67 iser_err("async event %s (%d) on device %s port %d\n", 68 ib_event_msg(event->event), event->event, 69 event->device->name, event->element.port_num); 70 } 71 72 /** 73 * iser_create_device_ib_res - creates Protection Domain (PD), Completion 74 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with 75 * the adapator. 76 * 77 * returns 0 on success, -1 on failure 78 */ 79 static int iser_create_device_ib_res(struct iser_device *device) 80 { 81 struct ib_device_attr *dev_attr = &device->dev_attr; 82 int ret, i, max_cqe; 83 84 ret = ib_query_device(device->ib_device, dev_attr); 85 if (ret) { 86 pr_warn("Query device failed for %s\n", device->ib_device->name); 87 return ret; 88 } 89 90 ret = iser_assign_reg_ops(device); 91 if (ret) 92 return ret; 93 94 device->comps_used = min_t(int, num_online_cpus(), 95 device->ib_device->num_comp_vectors); 96 97 device->comps = kcalloc(device->comps_used, sizeof(*device->comps), 98 GFP_KERNEL); 99 if (!device->comps) 100 goto comps_err; 101 102 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe); 103 104 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n", 105 device->comps_used, device->ib_device->name, 106 device->ib_device->num_comp_vectors, max_cqe); 107 108 device->pd = ib_alloc_pd(device->ib_device); 109 if (IS_ERR(device->pd)) 110 goto pd_err; 111 112 for (i = 0; i < device->comps_used; i++) { 113 struct ib_cq_init_attr cq_attr = {}; 114 struct iser_comp *comp = &device->comps[i]; 115 116 comp->device = device; 117 cq_attr.cqe = max_cqe; 118 cq_attr.comp_vector = i; 119 comp->cq = ib_create_cq(device->ib_device, 120 iser_cq_callback, 121 iser_cq_event_callback, 122 (void *)comp, 123 &cq_attr); 124 if (IS_ERR(comp->cq)) { 125 comp->cq = NULL; 126 goto cq_err; 127 } 128 129 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP)) 130 goto cq_err; 131 132 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn, 133 (unsigned long)comp); 134 } 135 136 if (!iser_always_reg) { 137 int access = IB_ACCESS_LOCAL_WRITE | 138 IB_ACCESS_REMOTE_WRITE | 139 IB_ACCESS_REMOTE_READ; 140 141 device->mr = ib_get_dma_mr(device->pd, access); 142 if (IS_ERR(device->mr)) 143 goto dma_mr_err; 144 } 145 146 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device, 147 iser_event_handler); 148 if (ib_register_event_handler(&device->event_handler)) 149 goto handler_err; 150 151 return 0; 152 153 handler_err: 154 if (device->mr) 155 ib_dereg_mr(device->mr); 156 dma_mr_err: 157 for (i = 0; i < device->comps_used; i++) 158 tasklet_kill(&device->comps[i].tasklet); 159 cq_err: 160 for (i = 0; i < device->comps_used; i++) { 161 struct iser_comp *comp = &device->comps[i]; 162 163 if (comp->cq) 164 ib_destroy_cq(comp->cq); 165 } 166 ib_dealloc_pd(device->pd); 167 pd_err: 168 kfree(device->comps); 169 comps_err: 170 iser_err("failed to allocate an IB resource\n"); 171 return -1; 172 } 173 174 /** 175 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, 176 * CQ and PD created with the device associated with the adapator. 177 */ 178 static void iser_free_device_ib_res(struct iser_device *device) 179 { 180 int i; 181 182 for (i = 0; i < device->comps_used; i++) { 183 struct iser_comp *comp = &device->comps[i]; 184 185 tasklet_kill(&comp->tasklet); 186 ib_destroy_cq(comp->cq); 187 comp->cq = NULL; 188 } 189 190 (void)ib_unregister_event_handler(&device->event_handler); 191 if (device->mr) 192 (void)ib_dereg_mr(device->mr); 193 ib_dealloc_pd(device->pd); 194 195 kfree(device->comps); 196 device->comps = NULL; 197 198 device->mr = NULL; 199 device->pd = NULL; 200 } 201 202 /** 203 * iser_alloc_fmr_pool - Creates FMR pool and page_vector 204 * 205 * returns 0 on success, or errno code on failure 206 */ 207 int iser_alloc_fmr_pool(struct ib_conn *ib_conn, 208 unsigned cmds_max, 209 unsigned int size) 210 { 211 struct iser_device *device = ib_conn->device; 212 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 213 struct iser_page_vec *page_vec; 214 struct iser_fr_desc *desc; 215 struct ib_fmr_pool *fmr_pool; 216 struct ib_fmr_pool_param params; 217 int ret; 218 219 INIT_LIST_HEAD(&fr_pool->list); 220 spin_lock_init(&fr_pool->lock); 221 222 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 223 if (!desc) 224 return -ENOMEM; 225 226 page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size), 227 GFP_KERNEL); 228 if (!page_vec) { 229 ret = -ENOMEM; 230 goto err_frpl; 231 } 232 233 page_vec->pages = (u64 *)(page_vec + 1); 234 235 params.page_shift = SHIFT_4K; 236 params.max_pages_per_fmr = size; 237 /* make the pool size twice the max number of SCSI commands * 238 * the ML is expected to queue, watermark for unmap at 50% */ 239 params.pool_size = cmds_max * 2; 240 params.dirty_watermark = cmds_max; 241 params.cache = 0; 242 params.flush_function = NULL; 243 params.access = (IB_ACCESS_LOCAL_WRITE | 244 IB_ACCESS_REMOTE_WRITE | 245 IB_ACCESS_REMOTE_READ); 246 247 fmr_pool = ib_create_fmr_pool(device->pd, ¶ms); 248 if (IS_ERR(fmr_pool)) { 249 ret = PTR_ERR(fmr_pool); 250 iser_err("FMR allocation failed, err %d\n", ret); 251 goto err_fmr; 252 } 253 254 desc->rsc.page_vec = page_vec; 255 desc->rsc.fmr_pool = fmr_pool; 256 list_add(&desc->list, &fr_pool->list); 257 258 return 0; 259 260 err_fmr: 261 kfree(page_vec); 262 err_frpl: 263 kfree(desc); 264 265 return ret; 266 } 267 268 /** 269 * iser_free_fmr_pool - releases the FMR pool and page vec 270 */ 271 void iser_free_fmr_pool(struct ib_conn *ib_conn) 272 { 273 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 274 struct iser_fr_desc *desc; 275 276 desc = list_first_entry(&fr_pool->list, 277 struct iser_fr_desc, list); 278 list_del(&desc->list); 279 280 iser_info("freeing conn %p fmr pool %p\n", 281 ib_conn, desc->rsc.fmr_pool); 282 283 ib_destroy_fmr_pool(desc->rsc.fmr_pool); 284 kfree(desc->rsc.page_vec); 285 kfree(desc); 286 } 287 288 static int 289 iser_alloc_reg_res(struct ib_device *ib_device, 290 struct ib_pd *pd, 291 struct iser_reg_resources *res, 292 unsigned int size) 293 { 294 int ret; 295 296 res->frpl = ib_alloc_fast_reg_page_list(ib_device, size); 297 if (IS_ERR(res->frpl)) { 298 ret = PTR_ERR(res->frpl); 299 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", 300 ret); 301 return PTR_ERR(res->frpl); 302 } 303 304 res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size); 305 if (IS_ERR(res->mr)) { 306 ret = PTR_ERR(res->mr); 307 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); 308 goto fast_reg_mr_failure; 309 } 310 res->mr_valid = 1; 311 312 return 0; 313 314 fast_reg_mr_failure: 315 ib_free_fast_reg_page_list(res->frpl); 316 317 return ret; 318 } 319 320 static void 321 iser_free_reg_res(struct iser_reg_resources *rsc) 322 { 323 ib_dereg_mr(rsc->mr); 324 ib_free_fast_reg_page_list(rsc->frpl); 325 } 326 327 static int 328 iser_alloc_pi_ctx(struct ib_device *ib_device, 329 struct ib_pd *pd, 330 struct iser_fr_desc *desc, 331 unsigned int size) 332 { 333 struct iser_pi_context *pi_ctx = NULL; 334 int ret; 335 336 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL); 337 if (!desc->pi_ctx) 338 return -ENOMEM; 339 340 pi_ctx = desc->pi_ctx; 341 342 ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size); 343 if (ret) { 344 iser_err("failed to allocate reg_resources\n"); 345 goto alloc_reg_res_err; 346 } 347 348 pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2); 349 if (IS_ERR(pi_ctx->sig_mr)) { 350 ret = PTR_ERR(pi_ctx->sig_mr); 351 goto sig_mr_failure; 352 } 353 pi_ctx->sig_mr_valid = 1; 354 desc->pi_ctx->sig_protected = 0; 355 356 return 0; 357 358 sig_mr_failure: 359 iser_free_reg_res(&pi_ctx->rsc); 360 alloc_reg_res_err: 361 kfree(desc->pi_ctx); 362 363 return ret; 364 } 365 366 static void 367 iser_free_pi_ctx(struct iser_pi_context *pi_ctx) 368 { 369 iser_free_reg_res(&pi_ctx->rsc); 370 ib_dereg_mr(pi_ctx->sig_mr); 371 kfree(pi_ctx); 372 } 373 374 static struct iser_fr_desc * 375 iser_create_fastreg_desc(struct ib_device *ib_device, 376 struct ib_pd *pd, 377 bool pi_enable, 378 unsigned int size) 379 { 380 struct iser_fr_desc *desc; 381 int ret; 382 383 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 384 if (!desc) 385 return ERR_PTR(-ENOMEM); 386 387 ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size); 388 if (ret) 389 goto reg_res_alloc_failure; 390 391 if (pi_enable) { 392 ret = iser_alloc_pi_ctx(ib_device, pd, desc, size); 393 if (ret) 394 goto pi_ctx_alloc_failure; 395 } 396 397 return desc; 398 399 pi_ctx_alloc_failure: 400 iser_free_reg_res(&desc->rsc); 401 reg_res_alloc_failure: 402 kfree(desc); 403 404 return ERR_PTR(ret); 405 } 406 407 /** 408 * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors 409 * for fast registration work requests. 410 * returns 0 on success, or errno code on failure 411 */ 412 int iser_alloc_fastreg_pool(struct ib_conn *ib_conn, 413 unsigned cmds_max, 414 unsigned int size) 415 { 416 struct iser_device *device = ib_conn->device; 417 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 418 struct iser_fr_desc *desc; 419 int i, ret; 420 421 INIT_LIST_HEAD(&fr_pool->list); 422 spin_lock_init(&fr_pool->lock); 423 fr_pool->size = 0; 424 for (i = 0; i < cmds_max; i++) { 425 desc = iser_create_fastreg_desc(device->ib_device, device->pd, 426 ib_conn->pi_support, size); 427 if (IS_ERR(desc)) { 428 ret = PTR_ERR(desc); 429 goto err; 430 } 431 432 list_add_tail(&desc->list, &fr_pool->list); 433 fr_pool->size++; 434 } 435 436 return 0; 437 438 err: 439 iser_free_fastreg_pool(ib_conn); 440 return ret; 441 } 442 443 /** 444 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors 445 */ 446 void iser_free_fastreg_pool(struct ib_conn *ib_conn) 447 { 448 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; 449 struct iser_fr_desc *desc, *tmp; 450 int i = 0; 451 452 if (list_empty(&fr_pool->list)) 453 return; 454 455 iser_info("freeing conn %p fr pool\n", ib_conn); 456 457 list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) { 458 list_del(&desc->list); 459 iser_free_reg_res(&desc->rsc); 460 if (desc->pi_ctx) 461 iser_free_pi_ctx(desc->pi_ctx); 462 kfree(desc); 463 ++i; 464 } 465 466 if (i < fr_pool->size) 467 iser_warn("pool still has %d regions registered\n", 468 fr_pool->size - i); 469 } 470 471 /** 472 * iser_create_ib_conn_res - Queue-Pair (QP) 473 * 474 * returns 0 on success, -1 on failure 475 */ 476 static int iser_create_ib_conn_res(struct ib_conn *ib_conn) 477 { 478 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 479 ib_conn); 480 struct iser_device *device; 481 struct ib_device_attr *dev_attr; 482 struct ib_qp_init_attr init_attr; 483 int ret = -ENOMEM; 484 int index, min_index = 0; 485 486 BUG_ON(ib_conn->device == NULL); 487 488 device = ib_conn->device; 489 dev_attr = &device->dev_attr; 490 491 memset(&init_attr, 0, sizeof init_attr); 492 493 mutex_lock(&ig.connlist_mutex); 494 /* select the CQ with the minimal number of usages */ 495 for (index = 0; index < device->comps_used; index++) { 496 if (device->comps[index].active_qps < 497 device->comps[min_index].active_qps) 498 min_index = index; 499 } 500 ib_conn->comp = &device->comps[min_index]; 501 ib_conn->comp->active_qps++; 502 mutex_unlock(&ig.connlist_mutex); 503 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn); 504 505 init_attr.event_handler = iser_qp_event_callback; 506 init_attr.qp_context = (void *)ib_conn; 507 init_attr.send_cq = ib_conn->comp->cq; 508 init_attr.recv_cq = ib_conn->comp->cq; 509 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS; 510 init_attr.cap.max_send_sge = 2; 511 init_attr.cap.max_recv_sge = 1; 512 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 513 init_attr.qp_type = IB_QPT_RC; 514 if (ib_conn->pi_support) { 515 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1; 516 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN; 517 iser_conn->max_cmds = 518 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS); 519 } else { 520 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) { 521 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1; 522 iser_conn->max_cmds = 523 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS); 524 } else { 525 init_attr.cap.max_send_wr = dev_attr->max_qp_wr; 526 iser_conn->max_cmds = 527 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr); 528 iser_dbg("device %s supports max_send_wr %d\n", 529 device->ib_device->name, dev_attr->max_qp_wr); 530 } 531 } 532 533 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); 534 if (ret) 535 goto out_err; 536 537 ib_conn->qp = ib_conn->cma_id->qp; 538 iser_info("setting conn %p cma_id %p qp %p\n", 539 ib_conn, ib_conn->cma_id, 540 ib_conn->cma_id->qp); 541 return ret; 542 543 out_err: 544 mutex_lock(&ig.connlist_mutex); 545 ib_conn->comp->active_qps--; 546 mutex_unlock(&ig.connlist_mutex); 547 iser_err("unable to alloc mem or create resource, err %d\n", ret); 548 549 return ret; 550 } 551 552 /** 553 * based on the resolved device node GUID see if there already allocated 554 * device for this device. If there's no such, create one. 555 */ 556 static 557 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) 558 { 559 struct iser_device *device; 560 561 mutex_lock(&ig.device_list_mutex); 562 563 list_for_each_entry(device, &ig.device_list, ig_list) 564 /* find if there's a match using the node GUID */ 565 if (device->ib_device->node_guid == cma_id->device->node_guid) 566 goto inc_refcnt; 567 568 device = kzalloc(sizeof *device, GFP_KERNEL); 569 if (device == NULL) 570 goto out; 571 572 /* assign this device to the device */ 573 device->ib_device = cma_id->device; 574 /* init the device and link it into ig device list */ 575 if (iser_create_device_ib_res(device)) { 576 kfree(device); 577 device = NULL; 578 goto out; 579 } 580 list_add(&device->ig_list, &ig.device_list); 581 582 inc_refcnt: 583 device->refcount++; 584 out: 585 mutex_unlock(&ig.device_list_mutex); 586 return device; 587 } 588 589 /* if there's no demand for this device, release it */ 590 static void iser_device_try_release(struct iser_device *device) 591 { 592 mutex_lock(&ig.device_list_mutex); 593 device->refcount--; 594 iser_info("device %p refcount %d\n", device, device->refcount); 595 if (!device->refcount) { 596 iser_free_device_ib_res(device); 597 list_del(&device->ig_list); 598 kfree(device); 599 } 600 mutex_unlock(&ig.device_list_mutex); 601 } 602 603 /** 604 * Called with state mutex held 605 **/ 606 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn, 607 enum iser_conn_state comp, 608 enum iser_conn_state exch) 609 { 610 int ret; 611 612 ret = (iser_conn->state == comp); 613 if (ret) 614 iser_conn->state = exch; 615 616 return ret; 617 } 618 619 void iser_release_work(struct work_struct *work) 620 { 621 struct iser_conn *iser_conn; 622 623 iser_conn = container_of(work, struct iser_conn, release_work); 624 625 /* Wait for conn_stop to complete */ 626 wait_for_completion(&iser_conn->stop_completion); 627 /* Wait for IB resouces cleanup to complete */ 628 wait_for_completion(&iser_conn->ib_completion); 629 630 mutex_lock(&iser_conn->state_mutex); 631 iser_conn->state = ISER_CONN_DOWN; 632 mutex_unlock(&iser_conn->state_mutex); 633 634 iser_conn_release(iser_conn); 635 } 636 637 /** 638 * iser_free_ib_conn_res - release IB related resources 639 * @iser_conn: iser connection struct 640 * @destroy: indicator if we need to try to release the 641 * iser device and memory regoins pool (only iscsi 642 * shutdown and DEVICE_REMOVAL will use this). 643 * 644 * This routine is called with the iser state mutex held 645 * so the cm_id removal is out of here. It is Safe to 646 * be invoked multiple times. 647 */ 648 static void iser_free_ib_conn_res(struct iser_conn *iser_conn, 649 bool destroy) 650 { 651 struct ib_conn *ib_conn = &iser_conn->ib_conn; 652 struct iser_device *device = ib_conn->device; 653 654 iser_info("freeing conn %p cma_id %p qp %p\n", 655 iser_conn, ib_conn->cma_id, ib_conn->qp); 656 657 if (ib_conn->qp != NULL) { 658 ib_conn->comp->active_qps--; 659 rdma_destroy_qp(ib_conn->cma_id); 660 ib_conn->qp = NULL; 661 } 662 663 if (destroy) { 664 if (iser_conn->rx_descs) 665 iser_free_rx_descriptors(iser_conn); 666 667 if (device != NULL) { 668 iser_device_try_release(device); 669 ib_conn->device = NULL; 670 } 671 } 672 } 673 674 /** 675 * Frees all conn objects and deallocs conn descriptor 676 */ 677 void iser_conn_release(struct iser_conn *iser_conn) 678 { 679 struct ib_conn *ib_conn = &iser_conn->ib_conn; 680 681 mutex_lock(&ig.connlist_mutex); 682 list_del(&iser_conn->conn_list); 683 mutex_unlock(&ig.connlist_mutex); 684 685 mutex_lock(&iser_conn->state_mutex); 686 /* In case we endup here without ep_disconnect being invoked. */ 687 if (iser_conn->state != ISER_CONN_DOWN) { 688 iser_warn("iser conn %p state %d, expected state down.\n", 689 iser_conn, iser_conn->state); 690 iscsi_destroy_endpoint(iser_conn->ep); 691 iser_conn->state = ISER_CONN_DOWN; 692 } 693 /* 694 * In case we never got to bind stage, we still need to 695 * release IB resources (which is safe to call more than once). 696 */ 697 iser_free_ib_conn_res(iser_conn, true); 698 mutex_unlock(&iser_conn->state_mutex); 699 700 if (ib_conn->cma_id != NULL) { 701 rdma_destroy_id(ib_conn->cma_id); 702 ib_conn->cma_id = NULL; 703 } 704 705 kfree(iser_conn); 706 } 707 708 /** 709 * triggers start of the disconnect procedures and wait for them to be done 710 * Called with state mutex held 711 */ 712 int iser_conn_terminate(struct iser_conn *iser_conn) 713 { 714 struct ib_conn *ib_conn = &iser_conn->ib_conn; 715 struct ib_send_wr *bad_wr; 716 int err = 0; 717 718 /* terminate the iser conn only if the conn state is UP */ 719 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP, 720 ISER_CONN_TERMINATING)) 721 return 0; 722 723 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); 724 725 /* suspend queuing of new iscsi commands */ 726 if (iser_conn->iscsi_conn) 727 iscsi_suspend_queue(iser_conn->iscsi_conn); 728 729 /* 730 * In case we didn't already clean up the cma_id (peer initiated 731 * a disconnection), we need to Cause the CMA to change the QP 732 * state to ERROR. 733 */ 734 if (ib_conn->cma_id) { 735 err = rdma_disconnect(ib_conn->cma_id); 736 if (err) 737 iser_err("Failed to disconnect, conn: 0x%p err %d\n", 738 iser_conn, err); 739 740 /* post an indication that all flush errors were consumed */ 741 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr); 742 if (err) { 743 iser_err("conn %p failed to post beacon", ib_conn); 744 return 1; 745 } 746 747 wait_for_completion(&ib_conn->flush_comp); 748 } 749 750 return 1; 751 } 752 753 /** 754 * Called with state mutex held 755 **/ 756 static void iser_connect_error(struct rdma_cm_id *cma_id) 757 { 758 struct iser_conn *iser_conn; 759 760 iser_conn = (struct iser_conn *)cma_id->context; 761 iser_conn->state = ISER_CONN_TERMINATING; 762 } 763 764 static void 765 iser_calc_scsi_params(struct iser_conn *iser_conn, 766 unsigned int max_sectors) 767 { 768 struct iser_device *device = iser_conn->ib_conn.device; 769 unsigned short sg_tablesize, sup_sg_tablesize; 770 771 sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K); 772 sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE, 773 device->dev_attr.max_fast_reg_page_list_len); 774 775 if (sg_tablesize > sup_sg_tablesize) { 776 sg_tablesize = sup_sg_tablesize; 777 iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512; 778 } else { 779 iser_conn->scsi_max_sectors = max_sectors; 780 } 781 782 iser_conn->scsi_sg_tablesize = sg_tablesize; 783 784 iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n", 785 iser_conn, iser_conn->scsi_sg_tablesize, 786 iser_conn->scsi_max_sectors); 787 } 788 789 /** 790 * Called with state mutex held 791 **/ 792 static void iser_addr_handler(struct rdma_cm_id *cma_id) 793 { 794 struct iser_device *device; 795 struct iser_conn *iser_conn; 796 struct ib_conn *ib_conn; 797 int ret; 798 799 iser_conn = (struct iser_conn *)cma_id->context; 800 if (iser_conn->state != ISER_CONN_PENDING) 801 /* bailout */ 802 return; 803 804 ib_conn = &iser_conn->ib_conn; 805 device = iser_device_find_by_ib_device(cma_id); 806 if (!device) { 807 iser_err("device lookup/creation failed\n"); 808 iser_connect_error(cma_id); 809 return; 810 } 811 812 ib_conn->device = device; 813 814 /* connection T10-PI support */ 815 if (iser_pi_enable) { 816 if (!(device->dev_attr.device_cap_flags & 817 IB_DEVICE_SIGNATURE_HANDOVER)) { 818 iser_warn("T10-PI requested but not supported on %s, " 819 "continue without T10-PI\n", 820 ib_conn->device->ib_device->name); 821 ib_conn->pi_support = false; 822 } else { 823 ib_conn->pi_support = true; 824 } 825 } 826 827 iser_calc_scsi_params(iser_conn, iser_max_sectors); 828 829 ret = rdma_resolve_route(cma_id, 1000); 830 if (ret) { 831 iser_err("resolve route failed: %d\n", ret); 832 iser_connect_error(cma_id); 833 return; 834 } 835 } 836 837 /** 838 * Called with state mutex held 839 **/ 840 static void iser_route_handler(struct rdma_cm_id *cma_id) 841 { 842 struct rdma_conn_param conn_param; 843 int ret; 844 struct iser_cm_hdr req_hdr; 845 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 846 struct ib_conn *ib_conn = &iser_conn->ib_conn; 847 struct iser_device *device = ib_conn->device; 848 849 if (iser_conn->state != ISER_CONN_PENDING) 850 /* bailout */ 851 return; 852 853 ret = iser_create_ib_conn_res(ib_conn); 854 if (ret) 855 goto failure; 856 857 memset(&conn_param, 0, sizeof conn_param); 858 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom; 859 conn_param.initiator_depth = 1; 860 conn_param.retry_count = 7; 861 conn_param.rnr_retry_count = 6; 862 863 memset(&req_hdr, 0, sizeof(req_hdr)); 864 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED | 865 ISER_SEND_W_INV_NOT_SUPPORTED); 866 conn_param.private_data = (void *)&req_hdr; 867 conn_param.private_data_len = sizeof(struct iser_cm_hdr); 868 869 ret = rdma_connect(cma_id, &conn_param); 870 if (ret) { 871 iser_err("failure connecting: %d\n", ret); 872 goto failure; 873 } 874 875 return; 876 failure: 877 iser_connect_error(cma_id); 878 } 879 880 static void iser_connected_handler(struct rdma_cm_id *cma_id) 881 { 882 struct iser_conn *iser_conn; 883 struct ib_qp_attr attr; 884 struct ib_qp_init_attr init_attr; 885 886 iser_conn = (struct iser_conn *)cma_id->context; 887 if (iser_conn->state != ISER_CONN_PENDING) 888 /* bailout */ 889 return; 890 891 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); 892 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); 893 894 iser_conn->state = ISER_CONN_UP; 895 complete(&iser_conn->up_completion); 896 } 897 898 static void iser_disconnected_handler(struct rdma_cm_id *cma_id) 899 { 900 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 901 902 if (iser_conn_terminate(iser_conn)) { 903 if (iser_conn->iscsi_conn) 904 iscsi_conn_failure(iser_conn->iscsi_conn, 905 ISCSI_ERR_CONN_FAILED); 906 else 907 iser_err("iscsi_iser connection isn't bound\n"); 908 } 909 } 910 911 static void iser_cleanup_handler(struct rdma_cm_id *cma_id, 912 bool destroy) 913 { 914 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 915 916 /* 917 * We are not guaranteed that we visited disconnected_handler 918 * by now, call it here to be safe that we handle CM drep 919 * and flush errors. 920 */ 921 iser_disconnected_handler(cma_id); 922 iser_free_ib_conn_res(iser_conn, destroy); 923 complete(&iser_conn->ib_completion); 924 }; 925 926 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) 927 { 928 struct iser_conn *iser_conn; 929 int ret = 0; 930 931 iser_conn = (struct iser_conn *)cma_id->context; 932 iser_info("%s (%d): status %d conn %p id %p\n", 933 rdma_event_msg(event->event), event->event, 934 event->status, cma_id->context, cma_id); 935 936 mutex_lock(&iser_conn->state_mutex); 937 switch (event->event) { 938 case RDMA_CM_EVENT_ADDR_RESOLVED: 939 iser_addr_handler(cma_id); 940 break; 941 case RDMA_CM_EVENT_ROUTE_RESOLVED: 942 iser_route_handler(cma_id); 943 break; 944 case RDMA_CM_EVENT_ESTABLISHED: 945 iser_connected_handler(cma_id); 946 break; 947 case RDMA_CM_EVENT_ADDR_ERROR: 948 case RDMA_CM_EVENT_ROUTE_ERROR: 949 case RDMA_CM_EVENT_CONNECT_ERROR: 950 case RDMA_CM_EVENT_UNREACHABLE: 951 case RDMA_CM_EVENT_REJECTED: 952 iser_connect_error(cma_id); 953 break; 954 case RDMA_CM_EVENT_DISCONNECTED: 955 case RDMA_CM_EVENT_ADDR_CHANGE: 956 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 957 iser_cleanup_handler(cma_id, false); 958 break; 959 case RDMA_CM_EVENT_DEVICE_REMOVAL: 960 /* 961 * we *must* destroy the device as we cannot rely 962 * on iscsid to be around to initiate error handling. 963 * also if we are not in state DOWN implicitly destroy 964 * the cma_id. 965 */ 966 iser_cleanup_handler(cma_id, true); 967 if (iser_conn->state != ISER_CONN_DOWN) { 968 iser_conn->ib_conn.cma_id = NULL; 969 ret = 1; 970 } 971 break; 972 default: 973 iser_err("Unexpected RDMA CM event: %s (%d)\n", 974 rdma_event_msg(event->event), event->event); 975 break; 976 } 977 mutex_unlock(&iser_conn->state_mutex); 978 979 return ret; 980 } 981 982 void iser_conn_init(struct iser_conn *iser_conn) 983 { 984 iser_conn->state = ISER_CONN_INIT; 985 iser_conn->ib_conn.post_recv_buf_count = 0; 986 init_completion(&iser_conn->ib_conn.flush_comp); 987 init_completion(&iser_conn->stop_completion); 988 init_completion(&iser_conn->ib_completion); 989 init_completion(&iser_conn->up_completion); 990 INIT_LIST_HEAD(&iser_conn->conn_list); 991 mutex_init(&iser_conn->state_mutex); 992 } 993 994 /** 995 * starts the process of connecting to the target 996 * sleeps until the connection is established or rejected 997 */ 998 int iser_connect(struct iser_conn *iser_conn, 999 struct sockaddr *src_addr, 1000 struct sockaddr *dst_addr, 1001 int non_blocking) 1002 { 1003 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1004 int err = 0; 1005 1006 mutex_lock(&iser_conn->state_mutex); 1007 1008 sprintf(iser_conn->name, "%pISp", dst_addr); 1009 1010 iser_info("connecting to: %s\n", iser_conn->name); 1011 1012 /* the device is known only --after-- address resolution */ 1013 ib_conn->device = NULL; 1014 1015 iser_conn->state = ISER_CONN_PENDING; 1016 1017 ib_conn->beacon.wr_id = ISER_BEACON_WRID; 1018 ib_conn->beacon.opcode = IB_WR_SEND; 1019 1020 ib_conn->cma_id = rdma_create_id(iser_cma_handler, 1021 (void *)iser_conn, 1022 RDMA_PS_TCP, IB_QPT_RC); 1023 if (IS_ERR(ib_conn->cma_id)) { 1024 err = PTR_ERR(ib_conn->cma_id); 1025 iser_err("rdma_create_id failed: %d\n", err); 1026 goto id_failure; 1027 } 1028 1029 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); 1030 if (err) { 1031 iser_err("rdma_resolve_addr failed: %d\n", err); 1032 goto addr_failure; 1033 } 1034 1035 if (!non_blocking) { 1036 wait_for_completion_interruptible(&iser_conn->up_completion); 1037 1038 if (iser_conn->state != ISER_CONN_UP) { 1039 err = -EIO; 1040 goto connect_failure; 1041 } 1042 } 1043 mutex_unlock(&iser_conn->state_mutex); 1044 1045 mutex_lock(&ig.connlist_mutex); 1046 list_add(&iser_conn->conn_list, &ig.connlist); 1047 mutex_unlock(&ig.connlist_mutex); 1048 return 0; 1049 1050 id_failure: 1051 ib_conn->cma_id = NULL; 1052 addr_failure: 1053 iser_conn->state = ISER_CONN_DOWN; 1054 connect_failure: 1055 mutex_unlock(&iser_conn->state_mutex); 1056 iser_conn_release(iser_conn); 1057 return err; 1058 } 1059 1060 int iser_post_recvl(struct iser_conn *iser_conn) 1061 { 1062 struct ib_recv_wr rx_wr, *rx_wr_failed; 1063 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1064 struct ib_sge sge; 1065 int ib_ret; 1066 1067 sge.addr = iser_conn->login_resp_dma; 1068 sge.length = ISER_RX_LOGIN_SIZE; 1069 sge.lkey = ib_conn->device->pd->local_dma_lkey; 1070 1071 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf; 1072 rx_wr.sg_list = &sge; 1073 rx_wr.num_sge = 1; 1074 rx_wr.next = NULL; 1075 1076 ib_conn->post_recv_buf_count++; 1077 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed); 1078 if (ib_ret) { 1079 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1080 ib_conn->post_recv_buf_count--; 1081 } 1082 return ib_ret; 1083 } 1084 1085 int iser_post_recvm(struct iser_conn *iser_conn, int count) 1086 { 1087 struct ib_recv_wr *rx_wr, *rx_wr_failed; 1088 int i, ib_ret; 1089 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1090 unsigned int my_rx_head = iser_conn->rx_desc_head; 1091 struct iser_rx_desc *rx_desc; 1092 1093 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) { 1094 rx_desc = &iser_conn->rx_descs[my_rx_head]; 1095 rx_wr->wr_id = (uintptr_t)rx_desc; 1096 rx_wr->sg_list = &rx_desc->rx_sg; 1097 rx_wr->num_sge = 1; 1098 rx_wr->next = rx_wr + 1; 1099 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask; 1100 } 1101 1102 rx_wr--; 1103 rx_wr->next = NULL; /* mark end of work requests list */ 1104 1105 ib_conn->post_recv_buf_count += count; 1106 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed); 1107 if (ib_ret) { 1108 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1109 ib_conn->post_recv_buf_count -= count; 1110 } else 1111 iser_conn->rx_desc_head = my_rx_head; 1112 return ib_ret; 1113 } 1114 1115 1116 /** 1117 * iser_start_send - Initiate a Send DTO operation 1118 * 1119 * returns 0 on success, -1 on failure 1120 */ 1121 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc, 1122 bool signal) 1123 { 1124 struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc); 1125 int ib_ret; 1126 1127 ib_dma_sync_single_for_device(ib_conn->device->ib_device, 1128 tx_desc->dma_addr, ISER_HEADERS_LEN, 1129 DMA_TO_DEVICE); 1130 1131 wr->next = NULL; 1132 wr->wr_id = (uintptr_t)tx_desc; 1133 wr->sg_list = tx_desc->tx_sg; 1134 wr->num_sge = tx_desc->num_sge; 1135 wr->opcode = IB_WR_SEND; 1136 wr->send_flags = signal ? IB_SEND_SIGNALED : 0; 1137 1138 ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0], &bad_wr); 1139 if (ib_ret) 1140 iser_err("ib_post_send failed, ret:%d opcode:%d\n", 1141 ib_ret, bad_wr->opcode); 1142 1143 return ib_ret; 1144 } 1145 1146 /** 1147 * is_iser_tx_desc - Indicate if the completion wr_id 1148 * is a TX descriptor or not. 1149 * @iser_conn: iser connection 1150 * @wr_id: completion WR identifier 1151 * 1152 * Since we cannot rely on wc opcode in FLUSH errors 1153 * we must work around it by checking if the wr_id address 1154 * falls in the iser connection rx_descs buffer. If so 1155 * it is an RX descriptor, otherwize it is a TX. 1156 */ 1157 static inline bool 1158 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id) 1159 { 1160 void *start = iser_conn->rx_descs; 1161 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs); 1162 1163 if (wr_id >= start && wr_id < start + len) 1164 return false; 1165 1166 return true; 1167 } 1168 1169 /** 1170 * iser_handle_comp_error() - Handle error completion 1171 * @ib_conn: connection RDMA resources 1172 * @wc: work completion 1173 * 1174 * Notes: We may handle a FLUSH error completion and in this case 1175 * we only cleanup in case TX type was DATAOUT. For non-FLUSH 1176 * error completion we should also notify iscsi layer that 1177 * connection is failed (in case we passed bind stage). 1178 */ 1179 static void 1180 iser_handle_comp_error(struct ib_conn *ib_conn, 1181 struct ib_wc *wc) 1182 { 1183 void *wr_id = (void *)(uintptr_t)wc->wr_id; 1184 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 1185 ib_conn); 1186 1187 if (wc->status != IB_WC_WR_FLUSH_ERR) 1188 if (iser_conn->iscsi_conn) 1189 iscsi_conn_failure(iser_conn->iscsi_conn, 1190 ISCSI_ERR_CONN_FAILED); 1191 1192 if (wc->wr_id == ISER_FASTREG_LI_WRID) 1193 return; 1194 1195 if (is_iser_tx_desc(iser_conn, wr_id)) { 1196 struct iser_tx_desc *desc = wr_id; 1197 1198 if (desc->type == ISCSI_TX_DATAOUT) 1199 kmem_cache_free(ig.desc_cache, desc); 1200 } else { 1201 ib_conn->post_recv_buf_count--; 1202 } 1203 } 1204 1205 /** 1206 * iser_handle_wc - handle a single work completion 1207 * @wc: work completion 1208 * 1209 * Soft-IRQ context, work completion can be either 1210 * SEND or RECV, and can turn out successful or 1211 * with error (or flush error). 1212 */ 1213 static void iser_handle_wc(struct ib_wc *wc) 1214 { 1215 struct ib_conn *ib_conn; 1216 struct iser_tx_desc *tx_desc; 1217 struct iser_rx_desc *rx_desc; 1218 1219 ib_conn = wc->qp->qp_context; 1220 if (likely(wc->status == IB_WC_SUCCESS)) { 1221 if (wc->opcode == IB_WC_RECV) { 1222 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id; 1223 iser_rcv_completion(rx_desc, wc->byte_len, 1224 ib_conn); 1225 } else 1226 if (wc->opcode == IB_WC_SEND) { 1227 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id; 1228 iser_snd_completion(tx_desc, ib_conn); 1229 } else { 1230 iser_err("Unknown wc opcode %d\n", wc->opcode); 1231 } 1232 } else { 1233 if (wc->status != IB_WC_WR_FLUSH_ERR) 1234 iser_err("%s (%d): wr id %llx vend_err %x\n", 1235 ib_wc_status_msg(wc->status), wc->status, 1236 wc->wr_id, wc->vendor_err); 1237 else 1238 iser_dbg("%s (%d): wr id %llx\n", 1239 ib_wc_status_msg(wc->status), wc->status, 1240 wc->wr_id); 1241 1242 if (wc->wr_id == ISER_BEACON_WRID) 1243 /* all flush errors were consumed */ 1244 complete(&ib_conn->flush_comp); 1245 else 1246 iser_handle_comp_error(ib_conn, wc); 1247 } 1248 } 1249 1250 /** 1251 * iser_cq_tasklet_fn - iSER completion polling loop 1252 * @data: iSER completion context 1253 * 1254 * Soft-IRQ context, polling connection CQ until 1255 * either CQ was empty or we exausted polling budget 1256 */ 1257 static void iser_cq_tasklet_fn(unsigned long data) 1258 { 1259 struct iser_comp *comp = (struct iser_comp *)data; 1260 struct ib_cq *cq = comp->cq; 1261 struct ib_wc *const wcs = comp->wcs; 1262 int i, n, completed = 0; 1263 1264 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) { 1265 for (i = 0; i < n; i++) 1266 iser_handle_wc(&wcs[i]); 1267 1268 completed += n; 1269 if (completed >= iser_cq_poll_limit) 1270 break; 1271 } 1272 1273 /* 1274 * It is assumed here that arming CQ only once its empty 1275 * would not cause interrupts to be missed. 1276 */ 1277 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1278 1279 iser_dbg("got %d completions\n", completed); 1280 } 1281 1282 static void iser_cq_callback(struct ib_cq *cq, void *cq_context) 1283 { 1284 struct iser_comp *comp = cq_context; 1285 1286 tasklet_schedule(&comp->tasklet); 1287 } 1288 1289 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, 1290 enum iser_data_dir cmd_dir, sector_t *sector) 1291 { 1292 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; 1293 struct iser_fr_desc *desc = reg->mem_h; 1294 unsigned long sector_size = iser_task->sc->device->sector_size; 1295 struct ib_mr_status mr_status; 1296 int ret; 1297 1298 if (desc && desc->pi_ctx->sig_protected) { 1299 desc->pi_ctx->sig_protected = 0; 1300 ret = ib_check_mr_status(desc->pi_ctx->sig_mr, 1301 IB_MR_CHECK_SIG_STATUS, &mr_status); 1302 if (ret) { 1303 pr_err("ib_check_mr_status failed, ret %d\n", ret); 1304 goto err; 1305 } 1306 1307 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 1308 sector_t sector_off = mr_status.sig_err.sig_err_offset; 1309 1310 do_div(sector_off, sector_size + 8); 1311 *sector = scsi_get_lba(iser_task->sc) + sector_off; 1312 1313 pr_err("PI error found type %d at sector %llx " 1314 "expected %x vs actual %x\n", 1315 mr_status.sig_err.err_type, 1316 (unsigned long long)*sector, 1317 mr_status.sig_err.expected, 1318 mr_status.sig_err.actual); 1319 1320 switch (mr_status.sig_err.err_type) { 1321 case IB_SIG_BAD_GUARD: 1322 return 0x1; 1323 case IB_SIG_BAD_REFTAG: 1324 return 0x3; 1325 case IB_SIG_BAD_APPTAG: 1326 return 0x2; 1327 } 1328 } 1329 } 1330 1331 return 0; 1332 err: 1333 /* Not alot we can do here, return ambiguous guard error */ 1334 return 0x1; 1335 } 1336