1 /* 2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. 3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/slab.h> 37 #include <linux/delay.h> 38 39 #include "iscsi_iser.h" 40 41 #define ISCSI_ISER_MAX_CONN 8 42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN) 43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN) 44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \ 45 ISCSI_ISER_MAX_CONN) 46 47 static int iser_cq_poll_limit = 512; 48 49 static void iser_cq_tasklet_fn(unsigned long data); 50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context); 51 52 static void iser_cq_event_callback(struct ib_event *cause, void *context) 53 { 54 iser_err("cq event %s (%d)\n", 55 ib_event_msg(cause->event), cause->event); 56 } 57 58 static void iser_qp_event_callback(struct ib_event *cause, void *context) 59 { 60 iser_err("qp event %s (%d)\n", 61 ib_event_msg(cause->event), cause->event); 62 } 63 64 static void iser_event_handler(struct ib_event_handler *handler, 65 struct ib_event *event) 66 { 67 iser_err("async event %s (%d) on device %s port %d\n", 68 ib_event_msg(event->event), event->event, 69 event->device->name, event->element.port_num); 70 } 71 72 /** 73 * iser_create_device_ib_res - creates Protection Domain (PD), Completion 74 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with 75 * the adapator. 76 * 77 * returns 0 on success, -1 on failure 78 */ 79 static int iser_create_device_ib_res(struct iser_device *device) 80 { 81 struct ib_device_attr *dev_attr = &device->dev_attr; 82 int ret, i, max_cqe; 83 84 ret = ib_query_device(device->ib_device, dev_attr); 85 if (ret) { 86 pr_warn("Query device failed for %s\n", device->ib_device->name); 87 return ret; 88 } 89 90 /* Assign function handles - based on FMR support */ 91 if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr && 92 device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) { 93 iser_info("FMR supported, using FMR for registration\n"); 94 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool; 95 device->iser_free_rdma_reg_res = iser_free_fmr_pool; 96 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr; 97 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr; 98 } else 99 if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { 100 iser_info("FastReg supported, using FastReg for registration\n"); 101 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool; 102 device->iser_free_rdma_reg_res = iser_free_fastreg_pool; 103 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg; 104 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg; 105 } else { 106 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n"); 107 return -1; 108 } 109 110 device->comps_used = min_t(int, num_online_cpus(), 111 device->ib_device->num_comp_vectors); 112 113 device->comps = kcalloc(device->comps_used, sizeof(*device->comps), 114 GFP_KERNEL); 115 if (!device->comps) 116 goto comps_err; 117 118 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe); 119 120 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n", 121 device->comps_used, device->ib_device->name, 122 device->ib_device->num_comp_vectors, max_cqe); 123 124 device->pd = ib_alloc_pd(device->ib_device); 125 if (IS_ERR(device->pd)) 126 goto pd_err; 127 128 for (i = 0; i < device->comps_used; i++) { 129 struct ib_cq_init_attr cq_attr = {}; 130 struct iser_comp *comp = &device->comps[i]; 131 132 comp->device = device; 133 cq_attr.cqe = max_cqe; 134 cq_attr.comp_vector = i; 135 comp->cq = ib_create_cq(device->ib_device, 136 iser_cq_callback, 137 iser_cq_event_callback, 138 (void *)comp, 139 &cq_attr); 140 if (IS_ERR(comp->cq)) { 141 comp->cq = NULL; 142 goto cq_err; 143 } 144 145 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP)) 146 goto cq_err; 147 148 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn, 149 (unsigned long)comp); 150 } 151 152 device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE | 153 IB_ACCESS_REMOTE_WRITE | 154 IB_ACCESS_REMOTE_READ); 155 if (IS_ERR(device->mr)) 156 goto dma_mr_err; 157 158 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device, 159 iser_event_handler); 160 if (ib_register_event_handler(&device->event_handler)) 161 goto handler_err; 162 163 return 0; 164 165 handler_err: 166 ib_dereg_mr(device->mr); 167 dma_mr_err: 168 for (i = 0; i < device->comps_used; i++) 169 tasklet_kill(&device->comps[i].tasklet); 170 cq_err: 171 for (i = 0; i < device->comps_used; i++) { 172 struct iser_comp *comp = &device->comps[i]; 173 174 if (comp->cq) 175 ib_destroy_cq(comp->cq); 176 } 177 ib_dealloc_pd(device->pd); 178 pd_err: 179 kfree(device->comps); 180 comps_err: 181 iser_err("failed to allocate an IB resource\n"); 182 return -1; 183 } 184 185 /** 186 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, 187 * CQ and PD created with the device associated with the adapator. 188 */ 189 static void iser_free_device_ib_res(struct iser_device *device) 190 { 191 int i; 192 BUG_ON(device->mr == NULL); 193 194 for (i = 0; i < device->comps_used; i++) { 195 struct iser_comp *comp = &device->comps[i]; 196 197 tasklet_kill(&comp->tasklet); 198 ib_destroy_cq(comp->cq); 199 comp->cq = NULL; 200 } 201 202 (void)ib_unregister_event_handler(&device->event_handler); 203 (void)ib_dereg_mr(device->mr); 204 (void)ib_dealloc_pd(device->pd); 205 206 kfree(device->comps); 207 device->comps = NULL; 208 209 device->mr = NULL; 210 device->pd = NULL; 211 } 212 213 /** 214 * iser_create_fmr_pool - Creates FMR pool and page_vector 215 * 216 * returns 0 on success, or errno code on failure 217 */ 218 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max) 219 { 220 struct iser_device *device = ib_conn->device; 221 struct ib_fmr_pool_param params; 222 int ret = -ENOMEM; 223 224 ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) + 225 (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)), 226 GFP_KERNEL); 227 if (!ib_conn->fmr.page_vec) 228 return ret; 229 230 ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1); 231 232 params.page_shift = SHIFT_4K; 233 /* when the first/last SG element are not start/end * 234 * page aligned, the map whould be of N+1 pages */ 235 params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1; 236 /* make the pool size twice the max number of SCSI commands * 237 * the ML is expected to queue, watermark for unmap at 50% */ 238 params.pool_size = cmds_max * 2; 239 params.dirty_watermark = cmds_max; 240 params.cache = 0; 241 params.flush_function = NULL; 242 params.access = (IB_ACCESS_LOCAL_WRITE | 243 IB_ACCESS_REMOTE_WRITE | 244 IB_ACCESS_REMOTE_READ); 245 246 ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, ¶ms); 247 if (!IS_ERR(ib_conn->fmr.pool)) 248 return 0; 249 250 /* no FMR => no need for page_vec */ 251 kfree(ib_conn->fmr.page_vec); 252 ib_conn->fmr.page_vec = NULL; 253 254 ret = PTR_ERR(ib_conn->fmr.pool); 255 ib_conn->fmr.pool = NULL; 256 if (ret != -ENOSYS) { 257 iser_err("FMR allocation failed, err %d\n", ret); 258 return ret; 259 } else { 260 iser_warn("FMRs are not supported, using unaligned mode\n"); 261 return 0; 262 } 263 } 264 265 /** 266 * iser_free_fmr_pool - releases the FMR pool and page vec 267 */ 268 void iser_free_fmr_pool(struct ib_conn *ib_conn) 269 { 270 iser_info("freeing conn %p fmr pool %p\n", 271 ib_conn, ib_conn->fmr.pool); 272 273 if (ib_conn->fmr.pool != NULL) 274 ib_destroy_fmr_pool(ib_conn->fmr.pool); 275 276 ib_conn->fmr.pool = NULL; 277 278 kfree(ib_conn->fmr.page_vec); 279 ib_conn->fmr.page_vec = NULL; 280 } 281 282 static int 283 iser_alloc_pi_ctx(struct ib_device *ib_device, struct ib_pd *pd, 284 struct fast_reg_descriptor *desc) 285 { 286 struct iser_pi_context *pi_ctx = NULL; 287 struct ib_mr_init_attr mr_init_attr = {.max_reg_descriptors = 2, 288 .flags = IB_MR_SIGNATURE_EN}; 289 int ret = 0; 290 291 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL); 292 if (!desc->pi_ctx) 293 return -ENOMEM; 294 295 pi_ctx = desc->pi_ctx; 296 297 pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device, 298 ISCSI_ISER_SG_TABLESIZE); 299 if (IS_ERR(pi_ctx->prot_frpl)) { 300 ret = PTR_ERR(pi_ctx->prot_frpl); 301 goto prot_frpl_failure; 302 } 303 304 pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd, 305 ISCSI_ISER_SG_TABLESIZE + 1); 306 if (IS_ERR(pi_ctx->prot_mr)) { 307 ret = PTR_ERR(pi_ctx->prot_mr); 308 goto prot_mr_failure; 309 } 310 desc->reg_indicators |= ISER_PROT_KEY_VALID; 311 312 pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr); 313 if (IS_ERR(pi_ctx->sig_mr)) { 314 ret = PTR_ERR(pi_ctx->sig_mr); 315 goto sig_mr_failure; 316 } 317 desc->reg_indicators |= ISER_SIG_KEY_VALID; 318 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; 319 320 return 0; 321 322 sig_mr_failure: 323 ib_dereg_mr(desc->pi_ctx->prot_mr); 324 prot_mr_failure: 325 ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl); 326 prot_frpl_failure: 327 kfree(desc->pi_ctx); 328 329 return ret; 330 } 331 332 static void 333 iser_free_pi_ctx(struct iser_pi_context *pi_ctx) 334 { 335 ib_free_fast_reg_page_list(pi_ctx->prot_frpl); 336 ib_dereg_mr(pi_ctx->prot_mr); 337 ib_destroy_mr(pi_ctx->sig_mr); 338 kfree(pi_ctx); 339 } 340 341 static int 342 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd, 343 bool pi_enable, struct fast_reg_descriptor *desc) 344 { 345 int ret; 346 347 desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device, 348 ISCSI_ISER_SG_TABLESIZE + 1); 349 if (IS_ERR(desc->data_frpl)) { 350 ret = PTR_ERR(desc->data_frpl); 351 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n", 352 ret); 353 return PTR_ERR(desc->data_frpl); 354 } 355 356 desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1); 357 if (IS_ERR(desc->data_mr)) { 358 ret = PTR_ERR(desc->data_mr); 359 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); 360 goto fast_reg_mr_failure; 361 } 362 desc->reg_indicators |= ISER_DATA_KEY_VALID; 363 364 if (pi_enable) { 365 ret = iser_alloc_pi_ctx(ib_device, pd, desc); 366 if (ret) 367 goto pi_ctx_alloc_failure; 368 } 369 370 return 0; 371 pi_ctx_alloc_failure: 372 ib_dereg_mr(desc->data_mr); 373 fast_reg_mr_failure: 374 ib_free_fast_reg_page_list(desc->data_frpl); 375 376 return ret; 377 } 378 379 /** 380 * iser_create_fastreg_pool - Creates pool of fast_reg descriptors 381 * for fast registration work requests. 382 * returns 0 on success, or errno code on failure 383 */ 384 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max) 385 { 386 struct iser_device *device = ib_conn->device; 387 struct fast_reg_descriptor *desc; 388 int i, ret; 389 390 INIT_LIST_HEAD(&ib_conn->fastreg.pool); 391 ib_conn->fastreg.pool_size = 0; 392 for (i = 0; i < cmds_max; i++) { 393 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 394 if (!desc) { 395 iser_err("Failed to allocate a new fast_reg descriptor\n"); 396 ret = -ENOMEM; 397 goto err; 398 } 399 400 ret = iser_create_fastreg_desc(device->ib_device, device->pd, 401 ib_conn->pi_support, desc); 402 if (ret) { 403 iser_err("Failed to create fastreg descriptor err=%d\n", 404 ret); 405 kfree(desc); 406 goto err; 407 } 408 409 list_add_tail(&desc->list, &ib_conn->fastreg.pool); 410 ib_conn->fastreg.pool_size++; 411 } 412 413 return 0; 414 415 err: 416 iser_free_fastreg_pool(ib_conn); 417 return ret; 418 } 419 420 /** 421 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors 422 */ 423 void iser_free_fastreg_pool(struct ib_conn *ib_conn) 424 { 425 struct fast_reg_descriptor *desc, *tmp; 426 int i = 0; 427 428 if (list_empty(&ib_conn->fastreg.pool)) 429 return; 430 431 iser_info("freeing conn %p fr pool\n", ib_conn); 432 433 list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) { 434 list_del(&desc->list); 435 ib_free_fast_reg_page_list(desc->data_frpl); 436 ib_dereg_mr(desc->data_mr); 437 if (desc->pi_ctx) 438 iser_free_pi_ctx(desc->pi_ctx); 439 kfree(desc); 440 ++i; 441 } 442 443 if (i < ib_conn->fastreg.pool_size) 444 iser_warn("pool still has %d regions registered\n", 445 ib_conn->fastreg.pool_size - i); 446 } 447 448 /** 449 * iser_create_ib_conn_res - Queue-Pair (QP) 450 * 451 * returns 0 on success, -1 on failure 452 */ 453 static int iser_create_ib_conn_res(struct ib_conn *ib_conn) 454 { 455 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 456 ib_conn); 457 struct iser_device *device; 458 struct ib_device_attr *dev_attr; 459 struct ib_qp_init_attr init_attr; 460 int ret = -ENOMEM; 461 int index, min_index = 0; 462 463 BUG_ON(ib_conn->device == NULL); 464 465 device = ib_conn->device; 466 dev_attr = &device->dev_attr; 467 468 memset(&init_attr, 0, sizeof init_attr); 469 470 mutex_lock(&ig.connlist_mutex); 471 /* select the CQ with the minimal number of usages */ 472 for (index = 0; index < device->comps_used; index++) { 473 if (device->comps[index].active_qps < 474 device->comps[min_index].active_qps) 475 min_index = index; 476 } 477 ib_conn->comp = &device->comps[min_index]; 478 ib_conn->comp->active_qps++; 479 mutex_unlock(&ig.connlist_mutex); 480 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn); 481 482 init_attr.event_handler = iser_qp_event_callback; 483 init_attr.qp_context = (void *)ib_conn; 484 init_attr.send_cq = ib_conn->comp->cq; 485 init_attr.recv_cq = ib_conn->comp->cq; 486 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS; 487 init_attr.cap.max_send_sge = 2; 488 init_attr.cap.max_recv_sge = 1; 489 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 490 init_attr.qp_type = IB_QPT_RC; 491 if (ib_conn->pi_support) { 492 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1; 493 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN; 494 iser_conn->max_cmds = 495 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS); 496 } else { 497 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) { 498 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1; 499 iser_conn->max_cmds = 500 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS); 501 } else { 502 init_attr.cap.max_send_wr = dev_attr->max_qp_wr; 503 iser_conn->max_cmds = 504 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr); 505 iser_dbg("device %s supports max_send_wr %d\n", 506 device->ib_device->name, dev_attr->max_qp_wr); 507 } 508 } 509 510 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); 511 if (ret) 512 goto out_err; 513 514 ib_conn->qp = ib_conn->cma_id->qp; 515 iser_info("setting conn %p cma_id %p qp %p\n", 516 ib_conn, ib_conn->cma_id, 517 ib_conn->cma_id->qp); 518 return ret; 519 520 out_err: 521 mutex_lock(&ig.connlist_mutex); 522 ib_conn->comp->active_qps--; 523 mutex_unlock(&ig.connlist_mutex); 524 iser_err("unable to alloc mem or create resource, err %d\n", ret); 525 526 return ret; 527 } 528 529 /** 530 * based on the resolved device node GUID see if there already allocated 531 * device for this device. If there's no such, create one. 532 */ 533 static 534 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) 535 { 536 struct iser_device *device; 537 538 mutex_lock(&ig.device_list_mutex); 539 540 list_for_each_entry(device, &ig.device_list, ig_list) 541 /* find if there's a match using the node GUID */ 542 if (device->ib_device->node_guid == cma_id->device->node_guid) 543 goto inc_refcnt; 544 545 device = kzalloc(sizeof *device, GFP_KERNEL); 546 if (device == NULL) 547 goto out; 548 549 /* assign this device to the device */ 550 device->ib_device = cma_id->device; 551 /* init the device and link it into ig device list */ 552 if (iser_create_device_ib_res(device)) { 553 kfree(device); 554 device = NULL; 555 goto out; 556 } 557 list_add(&device->ig_list, &ig.device_list); 558 559 inc_refcnt: 560 device->refcount++; 561 out: 562 mutex_unlock(&ig.device_list_mutex); 563 return device; 564 } 565 566 /* if there's no demand for this device, release it */ 567 static void iser_device_try_release(struct iser_device *device) 568 { 569 mutex_lock(&ig.device_list_mutex); 570 device->refcount--; 571 iser_info("device %p refcount %d\n", device, device->refcount); 572 if (!device->refcount) { 573 iser_free_device_ib_res(device); 574 list_del(&device->ig_list); 575 kfree(device); 576 } 577 mutex_unlock(&ig.device_list_mutex); 578 } 579 580 /** 581 * Called with state mutex held 582 **/ 583 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn, 584 enum iser_conn_state comp, 585 enum iser_conn_state exch) 586 { 587 int ret; 588 589 ret = (iser_conn->state == comp); 590 if (ret) 591 iser_conn->state = exch; 592 593 return ret; 594 } 595 596 void iser_release_work(struct work_struct *work) 597 { 598 struct iser_conn *iser_conn; 599 600 iser_conn = container_of(work, struct iser_conn, release_work); 601 602 /* Wait for conn_stop to complete */ 603 wait_for_completion(&iser_conn->stop_completion); 604 /* Wait for IB resouces cleanup to complete */ 605 wait_for_completion(&iser_conn->ib_completion); 606 607 mutex_lock(&iser_conn->state_mutex); 608 iser_conn->state = ISER_CONN_DOWN; 609 mutex_unlock(&iser_conn->state_mutex); 610 611 iser_conn_release(iser_conn); 612 } 613 614 /** 615 * iser_free_ib_conn_res - release IB related resources 616 * @iser_conn: iser connection struct 617 * @destroy: indicator if we need to try to release the 618 * iser device and memory regoins pool (only iscsi 619 * shutdown and DEVICE_REMOVAL will use this). 620 * 621 * This routine is called with the iser state mutex held 622 * so the cm_id removal is out of here. It is Safe to 623 * be invoked multiple times. 624 */ 625 static void iser_free_ib_conn_res(struct iser_conn *iser_conn, 626 bool destroy) 627 { 628 struct ib_conn *ib_conn = &iser_conn->ib_conn; 629 struct iser_device *device = ib_conn->device; 630 631 iser_info("freeing conn %p cma_id %p qp %p\n", 632 iser_conn, ib_conn->cma_id, ib_conn->qp); 633 634 if (ib_conn->qp != NULL) { 635 ib_conn->comp->active_qps--; 636 rdma_destroy_qp(ib_conn->cma_id); 637 ib_conn->qp = NULL; 638 } 639 640 if (destroy) { 641 if (iser_conn->rx_descs) 642 iser_free_rx_descriptors(iser_conn); 643 644 if (device != NULL) { 645 iser_device_try_release(device); 646 ib_conn->device = NULL; 647 } 648 } 649 } 650 651 /** 652 * Frees all conn objects and deallocs conn descriptor 653 */ 654 void iser_conn_release(struct iser_conn *iser_conn) 655 { 656 struct ib_conn *ib_conn = &iser_conn->ib_conn; 657 658 mutex_lock(&ig.connlist_mutex); 659 list_del(&iser_conn->conn_list); 660 mutex_unlock(&ig.connlist_mutex); 661 662 mutex_lock(&iser_conn->state_mutex); 663 /* In case we endup here without ep_disconnect being invoked. */ 664 if (iser_conn->state != ISER_CONN_DOWN) { 665 iser_warn("iser conn %p state %d, expected state down.\n", 666 iser_conn, iser_conn->state); 667 iscsi_destroy_endpoint(iser_conn->ep); 668 iser_conn->state = ISER_CONN_DOWN; 669 } 670 /* 671 * In case we never got to bind stage, we still need to 672 * release IB resources (which is safe to call more than once). 673 */ 674 iser_free_ib_conn_res(iser_conn, true); 675 mutex_unlock(&iser_conn->state_mutex); 676 677 if (ib_conn->cma_id != NULL) { 678 rdma_destroy_id(ib_conn->cma_id); 679 ib_conn->cma_id = NULL; 680 } 681 682 kfree(iser_conn); 683 } 684 685 /** 686 * triggers start of the disconnect procedures and wait for them to be done 687 * Called with state mutex held 688 */ 689 int iser_conn_terminate(struct iser_conn *iser_conn) 690 { 691 struct ib_conn *ib_conn = &iser_conn->ib_conn; 692 struct ib_send_wr *bad_wr; 693 int err = 0; 694 695 /* terminate the iser conn only if the conn state is UP */ 696 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP, 697 ISER_CONN_TERMINATING)) 698 return 0; 699 700 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); 701 702 /* suspend queuing of new iscsi commands */ 703 if (iser_conn->iscsi_conn) 704 iscsi_suspend_queue(iser_conn->iscsi_conn); 705 706 /* 707 * In case we didn't already clean up the cma_id (peer initiated 708 * a disconnection), we need to Cause the CMA to change the QP 709 * state to ERROR. 710 */ 711 if (ib_conn->cma_id) { 712 err = rdma_disconnect(ib_conn->cma_id); 713 if (err) 714 iser_err("Failed to disconnect, conn: 0x%p err %d\n", 715 iser_conn, err); 716 717 /* post an indication that all flush errors were consumed */ 718 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr); 719 if (err) { 720 iser_err("conn %p failed to post beacon", ib_conn); 721 return 1; 722 } 723 724 wait_for_completion(&ib_conn->flush_comp); 725 } 726 727 return 1; 728 } 729 730 /** 731 * Called with state mutex held 732 **/ 733 static void iser_connect_error(struct rdma_cm_id *cma_id) 734 { 735 struct iser_conn *iser_conn; 736 737 iser_conn = (struct iser_conn *)cma_id->context; 738 iser_conn->state = ISER_CONN_TERMINATING; 739 } 740 741 /** 742 * Called with state mutex held 743 **/ 744 static void iser_addr_handler(struct rdma_cm_id *cma_id) 745 { 746 struct iser_device *device; 747 struct iser_conn *iser_conn; 748 struct ib_conn *ib_conn; 749 int ret; 750 751 iser_conn = (struct iser_conn *)cma_id->context; 752 if (iser_conn->state != ISER_CONN_PENDING) 753 /* bailout */ 754 return; 755 756 ib_conn = &iser_conn->ib_conn; 757 device = iser_device_find_by_ib_device(cma_id); 758 if (!device) { 759 iser_err("device lookup/creation failed\n"); 760 iser_connect_error(cma_id); 761 return; 762 } 763 764 ib_conn->device = device; 765 766 /* connection T10-PI support */ 767 if (iser_pi_enable) { 768 if (!(device->dev_attr.device_cap_flags & 769 IB_DEVICE_SIGNATURE_HANDOVER)) { 770 iser_warn("T10-PI requested but not supported on %s, " 771 "continue without T10-PI\n", 772 ib_conn->device->ib_device->name); 773 ib_conn->pi_support = false; 774 } else { 775 ib_conn->pi_support = true; 776 } 777 } 778 779 ret = rdma_resolve_route(cma_id, 1000); 780 if (ret) { 781 iser_err("resolve route failed: %d\n", ret); 782 iser_connect_error(cma_id); 783 return; 784 } 785 } 786 787 /** 788 * Called with state mutex held 789 **/ 790 static void iser_route_handler(struct rdma_cm_id *cma_id) 791 { 792 struct rdma_conn_param conn_param; 793 int ret; 794 struct iser_cm_hdr req_hdr; 795 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 796 struct ib_conn *ib_conn = &iser_conn->ib_conn; 797 struct iser_device *device = ib_conn->device; 798 799 if (iser_conn->state != ISER_CONN_PENDING) 800 /* bailout */ 801 return; 802 803 ret = iser_create_ib_conn_res(ib_conn); 804 if (ret) 805 goto failure; 806 807 memset(&conn_param, 0, sizeof conn_param); 808 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom; 809 conn_param.initiator_depth = 1; 810 conn_param.retry_count = 7; 811 conn_param.rnr_retry_count = 6; 812 813 memset(&req_hdr, 0, sizeof(req_hdr)); 814 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED | 815 ISER_SEND_W_INV_NOT_SUPPORTED); 816 conn_param.private_data = (void *)&req_hdr; 817 conn_param.private_data_len = sizeof(struct iser_cm_hdr); 818 819 ret = rdma_connect(cma_id, &conn_param); 820 if (ret) { 821 iser_err("failure connecting: %d\n", ret); 822 goto failure; 823 } 824 825 return; 826 failure: 827 iser_connect_error(cma_id); 828 } 829 830 static void iser_connected_handler(struct rdma_cm_id *cma_id) 831 { 832 struct iser_conn *iser_conn; 833 struct ib_qp_attr attr; 834 struct ib_qp_init_attr init_attr; 835 836 iser_conn = (struct iser_conn *)cma_id->context; 837 if (iser_conn->state != ISER_CONN_PENDING) 838 /* bailout */ 839 return; 840 841 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); 842 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); 843 844 iser_conn->state = ISER_CONN_UP; 845 complete(&iser_conn->up_completion); 846 } 847 848 static void iser_disconnected_handler(struct rdma_cm_id *cma_id) 849 { 850 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 851 852 if (iser_conn_terminate(iser_conn)) { 853 if (iser_conn->iscsi_conn) 854 iscsi_conn_failure(iser_conn->iscsi_conn, 855 ISCSI_ERR_CONN_FAILED); 856 else 857 iser_err("iscsi_iser connection isn't bound\n"); 858 } 859 } 860 861 static void iser_cleanup_handler(struct rdma_cm_id *cma_id, 862 bool destroy) 863 { 864 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context; 865 866 /* 867 * We are not guaranteed that we visited disconnected_handler 868 * by now, call it here to be safe that we handle CM drep 869 * and flush errors. 870 */ 871 iser_disconnected_handler(cma_id); 872 iser_free_ib_conn_res(iser_conn, destroy); 873 complete(&iser_conn->ib_completion); 874 }; 875 876 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) 877 { 878 struct iser_conn *iser_conn; 879 int ret = 0; 880 881 iser_conn = (struct iser_conn *)cma_id->context; 882 iser_info("%s (%d): status %d conn %p id %p\n", 883 rdma_event_msg(event->event), event->event, 884 event->status, cma_id->context, cma_id); 885 886 mutex_lock(&iser_conn->state_mutex); 887 switch (event->event) { 888 case RDMA_CM_EVENT_ADDR_RESOLVED: 889 iser_addr_handler(cma_id); 890 break; 891 case RDMA_CM_EVENT_ROUTE_RESOLVED: 892 iser_route_handler(cma_id); 893 break; 894 case RDMA_CM_EVENT_ESTABLISHED: 895 iser_connected_handler(cma_id); 896 break; 897 case RDMA_CM_EVENT_ADDR_ERROR: 898 case RDMA_CM_EVENT_ROUTE_ERROR: 899 case RDMA_CM_EVENT_CONNECT_ERROR: 900 case RDMA_CM_EVENT_UNREACHABLE: 901 case RDMA_CM_EVENT_REJECTED: 902 iser_connect_error(cma_id); 903 break; 904 case RDMA_CM_EVENT_DISCONNECTED: 905 case RDMA_CM_EVENT_ADDR_CHANGE: 906 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 907 iser_cleanup_handler(cma_id, false); 908 break; 909 case RDMA_CM_EVENT_DEVICE_REMOVAL: 910 /* 911 * we *must* destroy the device as we cannot rely 912 * on iscsid to be around to initiate error handling. 913 * also if we are not in state DOWN implicitly destroy 914 * the cma_id. 915 */ 916 iser_cleanup_handler(cma_id, true); 917 if (iser_conn->state != ISER_CONN_DOWN) { 918 iser_conn->ib_conn.cma_id = NULL; 919 ret = 1; 920 } 921 break; 922 default: 923 iser_err("Unexpected RDMA CM event: %s (%d)\n", 924 rdma_event_msg(event->event), event->event); 925 break; 926 } 927 mutex_unlock(&iser_conn->state_mutex); 928 929 return ret; 930 } 931 932 void iser_conn_init(struct iser_conn *iser_conn) 933 { 934 iser_conn->state = ISER_CONN_INIT; 935 iser_conn->ib_conn.post_recv_buf_count = 0; 936 init_completion(&iser_conn->ib_conn.flush_comp); 937 init_completion(&iser_conn->stop_completion); 938 init_completion(&iser_conn->ib_completion); 939 init_completion(&iser_conn->up_completion); 940 INIT_LIST_HEAD(&iser_conn->conn_list); 941 spin_lock_init(&iser_conn->ib_conn.lock); 942 mutex_init(&iser_conn->state_mutex); 943 } 944 945 /** 946 * starts the process of connecting to the target 947 * sleeps until the connection is established or rejected 948 */ 949 int iser_connect(struct iser_conn *iser_conn, 950 struct sockaddr *src_addr, 951 struct sockaddr *dst_addr, 952 int non_blocking) 953 { 954 struct ib_conn *ib_conn = &iser_conn->ib_conn; 955 int err = 0; 956 957 mutex_lock(&iser_conn->state_mutex); 958 959 sprintf(iser_conn->name, "%pISp", dst_addr); 960 961 iser_info("connecting to: %s\n", iser_conn->name); 962 963 /* the device is known only --after-- address resolution */ 964 ib_conn->device = NULL; 965 966 iser_conn->state = ISER_CONN_PENDING; 967 968 ib_conn->beacon.wr_id = ISER_BEACON_WRID; 969 ib_conn->beacon.opcode = IB_WR_SEND; 970 971 ib_conn->cma_id = rdma_create_id(iser_cma_handler, 972 (void *)iser_conn, 973 RDMA_PS_TCP, IB_QPT_RC); 974 if (IS_ERR(ib_conn->cma_id)) { 975 err = PTR_ERR(ib_conn->cma_id); 976 iser_err("rdma_create_id failed: %d\n", err); 977 goto id_failure; 978 } 979 980 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); 981 if (err) { 982 iser_err("rdma_resolve_addr failed: %d\n", err); 983 goto addr_failure; 984 } 985 986 if (!non_blocking) { 987 wait_for_completion_interruptible(&iser_conn->up_completion); 988 989 if (iser_conn->state != ISER_CONN_UP) { 990 err = -EIO; 991 goto connect_failure; 992 } 993 } 994 mutex_unlock(&iser_conn->state_mutex); 995 996 mutex_lock(&ig.connlist_mutex); 997 list_add(&iser_conn->conn_list, &ig.connlist); 998 mutex_unlock(&ig.connlist_mutex); 999 return 0; 1000 1001 id_failure: 1002 ib_conn->cma_id = NULL; 1003 addr_failure: 1004 iser_conn->state = ISER_CONN_DOWN; 1005 connect_failure: 1006 mutex_unlock(&iser_conn->state_mutex); 1007 iser_conn_release(iser_conn); 1008 return err; 1009 } 1010 1011 int iser_post_recvl(struct iser_conn *iser_conn) 1012 { 1013 struct ib_recv_wr rx_wr, *rx_wr_failed; 1014 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1015 struct ib_sge sge; 1016 int ib_ret; 1017 1018 sge.addr = iser_conn->login_resp_dma; 1019 sge.length = ISER_RX_LOGIN_SIZE; 1020 sge.lkey = ib_conn->device->mr->lkey; 1021 1022 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf; 1023 rx_wr.sg_list = &sge; 1024 rx_wr.num_sge = 1; 1025 rx_wr.next = NULL; 1026 1027 ib_conn->post_recv_buf_count++; 1028 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed); 1029 if (ib_ret) { 1030 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1031 ib_conn->post_recv_buf_count--; 1032 } 1033 return ib_ret; 1034 } 1035 1036 int iser_post_recvm(struct iser_conn *iser_conn, int count) 1037 { 1038 struct ib_recv_wr *rx_wr, *rx_wr_failed; 1039 int i, ib_ret; 1040 struct ib_conn *ib_conn = &iser_conn->ib_conn; 1041 unsigned int my_rx_head = iser_conn->rx_desc_head; 1042 struct iser_rx_desc *rx_desc; 1043 1044 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) { 1045 rx_desc = &iser_conn->rx_descs[my_rx_head]; 1046 rx_wr->wr_id = (uintptr_t)rx_desc; 1047 rx_wr->sg_list = &rx_desc->rx_sg; 1048 rx_wr->num_sge = 1; 1049 rx_wr->next = rx_wr + 1; 1050 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask; 1051 } 1052 1053 rx_wr--; 1054 rx_wr->next = NULL; /* mark end of work requests list */ 1055 1056 ib_conn->post_recv_buf_count += count; 1057 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed); 1058 if (ib_ret) { 1059 iser_err("ib_post_recv failed ret=%d\n", ib_ret); 1060 ib_conn->post_recv_buf_count -= count; 1061 } else 1062 iser_conn->rx_desc_head = my_rx_head; 1063 return ib_ret; 1064 } 1065 1066 1067 /** 1068 * iser_start_send - Initiate a Send DTO operation 1069 * 1070 * returns 0 on success, -1 on failure 1071 */ 1072 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc, 1073 bool signal) 1074 { 1075 int ib_ret; 1076 struct ib_send_wr send_wr, *send_wr_failed; 1077 1078 ib_dma_sync_single_for_device(ib_conn->device->ib_device, 1079 tx_desc->dma_addr, ISER_HEADERS_LEN, 1080 DMA_TO_DEVICE); 1081 1082 send_wr.next = NULL; 1083 send_wr.wr_id = (uintptr_t)tx_desc; 1084 send_wr.sg_list = tx_desc->tx_sg; 1085 send_wr.num_sge = tx_desc->num_sge; 1086 send_wr.opcode = IB_WR_SEND; 1087 send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0; 1088 1089 ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed); 1090 if (ib_ret) 1091 iser_err("ib_post_send failed, ret:%d\n", ib_ret); 1092 1093 return ib_ret; 1094 } 1095 1096 /** 1097 * is_iser_tx_desc - Indicate if the completion wr_id 1098 * is a TX descriptor or not. 1099 * @iser_conn: iser connection 1100 * @wr_id: completion WR identifier 1101 * 1102 * Since we cannot rely on wc opcode in FLUSH errors 1103 * we must work around it by checking if the wr_id address 1104 * falls in the iser connection rx_descs buffer. If so 1105 * it is an RX descriptor, otherwize it is a TX. 1106 */ 1107 static inline bool 1108 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id) 1109 { 1110 void *start = iser_conn->rx_descs; 1111 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs); 1112 1113 if (wr_id >= start && wr_id < start + len) 1114 return false; 1115 1116 return true; 1117 } 1118 1119 /** 1120 * iser_handle_comp_error() - Handle error completion 1121 * @ib_conn: connection RDMA resources 1122 * @wc: work completion 1123 * 1124 * Notes: We may handle a FLUSH error completion and in this case 1125 * we only cleanup in case TX type was DATAOUT. For non-FLUSH 1126 * error completion we should also notify iscsi layer that 1127 * connection is failed (in case we passed bind stage). 1128 */ 1129 static void 1130 iser_handle_comp_error(struct ib_conn *ib_conn, 1131 struct ib_wc *wc) 1132 { 1133 void *wr_id = (void *)(uintptr_t)wc->wr_id; 1134 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn, 1135 ib_conn); 1136 1137 if (wc->status != IB_WC_WR_FLUSH_ERR) 1138 if (iser_conn->iscsi_conn) 1139 iscsi_conn_failure(iser_conn->iscsi_conn, 1140 ISCSI_ERR_CONN_FAILED); 1141 1142 if (wc->wr_id == ISER_FASTREG_LI_WRID) 1143 return; 1144 1145 if (is_iser_tx_desc(iser_conn, wr_id)) { 1146 struct iser_tx_desc *desc = wr_id; 1147 1148 if (desc->type == ISCSI_TX_DATAOUT) 1149 kmem_cache_free(ig.desc_cache, desc); 1150 } else { 1151 ib_conn->post_recv_buf_count--; 1152 } 1153 } 1154 1155 /** 1156 * iser_handle_wc - handle a single work completion 1157 * @wc: work completion 1158 * 1159 * Soft-IRQ context, work completion can be either 1160 * SEND or RECV, and can turn out successful or 1161 * with error (or flush error). 1162 */ 1163 static void iser_handle_wc(struct ib_wc *wc) 1164 { 1165 struct ib_conn *ib_conn; 1166 struct iser_tx_desc *tx_desc; 1167 struct iser_rx_desc *rx_desc; 1168 1169 ib_conn = wc->qp->qp_context; 1170 if (likely(wc->status == IB_WC_SUCCESS)) { 1171 if (wc->opcode == IB_WC_RECV) { 1172 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id; 1173 iser_rcv_completion(rx_desc, wc->byte_len, 1174 ib_conn); 1175 } else 1176 if (wc->opcode == IB_WC_SEND) { 1177 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id; 1178 iser_snd_completion(tx_desc, ib_conn); 1179 } else { 1180 iser_err("Unknown wc opcode %d\n", wc->opcode); 1181 } 1182 } else { 1183 if (wc->status != IB_WC_WR_FLUSH_ERR) 1184 iser_err("%s (%d): wr id %llx vend_err %x\n", 1185 ib_wc_status_msg(wc->status), wc->status, 1186 wc->wr_id, wc->vendor_err); 1187 else 1188 iser_dbg("%s (%d): wr id %llx\n", 1189 ib_wc_status_msg(wc->status), wc->status, 1190 wc->wr_id); 1191 1192 if (wc->wr_id == ISER_BEACON_WRID) 1193 /* all flush errors were consumed */ 1194 complete(&ib_conn->flush_comp); 1195 else 1196 iser_handle_comp_error(ib_conn, wc); 1197 } 1198 } 1199 1200 /** 1201 * iser_cq_tasklet_fn - iSER completion polling loop 1202 * @data: iSER completion context 1203 * 1204 * Soft-IRQ context, polling connection CQ until 1205 * either CQ was empty or we exausted polling budget 1206 */ 1207 static void iser_cq_tasklet_fn(unsigned long data) 1208 { 1209 struct iser_comp *comp = (struct iser_comp *)data; 1210 struct ib_cq *cq = comp->cq; 1211 struct ib_wc *const wcs = comp->wcs; 1212 int i, n, completed = 0; 1213 1214 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) { 1215 for (i = 0; i < n; i++) 1216 iser_handle_wc(&wcs[i]); 1217 1218 completed += n; 1219 if (completed >= iser_cq_poll_limit) 1220 break; 1221 } 1222 1223 /* 1224 * It is assumed here that arming CQ only once its empty 1225 * would not cause interrupts to be missed. 1226 */ 1227 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1228 1229 iser_dbg("got %d completions\n", completed); 1230 } 1231 1232 static void iser_cq_callback(struct ib_cq *cq, void *cq_context) 1233 { 1234 struct iser_comp *comp = cq_context; 1235 1236 tasklet_schedule(&comp->tasklet); 1237 } 1238 1239 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, 1240 enum iser_data_dir cmd_dir, sector_t *sector) 1241 { 1242 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; 1243 struct fast_reg_descriptor *desc = reg->mem_h; 1244 unsigned long sector_size = iser_task->sc->device->sector_size; 1245 struct ib_mr_status mr_status; 1246 int ret; 1247 1248 if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) { 1249 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED; 1250 ret = ib_check_mr_status(desc->pi_ctx->sig_mr, 1251 IB_MR_CHECK_SIG_STATUS, &mr_status); 1252 if (ret) { 1253 pr_err("ib_check_mr_status failed, ret %d\n", ret); 1254 goto err; 1255 } 1256 1257 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 1258 sector_t sector_off = mr_status.sig_err.sig_err_offset; 1259 1260 do_div(sector_off, sector_size + 8); 1261 *sector = scsi_get_lba(iser_task->sc) + sector_off; 1262 1263 pr_err("PI error found type %d at sector %llx " 1264 "expected %x vs actual %x\n", 1265 mr_status.sig_err.err_type, 1266 (unsigned long long)*sector, 1267 mr_status.sig_err.expected, 1268 mr_status.sig_err.actual); 1269 1270 switch (mr_status.sig_err.err_type) { 1271 case IB_SIG_BAD_GUARD: 1272 return 0x1; 1273 case IB_SIG_BAD_REFTAG: 1274 return 0x3; 1275 case IB_SIG_BAD_APPTAG: 1276 return 0x2; 1277 } 1278 } 1279 } 1280 1281 return 0; 1282 err: 1283 /* Not alot we can do here, return ambiguous guard error */ 1284 return 0x1; 1285 } 1286