xref: /linux/drivers/infiniband/sw/siw/siw_verbs.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 
3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
4 /* Copyright (c) 2008-2019, IBM Corporation */
5 
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
11 #include <net/addrconf.h>
12 
13 #include <rdma/iw_cm.h>
14 #include <rdma/ib_verbs.h>
15 #include <rdma/ib_user_verbs.h>
16 #include <rdma/uverbs_ioctl.h>
17 
18 #include "siw.h"
19 #include "siw_verbs.h"
20 #include "siw_mem.h"
21 
22 static int siw_qp_state_to_ib_qp_state[SIW_QP_STATE_COUNT] = {
23 	[SIW_QP_STATE_IDLE] = IB_QPS_INIT,
24 	[SIW_QP_STATE_RTR] = IB_QPS_RTR,
25 	[SIW_QP_STATE_RTS] = IB_QPS_RTS,
26 	[SIW_QP_STATE_CLOSING] = IB_QPS_SQD,
27 	[SIW_QP_STATE_TERMINATE] = IB_QPS_SQE,
28 	[SIW_QP_STATE_ERROR] = IB_QPS_ERR
29 };
30 
31 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
32 	[IB_QPS_RESET] = SIW_QP_STATE_IDLE,
33 	[IB_QPS_INIT] = SIW_QP_STATE_IDLE,
34 	[IB_QPS_RTR] = SIW_QP_STATE_RTR,
35 	[IB_QPS_RTS] = SIW_QP_STATE_RTS,
36 	[IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
37 	[IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
38 	[IB_QPS_ERR] = SIW_QP_STATE_ERROR
39 };
40 
41 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
42 	[IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
43 	[IB_QPS_RTS] = "RTS",     [IB_QPS_SQD] = "SQD",   [IB_QPS_SQE] = "SQE",
44 	[IB_QPS_ERR] = "ERR"
45 };
46 
47 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
48 {
49 	struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry);
50 
51 	kfree(entry);
52 }
53 
54 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
55 {
56 	struct siw_ucontext *uctx = to_siw_ctx(ctx);
57 	size_t size = vma->vm_end - vma->vm_start;
58 	struct rdma_user_mmap_entry *rdma_entry;
59 	struct siw_user_mmap_entry *entry;
60 	int rv = -EINVAL;
61 
62 	/*
63 	 * Must be page aligned
64 	 */
65 	if (vma->vm_start & (PAGE_SIZE - 1)) {
66 		pr_warn("siw: mmap not page aligned\n");
67 		return -EINVAL;
68 	}
69 	rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma);
70 	if (!rdma_entry) {
71 		siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n",
72 			vma->vm_pgoff, size);
73 		return -EINVAL;
74 	}
75 	entry = to_siw_mmap_entry(rdma_entry);
76 
77 	rv = remap_vmalloc_range(vma, entry->address, 0);
78 	if (rv)
79 		pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff,
80 			size);
81 	rdma_user_mmap_entry_put(rdma_entry);
82 
83 	return rv;
84 }
85 
86 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
87 {
88 	struct siw_device *sdev = to_siw_dev(base_ctx->device);
89 	struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
90 	struct siw_uresp_alloc_ctx uresp = {};
91 	int rv;
92 
93 	if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
94 		rv = -ENOMEM;
95 		goto err_out;
96 	}
97 	ctx->sdev = sdev;
98 
99 	uresp.dev_id = sdev->vendor_part_id;
100 
101 	if (udata->outlen < sizeof(uresp)) {
102 		rv = -EINVAL;
103 		goto err_out;
104 	}
105 	rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
106 	if (rv)
107 		goto err_out;
108 
109 	siw_dbg(base_ctx->device, "success. now %d context(s)\n",
110 		atomic_read(&sdev->num_ctx));
111 
112 	return 0;
113 
114 err_out:
115 	atomic_dec(&sdev->num_ctx);
116 	siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
117 		atomic_read(&sdev->num_ctx));
118 
119 	return rv;
120 }
121 
122 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
123 {
124 	struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
125 
126 	atomic_dec(&uctx->sdev->num_ctx);
127 }
128 
129 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
130 		     struct ib_udata *udata)
131 {
132 	struct siw_device *sdev = to_siw_dev(base_dev);
133 
134 	if (udata->inlen || udata->outlen)
135 		return -EINVAL;
136 
137 	memset(attr, 0, sizeof(*attr));
138 
139 	/* Revisit atomic caps if RFC 7306 gets supported */
140 	attr->atomic_cap = 0;
141 	attr->device_cap_flags = IB_DEVICE_MEM_MGT_EXTENSIONS;
142 	attr->kernel_cap_flags = IBK_ALLOW_USER_UNREG;
143 	attr->max_cq = sdev->attrs.max_cq;
144 	attr->max_cqe = sdev->attrs.max_cqe;
145 	attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
146 	attr->max_mr = sdev->attrs.max_mr;
147 	attr->max_mw = sdev->attrs.max_mw;
148 	attr->max_mr_size = ~0ull;
149 	attr->max_pd = sdev->attrs.max_pd;
150 	attr->max_qp = sdev->attrs.max_qp;
151 	attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
152 	attr->max_qp_rd_atom = sdev->attrs.max_ord;
153 	attr->max_qp_wr = sdev->attrs.max_qp_wr;
154 	attr->max_recv_sge = sdev->attrs.max_sge;
155 	attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
156 	attr->max_send_sge = sdev->attrs.max_sge;
157 	attr->max_sge_rd = sdev->attrs.max_sge_rd;
158 	attr->max_srq = sdev->attrs.max_srq;
159 	attr->max_srq_sge = sdev->attrs.max_srq_sge;
160 	attr->max_srq_wr = sdev->attrs.max_srq_wr;
161 	attr->page_size_cap = PAGE_SIZE;
162 	attr->vendor_id = SIW_VENDOR_ID;
163 	attr->vendor_part_id = sdev->vendor_part_id;
164 
165 	addrconf_addr_eui48((u8 *)&attr->sys_image_guid,
166 			    sdev->raw_gid);
167 
168 	return 0;
169 }
170 
171 int siw_query_port(struct ib_device *base_dev, u32 port,
172 		   struct ib_port_attr *attr)
173 {
174 	struct siw_device *sdev = to_siw_dev(base_dev);
175 	int rv;
176 
177 	memset(attr, 0, sizeof(*attr));
178 
179 	rv = ib_get_eth_speed(base_dev, port, &attr->active_speed,
180 			 &attr->active_width);
181 	attr->gid_tbl_len = 1;
182 	attr->max_msg_sz = -1;
183 	attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
184 	attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
185 	attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
186 		IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
187 	attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
188 	attr->state = sdev->state;
189 	/*
190 	 * All zero
191 	 *
192 	 * attr->lid = 0;
193 	 * attr->bad_pkey_cntr = 0;
194 	 * attr->qkey_viol_cntr = 0;
195 	 * attr->sm_lid = 0;
196 	 * attr->lmc = 0;
197 	 * attr->max_vl_num = 0;
198 	 * attr->sm_sl = 0;
199 	 * attr->subnet_timeout = 0;
200 	 * attr->init_type_repy = 0;
201 	 */
202 	return rv;
203 }
204 
205 int siw_get_port_immutable(struct ib_device *base_dev, u32 port,
206 			   struct ib_port_immutable *port_immutable)
207 {
208 	struct ib_port_attr attr;
209 	int rv = siw_query_port(base_dev, port, &attr);
210 
211 	if (rv)
212 		return rv;
213 
214 	port_immutable->gid_tbl_len = attr.gid_tbl_len;
215 	port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
216 
217 	return 0;
218 }
219 
220 int siw_query_gid(struct ib_device *base_dev, u32 port, int idx,
221 		  union ib_gid *gid)
222 {
223 	struct siw_device *sdev = to_siw_dev(base_dev);
224 
225 	/* subnet_prefix == interface_id == 0; */
226 	memset(gid, 0, sizeof(*gid));
227 	memcpy(gid->raw, sdev->raw_gid, ETH_ALEN);
228 
229 	return 0;
230 }
231 
232 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
233 {
234 	struct siw_device *sdev = to_siw_dev(pd->device);
235 
236 	if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
237 		atomic_dec(&sdev->num_pd);
238 		return -ENOMEM;
239 	}
240 	siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
241 
242 	return 0;
243 }
244 
245 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
246 {
247 	struct siw_device *sdev = to_siw_dev(pd->device);
248 
249 	siw_dbg_pd(pd, "free PD\n");
250 	atomic_dec(&sdev->num_pd);
251 	return 0;
252 }
253 
254 void siw_qp_get_ref(struct ib_qp *base_qp)
255 {
256 	siw_qp_get(to_siw_qp(base_qp));
257 }
258 
259 void siw_qp_put_ref(struct ib_qp *base_qp)
260 {
261 	siw_qp_put(to_siw_qp(base_qp));
262 }
263 
264 static struct rdma_user_mmap_entry *
265 siw_mmap_entry_insert(struct siw_ucontext *uctx,
266 		      void *address, size_t length,
267 		      u64 *offset)
268 {
269 	struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
270 	int rv;
271 
272 	*offset = SIW_INVAL_UOBJ_KEY;
273 	if (!entry)
274 		return NULL;
275 
276 	entry->address = address;
277 
278 	rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext,
279 					 &entry->rdma_entry,
280 					 length);
281 	if (rv) {
282 		kfree(entry);
283 		return NULL;
284 	}
285 
286 	*offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
287 
288 	return &entry->rdma_entry;
289 }
290 
291 /*
292  * siw_create_qp()
293  *
294  * Create QP of requested size on given device.
295  *
296  * @qp:		Queue pait
297  * @attrs:	Initial QP attributes.
298  * @udata:	used to provide QP ID, SQ and RQ size back to user.
299  */
300 
301 int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs,
302 		  struct ib_udata *udata)
303 {
304 	struct ib_pd *pd = ibqp->pd;
305 	struct siw_qp *qp = to_siw_qp(ibqp);
306 	struct ib_device *base_dev = pd->device;
307 	struct siw_device *sdev = to_siw_dev(base_dev);
308 	struct siw_ucontext *uctx =
309 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
310 					  base_ucontext);
311 	unsigned long flags;
312 	int num_sqe, num_rqe, rv = 0;
313 	size_t length;
314 
315 	siw_dbg(base_dev, "create new QP\n");
316 
317 	if (attrs->create_flags)
318 		return -EOPNOTSUPP;
319 
320 	if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
321 		siw_dbg(base_dev, "too many QP's\n");
322 		rv = -ENOMEM;
323 		goto err_atomic;
324 	}
325 	if (attrs->qp_type != IB_QPT_RC) {
326 		siw_dbg(base_dev, "only RC QP's supported\n");
327 		rv = -EOPNOTSUPP;
328 		goto err_atomic;
329 	}
330 	if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
331 	    (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
332 	    (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
333 	    (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
334 		siw_dbg(base_dev, "QP size error\n");
335 		rv = -EINVAL;
336 		goto err_atomic;
337 	}
338 	if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
339 		siw_dbg(base_dev, "max inline send: %d > %d\n",
340 			attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
341 		rv = -EINVAL;
342 		goto err_atomic;
343 	}
344 	/*
345 	 * NOTE: we don't allow for a QP unable to hold any SQ WQE
346 	 */
347 	if (attrs->cap.max_send_wr == 0) {
348 		siw_dbg(base_dev, "QP must have send queue\n");
349 		rv = -EINVAL;
350 		goto err_atomic;
351 	}
352 
353 	if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) {
354 		siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
355 		rv = -EINVAL;
356 		goto err_atomic;
357 	}
358 
359 	init_rwsem(&qp->state_lock);
360 	spin_lock_init(&qp->sq_lock);
361 	spin_lock_init(&qp->rq_lock);
362 	spin_lock_init(&qp->orq_lock);
363 
364 	rv = siw_qp_add(sdev, qp);
365 	if (rv)
366 		goto err_atomic;
367 
368 
369 	/* All queue indices are derived from modulo operations
370 	 * on a free running 'get' (consumer) and 'put' (producer)
371 	 * unsigned counter. Having queue sizes at power of two
372 	 * avoids handling counter wrap around.
373 	 */
374 	num_sqe = roundup_pow_of_two(attrs->cap.max_send_wr);
375 	num_rqe = attrs->cap.max_recv_wr;
376 	if (num_rqe)
377 		num_rqe = roundup_pow_of_two(num_rqe);
378 
379 	if (udata)
380 		qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
381 	else
382 		qp->sendq = vcalloc(num_sqe, sizeof(struct siw_sqe));
383 
384 	if (qp->sendq == NULL) {
385 		rv = -ENOMEM;
386 		goto err_out_xa;
387 	}
388 	if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
389 		if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
390 			qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
391 		else {
392 			rv = -EINVAL;
393 			goto err_out_xa;
394 		}
395 	}
396 	qp->pd = pd;
397 	qp->scq = to_siw_cq(attrs->send_cq);
398 	qp->rcq = to_siw_cq(attrs->recv_cq);
399 
400 	if (attrs->srq) {
401 		/*
402 		 * SRQ support.
403 		 * Verbs 6.3.7: ignore RQ size, if SRQ present
404 		 * Verbs 6.3.5: do not check PD of SRQ against PD of QP
405 		 */
406 		qp->srq = to_siw_srq(attrs->srq);
407 		qp->attrs.rq_size = 0;
408 		siw_dbg(base_dev, "QP [%u]: SRQ attached\n",
409 			qp->base_qp.qp_num);
410 	} else if (num_rqe) {
411 		if (udata)
412 			qp->recvq =
413 				vmalloc_user(num_rqe * sizeof(struct siw_rqe));
414 		else
415 			qp->recvq = vcalloc(num_rqe, sizeof(struct siw_rqe));
416 
417 		if (qp->recvq == NULL) {
418 			rv = -ENOMEM;
419 			goto err_out_xa;
420 		}
421 		qp->attrs.rq_size = num_rqe;
422 	}
423 	qp->attrs.sq_size = num_sqe;
424 	qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
425 	qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
426 
427 	/* Make those two tunables fixed for now. */
428 	qp->tx_ctx.gso_seg_limit = 1;
429 	qp->tx_ctx.zcopy_tx = zcopy_tx;
430 
431 	qp->attrs.state = SIW_QP_STATE_IDLE;
432 
433 	if (udata) {
434 		struct siw_uresp_create_qp uresp = {};
435 
436 		uresp.num_sqe = num_sqe;
437 		uresp.num_rqe = num_rqe;
438 		uresp.qp_id = qp_id(qp);
439 
440 		if (qp->sendq) {
441 			length = num_sqe * sizeof(struct siw_sqe);
442 			qp->sq_entry =
443 				siw_mmap_entry_insert(uctx, qp->sendq,
444 						      length, &uresp.sq_key);
445 			if (!qp->sq_entry) {
446 				rv = -ENOMEM;
447 				goto err_out_xa;
448 			}
449 		}
450 
451 		if (qp->recvq) {
452 			length = num_rqe * sizeof(struct siw_rqe);
453 			qp->rq_entry =
454 				siw_mmap_entry_insert(uctx, qp->recvq,
455 						      length, &uresp.rq_key);
456 			if (!qp->rq_entry) {
457 				uresp.sq_key = SIW_INVAL_UOBJ_KEY;
458 				rv = -ENOMEM;
459 				goto err_out_xa;
460 			}
461 		}
462 
463 		if (udata->outlen < sizeof(uresp)) {
464 			rv = -EINVAL;
465 			goto err_out_xa;
466 		}
467 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
468 		if (rv)
469 			goto err_out_xa;
470 	}
471 	qp->tx_cpu = siw_get_tx_cpu(sdev);
472 	if (qp->tx_cpu < 0) {
473 		rv = -EINVAL;
474 		goto err_out_xa;
475 	}
476 	INIT_LIST_HEAD(&qp->devq);
477 	spin_lock_irqsave(&sdev->lock, flags);
478 	list_add_tail(&qp->devq, &sdev->qp_list);
479 	spin_unlock_irqrestore(&sdev->lock, flags);
480 
481 	init_completion(&qp->qp_free);
482 
483 	return 0;
484 
485 err_out_xa:
486 	xa_erase(&sdev->qp_xa, qp_id(qp));
487 	if (uctx) {
488 		rdma_user_mmap_entry_remove(qp->sq_entry);
489 		rdma_user_mmap_entry_remove(qp->rq_entry);
490 	}
491 	vfree(qp->sendq);
492 	vfree(qp->recvq);
493 
494 err_atomic:
495 	atomic_dec(&sdev->num_qp);
496 	return rv;
497 }
498 
499 /*
500  * Minimum siw_query_qp() verb interface.
501  *
502  * @qp_attr_mask is not used but all available information is provided
503  */
504 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
505 		 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
506 {
507 	struct siw_qp *qp;
508 	struct siw_device *sdev;
509 
510 	if (base_qp && qp_attr && qp_init_attr) {
511 		qp = to_siw_qp(base_qp);
512 		sdev = to_siw_dev(base_qp->device);
513 	} else {
514 		return -EINVAL;
515 	}
516 	qp_attr->qp_state = siw_qp_state_to_ib_qp_state[qp->attrs.state];
517 	qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
518 	qp_attr->cap.max_send_wr = qp->attrs.sq_size;
519 	qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
520 	qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
521 	qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
522 	qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
523 	qp_attr->max_rd_atomic = qp->attrs.irq_size;
524 	qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
525 
526 	qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
527 				   IB_ACCESS_REMOTE_WRITE |
528 				   IB_ACCESS_REMOTE_READ;
529 
530 	qp_init_attr->qp_type = base_qp->qp_type;
531 	qp_init_attr->send_cq = base_qp->send_cq;
532 	qp_init_attr->recv_cq = base_qp->recv_cq;
533 	qp_init_attr->srq = base_qp->srq;
534 
535 	qp_init_attr->cap = qp_attr->cap;
536 
537 	return 0;
538 }
539 
540 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
541 			int attr_mask, struct ib_udata *udata)
542 {
543 	struct siw_qp_attrs new_attrs;
544 	enum siw_qp_attr_mask siw_attr_mask = 0;
545 	struct siw_qp *qp = to_siw_qp(base_qp);
546 	int rv = 0;
547 
548 	if (!attr_mask)
549 		return 0;
550 
551 	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
552 		return -EOPNOTSUPP;
553 
554 	memset(&new_attrs, 0, sizeof(new_attrs));
555 
556 	if (attr_mask & IB_QP_ACCESS_FLAGS) {
557 		siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
558 
559 		if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
560 			new_attrs.flags |= SIW_RDMA_READ_ENABLED;
561 		if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
562 			new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
563 		if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
564 			new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
565 	}
566 	if (attr_mask & IB_QP_STATE) {
567 		siw_dbg_qp(qp, "desired IB QP state: %s\n",
568 			   ib_qp_state_to_string[attr->qp_state]);
569 
570 		new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
571 
572 		if (new_attrs.state > SIW_QP_STATE_RTS)
573 			qp->tx_ctx.tx_suspend = 1;
574 
575 		siw_attr_mask |= SIW_QP_ATTR_STATE;
576 	}
577 	if (!siw_attr_mask)
578 		goto out;
579 
580 	down_write(&qp->state_lock);
581 
582 	rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
583 
584 	up_write(&qp->state_lock);
585 out:
586 	return rv;
587 }
588 
589 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
590 {
591 	struct siw_qp *qp = to_siw_qp(base_qp);
592 	struct siw_ucontext *uctx =
593 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
594 					  base_ucontext);
595 	struct siw_qp_attrs qp_attrs;
596 
597 	siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
598 
599 	/*
600 	 * Mark QP as in process of destruction to prevent from
601 	 * any async callbacks to RDMA core
602 	 */
603 	qp->attrs.flags |= SIW_QP_IN_DESTROY;
604 	qp->rx_stream.rx_suspend = 1;
605 
606 	if (uctx) {
607 		rdma_user_mmap_entry_remove(qp->sq_entry);
608 		rdma_user_mmap_entry_remove(qp->rq_entry);
609 	}
610 
611 	down_write(&qp->state_lock);
612 
613 	qp_attrs.state = SIW_QP_STATE_ERROR;
614 	siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
615 
616 	if (qp->cep) {
617 		siw_cep_put(qp->cep);
618 		qp->cep = NULL;
619 	}
620 	up_write(&qp->state_lock);
621 
622 	kfree(qp->tx_ctx.mpa_crc_hd);
623 	kfree(qp->rx_stream.mpa_crc_hd);
624 
625 	qp->scq = qp->rcq = NULL;
626 
627 	siw_qp_put(qp);
628 	wait_for_completion(&qp->qp_free);
629 
630 	return 0;
631 }
632 
633 /*
634  * siw_copy_inline_sgl()
635  *
636  * Prepare sgl of inlined data for sending. For userland callers
637  * function checks if given buffer addresses and len's are within
638  * process context bounds.
639  * Data from all provided sge's are copied together into the wqe,
640  * referenced by a single sge.
641  */
642 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
643 			       struct siw_sqe *sqe)
644 {
645 	struct ib_sge *core_sge = core_wr->sg_list;
646 	void *kbuf = &sqe->sge[1];
647 	int num_sge = core_wr->num_sge, bytes = 0;
648 
649 	sqe->sge[0].laddr = (uintptr_t)kbuf;
650 	sqe->sge[0].lkey = 0;
651 
652 	while (num_sge--) {
653 		if (!core_sge->length) {
654 			core_sge++;
655 			continue;
656 		}
657 		bytes += core_sge->length;
658 		if (bytes > SIW_MAX_INLINE) {
659 			bytes = -EINVAL;
660 			break;
661 		}
662 		memcpy(kbuf, ib_virt_dma_to_ptr(core_sge->addr),
663 		       core_sge->length);
664 
665 		kbuf += core_sge->length;
666 		core_sge++;
667 	}
668 	sqe->sge[0].length = max(bytes, 0);
669 	sqe->num_sge = bytes > 0 ? 1 : 0;
670 
671 	return bytes;
672 }
673 
674 /* Complete SQ WR's without processing */
675 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr,
676 			   const struct ib_send_wr **bad_wr)
677 {
678 	int rv = 0;
679 
680 	while (wr) {
681 		struct siw_sqe sqe = {};
682 
683 		switch (wr->opcode) {
684 		case IB_WR_RDMA_WRITE:
685 			sqe.opcode = SIW_OP_WRITE;
686 			break;
687 		case IB_WR_RDMA_READ:
688 			sqe.opcode = SIW_OP_READ;
689 			break;
690 		case IB_WR_RDMA_READ_WITH_INV:
691 			sqe.opcode = SIW_OP_READ_LOCAL_INV;
692 			break;
693 		case IB_WR_SEND:
694 			sqe.opcode = SIW_OP_SEND;
695 			break;
696 		case IB_WR_SEND_WITH_IMM:
697 			sqe.opcode = SIW_OP_SEND_WITH_IMM;
698 			break;
699 		case IB_WR_SEND_WITH_INV:
700 			sqe.opcode = SIW_OP_SEND_REMOTE_INV;
701 			break;
702 		case IB_WR_LOCAL_INV:
703 			sqe.opcode = SIW_OP_INVAL_STAG;
704 			break;
705 		case IB_WR_REG_MR:
706 			sqe.opcode = SIW_OP_REG_MR;
707 			break;
708 		default:
709 			rv = -EINVAL;
710 			break;
711 		}
712 		if (!rv) {
713 			sqe.id = wr->wr_id;
714 			rv = siw_sqe_complete(qp, &sqe, 0,
715 					      SIW_WC_WR_FLUSH_ERR);
716 		}
717 		if (rv) {
718 			if (bad_wr)
719 				*bad_wr = wr;
720 			break;
721 		}
722 		wr = wr->next;
723 	}
724 	return rv;
725 }
726 
727 /* Complete RQ WR's without processing */
728 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr,
729 			   const struct ib_recv_wr **bad_wr)
730 {
731 	struct siw_rqe rqe = {};
732 	int rv = 0;
733 
734 	while (wr) {
735 		rqe.id = wr->wr_id;
736 		rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR);
737 		if (rv) {
738 			if (bad_wr)
739 				*bad_wr = wr;
740 			break;
741 		}
742 		wr = wr->next;
743 	}
744 	return rv;
745 }
746 
747 /*
748  * siw_post_send()
749  *
750  * Post a list of S-WR's to a SQ.
751  *
752  * @base_qp:	Base QP contained in siw QP
753  * @wr:		Null terminated list of user WR's
754  * @bad_wr:	Points to failing WR in case of synchronous failure.
755  */
756 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
757 		  const struct ib_send_wr **bad_wr)
758 {
759 	struct siw_qp *qp = to_siw_qp(base_qp);
760 	struct siw_wqe *wqe = tx_wqe(qp);
761 
762 	unsigned long flags;
763 	int rv = 0;
764 
765 	if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) {
766 		siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
767 		*bad_wr = wr;
768 		return -EINVAL;
769 	}
770 
771 	/*
772 	 * Try to acquire QP state lock. Must be non-blocking
773 	 * to accommodate kernel clients needs.
774 	 */
775 	if (!down_read_trylock(&qp->state_lock)) {
776 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
777 			/*
778 			 * ERROR state is final, so we can be sure
779 			 * this state will not change as long as the QP
780 			 * exists.
781 			 *
782 			 * This handles an ib_drain_sq() call with
783 			 * a concurrent request to set the QP state
784 			 * to ERROR.
785 			 */
786 			rv = siw_sq_flush_wr(qp, wr, bad_wr);
787 		} else {
788 			siw_dbg_qp(qp, "QP locked, state %d\n",
789 				   qp->attrs.state);
790 			*bad_wr = wr;
791 			rv = -ENOTCONN;
792 		}
793 		return rv;
794 	}
795 	if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
796 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
797 			/*
798 			 * Immediately flush this WR to CQ, if QP
799 			 * is in ERROR state. SQ is guaranteed to
800 			 * be empty, so WR complets in-order.
801 			 *
802 			 * Typically triggered by ib_drain_sq().
803 			 */
804 			rv = siw_sq_flush_wr(qp, wr, bad_wr);
805 		} else {
806 			siw_dbg_qp(qp, "QP out of state %d\n",
807 				   qp->attrs.state);
808 			*bad_wr = wr;
809 			rv = -ENOTCONN;
810 		}
811 		up_read(&qp->state_lock);
812 		return rv;
813 	}
814 	spin_lock_irqsave(&qp->sq_lock, flags);
815 
816 	while (wr) {
817 		u32 idx = qp->sq_put % qp->attrs.sq_size;
818 		struct siw_sqe *sqe = &qp->sendq[idx];
819 
820 		if (sqe->flags) {
821 			siw_dbg_qp(qp, "sq full\n");
822 			rv = -ENOMEM;
823 			break;
824 		}
825 		if (wr->num_sge > qp->attrs.sq_max_sges) {
826 			siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
827 			rv = -EINVAL;
828 			break;
829 		}
830 		sqe->id = wr->wr_id;
831 
832 		if ((wr->send_flags & IB_SEND_SIGNALED) ||
833 		    (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
834 			sqe->flags |= SIW_WQE_SIGNALLED;
835 
836 		if (wr->send_flags & IB_SEND_FENCE)
837 			sqe->flags |= SIW_WQE_READ_FENCE;
838 
839 		switch (wr->opcode) {
840 		case IB_WR_SEND:
841 		case IB_WR_SEND_WITH_INV:
842 			if (wr->send_flags & IB_SEND_SOLICITED)
843 				sqe->flags |= SIW_WQE_SOLICITED;
844 
845 			if (!(wr->send_flags & IB_SEND_INLINE)) {
846 				siw_copy_sgl(wr->sg_list, sqe->sge,
847 					     wr->num_sge);
848 				sqe->num_sge = wr->num_sge;
849 			} else {
850 				rv = siw_copy_inline_sgl(wr, sqe);
851 				if (rv <= 0) {
852 					rv = -EINVAL;
853 					break;
854 				}
855 				sqe->flags |= SIW_WQE_INLINE;
856 				sqe->num_sge = 1;
857 			}
858 			if (wr->opcode == IB_WR_SEND)
859 				sqe->opcode = SIW_OP_SEND;
860 			else {
861 				sqe->opcode = SIW_OP_SEND_REMOTE_INV;
862 				sqe->rkey = wr->ex.invalidate_rkey;
863 			}
864 			break;
865 
866 		case IB_WR_RDMA_READ_WITH_INV:
867 		case IB_WR_RDMA_READ:
868 			/*
869 			 * iWarp restricts RREAD sink to SGL containing
870 			 * 1 SGE only. we could relax to SGL with multiple
871 			 * elements referring the SAME ltag or even sending
872 			 * a private per-rreq tag referring to a checked
873 			 * local sgl with MULTIPLE ltag's.
874 			 */
875 			if (unlikely(wr->num_sge != 1)) {
876 				rv = -EINVAL;
877 				break;
878 			}
879 			siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
880 			/*
881 			 * NOTE: zero length RREAD is allowed!
882 			 */
883 			sqe->raddr = rdma_wr(wr)->remote_addr;
884 			sqe->rkey = rdma_wr(wr)->rkey;
885 			sqe->num_sge = 1;
886 
887 			if (wr->opcode == IB_WR_RDMA_READ)
888 				sqe->opcode = SIW_OP_READ;
889 			else
890 				sqe->opcode = SIW_OP_READ_LOCAL_INV;
891 			break;
892 
893 		case IB_WR_RDMA_WRITE:
894 			if (!(wr->send_flags & IB_SEND_INLINE)) {
895 				siw_copy_sgl(wr->sg_list, &sqe->sge[0],
896 					     wr->num_sge);
897 				sqe->num_sge = wr->num_sge;
898 			} else {
899 				rv = siw_copy_inline_sgl(wr, sqe);
900 				if (unlikely(rv < 0)) {
901 					rv = -EINVAL;
902 					break;
903 				}
904 				sqe->flags |= SIW_WQE_INLINE;
905 				sqe->num_sge = 1;
906 			}
907 			sqe->raddr = rdma_wr(wr)->remote_addr;
908 			sqe->rkey = rdma_wr(wr)->rkey;
909 			sqe->opcode = SIW_OP_WRITE;
910 			break;
911 
912 		case IB_WR_REG_MR:
913 			sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
914 			sqe->rkey = reg_wr(wr)->key;
915 			sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
916 			sqe->opcode = SIW_OP_REG_MR;
917 			break;
918 
919 		case IB_WR_LOCAL_INV:
920 			sqe->rkey = wr->ex.invalidate_rkey;
921 			sqe->opcode = SIW_OP_INVAL_STAG;
922 			break;
923 
924 		default:
925 			siw_dbg_qp(qp, "ib wr type %d unsupported\n",
926 				   wr->opcode);
927 			rv = -EINVAL;
928 			break;
929 		}
930 		siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
931 			   sqe->opcode, sqe->flags,
932 			   (void *)(uintptr_t)sqe->id);
933 
934 		if (unlikely(rv < 0))
935 			break;
936 
937 		/* make SQE only valid after completely written */
938 		smp_wmb();
939 		sqe->flags |= SIW_WQE_VALID;
940 
941 		qp->sq_put++;
942 		wr = wr->next;
943 	}
944 
945 	/*
946 	 * Send directly if SQ processing is not in progress.
947 	 * Eventual immediate errors (rv < 0) do not affect the involved
948 	 * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
949 	 * processing, if new work is already pending. But rv must be passed
950 	 * to caller.
951 	 */
952 	if (wqe->wr_status != SIW_WR_IDLE) {
953 		spin_unlock_irqrestore(&qp->sq_lock, flags);
954 		goto skip_direct_sending;
955 	}
956 	rv = siw_activate_tx(qp);
957 	spin_unlock_irqrestore(&qp->sq_lock, flags);
958 
959 	if (rv <= 0)
960 		goto skip_direct_sending;
961 
962 	if (rdma_is_kernel_res(&qp->base_qp.res)) {
963 		rv = siw_sq_start(qp);
964 	} else {
965 		qp->tx_ctx.in_syscall = 1;
966 
967 		if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
968 			siw_qp_cm_drop(qp, 0);
969 
970 		qp->tx_ctx.in_syscall = 0;
971 	}
972 skip_direct_sending:
973 
974 	up_read(&qp->state_lock);
975 
976 	if (rv >= 0)
977 		return 0;
978 	/*
979 	 * Immediate error
980 	 */
981 	siw_dbg_qp(qp, "error %d\n", rv);
982 
983 	*bad_wr = wr;
984 	return rv;
985 }
986 
987 /*
988  * siw_post_receive()
989  *
990  * Post a list of R-WR's to a RQ.
991  *
992  * @base_qp:	Base QP contained in siw QP
993  * @wr:		Null terminated list of user WR's
994  * @bad_wr:	Points to failing WR in case of synchronous failure.
995  */
996 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
997 		     const struct ib_recv_wr **bad_wr)
998 {
999 	struct siw_qp *qp = to_siw_qp(base_qp);
1000 	unsigned long flags;
1001 	int rv = 0;
1002 
1003 	if (qp->srq || qp->attrs.rq_size == 0) {
1004 		*bad_wr = wr;
1005 		return -EINVAL;
1006 	}
1007 	if (!rdma_is_kernel_res(&qp->base_qp.res)) {
1008 		siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n");
1009 		*bad_wr = wr;
1010 		return -EINVAL;
1011 	}
1012 
1013 	/*
1014 	 * Try to acquire QP state lock. Must be non-blocking
1015 	 * to accommodate kernel clients needs.
1016 	 */
1017 	if (!down_read_trylock(&qp->state_lock)) {
1018 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1019 			/*
1020 			 * ERROR state is final, so we can be sure
1021 			 * this state will not change as long as the QP
1022 			 * exists.
1023 			 *
1024 			 * This handles an ib_drain_rq() call with
1025 			 * a concurrent request to set the QP state
1026 			 * to ERROR.
1027 			 */
1028 			rv = siw_rq_flush_wr(qp, wr, bad_wr);
1029 		} else {
1030 			siw_dbg_qp(qp, "QP locked, state %d\n",
1031 				   qp->attrs.state);
1032 			*bad_wr = wr;
1033 			rv = -ENOTCONN;
1034 		}
1035 		return rv;
1036 	}
1037 	if (qp->attrs.state > SIW_QP_STATE_RTS) {
1038 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1039 			/*
1040 			 * Immediately flush this WR to CQ, if QP
1041 			 * is in ERROR state. RQ is guaranteed to
1042 			 * be empty, so WR complets in-order.
1043 			 *
1044 			 * Typically triggered by ib_drain_rq().
1045 			 */
1046 			rv = siw_rq_flush_wr(qp, wr, bad_wr);
1047 		} else {
1048 			siw_dbg_qp(qp, "QP out of state %d\n",
1049 				   qp->attrs.state);
1050 			*bad_wr = wr;
1051 			rv = -ENOTCONN;
1052 		}
1053 		up_read(&qp->state_lock);
1054 		return rv;
1055 	}
1056 	/*
1057 	 * Serialize potentially multiple producers.
1058 	 * Not needed for single threaded consumer side.
1059 	 */
1060 	spin_lock_irqsave(&qp->rq_lock, flags);
1061 
1062 	while (wr) {
1063 		u32 idx = qp->rq_put % qp->attrs.rq_size;
1064 		struct siw_rqe *rqe = &qp->recvq[idx];
1065 
1066 		if (rqe->flags) {
1067 			siw_dbg_qp(qp, "RQ full\n");
1068 			rv = -ENOMEM;
1069 			break;
1070 		}
1071 		if (wr->num_sge > qp->attrs.rq_max_sges) {
1072 			siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
1073 			rv = -EINVAL;
1074 			break;
1075 		}
1076 		rqe->id = wr->wr_id;
1077 		rqe->num_sge = wr->num_sge;
1078 		siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1079 
1080 		/* make sure RQE is completely written before valid */
1081 		smp_wmb();
1082 
1083 		rqe->flags = SIW_WQE_VALID;
1084 
1085 		qp->rq_put++;
1086 		wr = wr->next;
1087 	}
1088 	spin_unlock_irqrestore(&qp->rq_lock, flags);
1089 
1090 	up_read(&qp->state_lock);
1091 
1092 	if (rv < 0) {
1093 		siw_dbg_qp(qp, "error %d\n", rv);
1094 		*bad_wr = wr;
1095 	}
1096 	return rv > 0 ? 0 : rv;
1097 }
1098 
1099 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
1100 {
1101 	struct siw_cq *cq = to_siw_cq(base_cq);
1102 	struct siw_device *sdev = to_siw_dev(base_cq->device);
1103 	struct siw_ucontext *ctx =
1104 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1105 					  base_ucontext);
1106 
1107 	siw_dbg_cq(cq, "free CQ resources\n");
1108 
1109 	siw_cq_flush(cq);
1110 
1111 	if (ctx)
1112 		rdma_user_mmap_entry_remove(cq->cq_entry);
1113 
1114 	atomic_dec(&sdev->num_cq);
1115 
1116 	vfree(cq->queue);
1117 	return 0;
1118 }
1119 
1120 /*
1121  * siw_create_cq()
1122  *
1123  * Populate CQ of requested size
1124  *
1125  * @base_cq: CQ as allocated by RDMA midlayer
1126  * @attr: Initial CQ attributes
1127  * @udata: relates to user context
1128  */
1129 
1130 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1131 		  struct ib_udata *udata)
1132 {
1133 	struct siw_device *sdev = to_siw_dev(base_cq->device);
1134 	struct siw_cq *cq = to_siw_cq(base_cq);
1135 	int rv, size = attr->cqe;
1136 
1137 	if (attr->flags)
1138 		return -EOPNOTSUPP;
1139 
1140 	if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1141 		siw_dbg(base_cq->device, "too many CQ's\n");
1142 		rv = -ENOMEM;
1143 		goto err_out;
1144 	}
1145 	if (size < 1 || size > sdev->attrs.max_cqe) {
1146 		siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1147 		rv = -EINVAL;
1148 		goto err_out;
1149 	}
1150 	size = roundup_pow_of_two(size);
1151 	cq->base_cq.cqe = size;
1152 	cq->num_cqe = size;
1153 
1154 	if (udata)
1155 		cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1156 					 sizeof(struct siw_cq_ctrl));
1157 	else
1158 		cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1159 				    sizeof(struct siw_cq_ctrl));
1160 
1161 	if (cq->queue == NULL) {
1162 		rv = -ENOMEM;
1163 		goto err_out;
1164 	}
1165 	get_random_bytes(&cq->id, 4);
1166 	siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1167 
1168 	spin_lock_init(&cq->lock);
1169 
1170 	cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1171 
1172 	if (udata) {
1173 		struct siw_uresp_create_cq uresp = {};
1174 		struct siw_ucontext *ctx =
1175 			rdma_udata_to_drv_context(udata, struct siw_ucontext,
1176 						  base_ucontext);
1177 		size_t length = size * sizeof(struct siw_cqe) +
1178 			sizeof(struct siw_cq_ctrl);
1179 
1180 		cq->cq_entry =
1181 			siw_mmap_entry_insert(ctx, cq->queue,
1182 					      length, &uresp.cq_key);
1183 		if (!cq->cq_entry) {
1184 			rv = -ENOMEM;
1185 			goto err_out;
1186 		}
1187 
1188 		uresp.cq_id = cq->id;
1189 		uresp.num_cqe = size;
1190 
1191 		if (udata->outlen < sizeof(uresp)) {
1192 			rv = -EINVAL;
1193 			goto err_out;
1194 		}
1195 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1196 		if (rv)
1197 			goto err_out;
1198 	}
1199 	return 0;
1200 
1201 err_out:
1202 	siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1203 
1204 	if (cq->queue) {
1205 		struct siw_ucontext *ctx =
1206 			rdma_udata_to_drv_context(udata, struct siw_ucontext,
1207 						  base_ucontext);
1208 		if (ctx)
1209 			rdma_user_mmap_entry_remove(cq->cq_entry);
1210 		vfree(cq->queue);
1211 	}
1212 	atomic_dec(&sdev->num_cq);
1213 
1214 	return rv;
1215 }
1216 
1217 /*
1218  * siw_poll_cq()
1219  *
1220  * Reap CQ entries if available and copy work completion status into
1221  * array of WC's provided by caller. Returns number of reaped CQE's.
1222  *
1223  * @base_cq:	Base CQ contained in siw CQ.
1224  * @num_cqe:	Maximum number of CQE's to reap.
1225  * @wc:		Array of work completions to be filled by siw.
1226  */
1227 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1228 {
1229 	struct siw_cq *cq = to_siw_cq(base_cq);
1230 	int i;
1231 
1232 	for (i = 0; i < num_cqe; i++) {
1233 		if (!siw_reap_cqe(cq, wc))
1234 			break;
1235 		wc++;
1236 	}
1237 	return i;
1238 }
1239 
1240 /*
1241  * siw_req_notify_cq()
1242  *
1243  * Request notification for new CQE's added to that CQ.
1244  * Defined flags:
1245  * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1246  *   event if a WQE with notification flag set enters the CQ
1247  * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1248  *   event if a WQE enters the CQ.
1249  * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1250  *   number of not reaped CQE's regardless of its notification
1251  *   type and current or new CQ notification settings.
1252  *
1253  * @base_cq:	Base CQ contained in siw CQ.
1254  * @flags:	Requested notification flags.
1255  */
1256 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1257 {
1258 	struct siw_cq *cq = to_siw_cq(base_cq);
1259 
1260 	siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1261 
1262 	if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1263 		/*
1264 		 * Enable CQ event for next solicited completion.
1265 		 * and make it visible to all associated producers.
1266 		 */
1267 		smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1268 	else
1269 		/*
1270 		 * Enable CQ event for any signalled completion.
1271 		 * and make it visible to all associated producers.
1272 		 */
1273 		smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1274 
1275 	if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1276 		return cq->cq_put - cq->cq_get;
1277 
1278 	return 0;
1279 }
1280 
1281 /*
1282  * siw_dereg_mr()
1283  *
1284  * Release Memory Region.
1285  *
1286  * @base_mr: Base MR contained in siw MR.
1287  * @udata: points to user context, unused.
1288  */
1289 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1290 {
1291 	struct siw_mr *mr = to_siw_mr(base_mr);
1292 	struct siw_device *sdev = to_siw_dev(base_mr->device);
1293 
1294 	siw_dbg_mem(mr->mem, "deregister MR\n");
1295 
1296 	atomic_dec(&sdev->num_mr);
1297 
1298 	siw_mr_drop_mem(mr);
1299 	kfree_rcu(mr, rcu);
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  * siw_reg_user_mr()
1306  *
1307  * Register Memory Region.
1308  *
1309  * @pd:		Protection Domain
1310  * @start:	starting address of MR (virtual address)
1311  * @len:	len of MR
1312  * @rnic_va:	not used by siw
1313  * @rights:	MR access rights
1314  * @udata:	user buffer to communicate STag and Key.
1315  */
1316 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1317 			      u64 rnic_va, int rights, struct ib_udata *udata)
1318 {
1319 	struct siw_mr *mr = NULL;
1320 	struct siw_umem *umem = NULL;
1321 	struct siw_ureq_reg_mr ureq;
1322 	struct siw_device *sdev = to_siw_dev(pd->device);
1323 	int rv;
1324 
1325 	siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1326 		   (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1327 		   (unsigned long long)len);
1328 
1329 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1330 		siw_dbg_pd(pd, "too many mr's\n");
1331 		rv = -ENOMEM;
1332 		goto err_out;
1333 	}
1334 	if (!len) {
1335 		rv = -EINVAL;
1336 		goto err_out;
1337 	}
1338 	umem = siw_umem_get(pd->device, start, len, rights);
1339 	if (IS_ERR(umem)) {
1340 		rv = PTR_ERR(umem);
1341 		siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1342 		umem = NULL;
1343 		goto err_out;
1344 	}
1345 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1346 	if (!mr) {
1347 		rv = -ENOMEM;
1348 		goto err_out;
1349 	}
1350 	rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1351 	if (rv)
1352 		goto err_out;
1353 
1354 	if (udata) {
1355 		struct siw_uresp_reg_mr uresp = {};
1356 		struct siw_mem *mem = mr->mem;
1357 
1358 		if (udata->inlen < sizeof(ureq)) {
1359 			rv = -EINVAL;
1360 			goto err_out;
1361 		}
1362 		rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1363 		if (rv)
1364 			goto err_out;
1365 
1366 		mr->base_mr.lkey |= ureq.stag_key;
1367 		mr->base_mr.rkey |= ureq.stag_key;
1368 		mem->stag |= ureq.stag_key;
1369 		uresp.stag = mem->stag;
1370 
1371 		if (udata->outlen < sizeof(uresp)) {
1372 			rv = -EINVAL;
1373 			goto err_out;
1374 		}
1375 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1376 		if (rv)
1377 			goto err_out;
1378 	}
1379 	mr->mem->stag_valid = 1;
1380 
1381 	return &mr->base_mr;
1382 
1383 err_out:
1384 	atomic_dec(&sdev->num_mr);
1385 	if (mr) {
1386 		if (mr->mem)
1387 			siw_mr_drop_mem(mr);
1388 		kfree_rcu(mr, rcu);
1389 	} else {
1390 		if (umem)
1391 			siw_umem_release(umem);
1392 	}
1393 	return ERR_PTR(rv);
1394 }
1395 
1396 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1397 			   u32 max_sge)
1398 {
1399 	struct siw_device *sdev = to_siw_dev(pd->device);
1400 	struct siw_mr *mr = NULL;
1401 	struct siw_pbl *pbl = NULL;
1402 	int rv;
1403 
1404 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1405 		siw_dbg_pd(pd, "too many mr's\n");
1406 		rv = -ENOMEM;
1407 		goto err_out;
1408 	}
1409 	if (mr_type != IB_MR_TYPE_MEM_REG) {
1410 		siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1411 		rv = -EOPNOTSUPP;
1412 		goto err_out;
1413 	}
1414 	if (max_sge > SIW_MAX_SGE_PBL) {
1415 		siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1416 		rv = -ENOMEM;
1417 		goto err_out;
1418 	}
1419 	pbl = siw_pbl_alloc(max_sge);
1420 	if (IS_ERR(pbl)) {
1421 		rv = PTR_ERR(pbl);
1422 		siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1423 		pbl = NULL;
1424 		goto err_out;
1425 	}
1426 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1427 	if (!mr) {
1428 		rv = -ENOMEM;
1429 		goto err_out;
1430 	}
1431 	rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1432 	if (rv)
1433 		goto err_out;
1434 
1435 	mr->mem->is_pbl = 1;
1436 
1437 	siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1438 
1439 	return &mr->base_mr;
1440 
1441 err_out:
1442 	atomic_dec(&sdev->num_mr);
1443 
1444 	if (!mr) {
1445 		kfree(pbl);
1446 	} else {
1447 		if (mr->mem)
1448 			siw_mr_drop_mem(mr);
1449 		kfree_rcu(mr, rcu);
1450 	}
1451 	siw_dbg_pd(pd, "failed: %d\n", rv);
1452 
1453 	return ERR_PTR(rv);
1454 }
1455 
1456 /* Just used to count number of pages being mapped */
1457 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1458 {
1459 	return 0;
1460 }
1461 
1462 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1463 		  unsigned int *sg_off)
1464 {
1465 	struct scatterlist *slp;
1466 	struct siw_mr *mr = to_siw_mr(base_mr);
1467 	struct siw_mem *mem = mr->mem;
1468 	struct siw_pbl *pbl = mem->pbl;
1469 	struct siw_pble *pble;
1470 	unsigned long pbl_size;
1471 	int i, rv;
1472 
1473 	if (!pbl) {
1474 		siw_dbg_mem(mem, "no PBL allocated\n");
1475 		return -EINVAL;
1476 	}
1477 	pble = pbl->pbe;
1478 
1479 	if (pbl->max_buf < num_sle) {
1480 		siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1481 			    num_sle, pbl->max_buf);
1482 		return -ENOMEM;
1483 	}
1484 	for_each_sg(sl, slp, num_sle, i) {
1485 		if (sg_dma_len(slp) == 0) {
1486 			siw_dbg_mem(mem, "empty SGE\n");
1487 			return -EINVAL;
1488 		}
1489 		if (i == 0) {
1490 			pble->addr = sg_dma_address(slp);
1491 			pble->size = sg_dma_len(slp);
1492 			pble->pbl_off = 0;
1493 			pbl_size = pble->size;
1494 			pbl->num_buf = 1;
1495 		} else {
1496 			/* Merge PBL entries if adjacent */
1497 			if (pble->addr + pble->size == sg_dma_address(slp)) {
1498 				pble->size += sg_dma_len(slp);
1499 			} else {
1500 				pble++;
1501 				pbl->num_buf++;
1502 				pble->addr = sg_dma_address(slp);
1503 				pble->size = sg_dma_len(slp);
1504 				pble->pbl_off = pbl_size;
1505 			}
1506 			pbl_size += sg_dma_len(slp);
1507 		}
1508 		siw_dbg_mem(mem,
1509 			"sge[%d], size %u, addr 0x%p, total %lu\n",
1510 			i, pble->size, ib_virt_dma_to_ptr(pble->addr),
1511 			pbl_size);
1512 	}
1513 	rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1514 	if (rv > 0) {
1515 		mem->len = base_mr->length;
1516 		mem->va = base_mr->iova;
1517 		siw_dbg_mem(mem,
1518 			"%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1519 			mem->len, (void *)(uintptr_t)mem->va, num_sle,
1520 			pbl->num_buf);
1521 	}
1522 	return rv;
1523 }
1524 
1525 /*
1526  * siw_get_dma_mr()
1527  *
1528  * Create a (empty) DMA memory region, where no umem is attached.
1529  */
1530 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1531 {
1532 	struct siw_device *sdev = to_siw_dev(pd->device);
1533 	struct siw_mr *mr = NULL;
1534 	int rv;
1535 
1536 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1537 		siw_dbg_pd(pd, "too many mr's\n");
1538 		rv = -ENOMEM;
1539 		goto err_out;
1540 	}
1541 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1542 	if (!mr) {
1543 		rv = -ENOMEM;
1544 		goto err_out;
1545 	}
1546 	rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1547 	if (rv)
1548 		goto err_out;
1549 
1550 	mr->mem->stag_valid = 1;
1551 
1552 	siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1553 
1554 	return &mr->base_mr;
1555 
1556 err_out:
1557 	if (rv)
1558 		kfree(mr);
1559 
1560 	atomic_dec(&sdev->num_mr);
1561 
1562 	return ERR_PTR(rv);
1563 }
1564 
1565 /*
1566  * siw_create_srq()
1567  *
1568  * Create Shared Receive Queue of attributes @init_attrs
1569  * within protection domain given by @pd.
1570  *
1571  * @base_srq:	Base SRQ contained in siw SRQ.
1572  * @init_attrs:	SRQ init attributes.
1573  * @udata:	points to user context
1574  */
1575 int siw_create_srq(struct ib_srq *base_srq,
1576 		   struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1577 {
1578 	struct siw_srq *srq = to_siw_srq(base_srq);
1579 	struct ib_srq_attr *attrs = &init_attrs->attr;
1580 	struct siw_device *sdev = to_siw_dev(base_srq->device);
1581 	struct siw_ucontext *ctx =
1582 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1583 					  base_ucontext);
1584 	int rv;
1585 
1586 	if (init_attrs->srq_type != IB_SRQT_BASIC)
1587 		return -EOPNOTSUPP;
1588 
1589 	if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1590 		siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1591 		rv = -ENOMEM;
1592 		goto err_out;
1593 	}
1594 	if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1595 	    attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1596 		rv = -EINVAL;
1597 		goto err_out;
1598 	}
1599 	srq->max_sge = attrs->max_sge;
1600 	srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1601 	srq->limit = attrs->srq_limit;
1602 	if (srq->limit)
1603 		srq->armed = true;
1604 
1605 	srq->is_kernel_res = !udata;
1606 
1607 	if (udata)
1608 		srq->recvq =
1609 			vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1610 	else
1611 		srq->recvq = vcalloc(srq->num_rqe, sizeof(struct siw_rqe));
1612 
1613 	if (srq->recvq == NULL) {
1614 		rv = -ENOMEM;
1615 		goto err_out;
1616 	}
1617 	if (udata) {
1618 		struct siw_uresp_create_srq uresp = {};
1619 		size_t length = srq->num_rqe * sizeof(struct siw_rqe);
1620 
1621 		srq->srq_entry =
1622 			siw_mmap_entry_insert(ctx, srq->recvq,
1623 					      length, &uresp.srq_key);
1624 		if (!srq->srq_entry) {
1625 			rv = -ENOMEM;
1626 			goto err_out;
1627 		}
1628 
1629 		uresp.num_rqe = srq->num_rqe;
1630 
1631 		if (udata->outlen < sizeof(uresp)) {
1632 			rv = -EINVAL;
1633 			goto err_out;
1634 		}
1635 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1636 		if (rv)
1637 			goto err_out;
1638 	}
1639 	spin_lock_init(&srq->lock);
1640 
1641 	siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1642 
1643 	return 0;
1644 
1645 err_out:
1646 	if (srq->recvq) {
1647 		if (ctx)
1648 			rdma_user_mmap_entry_remove(srq->srq_entry);
1649 		vfree(srq->recvq);
1650 	}
1651 	atomic_dec(&sdev->num_srq);
1652 
1653 	return rv;
1654 }
1655 
1656 /*
1657  * siw_modify_srq()
1658  *
1659  * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1660  * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1661  *
1662  * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1663  * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1664  */
1665 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1666 		   enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1667 {
1668 	struct siw_srq *srq = to_siw_srq(base_srq);
1669 	unsigned long flags;
1670 	int rv = 0;
1671 
1672 	spin_lock_irqsave(&srq->lock, flags);
1673 
1674 	if (attr_mask & IB_SRQ_MAX_WR) {
1675 		/* resize request not yet supported */
1676 		rv = -EOPNOTSUPP;
1677 		goto out;
1678 	}
1679 	if (attr_mask & IB_SRQ_LIMIT) {
1680 		if (attrs->srq_limit) {
1681 			if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1682 				rv = -EINVAL;
1683 				goto out;
1684 			}
1685 			srq->armed = true;
1686 		} else {
1687 			srq->armed = false;
1688 		}
1689 		srq->limit = attrs->srq_limit;
1690 	}
1691 out:
1692 	spin_unlock_irqrestore(&srq->lock, flags);
1693 
1694 	return rv;
1695 }
1696 
1697 /*
1698  * siw_query_srq()
1699  *
1700  * Query SRQ attributes.
1701  */
1702 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1703 {
1704 	struct siw_srq *srq = to_siw_srq(base_srq);
1705 	unsigned long flags;
1706 
1707 	spin_lock_irqsave(&srq->lock, flags);
1708 
1709 	attrs->max_wr = srq->num_rqe;
1710 	attrs->max_sge = srq->max_sge;
1711 	attrs->srq_limit = srq->limit;
1712 
1713 	spin_unlock_irqrestore(&srq->lock, flags);
1714 
1715 	return 0;
1716 }
1717 
1718 /*
1719  * siw_destroy_srq()
1720  *
1721  * Destroy SRQ.
1722  * It is assumed that the SRQ is not referenced by any
1723  * QP anymore - the code trusts the RDMA core environment to keep track
1724  * of QP references.
1725  */
1726 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1727 {
1728 	struct siw_srq *srq = to_siw_srq(base_srq);
1729 	struct siw_device *sdev = to_siw_dev(base_srq->device);
1730 	struct siw_ucontext *ctx =
1731 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1732 					  base_ucontext);
1733 
1734 	if (ctx)
1735 		rdma_user_mmap_entry_remove(srq->srq_entry);
1736 	vfree(srq->recvq);
1737 	atomic_dec(&sdev->num_srq);
1738 	return 0;
1739 }
1740 
1741 /*
1742  * siw_post_srq_recv()
1743  *
1744  * Post a list of receive queue elements to SRQ.
1745  * NOTE: The function does not check or lock a certain SRQ state
1746  *       during the post operation. The code simply trusts the
1747  *       RDMA core environment.
1748  *
1749  * @base_srq:	Base SRQ contained in siw SRQ
1750  * @wr:		List of R-WR's
1751  * @bad_wr:	Updated to failing WR if posting fails.
1752  */
1753 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1754 		      const struct ib_recv_wr **bad_wr)
1755 {
1756 	struct siw_srq *srq = to_siw_srq(base_srq);
1757 	unsigned long flags;
1758 	int rv = 0;
1759 
1760 	if (unlikely(!srq->is_kernel_res)) {
1761 		siw_dbg_pd(base_srq->pd,
1762 			   "[SRQ]: no kernel post_recv for mapped srq\n");
1763 		rv = -EINVAL;
1764 		goto out;
1765 	}
1766 	/*
1767 	 * Serialize potentially multiple producers.
1768 	 * Also needed to serialize potentially multiple
1769 	 * consumers.
1770 	 */
1771 	spin_lock_irqsave(&srq->lock, flags);
1772 
1773 	while (wr) {
1774 		u32 idx = srq->rq_put % srq->num_rqe;
1775 		struct siw_rqe *rqe = &srq->recvq[idx];
1776 
1777 		if (rqe->flags) {
1778 			siw_dbg_pd(base_srq->pd, "SRQ full\n");
1779 			rv = -ENOMEM;
1780 			break;
1781 		}
1782 		if (unlikely(wr->num_sge > srq->max_sge)) {
1783 			siw_dbg_pd(base_srq->pd,
1784 				   "[SRQ]: too many sge's: %d\n", wr->num_sge);
1785 			rv = -EINVAL;
1786 			break;
1787 		}
1788 		rqe->id = wr->wr_id;
1789 		rqe->num_sge = wr->num_sge;
1790 		siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1791 
1792 		/* Make sure S-RQE is completely written before valid */
1793 		smp_wmb();
1794 
1795 		rqe->flags = SIW_WQE_VALID;
1796 
1797 		srq->rq_put++;
1798 		wr = wr->next;
1799 	}
1800 	spin_unlock_irqrestore(&srq->lock, flags);
1801 out:
1802 	if (unlikely(rv < 0)) {
1803 		siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1804 		*bad_wr = wr;
1805 	}
1806 	return rv;
1807 }
1808 
1809 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1810 {
1811 	struct ib_event event;
1812 	struct ib_qp *base_qp = &qp->base_qp;
1813 
1814 	/*
1815 	 * Do not report asynchronous errors on QP which gets
1816 	 * destroyed via verbs interface (siw_destroy_qp())
1817 	 */
1818 	if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1819 		return;
1820 
1821 	event.event = etype;
1822 	event.device = base_qp->device;
1823 	event.element.qp = base_qp;
1824 
1825 	if (base_qp->event_handler) {
1826 		siw_dbg_qp(qp, "reporting event %d\n", etype);
1827 		base_qp->event_handler(&event, base_qp->qp_context);
1828 	}
1829 }
1830 
1831 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1832 {
1833 	struct ib_event event;
1834 	struct ib_cq *base_cq = &cq->base_cq;
1835 
1836 	event.event = etype;
1837 	event.device = base_cq->device;
1838 	event.element.cq = base_cq;
1839 
1840 	if (base_cq->event_handler) {
1841 		siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1842 		base_cq->event_handler(&event, base_cq->cq_context);
1843 	}
1844 }
1845 
1846 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1847 {
1848 	struct ib_event event;
1849 	struct ib_srq *base_srq = &srq->base_srq;
1850 
1851 	event.event = etype;
1852 	event.device = base_srq->device;
1853 	event.element.srq = base_srq;
1854 
1855 	if (base_srq->event_handler) {
1856 		siw_dbg_pd(srq->base_srq.pd,
1857 			   "reporting SRQ event %d\n", etype);
1858 		base_srq->event_handler(&event, base_srq->srq_context);
1859 	}
1860 }
1861 
1862 void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype)
1863 {
1864 	struct ib_event event;
1865 
1866 	event.event = etype;
1867 	event.device = &sdev->base_dev;
1868 	event.element.port_num = port;
1869 
1870 	siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1871 
1872 	ib_dispatch_event(&event);
1873 }
1874