xref: /linux/drivers/infiniband/sw/siw/siw_verbs.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 
3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
4 /* Copyright (c) 2008-2019, IBM Corporation */
5 
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
11 #include <net/addrconf.h>
12 
13 #include <rdma/iw_cm.h>
14 #include <rdma/ib_verbs.h>
15 #include <rdma/ib_user_verbs.h>
16 #include <rdma/uverbs_ioctl.h>
17 
18 #include "siw.h"
19 #include "siw_verbs.h"
20 #include "siw_mem.h"
21 
22 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
23 	[IB_QPS_RESET] = SIW_QP_STATE_IDLE,
24 	[IB_QPS_INIT] = SIW_QP_STATE_IDLE,
25 	[IB_QPS_RTR] = SIW_QP_STATE_RTR,
26 	[IB_QPS_RTS] = SIW_QP_STATE_RTS,
27 	[IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
28 	[IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
29 	[IB_QPS_ERR] = SIW_QP_STATE_ERROR
30 };
31 
32 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
33 	[IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
34 	[IB_QPS_RTS] = "RTS",     [IB_QPS_SQD] = "SQD",   [IB_QPS_SQE] = "SQE",
35 	[IB_QPS_ERR] = "ERR"
36 };
37 
38 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
39 {
40 	struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry);
41 
42 	kfree(entry);
43 }
44 
45 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
46 {
47 	struct siw_ucontext *uctx = to_siw_ctx(ctx);
48 	size_t size = vma->vm_end - vma->vm_start;
49 	struct rdma_user_mmap_entry *rdma_entry;
50 	struct siw_user_mmap_entry *entry;
51 	int rv = -EINVAL;
52 
53 	/*
54 	 * Must be page aligned
55 	 */
56 	if (vma->vm_start & (PAGE_SIZE - 1)) {
57 		pr_warn("siw: mmap not page aligned\n");
58 		return -EINVAL;
59 	}
60 	rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma);
61 	if (!rdma_entry) {
62 		siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n",
63 			vma->vm_pgoff, size);
64 		return -EINVAL;
65 	}
66 	entry = to_siw_mmap_entry(rdma_entry);
67 
68 	rv = remap_vmalloc_range(vma, entry->address, 0);
69 	if (rv) {
70 		pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff,
71 			size);
72 		goto out;
73 	}
74 out:
75 	rdma_user_mmap_entry_put(rdma_entry);
76 
77 	return rv;
78 }
79 
80 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
81 {
82 	struct siw_device *sdev = to_siw_dev(base_ctx->device);
83 	struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
84 	struct siw_uresp_alloc_ctx uresp = {};
85 	int rv;
86 
87 	if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
88 		rv = -ENOMEM;
89 		goto err_out;
90 	}
91 	ctx->sdev = sdev;
92 
93 	uresp.dev_id = sdev->vendor_part_id;
94 
95 	if (udata->outlen < sizeof(uresp)) {
96 		rv = -EINVAL;
97 		goto err_out;
98 	}
99 	rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
100 	if (rv)
101 		goto err_out;
102 
103 	siw_dbg(base_ctx->device, "success. now %d context(s)\n",
104 		atomic_read(&sdev->num_ctx));
105 
106 	return 0;
107 
108 err_out:
109 	atomic_dec(&sdev->num_ctx);
110 	siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
111 		atomic_read(&sdev->num_ctx));
112 
113 	return rv;
114 }
115 
116 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
117 {
118 	struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
119 
120 	atomic_dec(&uctx->sdev->num_ctx);
121 }
122 
123 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
124 		     struct ib_udata *udata)
125 {
126 	struct siw_device *sdev = to_siw_dev(base_dev);
127 
128 	if (udata->inlen || udata->outlen)
129 		return -EINVAL;
130 
131 	memset(attr, 0, sizeof(*attr));
132 
133 	/* Revisit atomic caps if RFC 7306 gets supported */
134 	attr->atomic_cap = 0;
135 	attr->device_cap_flags =
136 		IB_DEVICE_MEM_MGT_EXTENSIONS | IB_DEVICE_ALLOW_USER_UNREG;
137 	attr->max_cq = sdev->attrs.max_cq;
138 	attr->max_cqe = sdev->attrs.max_cqe;
139 	attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
140 	attr->max_mr = sdev->attrs.max_mr;
141 	attr->max_mw = sdev->attrs.max_mw;
142 	attr->max_mr_size = ~0ull;
143 	attr->max_pd = sdev->attrs.max_pd;
144 	attr->max_qp = sdev->attrs.max_qp;
145 	attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
146 	attr->max_qp_rd_atom = sdev->attrs.max_ord;
147 	attr->max_qp_wr = sdev->attrs.max_qp_wr;
148 	attr->max_recv_sge = sdev->attrs.max_sge;
149 	attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
150 	attr->max_send_sge = sdev->attrs.max_sge;
151 	attr->max_sge_rd = sdev->attrs.max_sge_rd;
152 	attr->max_srq = sdev->attrs.max_srq;
153 	attr->max_srq_sge = sdev->attrs.max_srq_sge;
154 	attr->max_srq_wr = sdev->attrs.max_srq_wr;
155 	attr->page_size_cap = PAGE_SIZE;
156 	attr->vendor_id = SIW_VENDOR_ID;
157 	attr->vendor_part_id = sdev->vendor_part_id;
158 
159 	addrconf_addr_eui48((u8 *)&attr->sys_image_guid,
160 			    sdev->netdev->dev_addr);
161 
162 	return 0;
163 }
164 
165 int siw_query_port(struct ib_device *base_dev, u32 port,
166 		   struct ib_port_attr *attr)
167 {
168 	struct siw_device *sdev = to_siw_dev(base_dev);
169 	int rv;
170 
171 	memset(attr, 0, sizeof(*attr));
172 
173 	rv = ib_get_eth_speed(base_dev, port, &attr->active_speed,
174 			 &attr->active_width);
175 	attr->gid_tbl_len = 1;
176 	attr->max_msg_sz = -1;
177 	attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
178 	attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
179 	attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
180 		IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
181 	attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
182 	attr->state = sdev->state;
183 	/*
184 	 * All zero
185 	 *
186 	 * attr->lid = 0;
187 	 * attr->bad_pkey_cntr = 0;
188 	 * attr->qkey_viol_cntr = 0;
189 	 * attr->sm_lid = 0;
190 	 * attr->lmc = 0;
191 	 * attr->max_vl_num = 0;
192 	 * attr->sm_sl = 0;
193 	 * attr->subnet_timeout = 0;
194 	 * attr->init_type_repy = 0;
195 	 */
196 	return rv;
197 }
198 
199 int siw_get_port_immutable(struct ib_device *base_dev, u32 port,
200 			   struct ib_port_immutable *port_immutable)
201 {
202 	struct ib_port_attr attr;
203 	int rv = siw_query_port(base_dev, port, &attr);
204 
205 	if (rv)
206 		return rv;
207 
208 	port_immutable->gid_tbl_len = attr.gid_tbl_len;
209 	port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
210 
211 	return 0;
212 }
213 
214 int siw_query_gid(struct ib_device *base_dev, u32 port, int idx,
215 		  union ib_gid *gid)
216 {
217 	struct siw_device *sdev = to_siw_dev(base_dev);
218 
219 	/* subnet_prefix == interface_id == 0; */
220 	memset(gid, 0, sizeof(*gid));
221 	memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6);
222 
223 	return 0;
224 }
225 
226 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
227 {
228 	struct siw_device *sdev = to_siw_dev(pd->device);
229 
230 	if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
231 		atomic_dec(&sdev->num_pd);
232 		return -ENOMEM;
233 	}
234 	siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
235 
236 	return 0;
237 }
238 
239 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
240 {
241 	struct siw_device *sdev = to_siw_dev(pd->device);
242 
243 	siw_dbg_pd(pd, "free PD\n");
244 	atomic_dec(&sdev->num_pd);
245 	return 0;
246 }
247 
248 void siw_qp_get_ref(struct ib_qp *base_qp)
249 {
250 	siw_qp_get(to_siw_qp(base_qp));
251 }
252 
253 void siw_qp_put_ref(struct ib_qp *base_qp)
254 {
255 	siw_qp_put(to_siw_qp(base_qp));
256 }
257 
258 static struct rdma_user_mmap_entry *
259 siw_mmap_entry_insert(struct siw_ucontext *uctx,
260 		      void *address, size_t length,
261 		      u64 *offset)
262 {
263 	struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
264 	int rv;
265 
266 	*offset = SIW_INVAL_UOBJ_KEY;
267 	if (!entry)
268 		return NULL;
269 
270 	entry->address = address;
271 
272 	rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext,
273 					 &entry->rdma_entry,
274 					 length);
275 	if (rv) {
276 		kfree(entry);
277 		return NULL;
278 	}
279 
280 	*offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
281 
282 	return &entry->rdma_entry;
283 }
284 
285 /*
286  * siw_create_qp()
287  *
288  * Create QP of requested size on given device.
289  *
290  * @qp:		Queue pait
291  * @attrs:	Initial QP attributes.
292  * @udata:	used to provide QP ID, SQ and RQ size back to user.
293  */
294 
295 int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs,
296 		  struct ib_udata *udata)
297 {
298 	struct ib_pd *pd = ibqp->pd;
299 	struct siw_qp *qp = to_siw_qp(ibqp);
300 	struct ib_device *base_dev = pd->device;
301 	struct siw_device *sdev = to_siw_dev(base_dev);
302 	struct siw_ucontext *uctx =
303 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
304 					  base_ucontext);
305 	unsigned long flags;
306 	int num_sqe, num_rqe, rv = 0;
307 	size_t length;
308 
309 	siw_dbg(base_dev, "create new QP\n");
310 
311 	if (attrs->create_flags)
312 		return -EOPNOTSUPP;
313 
314 	if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
315 		siw_dbg(base_dev, "too many QP's\n");
316 		rv = -ENOMEM;
317 		goto err_atomic;
318 	}
319 	if (attrs->qp_type != IB_QPT_RC) {
320 		siw_dbg(base_dev, "only RC QP's supported\n");
321 		rv = -EOPNOTSUPP;
322 		goto err_atomic;
323 	}
324 	if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
325 	    (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
326 	    (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
327 	    (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
328 		siw_dbg(base_dev, "QP size error\n");
329 		rv = -EINVAL;
330 		goto err_atomic;
331 	}
332 	if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
333 		siw_dbg(base_dev, "max inline send: %d > %d\n",
334 			attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
335 		rv = -EINVAL;
336 		goto err_atomic;
337 	}
338 	/*
339 	 * NOTE: we allow for zero element SQ and RQ WQE's SGL's
340 	 * but not for a QP unable to hold any WQE (SQ + RQ)
341 	 */
342 	if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) {
343 		siw_dbg(base_dev, "QP must have send or receive queue\n");
344 		rv = -EINVAL;
345 		goto err_atomic;
346 	}
347 
348 	if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) {
349 		siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
350 		rv = -EINVAL;
351 		goto err_atomic;
352 	}
353 
354 	init_rwsem(&qp->state_lock);
355 	spin_lock_init(&qp->sq_lock);
356 	spin_lock_init(&qp->rq_lock);
357 	spin_lock_init(&qp->orq_lock);
358 
359 	rv = siw_qp_add(sdev, qp);
360 	if (rv)
361 		goto err_atomic;
362 
363 	num_sqe = attrs->cap.max_send_wr;
364 	num_rqe = attrs->cap.max_recv_wr;
365 
366 	/* All queue indices are derived from modulo operations
367 	 * on a free running 'get' (consumer) and 'put' (producer)
368 	 * unsigned counter. Having queue sizes at power of two
369 	 * avoids handling counter wrap around.
370 	 */
371 	if (num_sqe)
372 		num_sqe = roundup_pow_of_two(num_sqe);
373 	else {
374 		/* Zero sized SQ is not supported */
375 		rv = -EINVAL;
376 		goto err_out_xa;
377 	}
378 	if (num_rqe)
379 		num_rqe = roundup_pow_of_two(num_rqe);
380 
381 	if (udata)
382 		qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
383 	else
384 		qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe));
385 
386 	if (qp->sendq == NULL) {
387 		rv = -ENOMEM;
388 		goto err_out_xa;
389 	}
390 	if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
391 		if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
392 			qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
393 		else {
394 			rv = -EINVAL;
395 			goto err_out_xa;
396 		}
397 	}
398 	qp->pd = pd;
399 	qp->scq = to_siw_cq(attrs->send_cq);
400 	qp->rcq = to_siw_cq(attrs->recv_cq);
401 
402 	if (attrs->srq) {
403 		/*
404 		 * SRQ support.
405 		 * Verbs 6.3.7: ignore RQ size, if SRQ present
406 		 * Verbs 6.3.5: do not check PD of SRQ against PD of QP
407 		 */
408 		qp->srq = to_siw_srq(attrs->srq);
409 		qp->attrs.rq_size = 0;
410 		siw_dbg(base_dev, "QP [%u]: SRQ attached\n",
411 			qp->base_qp.qp_num);
412 	} else if (num_rqe) {
413 		if (udata)
414 			qp->recvq =
415 				vmalloc_user(num_rqe * sizeof(struct siw_rqe));
416 		else
417 			qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe));
418 
419 		if (qp->recvq == NULL) {
420 			rv = -ENOMEM;
421 			goto err_out_xa;
422 		}
423 		qp->attrs.rq_size = num_rqe;
424 	}
425 	qp->attrs.sq_size = num_sqe;
426 	qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
427 	qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
428 
429 	/* Make those two tunables fixed for now. */
430 	qp->tx_ctx.gso_seg_limit = 1;
431 	qp->tx_ctx.zcopy_tx = zcopy_tx;
432 
433 	qp->attrs.state = SIW_QP_STATE_IDLE;
434 
435 	if (udata) {
436 		struct siw_uresp_create_qp uresp = {};
437 
438 		uresp.num_sqe = num_sqe;
439 		uresp.num_rqe = num_rqe;
440 		uresp.qp_id = qp_id(qp);
441 
442 		if (qp->sendq) {
443 			length = num_sqe * sizeof(struct siw_sqe);
444 			qp->sq_entry =
445 				siw_mmap_entry_insert(uctx, qp->sendq,
446 						      length, &uresp.sq_key);
447 			if (!qp->sq_entry) {
448 				rv = -ENOMEM;
449 				goto err_out_xa;
450 			}
451 		}
452 
453 		if (qp->recvq) {
454 			length = num_rqe * sizeof(struct siw_rqe);
455 			qp->rq_entry =
456 				siw_mmap_entry_insert(uctx, qp->recvq,
457 						      length, &uresp.rq_key);
458 			if (!qp->rq_entry) {
459 				uresp.sq_key = SIW_INVAL_UOBJ_KEY;
460 				rv = -ENOMEM;
461 				goto err_out_xa;
462 			}
463 		}
464 
465 		if (udata->outlen < sizeof(uresp)) {
466 			rv = -EINVAL;
467 			goto err_out_xa;
468 		}
469 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
470 		if (rv)
471 			goto err_out_xa;
472 	}
473 	qp->tx_cpu = siw_get_tx_cpu(sdev);
474 	if (qp->tx_cpu < 0) {
475 		rv = -EINVAL;
476 		goto err_out_xa;
477 	}
478 	INIT_LIST_HEAD(&qp->devq);
479 	spin_lock_irqsave(&sdev->lock, flags);
480 	list_add_tail(&qp->devq, &sdev->qp_list);
481 	spin_unlock_irqrestore(&sdev->lock, flags);
482 
483 	return 0;
484 
485 err_out_xa:
486 	xa_erase(&sdev->qp_xa, qp_id(qp));
487 	if (uctx) {
488 		rdma_user_mmap_entry_remove(qp->sq_entry);
489 		rdma_user_mmap_entry_remove(qp->rq_entry);
490 	}
491 	vfree(qp->sendq);
492 	vfree(qp->recvq);
493 
494 err_atomic:
495 	atomic_dec(&sdev->num_qp);
496 	return rv;
497 }
498 
499 /*
500  * Minimum siw_query_qp() verb interface.
501  *
502  * @qp_attr_mask is not used but all available information is provided
503  */
504 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
505 		 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
506 {
507 	struct siw_qp *qp;
508 	struct siw_device *sdev;
509 
510 	if (base_qp && qp_attr && qp_init_attr) {
511 		qp = to_siw_qp(base_qp);
512 		sdev = to_siw_dev(base_qp->device);
513 	} else {
514 		return -EINVAL;
515 	}
516 	qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
517 	qp_attr->cap.max_send_wr = qp->attrs.sq_size;
518 	qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
519 	qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
520 	qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
521 	qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
522 	qp_attr->max_rd_atomic = qp->attrs.irq_size;
523 	qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
524 
525 	qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
526 				   IB_ACCESS_REMOTE_WRITE |
527 				   IB_ACCESS_REMOTE_READ;
528 
529 	qp_init_attr->qp_type = base_qp->qp_type;
530 	qp_init_attr->send_cq = base_qp->send_cq;
531 	qp_init_attr->recv_cq = base_qp->recv_cq;
532 	qp_init_attr->srq = base_qp->srq;
533 
534 	qp_init_attr->cap = qp_attr->cap;
535 
536 	return 0;
537 }
538 
539 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
540 			int attr_mask, struct ib_udata *udata)
541 {
542 	struct siw_qp_attrs new_attrs;
543 	enum siw_qp_attr_mask siw_attr_mask = 0;
544 	struct siw_qp *qp = to_siw_qp(base_qp);
545 	int rv = 0;
546 
547 	if (!attr_mask)
548 		return 0;
549 
550 	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
551 		return -EOPNOTSUPP;
552 
553 	memset(&new_attrs, 0, sizeof(new_attrs));
554 
555 	if (attr_mask & IB_QP_ACCESS_FLAGS) {
556 		siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
557 
558 		if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
559 			new_attrs.flags |= SIW_RDMA_READ_ENABLED;
560 		if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
561 			new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
562 		if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
563 			new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
564 	}
565 	if (attr_mask & IB_QP_STATE) {
566 		siw_dbg_qp(qp, "desired IB QP state: %s\n",
567 			   ib_qp_state_to_string[attr->qp_state]);
568 
569 		new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
570 
571 		if (new_attrs.state > SIW_QP_STATE_RTS)
572 			qp->tx_ctx.tx_suspend = 1;
573 
574 		siw_attr_mask |= SIW_QP_ATTR_STATE;
575 	}
576 	if (!siw_attr_mask)
577 		goto out;
578 
579 	down_write(&qp->state_lock);
580 
581 	rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
582 
583 	up_write(&qp->state_lock);
584 out:
585 	return rv;
586 }
587 
588 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
589 {
590 	struct siw_qp *qp = to_siw_qp(base_qp);
591 	struct siw_ucontext *uctx =
592 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
593 					  base_ucontext);
594 	struct siw_qp_attrs qp_attrs;
595 
596 	siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
597 
598 	/*
599 	 * Mark QP as in process of destruction to prevent from
600 	 * any async callbacks to RDMA core
601 	 */
602 	qp->attrs.flags |= SIW_QP_IN_DESTROY;
603 	qp->rx_stream.rx_suspend = 1;
604 
605 	if (uctx) {
606 		rdma_user_mmap_entry_remove(qp->sq_entry);
607 		rdma_user_mmap_entry_remove(qp->rq_entry);
608 	}
609 
610 	down_write(&qp->state_lock);
611 
612 	qp_attrs.state = SIW_QP_STATE_ERROR;
613 	siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
614 
615 	if (qp->cep) {
616 		siw_cep_put(qp->cep);
617 		qp->cep = NULL;
618 	}
619 	up_write(&qp->state_lock);
620 
621 	kfree(qp->tx_ctx.mpa_crc_hd);
622 	kfree(qp->rx_stream.mpa_crc_hd);
623 
624 	qp->scq = qp->rcq = NULL;
625 
626 	siw_qp_put(qp);
627 
628 	return 0;
629 }
630 
631 /*
632  * siw_copy_inline_sgl()
633  *
634  * Prepare sgl of inlined data for sending. For userland callers
635  * function checks if given buffer addresses and len's are within
636  * process context bounds.
637  * Data from all provided sge's are copied together into the wqe,
638  * referenced by a single sge.
639  */
640 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
641 			       struct siw_sqe *sqe)
642 {
643 	struct ib_sge *core_sge = core_wr->sg_list;
644 	void *kbuf = &sqe->sge[1];
645 	int num_sge = core_wr->num_sge, bytes = 0;
646 
647 	sqe->sge[0].laddr = (uintptr_t)kbuf;
648 	sqe->sge[0].lkey = 0;
649 
650 	while (num_sge--) {
651 		if (!core_sge->length) {
652 			core_sge++;
653 			continue;
654 		}
655 		bytes += core_sge->length;
656 		if (bytes > SIW_MAX_INLINE) {
657 			bytes = -EINVAL;
658 			break;
659 		}
660 		memcpy(kbuf, (void *)(uintptr_t)core_sge->addr,
661 		       core_sge->length);
662 
663 		kbuf += core_sge->length;
664 		core_sge++;
665 	}
666 	sqe->sge[0].length = max(bytes, 0);
667 	sqe->num_sge = bytes > 0 ? 1 : 0;
668 
669 	return bytes;
670 }
671 
672 /* Complete SQ WR's without processing */
673 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr,
674 			   const struct ib_send_wr **bad_wr)
675 {
676 	struct siw_sqe sqe = {};
677 	int rv = 0;
678 
679 	while (wr) {
680 		sqe.id = wr->wr_id;
681 		sqe.opcode = wr->opcode;
682 		rv = siw_sqe_complete(qp, &sqe, 0, SIW_WC_WR_FLUSH_ERR);
683 		if (rv) {
684 			if (bad_wr)
685 				*bad_wr = wr;
686 			break;
687 		}
688 		wr = wr->next;
689 	}
690 	return rv;
691 }
692 
693 /* Complete RQ WR's without processing */
694 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr,
695 			   const struct ib_recv_wr **bad_wr)
696 {
697 	struct siw_rqe rqe = {};
698 	int rv = 0;
699 
700 	while (wr) {
701 		rqe.id = wr->wr_id;
702 		rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR);
703 		if (rv) {
704 			if (bad_wr)
705 				*bad_wr = wr;
706 			break;
707 		}
708 		wr = wr->next;
709 	}
710 	return rv;
711 }
712 
713 /*
714  * siw_post_send()
715  *
716  * Post a list of S-WR's to a SQ.
717  *
718  * @base_qp:	Base QP contained in siw QP
719  * @wr:		Null terminated list of user WR's
720  * @bad_wr:	Points to failing WR in case of synchronous failure.
721  */
722 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
723 		  const struct ib_send_wr **bad_wr)
724 {
725 	struct siw_qp *qp = to_siw_qp(base_qp);
726 	struct siw_wqe *wqe = tx_wqe(qp);
727 
728 	unsigned long flags;
729 	int rv = 0;
730 
731 	if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) {
732 		siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
733 		*bad_wr = wr;
734 		return -EINVAL;
735 	}
736 
737 	/*
738 	 * Try to acquire QP state lock. Must be non-blocking
739 	 * to accommodate kernel clients needs.
740 	 */
741 	if (!down_read_trylock(&qp->state_lock)) {
742 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
743 			/*
744 			 * ERROR state is final, so we can be sure
745 			 * this state will not change as long as the QP
746 			 * exists.
747 			 *
748 			 * This handles an ib_drain_sq() call with
749 			 * a concurrent request to set the QP state
750 			 * to ERROR.
751 			 */
752 			rv = siw_sq_flush_wr(qp, wr, bad_wr);
753 		} else {
754 			siw_dbg_qp(qp, "QP locked, state %d\n",
755 				   qp->attrs.state);
756 			*bad_wr = wr;
757 			rv = -ENOTCONN;
758 		}
759 		return rv;
760 	}
761 	if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
762 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
763 			/*
764 			 * Immediately flush this WR to CQ, if QP
765 			 * is in ERROR state. SQ is guaranteed to
766 			 * be empty, so WR complets in-order.
767 			 *
768 			 * Typically triggered by ib_drain_sq().
769 			 */
770 			rv = siw_sq_flush_wr(qp, wr, bad_wr);
771 		} else {
772 			siw_dbg_qp(qp, "QP out of state %d\n",
773 				   qp->attrs.state);
774 			*bad_wr = wr;
775 			rv = -ENOTCONN;
776 		}
777 		up_read(&qp->state_lock);
778 		return rv;
779 	}
780 	spin_lock_irqsave(&qp->sq_lock, flags);
781 
782 	while (wr) {
783 		u32 idx = qp->sq_put % qp->attrs.sq_size;
784 		struct siw_sqe *sqe = &qp->sendq[idx];
785 
786 		if (sqe->flags) {
787 			siw_dbg_qp(qp, "sq full\n");
788 			rv = -ENOMEM;
789 			break;
790 		}
791 		if (wr->num_sge > qp->attrs.sq_max_sges) {
792 			siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
793 			rv = -EINVAL;
794 			break;
795 		}
796 		sqe->id = wr->wr_id;
797 
798 		if ((wr->send_flags & IB_SEND_SIGNALED) ||
799 		    (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
800 			sqe->flags |= SIW_WQE_SIGNALLED;
801 
802 		if (wr->send_flags & IB_SEND_FENCE)
803 			sqe->flags |= SIW_WQE_READ_FENCE;
804 
805 		switch (wr->opcode) {
806 		case IB_WR_SEND:
807 		case IB_WR_SEND_WITH_INV:
808 			if (wr->send_flags & IB_SEND_SOLICITED)
809 				sqe->flags |= SIW_WQE_SOLICITED;
810 
811 			if (!(wr->send_flags & IB_SEND_INLINE)) {
812 				siw_copy_sgl(wr->sg_list, sqe->sge,
813 					     wr->num_sge);
814 				sqe->num_sge = wr->num_sge;
815 			} else {
816 				rv = siw_copy_inline_sgl(wr, sqe);
817 				if (rv <= 0) {
818 					rv = -EINVAL;
819 					break;
820 				}
821 				sqe->flags |= SIW_WQE_INLINE;
822 				sqe->num_sge = 1;
823 			}
824 			if (wr->opcode == IB_WR_SEND)
825 				sqe->opcode = SIW_OP_SEND;
826 			else {
827 				sqe->opcode = SIW_OP_SEND_REMOTE_INV;
828 				sqe->rkey = wr->ex.invalidate_rkey;
829 			}
830 			break;
831 
832 		case IB_WR_RDMA_READ_WITH_INV:
833 		case IB_WR_RDMA_READ:
834 			/*
835 			 * iWarp restricts RREAD sink to SGL containing
836 			 * 1 SGE only. we could relax to SGL with multiple
837 			 * elements referring the SAME ltag or even sending
838 			 * a private per-rreq tag referring to a checked
839 			 * local sgl with MULTIPLE ltag's.
840 			 */
841 			if (unlikely(wr->num_sge != 1)) {
842 				rv = -EINVAL;
843 				break;
844 			}
845 			siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
846 			/*
847 			 * NOTE: zero length RREAD is allowed!
848 			 */
849 			sqe->raddr = rdma_wr(wr)->remote_addr;
850 			sqe->rkey = rdma_wr(wr)->rkey;
851 			sqe->num_sge = 1;
852 
853 			if (wr->opcode == IB_WR_RDMA_READ)
854 				sqe->opcode = SIW_OP_READ;
855 			else
856 				sqe->opcode = SIW_OP_READ_LOCAL_INV;
857 			break;
858 
859 		case IB_WR_RDMA_WRITE:
860 			if (!(wr->send_flags & IB_SEND_INLINE)) {
861 				siw_copy_sgl(wr->sg_list, &sqe->sge[0],
862 					     wr->num_sge);
863 				sqe->num_sge = wr->num_sge;
864 			} else {
865 				rv = siw_copy_inline_sgl(wr, sqe);
866 				if (unlikely(rv < 0)) {
867 					rv = -EINVAL;
868 					break;
869 				}
870 				sqe->flags |= SIW_WQE_INLINE;
871 				sqe->num_sge = 1;
872 			}
873 			sqe->raddr = rdma_wr(wr)->remote_addr;
874 			sqe->rkey = rdma_wr(wr)->rkey;
875 			sqe->opcode = SIW_OP_WRITE;
876 			break;
877 
878 		case IB_WR_REG_MR:
879 			sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
880 			sqe->rkey = reg_wr(wr)->key;
881 			sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
882 			sqe->opcode = SIW_OP_REG_MR;
883 			break;
884 
885 		case IB_WR_LOCAL_INV:
886 			sqe->rkey = wr->ex.invalidate_rkey;
887 			sqe->opcode = SIW_OP_INVAL_STAG;
888 			break;
889 
890 		default:
891 			siw_dbg_qp(qp, "ib wr type %d unsupported\n",
892 				   wr->opcode);
893 			rv = -EINVAL;
894 			break;
895 		}
896 		siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
897 			   sqe->opcode, sqe->flags,
898 			   (void *)(uintptr_t)sqe->id);
899 
900 		if (unlikely(rv < 0))
901 			break;
902 
903 		/* make SQE only valid after completely written */
904 		smp_wmb();
905 		sqe->flags |= SIW_WQE_VALID;
906 
907 		qp->sq_put++;
908 		wr = wr->next;
909 	}
910 
911 	/*
912 	 * Send directly if SQ processing is not in progress.
913 	 * Eventual immediate errors (rv < 0) do not affect the involved
914 	 * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
915 	 * processing, if new work is already pending. But rv must be passed
916 	 * to caller.
917 	 */
918 	if (wqe->wr_status != SIW_WR_IDLE) {
919 		spin_unlock_irqrestore(&qp->sq_lock, flags);
920 		goto skip_direct_sending;
921 	}
922 	rv = siw_activate_tx(qp);
923 	spin_unlock_irqrestore(&qp->sq_lock, flags);
924 
925 	if (rv <= 0)
926 		goto skip_direct_sending;
927 
928 	if (rdma_is_kernel_res(&qp->base_qp.res)) {
929 		rv = siw_sq_start(qp);
930 	} else {
931 		qp->tx_ctx.in_syscall = 1;
932 
933 		if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
934 			siw_qp_cm_drop(qp, 0);
935 
936 		qp->tx_ctx.in_syscall = 0;
937 	}
938 skip_direct_sending:
939 
940 	up_read(&qp->state_lock);
941 
942 	if (rv >= 0)
943 		return 0;
944 	/*
945 	 * Immediate error
946 	 */
947 	siw_dbg_qp(qp, "error %d\n", rv);
948 
949 	*bad_wr = wr;
950 	return rv;
951 }
952 
953 /*
954  * siw_post_receive()
955  *
956  * Post a list of R-WR's to a RQ.
957  *
958  * @base_qp:	Base QP contained in siw QP
959  * @wr:		Null terminated list of user WR's
960  * @bad_wr:	Points to failing WR in case of synchronous failure.
961  */
962 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
963 		     const struct ib_recv_wr **bad_wr)
964 {
965 	struct siw_qp *qp = to_siw_qp(base_qp);
966 	unsigned long flags;
967 	int rv = 0;
968 
969 	if (qp->srq || qp->attrs.rq_size == 0) {
970 		*bad_wr = wr;
971 		return -EINVAL;
972 	}
973 	if (!rdma_is_kernel_res(&qp->base_qp.res)) {
974 		siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n");
975 		*bad_wr = wr;
976 		return -EINVAL;
977 	}
978 
979 	/*
980 	 * Try to acquire QP state lock. Must be non-blocking
981 	 * to accommodate kernel clients needs.
982 	 */
983 	if (!down_read_trylock(&qp->state_lock)) {
984 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
985 			/*
986 			 * ERROR state is final, so we can be sure
987 			 * this state will not change as long as the QP
988 			 * exists.
989 			 *
990 			 * This handles an ib_drain_rq() call with
991 			 * a concurrent request to set the QP state
992 			 * to ERROR.
993 			 */
994 			rv = siw_rq_flush_wr(qp, wr, bad_wr);
995 		} else {
996 			siw_dbg_qp(qp, "QP locked, state %d\n",
997 				   qp->attrs.state);
998 			*bad_wr = wr;
999 			rv = -ENOTCONN;
1000 		}
1001 		return rv;
1002 	}
1003 	if (qp->attrs.state > SIW_QP_STATE_RTS) {
1004 		if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1005 			/*
1006 			 * Immediately flush this WR to CQ, if QP
1007 			 * is in ERROR state. RQ is guaranteed to
1008 			 * be empty, so WR complets in-order.
1009 			 *
1010 			 * Typically triggered by ib_drain_rq().
1011 			 */
1012 			rv = siw_rq_flush_wr(qp, wr, bad_wr);
1013 		} else {
1014 			siw_dbg_qp(qp, "QP out of state %d\n",
1015 				   qp->attrs.state);
1016 			*bad_wr = wr;
1017 			rv = -ENOTCONN;
1018 		}
1019 		up_read(&qp->state_lock);
1020 		return rv;
1021 	}
1022 	/*
1023 	 * Serialize potentially multiple producers.
1024 	 * Not needed for single threaded consumer side.
1025 	 */
1026 	spin_lock_irqsave(&qp->rq_lock, flags);
1027 
1028 	while (wr) {
1029 		u32 idx = qp->rq_put % qp->attrs.rq_size;
1030 		struct siw_rqe *rqe = &qp->recvq[idx];
1031 
1032 		if (rqe->flags) {
1033 			siw_dbg_qp(qp, "RQ full\n");
1034 			rv = -ENOMEM;
1035 			break;
1036 		}
1037 		if (wr->num_sge > qp->attrs.rq_max_sges) {
1038 			siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
1039 			rv = -EINVAL;
1040 			break;
1041 		}
1042 		rqe->id = wr->wr_id;
1043 		rqe->num_sge = wr->num_sge;
1044 		siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1045 
1046 		/* make sure RQE is completely written before valid */
1047 		smp_wmb();
1048 
1049 		rqe->flags = SIW_WQE_VALID;
1050 
1051 		qp->rq_put++;
1052 		wr = wr->next;
1053 	}
1054 	spin_unlock_irqrestore(&qp->rq_lock, flags);
1055 
1056 	up_read(&qp->state_lock);
1057 
1058 	if (rv < 0) {
1059 		siw_dbg_qp(qp, "error %d\n", rv);
1060 		*bad_wr = wr;
1061 	}
1062 	return rv > 0 ? 0 : rv;
1063 }
1064 
1065 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
1066 {
1067 	struct siw_cq *cq = to_siw_cq(base_cq);
1068 	struct siw_device *sdev = to_siw_dev(base_cq->device);
1069 	struct siw_ucontext *ctx =
1070 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1071 					  base_ucontext);
1072 
1073 	siw_dbg_cq(cq, "free CQ resources\n");
1074 
1075 	siw_cq_flush(cq);
1076 
1077 	if (ctx)
1078 		rdma_user_mmap_entry_remove(cq->cq_entry);
1079 
1080 	atomic_dec(&sdev->num_cq);
1081 
1082 	vfree(cq->queue);
1083 	return 0;
1084 }
1085 
1086 /*
1087  * siw_create_cq()
1088  *
1089  * Populate CQ of requested size
1090  *
1091  * @base_cq: CQ as allocated by RDMA midlayer
1092  * @attr: Initial CQ attributes
1093  * @udata: relates to user context
1094  */
1095 
1096 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1097 		  struct ib_udata *udata)
1098 {
1099 	struct siw_device *sdev = to_siw_dev(base_cq->device);
1100 	struct siw_cq *cq = to_siw_cq(base_cq);
1101 	int rv, size = attr->cqe;
1102 
1103 	if (attr->flags)
1104 		return -EOPNOTSUPP;
1105 
1106 	if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1107 		siw_dbg(base_cq->device, "too many CQ's\n");
1108 		rv = -ENOMEM;
1109 		goto err_out;
1110 	}
1111 	if (size < 1 || size > sdev->attrs.max_cqe) {
1112 		siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1113 		rv = -EINVAL;
1114 		goto err_out;
1115 	}
1116 	size = roundup_pow_of_two(size);
1117 	cq->base_cq.cqe = size;
1118 	cq->num_cqe = size;
1119 
1120 	if (udata)
1121 		cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1122 					 sizeof(struct siw_cq_ctrl));
1123 	else
1124 		cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1125 				    sizeof(struct siw_cq_ctrl));
1126 
1127 	if (cq->queue == NULL) {
1128 		rv = -ENOMEM;
1129 		goto err_out;
1130 	}
1131 	get_random_bytes(&cq->id, 4);
1132 	siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1133 
1134 	spin_lock_init(&cq->lock);
1135 
1136 	cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1137 
1138 	if (udata) {
1139 		struct siw_uresp_create_cq uresp = {};
1140 		struct siw_ucontext *ctx =
1141 			rdma_udata_to_drv_context(udata, struct siw_ucontext,
1142 						  base_ucontext);
1143 		size_t length = size * sizeof(struct siw_cqe) +
1144 			sizeof(struct siw_cq_ctrl);
1145 
1146 		cq->cq_entry =
1147 			siw_mmap_entry_insert(ctx, cq->queue,
1148 					      length, &uresp.cq_key);
1149 		if (!cq->cq_entry) {
1150 			rv = -ENOMEM;
1151 			goto err_out;
1152 		}
1153 
1154 		uresp.cq_id = cq->id;
1155 		uresp.num_cqe = size;
1156 
1157 		if (udata->outlen < sizeof(uresp)) {
1158 			rv = -EINVAL;
1159 			goto err_out;
1160 		}
1161 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1162 		if (rv)
1163 			goto err_out;
1164 	}
1165 	return 0;
1166 
1167 err_out:
1168 	siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1169 
1170 	if (cq && cq->queue) {
1171 		struct siw_ucontext *ctx =
1172 			rdma_udata_to_drv_context(udata, struct siw_ucontext,
1173 						  base_ucontext);
1174 		if (ctx)
1175 			rdma_user_mmap_entry_remove(cq->cq_entry);
1176 		vfree(cq->queue);
1177 	}
1178 	atomic_dec(&sdev->num_cq);
1179 
1180 	return rv;
1181 }
1182 
1183 /*
1184  * siw_poll_cq()
1185  *
1186  * Reap CQ entries if available and copy work completion status into
1187  * array of WC's provided by caller. Returns number of reaped CQE's.
1188  *
1189  * @base_cq:	Base CQ contained in siw CQ.
1190  * @num_cqe:	Maximum number of CQE's to reap.
1191  * @wc:		Array of work completions to be filled by siw.
1192  */
1193 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1194 {
1195 	struct siw_cq *cq = to_siw_cq(base_cq);
1196 	int i;
1197 
1198 	for (i = 0; i < num_cqe; i++) {
1199 		if (!siw_reap_cqe(cq, wc))
1200 			break;
1201 		wc++;
1202 	}
1203 	return i;
1204 }
1205 
1206 /*
1207  * siw_req_notify_cq()
1208  *
1209  * Request notification for new CQE's added to that CQ.
1210  * Defined flags:
1211  * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1212  *   event if a WQE with notification flag set enters the CQ
1213  * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1214  *   event if a WQE enters the CQ.
1215  * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1216  *   number of not reaped CQE's regardless of its notification
1217  *   type and current or new CQ notification settings.
1218  *
1219  * @base_cq:	Base CQ contained in siw CQ.
1220  * @flags:	Requested notification flags.
1221  */
1222 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1223 {
1224 	struct siw_cq *cq = to_siw_cq(base_cq);
1225 
1226 	siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1227 
1228 	if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1229 		/*
1230 		 * Enable CQ event for next solicited completion.
1231 		 * and make it visible to all associated producers.
1232 		 */
1233 		smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1234 	else
1235 		/*
1236 		 * Enable CQ event for any signalled completion.
1237 		 * and make it visible to all associated producers.
1238 		 */
1239 		smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1240 
1241 	if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1242 		return cq->cq_put - cq->cq_get;
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * siw_dereg_mr()
1249  *
1250  * Release Memory Region.
1251  *
1252  * @base_mr: Base MR contained in siw MR.
1253  * @udata: points to user context, unused.
1254  */
1255 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1256 {
1257 	struct siw_mr *mr = to_siw_mr(base_mr);
1258 	struct siw_device *sdev = to_siw_dev(base_mr->device);
1259 
1260 	siw_dbg_mem(mr->mem, "deregister MR\n");
1261 
1262 	atomic_dec(&sdev->num_mr);
1263 
1264 	siw_mr_drop_mem(mr);
1265 	kfree_rcu(mr, rcu);
1266 
1267 	return 0;
1268 }
1269 
1270 /*
1271  * siw_reg_user_mr()
1272  *
1273  * Register Memory Region.
1274  *
1275  * @pd:		Protection Domain
1276  * @start:	starting address of MR (virtual address)
1277  * @len:	len of MR
1278  * @rnic_va:	not used by siw
1279  * @rights:	MR access rights
1280  * @udata:	user buffer to communicate STag and Key.
1281  */
1282 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1283 			      u64 rnic_va, int rights, struct ib_udata *udata)
1284 {
1285 	struct siw_mr *mr = NULL;
1286 	struct siw_umem *umem = NULL;
1287 	struct siw_ureq_reg_mr ureq;
1288 	struct siw_device *sdev = to_siw_dev(pd->device);
1289 
1290 	unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK);
1291 	int rv;
1292 
1293 	siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1294 		   (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1295 		   (unsigned long long)len);
1296 
1297 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1298 		siw_dbg_pd(pd, "too many mr's\n");
1299 		rv = -ENOMEM;
1300 		goto err_out;
1301 	}
1302 	if (!len) {
1303 		rv = -EINVAL;
1304 		goto err_out;
1305 	}
1306 	if (mem_limit != RLIM_INFINITY) {
1307 		unsigned long num_pages =
1308 			(PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT;
1309 		mem_limit >>= PAGE_SHIFT;
1310 
1311 		if (num_pages > mem_limit - current->mm->locked_vm) {
1312 			siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n",
1313 				   num_pages, mem_limit,
1314 				   current->mm->locked_vm);
1315 			rv = -ENOMEM;
1316 			goto err_out;
1317 		}
1318 	}
1319 	umem = siw_umem_get(start, len, ib_access_writable(rights));
1320 	if (IS_ERR(umem)) {
1321 		rv = PTR_ERR(umem);
1322 		siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1323 		umem = NULL;
1324 		goto err_out;
1325 	}
1326 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1327 	if (!mr) {
1328 		rv = -ENOMEM;
1329 		goto err_out;
1330 	}
1331 	rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1332 	if (rv)
1333 		goto err_out;
1334 
1335 	if (udata) {
1336 		struct siw_uresp_reg_mr uresp = {};
1337 		struct siw_mem *mem = mr->mem;
1338 
1339 		if (udata->inlen < sizeof(ureq)) {
1340 			rv = -EINVAL;
1341 			goto err_out;
1342 		}
1343 		rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1344 		if (rv)
1345 			goto err_out;
1346 
1347 		mr->base_mr.lkey |= ureq.stag_key;
1348 		mr->base_mr.rkey |= ureq.stag_key;
1349 		mem->stag |= ureq.stag_key;
1350 		uresp.stag = mem->stag;
1351 
1352 		if (udata->outlen < sizeof(uresp)) {
1353 			rv = -EINVAL;
1354 			goto err_out;
1355 		}
1356 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1357 		if (rv)
1358 			goto err_out;
1359 	}
1360 	mr->mem->stag_valid = 1;
1361 
1362 	return &mr->base_mr;
1363 
1364 err_out:
1365 	atomic_dec(&sdev->num_mr);
1366 	if (mr) {
1367 		if (mr->mem)
1368 			siw_mr_drop_mem(mr);
1369 		kfree_rcu(mr, rcu);
1370 	} else {
1371 		if (umem)
1372 			siw_umem_release(umem, false);
1373 	}
1374 	return ERR_PTR(rv);
1375 }
1376 
1377 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1378 			   u32 max_sge)
1379 {
1380 	struct siw_device *sdev = to_siw_dev(pd->device);
1381 	struct siw_mr *mr = NULL;
1382 	struct siw_pbl *pbl = NULL;
1383 	int rv;
1384 
1385 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1386 		siw_dbg_pd(pd, "too many mr's\n");
1387 		rv = -ENOMEM;
1388 		goto err_out;
1389 	}
1390 	if (mr_type != IB_MR_TYPE_MEM_REG) {
1391 		siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1392 		rv = -EOPNOTSUPP;
1393 		goto err_out;
1394 	}
1395 	if (max_sge > SIW_MAX_SGE_PBL) {
1396 		siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1397 		rv = -ENOMEM;
1398 		goto err_out;
1399 	}
1400 	pbl = siw_pbl_alloc(max_sge);
1401 	if (IS_ERR(pbl)) {
1402 		rv = PTR_ERR(pbl);
1403 		siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1404 		pbl = NULL;
1405 		goto err_out;
1406 	}
1407 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1408 	if (!mr) {
1409 		rv = -ENOMEM;
1410 		goto err_out;
1411 	}
1412 	rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1413 	if (rv)
1414 		goto err_out;
1415 
1416 	mr->mem->is_pbl = 1;
1417 
1418 	siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1419 
1420 	return &mr->base_mr;
1421 
1422 err_out:
1423 	atomic_dec(&sdev->num_mr);
1424 
1425 	if (!mr) {
1426 		kfree(pbl);
1427 	} else {
1428 		if (mr->mem)
1429 			siw_mr_drop_mem(mr);
1430 		kfree_rcu(mr, rcu);
1431 	}
1432 	siw_dbg_pd(pd, "failed: %d\n", rv);
1433 
1434 	return ERR_PTR(rv);
1435 }
1436 
1437 /* Just used to count number of pages being mapped */
1438 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1439 {
1440 	return 0;
1441 }
1442 
1443 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1444 		  unsigned int *sg_off)
1445 {
1446 	struct scatterlist *slp;
1447 	struct siw_mr *mr = to_siw_mr(base_mr);
1448 	struct siw_mem *mem = mr->mem;
1449 	struct siw_pbl *pbl = mem->pbl;
1450 	struct siw_pble *pble;
1451 	unsigned long pbl_size;
1452 	int i, rv;
1453 
1454 	if (!pbl) {
1455 		siw_dbg_mem(mem, "no PBL allocated\n");
1456 		return -EINVAL;
1457 	}
1458 	pble = pbl->pbe;
1459 
1460 	if (pbl->max_buf < num_sle) {
1461 		siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1462 			    mem->pbl->max_buf, num_sle);
1463 		return -ENOMEM;
1464 	}
1465 	for_each_sg(sl, slp, num_sle, i) {
1466 		if (sg_dma_len(slp) == 0) {
1467 			siw_dbg_mem(mem, "empty SGE\n");
1468 			return -EINVAL;
1469 		}
1470 		if (i == 0) {
1471 			pble->addr = sg_dma_address(slp);
1472 			pble->size = sg_dma_len(slp);
1473 			pble->pbl_off = 0;
1474 			pbl_size = pble->size;
1475 			pbl->num_buf = 1;
1476 		} else {
1477 			/* Merge PBL entries if adjacent */
1478 			if (pble->addr + pble->size == sg_dma_address(slp)) {
1479 				pble->size += sg_dma_len(slp);
1480 			} else {
1481 				pble++;
1482 				pbl->num_buf++;
1483 				pble->addr = sg_dma_address(slp);
1484 				pble->size = sg_dma_len(slp);
1485 				pble->pbl_off = pbl_size;
1486 			}
1487 			pbl_size += sg_dma_len(slp);
1488 		}
1489 		siw_dbg_mem(mem,
1490 			"sge[%d], size %u, addr 0x%p, total %lu\n",
1491 			i, pble->size, (void *)(uintptr_t)pble->addr,
1492 			pbl_size);
1493 	}
1494 	rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1495 	if (rv > 0) {
1496 		mem->len = base_mr->length;
1497 		mem->va = base_mr->iova;
1498 		siw_dbg_mem(mem,
1499 			"%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1500 			mem->len, (void *)(uintptr_t)mem->va, num_sle,
1501 			pbl->num_buf);
1502 	}
1503 	return rv;
1504 }
1505 
1506 /*
1507  * siw_get_dma_mr()
1508  *
1509  * Create a (empty) DMA memory region, where no umem is attached.
1510  */
1511 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1512 {
1513 	struct siw_device *sdev = to_siw_dev(pd->device);
1514 	struct siw_mr *mr = NULL;
1515 	int rv;
1516 
1517 	if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1518 		siw_dbg_pd(pd, "too many mr's\n");
1519 		rv = -ENOMEM;
1520 		goto err_out;
1521 	}
1522 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1523 	if (!mr) {
1524 		rv = -ENOMEM;
1525 		goto err_out;
1526 	}
1527 	rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1528 	if (rv)
1529 		goto err_out;
1530 
1531 	mr->mem->stag_valid = 1;
1532 
1533 	siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1534 
1535 	return &mr->base_mr;
1536 
1537 err_out:
1538 	if (rv)
1539 		kfree(mr);
1540 
1541 	atomic_dec(&sdev->num_mr);
1542 
1543 	return ERR_PTR(rv);
1544 }
1545 
1546 /*
1547  * siw_create_srq()
1548  *
1549  * Create Shared Receive Queue of attributes @init_attrs
1550  * within protection domain given by @pd.
1551  *
1552  * @base_srq:	Base SRQ contained in siw SRQ.
1553  * @init_attrs:	SRQ init attributes.
1554  * @udata:	points to user context
1555  */
1556 int siw_create_srq(struct ib_srq *base_srq,
1557 		   struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1558 {
1559 	struct siw_srq *srq = to_siw_srq(base_srq);
1560 	struct ib_srq_attr *attrs = &init_attrs->attr;
1561 	struct siw_device *sdev = to_siw_dev(base_srq->device);
1562 	struct siw_ucontext *ctx =
1563 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1564 					  base_ucontext);
1565 	int rv;
1566 
1567 	if (init_attrs->srq_type != IB_SRQT_BASIC)
1568 		return -EOPNOTSUPP;
1569 
1570 	if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1571 		siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1572 		rv = -ENOMEM;
1573 		goto err_out;
1574 	}
1575 	if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1576 	    attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1577 		rv = -EINVAL;
1578 		goto err_out;
1579 	}
1580 	srq->max_sge = attrs->max_sge;
1581 	srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1582 	srq->limit = attrs->srq_limit;
1583 	if (srq->limit)
1584 		srq->armed = true;
1585 
1586 	srq->is_kernel_res = !udata;
1587 
1588 	if (udata)
1589 		srq->recvq =
1590 			vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1591 	else
1592 		srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe));
1593 
1594 	if (srq->recvq == NULL) {
1595 		rv = -ENOMEM;
1596 		goto err_out;
1597 	}
1598 	if (udata) {
1599 		struct siw_uresp_create_srq uresp = {};
1600 		size_t length = srq->num_rqe * sizeof(struct siw_rqe);
1601 
1602 		srq->srq_entry =
1603 			siw_mmap_entry_insert(ctx, srq->recvq,
1604 					      length, &uresp.srq_key);
1605 		if (!srq->srq_entry) {
1606 			rv = -ENOMEM;
1607 			goto err_out;
1608 		}
1609 
1610 		uresp.num_rqe = srq->num_rqe;
1611 
1612 		if (udata->outlen < sizeof(uresp)) {
1613 			rv = -EINVAL;
1614 			goto err_out;
1615 		}
1616 		rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1617 		if (rv)
1618 			goto err_out;
1619 	}
1620 	spin_lock_init(&srq->lock);
1621 
1622 	siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1623 
1624 	return 0;
1625 
1626 err_out:
1627 	if (srq->recvq) {
1628 		if (ctx)
1629 			rdma_user_mmap_entry_remove(srq->srq_entry);
1630 		vfree(srq->recvq);
1631 	}
1632 	atomic_dec(&sdev->num_srq);
1633 
1634 	return rv;
1635 }
1636 
1637 /*
1638  * siw_modify_srq()
1639  *
1640  * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1641  * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1642  *
1643  * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1644  * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1645  */
1646 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1647 		   enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1648 {
1649 	struct siw_srq *srq = to_siw_srq(base_srq);
1650 	unsigned long flags;
1651 	int rv = 0;
1652 
1653 	spin_lock_irqsave(&srq->lock, flags);
1654 
1655 	if (attr_mask & IB_SRQ_MAX_WR) {
1656 		/* resize request not yet supported */
1657 		rv = -EOPNOTSUPP;
1658 		goto out;
1659 	}
1660 	if (attr_mask & IB_SRQ_LIMIT) {
1661 		if (attrs->srq_limit) {
1662 			if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1663 				rv = -EINVAL;
1664 				goto out;
1665 			}
1666 			srq->armed = true;
1667 		} else {
1668 			srq->armed = false;
1669 		}
1670 		srq->limit = attrs->srq_limit;
1671 	}
1672 out:
1673 	spin_unlock_irqrestore(&srq->lock, flags);
1674 
1675 	return rv;
1676 }
1677 
1678 /*
1679  * siw_query_srq()
1680  *
1681  * Query SRQ attributes.
1682  */
1683 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1684 {
1685 	struct siw_srq *srq = to_siw_srq(base_srq);
1686 	unsigned long flags;
1687 
1688 	spin_lock_irqsave(&srq->lock, flags);
1689 
1690 	attrs->max_wr = srq->num_rqe;
1691 	attrs->max_sge = srq->max_sge;
1692 	attrs->srq_limit = srq->limit;
1693 
1694 	spin_unlock_irqrestore(&srq->lock, flags);
1695 
1696 	return 0;
1697 }
1698 
1699 /*
1700  * siw_destroy_srq()
1701  *
1702  * Destroy SRQ.
1703  * It is assumed that the SRQ is not referenced by any
1704  * QP anymore - the code trusts the RDMA core environment to keep track
1705  * of QP references.
1706  */
1707 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1708 {
1709 	struct siw_srq *srq = to_siw_srq(base_srq);
1710 	struct siw_device *sdev = to_siw_dev(base_srq->device);
1711 	struct siw_ucontext *ctx =
1712 		rdma_udata_to_drv_context(udata, struct siw_ucontext,
1713 					  base_ucontext);
1714 
1715 	if (ctx)
1716 		rdma_user_mmap_entry_remove(srq->srq_entry);
1717 	vfree(srq->recvq);
1718 	atomic_dec(&sdev->num_srq);
1719 	return 0;
1720 }
1721 
1722 /*
1723  * siw_post_srq_recv()
1724  *
1725  * Post a list of receive queue elements to SRQ.
1726  * NOTE: The function does not check or lock a certain SRQ state
1727  *       during the post operation. The code simply trusts the
1728  *       RDMA core environment.
1729  *
1730  * @base_srq:	Base SRQ contained in siw SRQ
1731  * @wr:		List of R-WR's
1732  * @bad_wr:	Updated to failing WR if posting fails.
1733  */
1734 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1735 		      const struct ib_recv_wr **bad_wr)
1736 {
1737 	struct siw_srq *srq = to_siw_srq(base_srq);
1738 	unsigned long flags;
1739 	int rv = 0;
1740 
1741 	if (unlikely(!srq->is_kernel_res)) {
1742 		siw_dbg_pd(base_srq->pd,
1743 			   "[SRQ]: no kernel post_recv for mapped srq\n");
1744 		rv = -EINVAL;
1745 		goto out;
1746 	}
1747 	/*
1748 	 * Serialize potentially multiple producers.
1749 	 * Also needed to serialize potentially multiple
1750 	 * consumers.
1751 	 */
1752 	spin_lock_irqsave(&srq->lock, flags);
1753 
1754 	while (wr) {
1755 		u32 idx = srq->rq_put % srq->num_rqe;
1756 		struct siw_rqe *rqe = &srq->recvq[idx];
1757 
1758 		if (rqe->flags) {
1759 			siw_dbg_pd(base_srq->pd, "SRQ full\n");
1760 			rv = -ENOMEM;
1761 			break;
1762 		}
1763 		if (unlikely(wr->num_sge > srq->max_sge)) {
1764 			siw_dbg_pd(base_srq->pd,
1765 				   "[SRQ]: too many sge's: %d\n", wr->num_sge);
1766 			rv = -EINVAL;
1767 			break;
1768 		}
1769 		rqe->id = wr->wr_id;
1770 		rqe->num_sge = wr->num_sge;
1771 		siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1772 
1773 		/* Make sure S-RQE is completely written before valid */
1774 		smp_wmb();
1775 
1776 		rqe->flags = SIW_WQE_VALID;
1777 
1778 		srq->rq_put++;
1779 		wr = wr->next;
1780 	}
1781 	spin_unlock_irqrestore(&srq->lock, flags);
1782 out:
1783 	if (unlikely(rv < 0)) {
1784 		siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1785 		*bad_wr = wr;
1786 	}
1787 	return rv;
1788 }
1789 
1790 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1791 {
1792 	struct ib_event event;
1793 	struct ib_qp *base_qp = &qp->base_qp;
1794 
1795 	/*
1796 	 * Do not report asynchronous errors on QP which gets
1797 	 * destroyed via verbs interface (siw_destroy_qp())
1798 	 */
1799 	if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1800 		return;
1801 
1802 	event.event = etype;
1803 	event.device = base_qp->device;
1804 	event.element.qp = base_qp;
1805 
1806 	if (base_qp->event_handler) {
1807 		siw_dbg_qp(qp, "reporting event %d\n", etype);
1808 		base_qp->event_handler(&event, base_qp->qp_context);
1809 	}
1810 }
1811 
1812 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1813 {
1814 	struct ib_event event;
1815 	struct ib_cq *base_cq = &cq->base_cq;
1816 
1817 	event.event = etype;
1818 	event.device = base_cq->device;
1819 	event.element.cq = base_cq;
1820 
1821 	if (base_cq->event_handler) {
1822 		siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1823 		base_cq->event_handler(&event, base_cq->cq_context);
1824 	}
1825 }
1826 
1827 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1828 {
1829 	struct ib_event event;
1830 	struct ib_srq *base_srq = &srq->base_srq;
1831 
1832 	event.event = etype;
1833 	event.device = base_srq->device;
1834 	event.element.srq = base_srq;
1835 
1836 	if (base_srq->event_handler) {
1837 		siw_dbg_pd(srq->base_srq.pd,
1838 			   "reporting SRQ event %d\n", etype);
1839 		base_srq->event_handler(&event, base_srq->srq_context);
1840 	}
1841 }
1842 
1843 void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype)
1844 {
1845 	struct ib_event event;
1846 
1847 	event.event = etype;
1848 	event.device = &sdev->base_dev;
1849 	event.element.port_num = port;
1850 
1851 	siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1852 
1853 	ib_dispatch_event(&event);
1854 }
1855