xref: /linux/drivers/infiniband/sw/rxe/rxe_resp.c (revision 1553419c3c10cf386496e68b90b5d0ce966ac614)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
4  * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
5  */
6 
7 #include <linux/skbuff.h>
8 
9 #include "rxe.h"
10 #include "rxe_loc.h"
11 #include "rxe_queue.h"
12 
13 static char *resp_state_name[] = {
14 	[RESPST_NONE]				= "NONE",
15 	[RESPST_GET_REQ]			= "GET_REQ",
16 	[RESPST_CHK_PSN]			= "CHK_PSN",
17 	[RESPST_CHK_OP_SEQ]			= "CHK_OP_SEQ",
18 	[RESPST_CHK_OP_VALID]			= "CHK_OP_VALID",
19 	[RESPST_CHK_RESOURCE]			= "CHK_RESOURCE",
20 	[RESPST_CHK_LENGTH]			= "CHK_LENGTH",
21 	[RESPST_CHK_RKEY]			= "CHK_RKEY",
22 	[RESPST_EXECUTE]			= "EXECUTE",
23 	[RESPST_READ_REPLY]			= "READ_REPLY",
24 	[RESPST_ATOMIC_REPLY]			= "ATOMIC_REPLY",
25 	[RESPST_ATOMIC_WRITE_REPLY]		= "ATOMIC_WRITE_REPLY",
26 	[RESPST_PROCESS_FLUSH]			= "PROCESS_FLUSH",
27 	[RESPST_COMPLETE]			= "COMPLETE",
28 	[RESPST_ACKNOWLEDGE]			= "ACKNOWLEDGE",
29 	[RESPST_CLEANUP]			= "CLEANUP",
30 	[RESPST_DUPLICATE_REQUEST]		= "DUPLICATE_REQUEST",
31 	[RESPST_ERR_MALFORMED_WQE]		= "ERR_MALFORMED_WQE",
32 	[RESPST_ERR_UNSUPPORTED_OPCODE]		= "ERR_UNSUPPORTED_OPCODE",
33 	[RESPST_ERR_MISALIGNED_ATOMIC]		= "ERR_MISALIGNED_ATOMIC",
34 	[RESPST_ERR_PSN_OUT_OF_SEQ]		= "ERR_PSN_OUT_OF_SEQ",
35 	[RESPST_ERR_MISSING_OPCODE_FIRST]	= "ERR_MISSING_OPCODE_FIRST",
36 	[RESPST_ERR_MISSING_OPCODE_LAST_C]	= "ERR_MISSING_OPCODE_LAST_C",
37 	[RESPST_ERR_MISSING_OPCODE_LAST_D1E]	= "ERR_MISSING_OPCODE_LAST_D1E",
38 	[RESPST_ERR_TOO_MANY_RDMA_ATM_REQ]	= "ERR_TOO_MANY_RDMA_ATM_REQ",
39 	[RESPST_ERR_RNR]			= "ERR_RNR",
40 	[RESPST_ERR_RKEY_VIOLATION]		= "ERR_RKEY_VIOLATION",
41 	[RESPST_ERR_INVALIDATE_RKEY]		= "ERR_INVALIDATE_RKEY_VIOLATION",
42 	[RESPST_ERR_LENGTH]			= "ERR_LENGTH",
43 	[RESPST_ERR_CQ_OVERFLOW]		= "ERR_CQ_OVERFLOW",
44 	[RESPST_ERROR]				= "ERROR",
45 	[RESPST_DONE]				= "DONE",
46 	[RESPST_EXIT]				= "EXIT",
47 };
48 
49 /* rxe_recv calls here to add a request packet to the input queue */
50 void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb)
51 {
52 	skb_queue_tail(&qp->req_pkts, skb);
53 	rxe_sched_task(&qp->recv_task);
54 }
55 
56 static inline enum resp_states get_req(struct rxe_qp *qp,
57 				       struct rxe_pkt_info **pkt_p)
58 {
59 	struct sk_buff *skb;
60 
61 	skb = skb_peek(&qp->req_pkts);
62 	if (!skb)
63 		return RESPST_EXIT;
64 
65 	*pkt_p = SKB_TO_PKT(skb);
66 
67 	return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN;
68 }
69 
70 static enum resp_states check_psn(struct rxe_qp *qp,
71 				  struct rxe_pkt_info *pkt)
72 {
73 	int diff = psn_compare(pkt->psn, qp->resp.psn);
74 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
75 
76 	switch (qp_type(qp)) {
77 	case IB_QPT_RC:
78 		if (diff > 0) {
79 			if (qp->resp.sent_psn_nak)
80 				return RESPST_CLEANUP;
81 
82 			qp->resp.sent_psn_nak = 1;
83 			rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ);
84 			return RESPST_ERR_PSN_OUT_OF_SEQ;
85 
86 		} else if (diff < 0) {
87 			rxe_counter_inc(rxe, RXE_CNT_DUP_REQ);
88 			return RESPST_DUPLICATE_REQUEST;
89 		}
90 
91 		if (qp->resp.sent_psn_nak)
92 			qp->resp.sent_psn_nak = 0;
93 
94 		break;
95 
96 	case IB_QPT_UC:
97 		if (qp->resp.drop_msg || diff != 0) {
98 			if (pkt->mask & RXE_START_MASK) {
99 				qp->resp.drop_msg = 0;
100 				return RESPST_CHK_OP_SEQ;
101 			}
102 
103 			qp->resp.drop_msg = 1;
104 			return RESPST_CLEANUP;
105 		}
106 		break;
107 	default:
108 		break;
109 	}
110 
111 	return RESPST_CHK_OP_SEQ;
112 }
113 
114 static enum resp_states check_op_seq(struct rxe_qp *qp,
115 				     struct rxe_pkt_info *pkt)
116 {
117 	switch (qp_type(qp)) {
118 	case IB_QPT_RC:
119 		switch (qp->resp.opcode) {
120 		case IB_OPCODE_RC_SEND_FIRST:
121 		case IB_OPCODE_RC_SEND_MIDDLE:
122 			switch (pkt->opcode) {
123 			case IB_OPCODE_RC_SEND_MIDDLE:
124 			case IB_OPCODE_RC_SEND_LAST:
125 			case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
126 			case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
127 				return RESPST_CHK_OP_VALID;
128 			default:
129 				return RESPST_ERR_MISSING_OPCODE_LAST_C;
130 			}
131 
132 		case IB_OPCODE_RC_RDMA_WRITE_FIRST:
133 		case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
134 			switch (pkt->opcode) {
135 			case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
136 			case IB_OPCODE_RC_RDMA_WRITE_LAST:
137 			case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
138 				return RESPST_CHK_OP_VALID;
139 			default:
140 				return RESPST_ERR_MISSING_OPCODE_LAST_C;
141 			}
142 
143 		default:
144 			switch (pkt->opcode) {
145 			case IB_OPCODE_RC_SEND_MIDDLE:
146 			case IB_OPCODE_RC_SEND_LAST:
147 			case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
148 			case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
149 			case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
150 			case IB_OPCODE_RC_RDMA_WRITE_LAST:
151 			case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
152 				return RESPST_ERR_MISSING_OPCODE_FIRST;
153 			default:
154 				return RESPST_CHK_OP_VALID;
155 			}
156 		}
157 		break;
158 
159 	case IB_QPT_UC:
160 		switch (qp->resp.opcode) {
161 		case IB_OPCODE_UC_SEND_FIRST:
162 		case IB_OPCODE_UC_SEND_MIDDLE:
163 			switch (pkt->opcode) {
164 			case IB_OPCODE_UC_SEND_MIDDLE:
165 			case IB_OPCODE_UC_SEND_LAST:
166 			case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
167 				return RESPST_CHK_OP_VALID;
168 			default:
169 				return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
170 			}
171 
172 		case IB_OPCODE_UC_RDMA_WRITE_FIRST:
173 		case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
174 			switch (pkt->opcode) {
175 			case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
176 			case IB_OPCODE_UC_RDMA_WRITE_LAST:
177 			case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
178 				return RESPST_CHK_OP_VALID;
179 			default:
180 				return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
181 			}
182 
183 		default:
184 			switch (pkt->opcode) {
185 			case IB_OPCODE_UC_SEND_MIDDLE:
186 			case IB_OPCODE_UC_SEND_LAST:
187 			case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
188 			case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
189 			case IB_OPCODE_UC_RDMA_WRITE_LAST:
190 			case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
191 				qp->resp.drop_msg = 1;
192 				return RESPST_CLEANUP;
193 			default:
194 				return RESPST_CHK_OP_VALID;
195 			}
196 		}
197 		break;
198 
199 	default:
200 		return RESPST_CHK_OP_VALID;
201 	}
202 }
203 
204 static bool check_qp_attr_access(struct rxe_qp *qp,
205 				 struct rxe_pkt_info *pkt)
206 {
207 	if (((pkt->mask & RXE_READ_MASK) &&
208 	     !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) ||
209 	    ((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) &&
210 	     !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) ||
211 	    ((pkt->mask & RXE_ATOMIC_MASK) &&
212 	     !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
213 		return false;
214 
215 	if (pkt->mask & RXE_FLUSH_MASK) {
216 		u32 flush_type = feth_plt(pkt);
217 
218 		if ((flush_type & IB_FLUSH_GLOBAL &&
219 		     !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) ||
220 		    (flush_type & IB_FLUSH_PERSISTENT &&
221 		     !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT)))
222 			return false;
223 	}
224 
225 	return true;
226 }
227 
228 static enum resp_states check_op_valid(struct rxe_qp *qp,
229 				       struct rxe_pkt_info *pkt)
230 {
231 	switch (qp_type(qp)) {
232 	case IB_QPT_RC:
233 		if (!check_qp_attr_access(qp, pkt))
234 			return RESPST_ERR_UNSUPPORTED_OPCODE;
235 
236 		break;
237 
238 	case IB_QPT_UC:
239 		if ((pkt->mask & RXE_WRITE_MASK) &&
240 		    !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) {
241 			qp->resp.drop_msg = 1;
242 			return RESPST_CLEANUP;
243 		}
244 
245 		break;
246 
247 	case IB_QPT_UD:
248 	case IB_QPT_GSI:
249 		break;
250 
251 	default:
252 		WARN_ON_ONCE(1);
253 		break;
254 	}
255 
256 	return RESPST_CHK_RESOURCE;
257 }
258 
259 static enum resp_states get_srq_wqe(struct rxe_qp *qp)
260 {
261 	struct rxe_srq *srq = qp->srq;
262 	struct rxe_queue *q = srq->rq.queue;
263 	struct rxe_recv_wqe *wqe;
264 	struct ib_event ev;
265 	unsigned int count;
266 	size_t size;
267 	unsigned long flags;
268 
269 	if (srq->error)
270 		return RESPST_ERR_RNR;
271 
272 	spin_lock_irqsave(&srq->rq.consumer_lock, flags);
273 
274 	wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT);
275 	if (!wqe) {
276 		spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
277 		return RESPST_ERR_RNR;
278 	}
279 
280 	/* don't trust user space data */
281 	if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) {
282 		spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
283 		rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n");
284 		return RESPST_ERR_MALFORMED_WQE;
285 	}
286 	size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge);
287 	memcpy(&qp->resp.srq_wqe, wqe, size);
288 
289 	qp->resp.wqe = &qp->resp.srq_wqe.wqe;
290 	queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT);
291 	count = queue_count(q, QUEUE_TYPE_FROM_CLIENT);
292 
293 	if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) {
294 		srq->limit = 0;
295 		goto event;
296 	}
297 
298 	spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
299 	return RESPST_CHK_LENGTH;
300 
301 event:
302 	spin_unlock_irqrestore(&srq->rq.consumer_lock, flags);
303 	ev.device = qp->ibqp.device;
304 	ev.element.srq = qp->ibqp.srq;
305 	ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
306 	srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context);
307 	return RESPST_CHK_LENGTH;
308 }
309 
310 static enum resp_states check_resource(struct rxe_qp *qp,
311 				       struct rxe_pkt_info *pkt)
312 {
313 	struct rxe_srq *srq = qp->srq;
314 
315 	if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) {
316 		/* it is the requesters job to not send
317 		 * too many read/atomic ops, we just
318 		 * recycle the responder resource queue
319 		 */
320 		if (likely(qp->attr.max_dest_rd_atomic > 0))
321 			return RESPST_CHK_LENGTH;
322 		else
323 			return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ;
324 	}
325 
326 	if (pkt->mask & RXE_RWR_MASK) {
327 		if (srq)
328 			return get_srq_wqe(qp);
329 
330 		qp->resp.wqe = queue_head(qp->rq.queue,
331 				QUEUE_TYPE_FROM_CLIENT);
332 		return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR;
333 	}
334 
335 	return RESPST_CHK_LENGTH;
336 }
337 
338 static enum resp_states rxe_resp_check_length(struct rxe_qp *qp,
339 					      struct rxe_pkt_info *pkt)
340 {
341 	/*
342 	 * See IBA C9-92
343 	 * For UD QPs we only check if the packet will fit in the
344 	 * receive buffer later. For rmda operations additional
345 	 * length checks are performed in check_rkey.
346 	 */
347 	if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) ||
348 					     (qp_type(qp) == IB_QPT_UC))) {
349 		unsigned int mtu = qp->mtu;
350 		unsigned int payload = payload_size(pkt);
351 
352 		if ((pkt->mask & RXE_START_MASK) &&
353 		    (pkt->mask & RXE_END_MASK)) {
354 			if (unlikely(payload > mtu)) {
355 				rxe_dbg_qp(qp, "only packet too long\n");
356 				return RESPST_ERR_LENGTH;
357 			}
358 		} else if ((pkt->mask & RXE_START_MASK) ||
359 			   (pkt->mask & RXE_MIDDLE_MASK)) {
360 			if (unlikely(payload != mtu)) {
361 				rxe_dbg_qp(qp, "first or middle packet not mtu\n");
362 				return RESPST_ERR_LENGTH;
363 			}
364 		} else if (pkt->mask & RXE_END_MASK) {
365 			if (unlikely((payload == 0) || (payload > mtu))) {
366 				rxe_dbg_qp(qp, "last packet zero or too long\n");
367 				return RESPST_ERR_LENGTH;
368 			}
369 		}
370 	}
371 
372 	/* See IBA C9-94 */
373 	if (pkt->mask & RXE_RETH_MASK) {
374 		if (reth_len(pkt) > (1U << 31)) {
375 			rxe_dbg_qp(qp, "dma length too long\n");
376 			return RESPST_ERR_LENGTH;
377 		}
378 	}
379 
380 	if (pkt->mask & RXE_RDMA_OP_MASK)
381 		return RESPST_CHK_RKEY;
382 	else
383 		return RESPST_EXECUTE;
384 }
385 
386 /* if the reth length field is zero we can assume nothing
387  * about the rkey value and should not validate or use it.
388  * Instead set qp->resp.rkey to 0 which is an invalid rkey
389  * value since the minimum index part is 1.
390  */
391 static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
392 {
393 	unsigned int length = reth_len(pkt);
394 
395 	qp->resp.va = reth_va(pkt);
396 	qp->resp.offset = 0;
397 	qp->resp.resid = length;
398 	qp->resp.length = length;
399 	if (pkt->mask & RXE_READ_OR_WRITE_MASK && length == 0)
400 		qp->resp.rkey = 0;
401 	else
402 		qp->resp.rkey = reth_rkey(pkt);
403 }
404 
405 static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
406 {
407 	qp->resp.va = atmeth_va(pkt);
408 	qp->resp.offset = 0;
409 	qp->resp.rkey = atmeth_rkey(pkt);
410 	qp->resp.resid = sizeof(u64);
411 }
412 
413 /* resolve the packet rkey to qp->resp.mr or set qp->resp.mr to NULL
414  * if an invalid rkey is received or the rdma length is zero. For middle
415  * or last packets use the stored value of mr.
416  */
417 static enum resp_states check_rkey(struct rxe_qp *qp,
418 				   struct rxe_pkt_info *pkt)
419 {
420 	struct rxe_mr *mr = NULL;
421 	struct rxe_mw *mw = NULL;
422 	u64 va;
423 	u32 rkey;
424 	u32 resid;
425 	u32 pktlen;
426 	int mtu = qp->mtu;
427 	enum resp_states state;
428 	int access = 0;
429 
430 	/* parse RETH or ATMETH header for first/only packets
431 	 * for va, length, rkey, etc. or use current value for
432 	 * middle/last packets.
433 	 */
434 	if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
435 		if (pkt->mask & RXE_RETH_MASK)
436 			qp_resp_from_reth(qp, pkt);
437 
438 		access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ
439 						     : IB_ACCESS_REMOTE_WRITE;
440 	} else if (pkt->mask & RXE_FLUSH_MASK) {
441 		u32 flush_type = feth_plt(pkt);
442 
443 		if (pkt->mask & RXE_RETH_MASK)
444 			qp_resp_from_reth(qp, pkt);
445 
446 		if (flush_type & IB_FLUSH_GLOBAL)
447 			access |= IB_ACCESS_FLUSH_GLOBAL;
448 		if (flush_type & IB_FLUSH_PERSISTENT)
449 			access |= IB_ACCESS_FLUSH_PERSISTENT;
450 	} else if (pkt->mask & RXE_ATOMIC_MASK) {
451 		qp_resp_from_atmeth(qp, pkt);
452 		access = IB_ACCESS_REMOTE_ATOMIC;
453 	} else {
454 		/* shouldn't happen */
455 		WARN_ON(1);
456 	}
457 
458 	/* A zero-byte read or write op is not required to
459 	 * set an addr or rkey. See C9-88
460 	 */
461 	if ((pkt->mask & RXE_READ_OR_WRITE_MASK) &&
462 	    (pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) {
463 		qp->resp.mr = NULL;
464 		return RESPST_EXECUTE;
465 	}
466 
467 	va	= qp->resp.va;
468 	rkey	= qp->resp.rkey;
469 	resid	= qp->resp.resid;
470 	pktlen	= payload_size(pkt);
471 
472 	if (rkey_is_mw(rkey)) {
473 		mw = rxe_lookup_mw(qp, access, rkey);
474 		if (!mw) {
475 			rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey);
476 			state = RESPST_ERR_RKEY_VIOLATION;
477 			goto err;
478 		}
479 
480 		mr = mw->mr;
481 		if (!mr) {
482 			rxe_dbg_qp(qp, "MW doesn't have an MR\n");
483 			state = RESPST_ERR_RKEY_VIOLATION;
484 			goto err;
485 		}
486 
487 		if (mw->access & IB_ZERO_BASED)
488 			qp->resp.offset = mw->addr;
489 
490 		rxe_get(mr);
491 		rxe_put(mw);
492 		mw = NULL;
493 	} else {
494 		mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE);
495 		if (!mr) {
496 			rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey);
497 			state = RESPST_ERR_RKEY_VIOLATION;
498 			goto err;
499 		}
500 	}
501 
502 	if (pkt->mask & RXE_FLUSH_MASK) {
503 		/* FLUSH MR may not set va or resid
504 		 * no need to check range since we will flush whole mr
505 		 */
506 		if (feth_sel(pkt) == IB_FLUSH_MR)
507 			goto skip_check_range;
508 	}
509 
510 	if (mr_check_range(mr, va + qp->resp.offset, resid)) {
511 		state = RESPST_ERR_RKEY_VIOLATION;
512 		goto err;
513 	}
514 
515 skip_check_range:
516 	if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) {
517 		if (resid > mtu) {
518 			if (pktlen != mtu || bth_pad(pkt)) {
519 				state = RESPST_ERR_LENGTH;
520 				goto err;
521 			}
522 		} else {
523 			if (pktlen != resid) {
524 				state = RESPST_ERR_LENGTH;
525 				goto err;
526 			}
527 			if ((bth_pad(pkt) != (0x3 & (-resid)))) {
528 				/* This case may not be exactly that
529 				 * but nothing else fits.
530 				 */
531 				state = RESPST_ERR_LENGTH;
532 				goto err;
533 			}
534 		}
535 	}
536 
537 	WARN_ON_ONCE(qp->resp.mr);
538 
539 	qp->resp.mr = mr;
540 	return RESPST_EXECUTE;
541 
542 err:
543 	qp->resp.mr = NULL;
544 	if (mr)
545 		rxe_put(mr);
546 	if (mw)
547 		rxe_put(mw);
548 
549 	return state;
550 }
551 
552 static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr,
553 				     int data_len)
554 {
555 	int err;
556 
557 	err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma,
558 			data_addr, data_len, RXE_TO_MR_OBJ);
559 	if (unlikely(err))
560 		return (err == -ENOSPC) ? RESPST_ERR_LENGTH
561 					: RESPST_ERR_MALFORMED_WQE;
562 
563 	return RESPST_NONE;
564 }
565 
566 static enum resp_states write_data_in(struct rxe_qp *qp,
567 				      struct rxe_pkt_info *pkt)
568 {
569 	enum resp_states rc = RESPST_NONE;
570 	int	err;
571 	int data_len = payload_size(pkt);
572 
573 	err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset,
574 			  payload_addr(pkt), data_len, RXE_TO_MR_OBJ);
575 	if (err) {
576 		rc = RESPST_ERR_RKEY_VIOLATION;
577 		goto out;
578 	}
579 
580 	qp->resp.va += data_len;
581 	qp->resp.resid -= data_len;
582 
583 out:
584 	return rc;
585 }
586 
587 static struct resp_res *rxe_prepare_res(struct rxe_qp *qp,
588 					struct rxe_pkt_info *pkt,
589 					int type)
590 {
591 	struct resp_res *res;
592 	u32 pkts;
593 
594 	res = &qp->resp.resources[qp->resp.res_head];
595 	rxe_advance_resp_resource(qp);
596 	free_rd_atomic_resource(res);
597 
598 	res->type = type;
599 	res->replay = 0;
600 
601 	switch (type) {
602 	case RXE_READ_MASK:
603 		res->read.va = qp->resp.va + qp->resp.offset;
604 		res->read.va_org = qp->resp.va + qp->resp.offset;
605 		res->read.resid = qp->resp.resid;
606 		res->read.length = qp->resp.resid;
607 		res->read.rkey = qp->resp.rkey;
608 
609 		pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1);
610 		res->first_psn = pkt->psn;
611 		res->cur_psn = pkt->psn;
612 		res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK;
613 
614 		res->state = rdatm_res_state_new;
615 		break;
616 	case RXE_ATOMIC_MASK:
617 	case RXE_ATOMIC_WRITE_MASK:
618 		res->first_psn = pkt->psn;
619 		res->last_psn = pkt->psn;
620 		res->cur_psn = pkt->psn;
621 		break;
622 	case RXE_FLUSH_MASK:
623 		res->flush.va = qp->resp.va + qp->resp.offset;
624 		res->flush.length = qp->resp.length;
625 		res->flush.type = feth_plt(pkt);
626 		res->flush.level = feth_sel(pkt);
627 	}
628 
629 	return res;
630 }
631 
632 static enum resp_states process_flush(struct rxe_qp *qp,
633 				       struct rxe_pkt_info *pkt)
634 {
635 	u64 length, start;
636 	struct rxe_mr *mr = qp->resp.mr;
637 	struct resp_res *res = qp->resp.res;
638 
639 	/* oA19-14, oA19-15 */
640 	if (res && res->replay)
641 		return RESPST_ACKNOWLEDGE;
642 	else if (!res) {
643 		res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK);
644 		qp->resp.res = res;
645 	}
646 
647 	if (res->flush.level == IB_FLUSH_RANGE) {
648 		start = res->flush.va;
649 		length = res->flush.length;
650 	} else { /* level == IB_FLUSH_MR */
651 		start = mr->ibmr.iova;
652 		length = mr->ibmr.length;
653 	}
654 
655 	if (res->flush.type & IB_FLUSH_PERSISTENT) {
656 		if (rxe_flush_pmem_iova(mr, start, length))
657 			return RESPST_ERR_RKEY_VIOLATION;
658 		/* Make data persistent. */
659 		wmb();
660 	} else if (res->flush.type & IB_FLUSH_GLOBAL) {
661 		/* Make data global visibility. */
662 		wmb();
663 	}
664 
665 	qp->resp.msn++;
666 
667 	/* next expected psn, read handles this separately */
668 	qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
669 	qp->resp.ack_psn = qp->resp.psn;
670 
671 	qp->resp.opcode = pkt->opcode;
672 	qp->resp.status = IB_WC_SUCCESS;
673 
674 	return RESPST_ACKNOWLEDGE;
675 }
676 
677 static enum resp_states atomic_reply(struct rxe_qp *qp,
678 				     struct rxe_pkt_info *pkt)
679 {
680 	struct rxe_mr *mr = qp->resp.mr;
681 	struct resp_res *res = qp->resp.res;
682 	int err;
683 
684 	if (!res) {
685 		res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK);
686 		qp->resp.res = res;
687 	}
688 
689 	if (!res->replay) {
690 		u64 iova = qp->resp.va + qp->resp.offset;
691 
692 		err = rxe_mr_do_atomic_op(mr, iova, pkt->opcode,
693 					  atmeth_comp(pkt),
694 					  atmeth_swap_add(pkt),
695 					  &res->atomic.orig_val);
696 		if (err)
697 			return err;
698 
699 		qp->resp.msn++;
700 
701 		/* next expected psn, read handles this separately */
702 		qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
703 		qp->resp.ack_psn = qp->resp.psn;
704 
705 		qp->resp.opcode = pkt->opcode;
706 		qp->resp.status = IB_WC_SUCCESS;
707 	}
708 
709 	return RESPST_ACKNOWLEDGE;
710 }
711 
712 static enum resp_states atomic_write_reply(struct rxe_qp *qp,
713 					   struct rxe_pkt_info *pkt)
714 {
715 	struct resp_res *res = qp->resp.res;
716 	struct rxe_mr *mr;
717 	u64 value;
718 	u64 iova;
719 	int err;
720 
721 	if (!res) {
722 		res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK);
723 		qp->resp.res = res;
724 	}
725 
726 	if (res->replay)
727 		return RESPST_ACKNOWLEDGE;
728 
729 	mr = qp->resp.mr;
730 	value = *(u64 *)payload_addr(pkt);
731 	iova = qp->resp.va + qp->resp.offset;
732 
733 	err = rxe_mr_do_atomic_write(mr, iova, value);
734 	if (err)
735 		return err;
736 
737 	qp->resp.resid = 0;
738 	qp->resp.msn++;
739 
740 	/* next expected psn, read handles this separately */
741 	qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
742 	qp->resp.ack_psn = qp->resp.psn;
743 
744 	qp->resp.opcode = pkt->opcode;
745 	qp->resp.status = IB_WC_SUCCESS;
746 
747 	return RESPST_ACKNOWLEDGE;
748 }
749 
750 static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp,
751 					  struct rxe_pkt_info *ack,
752 					  int opcode,
753 					  int payload,
754 					  u32 psn,
755 					  u8 syndrome)
756 {
757 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
758 	struct sk_buff *skb;
759 	int paylen;
760 	int pad;
761 	int err;
762 
763 	/*
764 	 * allocate packet
765 	 */
766 	pad = (-payload) & 0x3;
767 	paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE;
768 
769 	skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack);
770 	if (!skb)
771 		return NULL;
772 
773 	ack->qp = qp;
774 	ack->opcode = opcode;
775 	ack->mask = rxe_opcode[opcode].mask;
776 	ack->paylen = paylen;
777 	ack->psn = psn;
778 
779 	bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL,
780 		 qp->attr.dest_qp_num, 0, psn);
781 
782 	if (ack->mask & RXE_AETH_MASK) {
783 		aeth_set_syn(ack, syndrome);
784 		aeth_set_msn(ack, qp->resp.msn);
785 	}
786 
787 	if (ack->mask & RXE_ATMACK_MASK)
788 		atmack_set_orig(ack, qp->resp.res->atomic.orig_val);
789 
790 	err = rxe_prepare(&qp->pri_av, ack, skb);
791 	if (err) {
792 		kfree_skb(skb);
793 		return NULL;
794 	}
795 
796 	return skb;
797 }
798 
799 /**
800  * rxe_recheck_mr - revalidate MR from rkey and get a reference
801  * @qp: the qp
802  * @rkey: the rkey
803  *
804  * This code allows the MR to be invalidated or deregistered or
805  * the MW if one was used to be invalidated or deallocated.
806  * It is assumed that the access permissions if originally good
807  * are OK and the mappings to be unchanged.
808  *
809  * TODO: If someone reregisters an MR to change its size or
810  * access permissions during the processing of an RDMA read
811  * we should kill the responder resource and complete the
812  * operation with an error.
813  *
814  * Return: mr on success else NULL
815  */
816 static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey)
817 {
818 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
819 	struct rxe_mr *mr;
820 	struct rxe_mw *mw;
821 
822 	if (rkey_is_mw(rkey)) {
823 		mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8);
824 		if (!mw)
825 			return NULL;
826 
827 		mr = mw->mr;
828 		if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID ||
829 		    !mr || mr->state != RXE_MR_STATE_VALID) {
830 			rxe_put(mw);
831 			return NULL;
832 		}
833 
834 		rxe_get(mr);
835 		rxe_put(mw);
836 
837 		return mr;
838 	}
839 
840 	mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8);
841 	if (!mr)
842 		return NULL;
843 
844 	if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) {
845 		rxe_put(mr);
846 		return NULL;
847 	}
848 
849 	return mr;
850 }
851 
852 /* RDMA read response. If res is not NULL, then we have a current RDMA request
853  * being processed or replayed.
854  */
855 static enum resp_states read_reply(struct rxe_qp *qp,
856 				   struct rxe_pkt_info *req_pkt)
857 {
858 	struct rxe_pkt_info ack_pkt;
859 	struct sk_buff *skb;
860 	int mtu = qp->mtu;
861 	enum resp_states state;
862 	int payload;
863 	int opcode;
864 	int err;
865 	struct resp_res *res = qp->resp.res;
866 	struct rxe_mr *mr;
867 
868 	if (!res) {
869 		res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK);
870 		qp->resp.res = res;
871 	}
872 
873 	if (res->state == rdatm_res_state_new) {
874 		if (!res->replay || qp->resp.length == 0) {
875 			/* if length == 0 mr will be NULL (is ok)
876 			 * otherwise qp->resp.mr holds a ref on mr
877 			 * which we transfer to mr and drop below.
878 			 */
879 			mr = qp->resp.mr;
880 			qp->resp.mr = NULL;
881 		} else {
882 			mr = rxe_recheck_mr(qp, res->read.rkey);
883 			if (!mr)
884 				return RESPST_ERR_RKEY_VIOLATION;
885 		}
886 
887 		if (res->read.resid <= mtu)
888 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY;
889 		else
890 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST;
891 	} else {
892 		/* re-lookup mr from rkey on all later packets.
893 		 * length will be non-zero. This can fail if someone
894 		 * modifies or destroys the mr since the first packet.
895 		 */
896 		mr = rxe_recheck_mr(qp, res->read.rkey);
897 		if (!mr)
898 			return RESPST_ERR_RKEY_VIOLATION;
899 
900 		if (res->read.resid > mtu)
901 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE;
902 		else
903 			opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST;
904 	}
905 
906 	res->state = rdatm_res_state_next;
907 
908 	payload = min_t(int, res->read.resid, mtu);
909 
910 	skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload,
911 				 res->cur_psn, AETH_ACK_UNLIMITED);
912 	if (!skb) {
913 		state = RESPST_ERR_RNR;
914 		goto err_out;
915 	}
916 
917 	err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt),
918 			  payload, RXE_FROM_MR_OBJ);
919 	if (err) {
920 		kfree_skb(skb);
921 		state = RESPST_ERR_RKEY_VIOLATION;
922 		goto err_out;
923 	}
924 
925 	if (bth_pad(&ack_pkt)) {
926 		u8 *pad = payload_addr(&ack_pkt) + payload;
927 
928 		memset(pad, 0, bth_pad(&ack_pkt));
929 	}
930 
931 	/* rxe_xmit_packet always consumes the skb */
932 	err = rxe_xmit_packet(qp, &ack_pkt, skb);
933 	if (err) {
934 		state = RESPST_ERR_RNR;
935 		goto err_out;
936 	}
937 
938 	res->read.va += payload;
939 	res->read.resid -= payload;
940 	res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK;
941 
942 	if (res->read.resid > 0) {
943 		state = RESPST_DONE;
944 	} else {
945 		qp->resp.res = NULL;
946 		if (!res->replay)
947 			qp->resp.opcode = -1;
948 		if (psn_compare(res->cur_psn, qp->resp.psn) >= 0)
949 			qp->resp.psn = res->cur_psn;
950 		state = RESPST_CLEANUP;
951 	}
952 
953 err_out:
954 	if (mr)
955 		rxe_put(mr);
956 	return state;
957 }
958 
959 static int invalidate_rkey(struct rxe_qp *qp, u32 rkey)
960 {
961 	if (rkey_is_mw(rkey))
962 		return rxe_invalidate_mw(qp, rkey);
963 	else
964 		return rxe_invalidate_mr(qp, rkey);
965 }
966 
967 /* Executes a new request. A retried request never reach that function (send
968  * and writes are discarded, and reads and atomics are retried elsewhere.
969  */
970 static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
971 {
972 	enum resp_states err;
973 	struct sk_buff *skb = PKT_TO_SKB(pkt);
974 	union rdma_network_hdr hdr;
975 
976 	if (pkt->mask & RXE_SEND_MASK) {
977 		if (qp_type(qp) == IB_QPT_UD ||
978 		    qp_type(qp) == IB_QPT_GSI) {
979 			if (skb->protocol == htons(ETH_P_IP)) {
980 				memset(&hdr.reserved, 0,
981 						sizeof(hdr.reserved));
982 				memcpy(&hdr.roce4grh, ip_hdr(skb),
983 						sizeof(hdr.roce4grh));
984 				err = send_data_in(qp, &hdr, sizeof(hdr));
985 			} else {
986 				err = send_data_in(qp, ipv6_hdr(skb),
987 						sizeof(hdr));
988 			}
989 			if (err)
990 				return err;
991 		}
992 		err = send_data_in(qp, payload_addr(pkt), payload_size(pkt));
993 		if (err)
994 			return err;
995 	} else if (pkt->mask & RXE_WRITE_MASK) {
996 		err = write_data_in(qp, pkt);
997 		if (err)
998 			return err;
999 	} else if (pkt->mask & RXE_READ_MASK) {
1000 		/* For RDMA Read we can increment the msn now. See C9-148. */
1001 		qp->resp.msn++;
1002 		return RESPST_READ_REPLY;
1003 	} else if (pkt->mask & RXE_ATOMIC_MASK) {
1004 		return RESPST_ATOMIC_REPLY;
1005 	} else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) {
1006 		return RESPST_ATOMIC_WRITE_REPLY;
1007 	} else if (pkt->mask & RXE_FLUSH_MASK) {
1008 		return RESPST_PROCESS_FLUSH;
1009 	} else {
1010 		/* Unreachable */
1011 		WARN_ON_ONCE(1);
1012 	}
1013 
1014 	if (pkt->mask & RXE_IETH_MASK) {
1015 		u32 rkey = ieth_rkey(pkt);
1016 
1017 		err = invalidate_rkey(qp, rkey);
1018 		if (err)
1019 			return RESPST_ERR_INVALIDATE_RKEY;
1020 	}
1021 
1022 	if (pkt->mask & RXE_END_MASK)
1023 		/* We successfully processed this new request. */
1024 		qp->resp.msn++;
1025 
1026 	/* next expected psn, read handles this separately */
1027 	qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
1028 	qp->resp.ack_psn = qp->resp.psn;
1029 
1030 	qp->resp.opcode = pkt->opcode;
1031 	qp->resp.status = IB_WC_SUCCESS;
1032 
1033 	if (pkt->mask & RXE_COMP_MASK)
1034 		return RESPST_COMPLETE;
1035 	else if (qp_type(qp) == IB_QPT_RC)
1036 		return RESPST_ACKNOWLEDGE;
1037 	else
1038 		return RESPST_CLEANUP;
1039 }
1040 
1041 static enum resp_states do_complete(struct rxe_qp *qp,
1042 				    struct rxe_pkt_info *pkt)
1043 {
1044 	struct rxe_cqe cqe;
1045 	struct ib_wc *wc = &cqe.ibwc;
1046 	struct ib_uverbs_wc *uwc = &cqe.uibwc;
1047 	struct rxe_recv_wqe *wqe = qp->resp.wqe;
1048 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
1049 	unsigned long flags;
1050 
1051 	if (!wqe)
1052 		goto finish;
1053 
1054 	memset(&cqe, 0, sizeof(cqe));
1055 
1056 	if (qp->rcq->is_user) {
1057 		uwc->status		= qp->resp.status;
1058 		uwc->qp_num		= qp->ibqp.qp_num;
1059 		uwc->wr_id		= wqe->wr_id;
1060 	} else {
1061 		wc->status		= qp->resp.status;
1062 		wc->qp			= &qp->ibqp;
1063 		wc->wr_id		= wqe->wr_id;
1064 	}
1065 
1066 	if (wc->status == IB_WC_SUCCESS) {
1067 		rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV);
1068 		wc->opcode = (pkt->mask & RXE_IMMDT_MASK &&
1069 				pkt->mask & RXE_WRITE_MASK) ?
1070 					IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV;
1071 		wc->byte_len = (pkt->mask & RXE_IMMDT_MASK &&
1072 				pkt->mask & RXE_WRITE_MASK) ?
1073 					qp->resp.length : wqe->dma.length - wqe->dma.resid;
1074 
1075 		/* fields after byte_len are different between kernel and user
1076 		 * space
1077 		 */
1078 		if (qp->rcq->is_user) {
1079 			uwc->wc_flags = IB_WC_GRH;
1080 
1081 			if (pkt->mask & RXE_IMMDT_MASK) {
1082 				uwc->wc_flags |= IB_WC_WITH_IMM;
1083 				uwc->ex.imm_data = immdt_imm(pkt);
1084 			}
1085 
1086 			if (pkt->mask & RXE_IETH_MASK) {
1087 				uwc->wc_flags |= IB_WC_WITH_INVALIDATE;
1088 				uwc->ex.invalidate_rkey = ieth_rkey(pkt);
1089 			}
1090 
1091 			if (pkt->mask & RXE_DETH_MASK)
1092 				uwc->src_qp = deth_sqp(pkt);
1093 
1094 			uwc->port_num		= qp->attr.port_num;
1095 		} else {
1096 			struct sk_buff *skb = PKT_TO_SKB(pkt);
1097 
1098 			wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE;
1099 			if (skb->protocol == htons(ETH_P_IP))
1100 				wc->network_hdr_type = RDMA_NETWORK_IPV4;
1101 			else
1102 				wc->network_hdr_type = RDMA_NETWORK_IPV6;
1103 
1104 			if (is_vlan_dev(skb->dev)) {
1105 				wc->wc_flags |= IB_WC_WITH_VLAN;
1106 				wc->vlan_id = vlan_dev_vlan_id(skb->dev);
1107 			}
1108 
1109 			if (pkt->mask & RXE_IMMDT_MASK) {
1110 				wc->wc_flags |= IB_WC_WITH_IMM;
1111 				wc->ex.imm_data = immdt_imm(pkt);
1112 			}
1113 
1114 			if (pkt->mask & RXE_IETH_MASK) {
1115 				wc->wc_flags |= IB_WC_WITH_INVALIDATE;
1116 				wc->ex.invalidate_rkey = ieth_rkey(pkt);
1117 			}
1118 
1119 			if (pkt->mask & RXE_DETH_MASK)
1120 				wc->src_qp = deth_sqp(pkt);
1121 
1122 			wc->port_num		= qp->attr.port_num;
1123 		}
1124 	} else {
1125 		if (wc->status != IB_WC_WR_FLUSH_ERR)
1126 			rxe_err_qp(qp, "non-flush error status = %d\n",
1127 				wc->status);
1128 	}
1129 
1130 	/* have copy for srq and reference for !srq */
1131 	if (!qp->srq)
1132 		queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT);
1133 
1134 	qp->resp.wqe = NULL;
1135 
1136 	if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1))
1137 		return RESPST_ERR_CQ_OVERFLOW;
1138 
1139 finish:
1140 	spin_lock_irqsave(&qp->state_lock, flags);
1141 	if (unlikely(qp_state(qp) == IB_QPS_ERR)) {
1142 		spin_unlock_irqrestore(&qp->state_lock, flags);
1143 		return RESPST_CHK_RESOURCE;
1144 	}
1145 	spin_unlock_irqrestore(&qp->state_lock, flags);
1146 
1147 	if (unlikely(!pkt))
1148 		return RESPST_DONE;
1149 	if (qp_type(qp) == IB_QPT_RC)
1150 		return RESPST_ACKNOWLEDGE;
1151 	else
1152 		return RESPST_CLEANUP;
1153 }
1154 
1155 
1156 static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn,
1157 				  int opcode, const char *msg)
1158 {
1159 	int err;
1160 	struct rxe_pkt_info ack_pkt;
1161 	struct sk_buff *skb;
1162 
1163 	skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome);
1164 	if (!skb)
1165 		return -ENOMEM;
1166 
1167 	err = rxe_xmit_packet(qp, &ack_pkt, skb);
1168 	if (err)
1169 		rxe_dbg_qp(qp, "Failed sending %s\n", msg);
1170 
1171 	return err;
1172 }
1173 
1174 static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
1175 {
1176 	return send_common_ack(qp, syndrome, psn,
1177 			IB_OPCODE_RC_ACKNOWLEDGE, "ACK");
1178 }
1179 
1180 static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
1181 {
1182 	int ret = send_common_ack(qp, syndrome, psn,
1183 			IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK");
1184 
1185 	/* have to clear this since it is used to trigger
1186 	 * long read replies
1187 	 */
1188 	qp->resp.res = NULL;
1189 	return ret;
1190 }
1191 
1192 static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn)
1193 {
1194 	int ret = send_common_ack(qp, syndrome, psn,
1195 			IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY,
1196 			"RDMA READ response of length zero ACK");
1197 
1198 	/* have to clear this since it is used to trigger
1199 	 * long read replies
1200 	 */
1201 	qp->resp.res = NULL;
1202 	return ret;
1203 }
1204 
1205 static enum resp_states acknowledge(struct rxe_qp *qp,
1206 				    struct rxe_pkt_info *pkt)
1207 {
1208 	if (qp_type(qp) != IB_QPT_RC)
1209 		return RESPST_CLEANUP;
1210 
1211 	if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED)
1212 		send_ack(qp, qp->resp.aeth_syndrome, pkt->psn);
1213 	else if (pkt->mask & RXE_ATOMIC_MASK)
1214 		send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
1215 	else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK))
1216 		send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
1217 	else if (bth_ack(pkt))
1218 		send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn);
1219 
1220 	return RESPST_CLEANUP;
1221 }
1222 
1223 static enum resp_states cleanup(struct rxe_qp *qp,
1224 				struct rxe_pkt_info *pkt)
1225 {
1226 	struct sk_buff *skb;
1227 
1228 	if (pkt) {
1229 		skb = skb_dequeue(&qp->req_pkts);
1230 		rxe_put(qp);
1231 		kfree_skb(skb);
1232 		ib_device_put(qp->ibqp.device);
1233 	}
1234 
1235 	if (qp->resp.mr) {
1236 		rxe_put(qp->resp.mr);
1237 		qp->resp.mr = NULL;
1238 	}
1239 
1240 	return RESPST_DONE;
1241 }
1242 
1243 static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn)
1244 {
1245 	int i;
1246 
1247 	for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) {
1248 		struct resp_res *res = &qp->resp.resources[i];
1249 
1250 		if (res->type == 0)
1251 			continue;
1252 
1253 		if (psn_compare(psn, res->first_psn) >= 0 &&
1254 		    psn_compare(psn, res->last_psn) <= 0) {
1255 			return res;
1256 		}
1257 	}
1258 
1259 	return NULL;
1260 }
1261 
1262 static enum resp_states duplicate_request(struct rxe_qp *qp,
1263 					  struct rxe_pkt_info *pkt)
1264 {
1265 	enum resp_states rc;
1266 	u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK;
1267 
1268 	if (pkt->mask & RXE_SEND_MASK ||
1269 	    pkt->mask & RXE_WRITE_MASK) {
1270 		/* SEND. Ack again and cleanup. C9-105. */
1271 		send_ack(qp, AETH_ACK_UNLIMITED, prev_psn);
1272 		return RESPST_CLEANUP;
1273 	} else if (pkt->mask & RXE_FLUSH_MASK) {
1274 		struct resp_res *res;
1275 
1276 		/* Find the operation in our list of responder resources. */
1277 		res = find_resource(qp, pkt->psn);
1278 		if (res) {
1279 			res->replay = 1;
1280 			res->cur_psn = pkt->psn;
1281 			qp->resp.res = res;
1282 			rc = RESPST_PROCESS_FLUSH;
1283 			goto out;
1284 		}
1285 
1286 		/* Resource not found. Class D error. Drop the request. */
1287 		rc = RESPST_CLEANUP;
1288 		goto out;
1289 	} else if (pkt->mask & RXE_READ_MASK) {
1290 		struct resp_res *res;
1291 
1292 		res = find_resource(qp, pkt->psn);
1293 		if (!res) {
1294 			/* Resource not found. Class D error.  Drop the
1295 			 * request.
1296 			 */
1297 			rc = RESPST_CLEANUP;
1298 			goto out;
1299 		} else {
1300 			/* Ensure this new request is the same as the previous
1301 			 * one or a subset of it.
1302 			 */
1303 			u64 iova = reth_va(pkt);
1304 			u32 resid = reth_len(pkt);
1305 
1306 			if (iova < res->read.va_org ||
1307 			    resid > res->read.length ||
1308 			    (iova + resid) > (res->read.va_org +
1309 					      res->read.length)) {
1310 				rc = RESPST_CLEANUP;
1311 				goto out;
1312 			}
1313 
1314 			if (reth_rkey(pkt) != res->read.rkey) {
1315 				rc = RESPST_CLEANUP;
1316 				goto out;
1317 			}
1318 
1319 			res->cur_psn = pkt->psn;
1320 			res->state = (pkt->psn == res->first_psn) ?
1321 					rdatm_res_state_new :
1322 					rdatm_res_state_replay;
1323 			res->replay = 1;
1324 
1325 			/* Reset the resource, except length. */
1326 			res->read.va_org = iova;
1327 			res->read.va = iova;
1328 			res->read.resid = resid;
1329 
1330 			/* Replay the RDMA read reply. */
1331 			qp->resp.res = res;
1332 			rc = RESPST_READ_REPLY;
1333 			goto out;
1334 		}
1335 	} else {
1336 		struct resp_res *res;
1337 
1338 		/* Find the operation in our list of responder resources. */
1339 		res = find_resource(qp, pkt->psn);
1340 		if (res) {
1341 			res->replay = 1;
1342 			res->cur_psn = pkt->psn;
1343 			qp->resp.res = res;
1344 			rc = pkt->mask & RXE_ATOMIC_MASK ?
1345 					RESPST_ATOMIC_REPLY :
1346 					RESPST_ATOMIC_WRITE_REPLY;
1347 			goto out;
1348 		}
1349 
1350 		/* Resource not found. Class D error. Drop the request. */
1351 		rc = RESPST_CLEANUP;
1352 		goto out;
1353 	}
1354 out:
1355 	return rc;
1356 }
1357 
1358 /* Process a class A or C. Both are treated the same in this implementation. */
1359 static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome,
1360 			      enum ib_wc_status status)
1361 {
1362 	qp->resp.aeth_syndrome	= syndrome;
1363 	qp->resp.status		= status;
1364 
1365 	/* indicate that we should go through the ERROR state */
1366 	qp->resp.goto_error	= 1;
1367 }
1368 
1369 static enum resp_states do_class_d1e_error(struct rxe_qp *qp)
1370 {
1371 	/* UC */
1372 	if (qp->srq) {
1373 		/* Class E */
1374 		qp->resp.drop_msg = 1;
1375 		if (qp->resp.wqe) {
1376 			qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1377 			return RESPST_COMPLETE;
1378 		} else {
1379 			return RESPST_CLEANUP;
1380 		}
1381 	} else {
1382 		/* Class D1. This packet may be the start of a
1383 		 * new message and could be valid. The previous
1384 		 * message is invalid and ignored. reset the
1385 		 * recv wr to its original state
1386 		 */
1387 		if (qp->resp.wqe) {
1388 			qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length;
1389 			qp->resp.wqe->dma.cur_sge = 0;
1390 			qp->resp.wqe->dma.sge_offset = 0;
1391 			qp->resp.opcode = -1;
1392 		}
1393 
1394 		if (qp->resp.mr) {
1395 			rxe_put(qp->resp.mr);
1396 			qp->resp.mr = NULL;
1397 		}
1398 
1399 		return RESPST_CLEANUP;
1400 	}
1401 }
1402 
1403 /* drain incoming request packet queue */
1404 static void drain_req_pkts(struct rxe_qp *qp)
1405 {
1406 	struct sk_buff *skb;
1407 
1408 	while ((skb = skb_dequeue(&qp->req_pkts))) {
1409 		rxe_put(qp);
1410 		kfree_skb(skb);
1411 		ib_device_put(qp->ibqp.device);
1412 	}
1413 }
1414 
1415 /* complete receive wqe with flush error */
1416 static int flush_recv_wqe(struct rxe_qp *qp, struct rxe_recv_wqe *wqe)
1417 {
1418 	struct rxe_cqe cqe = {};
1419 	struct ib_wc *wc = &cqe.ibwc;
1420 	struct ib_uverbs_wc *uwc = &cqe.uibwc;
1421 	int err;
1422 
1423 	if (qp->rcq->is_user) {
1424 		uwc->wr_id = wqe->wr_id;
1425 		uwc->status = IB_WC_WR_FLUSH_ERR;
1426 		uwc->qp_num = qp_num(qp);
1427 	} else {
1428 		wc->wr_id = wqe->wr_id;
1429 		wc->status = IB_WC_WR_FLUSH_ERR;
1430 		wc->qp = &qp->ibqp;
1431 	}
1432 
1433 	err = rxe_cq_post(qp->rcq, &cqe, 0);
1434 	if (err)
1435 		rxe_dbg_cq(qp->rcq, "post cq failed err = %d\n", err);
1436 
1437 	return err;
1438 }
1439 
1440 /* drain and optionally complete the recive queue
1441  * if unable to complete a wqe stop completing and
1442  * just flush the remaining wqes
1443  */
1444 static void flush_recv_queue(struct rxe_qp *qp, bool notify)
1445 {
1446 	struct rxe_queue *q = qp->rq.queue;
1447 	struct rxe_recv_wqe *wqe;
1448 	int err;
1449 
1450 	if (qp->srq) {
1451 		if (notify && qp->ibqp.event_handler) {
1452 			struct ib_event ev;
1453 
1454 			ev.device = qp->ibqp.device;
1455 			ev.element.qp = &qp->ibqp;
1456 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1457 			qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1458 		}
1459 		return;
1460 	}
1461 
1462 	/* recv queue not created. nothing to do. */
1463 	if (!qp->rq.queue)
1464 		return;
1465 
1466 	while ((wqe = queue_head(q, q->type))) {
1467 		if (notify) {
1468 			err = flush_recv_wqe(qp, wqe);
1469 			if (err)
1470 				notify = 0;
1471 		}
1472 		queue_advance_consumer(q, q->type);
1473 	}
1474 
1475 	qp->resp.wqe = NULL;
1476 }
1477 
1478 int rxe_receiver(struct rxe_qp *qp)
1479 {
1480 	struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
1481 	enum resp_states state;
1482 	struct rxe_pkt_info *pkt = NULL;
1483 	int ret;
1484 	unsigned long flags;
1485 
1486 	spin_lock_irqsave(&qp->state_lock, flags);
1487 	if (!qp->valid || qp_state(qp) == IB_QPS_ERR ||
1488 			  qp_state(qp) == IB_QPS_RESET) {
1489 		bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR);
1490 
1491 		drain_req_pkts(qp);
1492 		flush_recv_queue(qp, notify);
1493 		spin_unlock_irqrestore(&qp->state_lock, flags);
1494 		goto exit;
1495 	}
1496 	spin_unlock_irqrestore(&qp->state_lock, flags);
1497 
1498 	qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED;
1499 
1500 	state = RESPST_GET_REQ;
1501 
1502 	while (1) {
1503 		rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]);
1504 		switch (state) {
1505 		case RESPST_GET_REQ:
1506 			state = get_req(qp, &pkt);
1507 			break;
1508 		case RESPST_CHK_PSN:
1509 			state = check_psn(qp, pkt);
1510 			break;
1511 		case RESPST_CHK_OP_SEQ:
1512 			state = check_op_seq(qp, pkt);
1513 			break;
1514 		case RESPST_CHK_OP_VALID:
1515 			state = check_op_valid(qp, pkt);
1516 			break;
1517 		case RESPST_CHK_RESOURCE:
1518 			state = check_resource(qp, pkt);
1519 			break;
1520 		case RESPST_CHK_LENGTH:
1521 			state = rxe_resp_check_length(qp, pkt);
1522 			break;
1523 		case RESPST_CHK_RKEY:
1524 			state = check_rkey(qp, pkt);
1525 			break;
1526 		case RESPST_EXECUTE:
1527 			state = execute(qp, pkt);
1528 			break;
1529 		case RESPST_COMPLETE:
1530 			state = do_complete(qp, pkt);
1531 			break;
1532 		case RESPST_READ_REPLY:
1533 			state = read_reply(qp, pkt);
1534 			break;
1535 		case RESPST_ATOMIC_REPLY:
1536 			state = atomic_reply(qp, pkt);
1537 			break;
1538 		case RESPST_ATOMIC_WRITE_REPLY:
1539 			state = atomic_write_reply(qp, pkt);
1540 			break;
1541 		case RESPST_PROCESS_FLUSH:
1542 			state = process_flush(qp, pkt);
1543 			break;
1544 		case RESPST_ACKNOWLEDGE:
1545 			state = acknowledge(qp, pkt);
1546 			break;
1547 		case RESPST_CLEANUP:
1548 			state = cleanup(qp, pkt);
1549 			break;
1550 		case RESPST_DUPLICATE_REQUEST:
1551 			state = duplicate_request(qp, pkt);
1552 			break;
1553 		case RESPST_ERR_PSN_OUT_OF_SEQ:
1554 			/* RC only - Class B. Drop packet. */
1555 			send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn);
1556 			state = RESPST_CLEANUP;
1557 			break;
1558 
1559 		case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ:
1560 		case RESPST_ERR_MISSING_OPCODE_FIRST:
1561 		case RESPST_ERR_MISSING_OPCODE_LAST_C:
1562 		case RESPST_ERR_UNSUPPORTED_OPCODE:
1563 		case RESPST_ERR_MISALIGNED_ATOMIC:
1564 			/* RC Only - Class C. */
1565 			do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
1566 					  IB_WC_REM_INV_REQ_ERR);
1567 			state = RESPST_COMPLETE;
1568 			break;
1569 
1570 		case RESPST_ERR_MISSING_OPCODE_LAST_D1E:
1571 			state = do_class_d1e_error(qp);
1572 			break;
1573 		case RESPST_ERR_RNR:
1574 			if (qp_type(qp) == IB_QPT_RC) {
1575 				rxe_counter_inc(rxe, RXE_CNT_SND_RNR);
1576 				/* RC - class B */
1577 				send_ack(qp, AETH_RNR_NAK |
1578 					 (~AETH_TYPE_MASK &
1579 					 qp->attr.min_rnr_timer),
1580 					 pkt->psn);
1581 			} else {
1582 				/* UD/UC - class D */
1583 				qp->resp.drop_msg = 1;
1584 			}
1585 			state = RESPST_CLEANUP;
1586 			break;
1587 
1588 		case RESPST_ERR_RKEY_VIOLATION:
1589 			if (qp_type(qp) == IB_QPT_RC) {
1590 				/* Class C */
1591 				do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR,
1592 						  IB_WC_REM_ACCESS_ERR);
1593 				state = RESPST_COMPLETE;
1594 			} else {
1595 				qp->resp.drop_msg = 1;
1596 				if (qp->srq) {
1597 					/* UC/SRQ Class D */
1598 					qp->resp.status = IB_WC_REM_ACCESS_ERR;
1599 					state = RESPST_COMPLETE;
1600 				} else {
1601 					/* UC/non-SRQ Class E. */
1602 					state = RESPST_CLEANUP;
1603 				}
1604 			}
1605 			break;
1606 
1607 		case RESPST_ERR_INVALIDATE_RKEY:
1608 			/* RC - Class J. */
1609 			qp->resp.goto_error = 1;
1610 			qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1611 			state = RESPST_COMPLETE;
1612 			break;
1613 
1614 		case RESPST_ERR_LENGTH:
1615 			if (qp_type(qp) == IB_QPT_RC) {
1616 				/* Class C */
1617 				do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
1618 						  IB_WC_REM_INV_REQ_ERR);
1619 				state = RESPST_COMPLETE;
1620 			} else if (qp->srq) {
1621 				/* UC/UD - class E */
1622 				qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1623 				state = RESPST_COMPLETE;
1624 			} else {
1625 				/* UC/UD - class D */
1626 				qp->resp.drop_msg = 1;
1627 				state = RESPST_CLEANUP;
1628 			}
1629 			break;
1630 
1631 		case RESPST_ERR_MALFORMED_WQE:
1632 			/* All, Class A. */
1633 			do_class_ac_error(qp, AETH_NAK_REM_OP_ERR,
1634 					  IB_WC_LOC_QP_OP_ERR);
1635 			state = RESPST_COMPLETE;
1636 			break;
1637 
1638 		case RESPST_ERR_CQ_OVERFLOW:
1639 			/* All - Class G */
1640 			state = RESPST_ERROR;
1641 			break;
1642 
1643 		case RESPST_DONE:
1644 			if (qp->resp.goto_error) {
1645 				state = RESPST_ERROR;
1646 				break;
1647 			}
1648 
1649 			goto done;
1650 
1651 		case RESPST_EXIT:
1652 			if (qp->resp.goto_error) {
1653 				state = RESPST_ERROR;
1654 				break;
1655 			}
1656 
1657 			goto exit;
1658 
1659 		case RESPST_ERROR:
1660 			qp->resp.goto_error = 0;
1661 			rxe_dbg_qp(qp, "moved to error state\n");
1662 			rxe_qp_error(qp);
1663 			goto exit;
1664 
1665 		default:
1666 			WARN_ON_ONCE(1);
1667 		}
1668 	}
1669 
1670 	/* A non-zero return value will cause rxe_do_task to
1671 	 * exit its loop and end the work item. A zero return
1672 	 * will continue looping and return to rxe_responder
1673 	 */
1674 done:
1675 	ret = 0;
1676 	goto out;
1677 exit:
1678 	ret = -EAGAIN;
1679 out:
1680 	return ret;
1681 }
1682