1 /* 2 * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/skbuff.h> 35 #include <linux/if_arp.h> 36 #include <linux/netdevice.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <net/udp_tunnel.h> 40 #include <net/sch_generic.h> 41 #include <linux/netfilter.h> 42 #include <rdma/ib_addr.h> 43 44 #include "rxe.h" 45 #include "rxe_net.h" 46 #include "rxe_loc.h" 47 48 static LIST_HEAD(rxe_dev_list); 49 static DEFINE_SPINLOCK(dev_list_lock); /* spinlock for device list */ 50 51 struct rxe_dev *net_to_rxe(struct net_device *ndev) 52 { 53 struct rxe_dev *rxe; 54 struct rxe_dev *found = NULL; 55 56 spin_lock_bh(&dev_list_lock); 57 list_for_each_entry(rxe, &rxe_dev_list, list) { 58 if (rxe->ndev == ndev) { 59 found = rxe; 60 break; 61 } 62 } 63 spin_unlock_bh(&dev_list_lock); 64 65 return found; 66 } 67 68 struct rxe_dev *get_rxe_by_name(const char *name) 69 { 70 struct rxe_dev *rxe; 71 struct rxe_dev *found = NULL; 72 73 spin_lock_bh(&dev_list_lock); 74 list_for_each_entry(rxe, &rxe_dev_list, list) { 75 if (!strcmp(name, rxe->ib_dev.name)) { 76 found = rxe; 77 break; 78 } 79 } 80 spin_unlock_bh(&dev_list_lock); 81 return found; 82 } 83 84 85 struct rxe_recv_sockets recv_sockets; 86 87 static __be64 rxe_mac_to_eui64(struct net_device *ndev) 88 { 89 unsigned char *mac_addr = ndev->dev_addr; 90 __be64 eui64; 91 unsigned char *dst = (unsigned char *)&eui64; 92 93 dst[0] = mac_addr[0] ^ 2; 94 dst[1] = mac_addr[1]; 95 dst[2] = mac_addr[2]; 96 dst[3] = 0xff; 97 dst[4] = 0xfe; 98 dst[5] = mac_addr[3]; 99 dst[6] = mac_addr[4]; 100 dst[7] = mac_addr[5]; 101 102 return eui64; 103 } 104 105 static __be64 node_guid(struct rxe_dev *rxe) 106 { 107 return rxe_mac_to_eui64(rxe->ndev); 108 } 109 110 static __be64 port_guid(struct rxe_dev *rxe) 111 { 112 return rxe_mac_to_eui64(rxe->ndev); 113 } 114 115 static struct device *dma_device(struct rxe_dev *rxe) 116 { 117 struct net_device *ndev; 118 119 ndev = rxe->ndev; 120 121 if (ndev->priv_flags & IFF_802_1Q_VLAN) 122 ndev = vlan_dev_real_dev(ndev); 123 124 return ndev->dev.parent; 125 } 126 127 static int mcast_add(struct rxe_dev *rxe, union ib_gid *mgid) 128 { 129 int err; 130 unsigned char ll_addr[ETH_ALEN]; 131 132 ipv6_eth_mc_map((struct in6_addr *)mgid->raw, ll_addr); 133 err = dev_mc_add(rxe->ndev, ll_addr); 134 135 return err; 136 } 137 138 static int mcast_delete(struct rxe_dev *rxe, union ib_gid *mgid) 139 { 140 int err; 141 unsigned char ll_addr[ETH_ALEN]; 142 143 ipv6_eth_mc_map((struct in6_addr *)mgid->raw, ll_addr); 144 err = dev_mc_del(rxe->ndev, ll_addr); 145 146 return err; 147 } 148 149 static struct dst_entry *rxe_find_route4(struct net_device *ndev, 150 struct in_addr *saddr, 151 struct in_addr *daddr) 152 { 153 struct rtable *rt; 154 struct flowi4 fl = { { 0 } }; 155 156 memset(&fl, 0, sizeof(fl)); 157 fl.flowi4_oif = ndev->ifindex; 158 memcpy(&fl.saddr, saddr, sizeof(*saddr)); 159 memcpy(&fl.daddr, daddr, sizeof(*daddr)); 160 fl.flowi4_proto = IPPROTO_UDP; 161 162 rt = ip_route_output_key(&init_net, &fl); 163 if (IS_ERR(rt)) { 164 pr_err_ratelimited("no route to %pI4\n", &daddr->s_addr); 165 return NULL; 166 } 167 168 return &rt->dst; 169 } 170 171 #if IS_ENABLED(CONFIG_IPV6) 172 static struct dst_entry *rxe_find_route6(struct net_device *ndev, 173 struct in6_addr *saddr, 174 struct in6_addr *daddr) 175 { 176 struct dst_entry *ndst; 177 struct flowi6 fl6 = { { 0 } }; 178 179 memset(&fl6, 0, sizeof(fl6)); 180 fl6.flowi6_oif = ndev->ifindex; 181 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 182 memcpy(&fl6.daddr, daddr, sizeof(*daddr)); 183 fl6.flowi6_proto = IPPROTO_UDP; 184 185 if (unlikely(ipv6_stub->ipv6_dst_lookup(sock_net(recv_sockets.sk6->sk), 186 recv_sockets.sk6->sk, &ndst, &fl6))) { 187 pr_err_ratelimited("no route to %pI6\n", daddr); 188 goto put; 189 } 190 191 if (unlikely(ndst->error)) { 192 pr_err("no route to %pI6\n", daddr); 193 goto put; 194 } 195 196 return ndst; 197 put: 198 dst_release(ndst); 199 return NULL; 200 } 201 202 #else 203 204 static struct dst_entry *rxe_find_route6(struct net_device *ndev, 205 struct in6_addr *saddr, 206 struct in6_addr *daddr) 207 { 208 return NULL; 209 } 210 211 #endif 212 213 static int rxe_udp_encap_recv(struct sock *sk, struct sk_buff *skb) 214 { 215 struct udphdr *udph; 216 struct net_device *ndev = skb->dev; 217 struct rxe_dev *rxe = net_to_rxe(ndev); 218 struct rxe_pkt_info *pkt = SKB_TO_PKT(skb); 219 220 if (!rxe) 221 goto drop; 222 223 if (skb_linearize(skb)) { 224 pr_err("skb_linearize failed\n"); 225 goto drop; 226 } 227 228 udph = udp_hdr(skb); 229 pkt->rxe = rxe; 230 pkt->port_num = 1; 231 pkt->hdr = (u8 *)(udph + 1); 232 pkt->mask = RXE_GRH_MASK; 233 pkt->paylen = be16_to_cpu(udph->len) - sizeof(*udph); 234 235 return rxe_rcv(skb); 236 drop: 237 kfree_skb(skb); 238 return 0; 239 } 240 241 static struct socket *rxe_setup_udp_tunnel(struct net *net, __be16 port, 242 bool ipv6) 243 { 244 int err; 245 struct socket *sock; 246 struct udp_port_cfg udp_cfg = {0}; 247 struct udp_tunnel_sock_cfg tnl_cfg = {0}; 248 249 if (ipv6) { 250 udp_cfg.family = AF_INET6; 251 udp_cfg.ipv6_v6only = 1; 252 } else { 253 udp_cfg.family = AF_INET; 254 } 255 256 udp_cfg.local_udp_port = port; 257 258 /* Create UDP socket */ 259 err = udp_sock_create(net, &udp_cfg, &sock); 260 if (err < 0) { 261 pr_err("failed to create udp socket. err = %d\n", err); 262 return ERR_PTR(err); 263 } 264 265 tnl_cfg.encap_type = 1; 266 tnl_cfg.encap_rcv = rxe_udp_encap_recv; 267 268 /* Setup UDP tunnel */ 269 setup_udp_tunnel_sock(net, sock, &tnl_cfg); 270 271 return sock; 272 } 273 274 void rxe_release_udp_tunnel(struct socket *sk) 275 { 276 if (sk) 277 udp_tunnel_sock_release(sk); 278 } 279 280 static void prepare_udp_hdr(struct sk_buff *skb, __be16 src_port, 281 __be16 dst_port) 282 { 283 struct udphdr *udph; 284 285 __skb_push(skb, sizeof(*udph)); 286 skb_reset_transport_header(skb); 287 udph = udp_hdr(skb); 288 289 udph->dest = dst_port; 290 udph->source = src_port; 291 udph->len = htons(skb->len); 292 udph->check = 0; 293 } 294 295 static void prepare_ipv4_hdr(struct dst_entry *dst, struct sk_buff *skb, 296 __be32 saddr, __be32 daddr, __u8 proto, 297 __u8 tos, __u8 ttl, __be16 df, bool xnet) 298 { 299 struct iphdr *iph; 300 301 skb_scrub_packet(skb, xnet); 302 303 skb_clear_hash(skb); 304 skb_dst_set(skb, dst); 305 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 306 307 skb_push(skb, sizeof(struct iphdr)); 308 skb_reset_network_header(skb); 309 310 iph = ip_hdr(skb); 311 312 iph->version = IPVERSION; 313 iph->ihl = sizeof(struct iphdr) >> 2; 314 iph->frag_off = df; 315 iph->protocol = proto; 316 iph->tos = tos; 317 iph->daddr = daddr; 318 iph->saddr = saddr; 319 iph->ttl = ttl; 320 __ip_select_ident(dev_net(dst->dev), iph, 321 skb_shinfo(skb)->gso_segs ?: 1); 322 iph->tot_len = htons(skb->len); 323 ip_send_check(iph); 324 } 325 326 static void prepare_ipv6_hdr(struct dst_entry *dst, struct sk_buff *skb, 327 struct in6_addr *saddr, struct in6_addr *daddr, 328 __u8 proto, __u8 prio, __u8 ttl) 329 { 330 struct ipv6hdr *ip6h; 331 332 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 333 IPCB(skb)->flags &= ~(IPSKB_XFRM_TUNNEL_SIZE | IPSKB_XFRM_TRANSFORMED 334 | IPSKB_REROUTED); 335 skb_dst_set(skb, dst); 336 337 __skb_push(skb, sizeof(*ip6h)); 338 skb_reset_network_header(skb); 339 ip6h = ipv6_hdr(skb); 340 ip6_flow_hdr(ip6h, prio, htonl(0)); 341 ip6h->payload_len = htons(skb->len); 342 ip6h->nexthdr = proto; 343 ip6h->hop_limit = ttl; 344 ip6h->daddr = *daddr; 345 ip6h->saddr = *saddr; 346 ip6h->payload_len = htons(skb->len - sizeof(*ip6h)); 347 } 348 349 static int prepare4(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, 350 struct sk_buff *skb, struct rxe_av *av) 351 { 352 struct dst_entry *dst; 353 bool xnet = false; 354 __be16 df = htons(IP_DF); 355 struct in_addr *saddr = &av->sgid_addr._sockaddr_in.sin_addr; 356 struct in_addr *daddr = &av->dgid_addr._sockaddr_in.sin_addr; 357 358 dst = rxe_find_route4(rxe->ndev, saddr, daddr); 359 if (!dst) { 360 pr_err("Host not reachable\n"); 361 return -EHOSTUNREACH; 362 } 363 364 if (!memcmp(saddr, daddr, sizeof(*daddr))) 365 pkt->mask |= RXE_LOOPBACK_MASK; 366 367 prepare_udp_hdr(skb, htons(RXE_ROCE_V2_SPORT), 368 htons(ROCE_V2_UDP_DPORT)); 369 370 prepare_ipv4_hdr(dst, skb, saddr->s_addr, daddr->s_addr, IPPROTO_UDP, 371 av->grh.traffic_class, av->grh.hop_limit, df, xnet); 372 return 0; 373 } 374 375 static int prepare6(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, 376 struct sk_buff *skb, struct rxe_av *av) 377 { 378 struct dst_entry *dst; 379 struct in6_addr *saddr = &av->sgid_addr._sockaddr_in6.sin6_addr; 380 struct in6_addr *daddr = &av->dgid_addr._sockaddr_in6.sin6_addr; 381 382 dst = rxe_find_route6(rxe->ndev, saddr, daddr); 383 if (!dst) { 384 pr_err("Host not reachable\n"); 385 return -EHOSTUNREACH; 386 } 387 388 if (!memcmp(saddr, daddr, sizeof(*daddr))) 389 pkt->mask |= RXE_LOOPBACK_MASK; 390 391 prepare_udp_hdr(skb, htons(RXE_ROCE_V2_SPORT), 392 htons(ROCE_V2_UDP_DPORT)); 393 394 prepare_ipv6_hdr(dst, skb, saddr, daddr, IPPROTO_UDP, 395 av->grh.traffic_class, 396 av->grh.hop_limit); 397 return 0; 398 } 399 400 static int prepare(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, 401 struct sk_buff *skb, u32 *crc) 402 { 403 int err = 0; 404 struct rxe_av *av = rxe_get_av(pkt); 405 406 if (av->network_type == RDMA_NETWORK_IPV4) 407 err = prepare4(rxe, pkt, skb, av); 408 else if (av->network_type == RDMA_NETWORK_IPV6) 409 err = prepare6(rxe, pkt, skb, av); 410 411 *crc = rxe_icrc_hdr(pkt, skb); 412 413 return err; 414 } 415 416 static void rxe_skb_tx_dtor(struct sk_buff *skb) 417 { 418 struct sock *sk = skb->sk; 419 struct rxe_qp *qp = sk->sk_user_data; 420 int skb_out = atomic_dec_return(&qp->skb_out); 421 422 if (unlikely(qp->need_req_skb && 423 skb_out < RXE_INFLIGHT_SKBS_PER_QP_LOW)) 424 rxe_run_task(&qp->req.task, 1); 425 } 426 427 static int send(struct rxe_dev *rxe, struct rxe_pkt_info *pkt, 428 struct sk_buff *skb) 429 { 430 struct sk_buff *nskb; 431 struct rxe_av *av; 432 int err; 433 434 av = rxe_get_av(pkt); 435 436 nskb = skb_clone(skb, GFP_ATOMIC); 437 if (!nskb) 438 return -ENOMEM; 439 440 nskb->destructor = rxe_skb_tx_dtor; 441 nskb->sk = pkt->qp->sk->sk; 442 443 if (av->network_type == RDMA_NETWORK_IPV4) { 444 err = ip_local_out(dev_net(skb_dst(skb)->dev), nskb->sk, nskb); 445 } else if (av->network_type == RDMA_NETWORK_IPV6) { 446 err = ip6_local_out(dev_net(skb_dst(skb)->dev), nskb->sk, nskb); 447 } else { 448 pr_err("Unknown layer 3 protocol: %d\n", av->network_type); 449 kfree_skb(nskb); 450 return -EINVAL; 451 } 452 453 if (unlikely(net_xmit_eval(err))) { 454 pr_debug("error sending packet: %d\n", err); 455 return -EAGAIN; 456 } 457 458 if (pkt->qp) 459 atomic_inc(&pkt->qp->skb_out); 460 kfree_skb(skb); 461 462 return 0; 463 } 464 465 static int loopback(struct sk_buff *skb) 466 { 467 return rxe_rcv(skb); 468 } 469 470 static inline int addr_same(struct rxe_dev *rxe, struct rxe_av *av) 471 { 472 return rxe->port.port_guid == av->grh.dgid.global.interface_id; 473 } 474 475 static struct sk_buff *init_packet(struct rxe_dev *rxe, struct rxe_av *av, 476 int paylen, struct rxe_pkt_info *pkt) 477 { 478 unsigned int hdr_len; 479 struct sk_buff *skb; 480 481 if (av->network_type == RDMA_NETWORK_IPV4) 482 hdr_len = ETH_HLEN + sizeof(struct udphdr) + 483 sizeof(struct iphdr); 484 else 485 hdr_len = ETH_HLEN + sizeof(struct udphdr) + 486 sizeof(struct ipv6hdr); 487 488 skb = alloc_skb(paylen + hdr_len + LL_RESERVED_SPACE(rxe->ndev), 489 GFP_ATOMIC); 490 if (unlikely(!skb)) 491 return NULL; 492 493 skb_reserve(skb, hdr_len + LL_RESERVED_SPACE(rxe->ndev)); 494 495 skb->dev = rxe->ndev; 496 if (av->network_type == RDMA_NETWORK_IPV4) 497 skb->protocol = htons(ETH_P_IP); 498 else 499 skb->protocol = htons(ETH_P_IPV6); 500 501 pkt->rxe = rxe; 502 pkt->port_num = 1; 503 pkt->hdr = skb_put(skb, paylen); 504 pkt->mask |= RXE_GRH_MASK; 505 506 memset(pkt->hdr, 0, paylen); 507 508 return skb; 509 } 510 511 /* 512 * this is required by rxe_cfg to match rxe devices in 513 * /sys/class/infiniband up with their underlying ethernet devices 514 */ 515 static char *parent_name(struct rxe_dev *rxe, unsigned int port_num) 516 { 517 return rxe->ndev->name; 518 } 519 520 static enum rdma_link_layer link_layer(struct rxe_dev *rxe, 521 unsigned int port_num) 522 { 523 return IB_LINK_LAYER_ETHERNET; 524 } 525 526 static struct rxe_ifc_ops ifc_ops = { 527 .node_guid = node_guid, 528 .port_guid = port_guid, 529 .dma_device = dma_device, 530 .mcast_add = mcast_add, 531 .mcast_delete = mcast_delete, 532 .prepare = prepare, 533 .send = send, 534 .loopback = loopback, 535 .init_packet = init_packet, 536 .parent_name = parent_name, 537 .link_layer = link_layer, 538 }; 539 540 struct rxe_dev *rxe_net_add(struct net_device *ndev) 541 { 542 int err; 543 struct rxe_dev *rxe = NULL; 544 545 rxe = (struct rxe_dev *)ib_alloc_device(sizeof(*rxe)); 546 if (!rxe) 547 return NULL; 548 549 rxe->ifc_ops = &ifc_ops; 550 rxe->ndev = ndev; 551 552 err = rxe_add(rxe, ndev->mtu); 553 if (err) { 554 ib_dealloc_device(&rxe->ib_dev); 555 return NULL; 556 } 557 558 spin_lock_bh(&dev_list_lock); 559 list_add_tail(&rxe_dev_list, &rxe->list); 560 spin_unlock_bh(&dev_list_lock); 561 return rxe; 562 } 563 564 void rxe_remove_all(void) 565 { 566 spin_lock_bh(&dev_list_lock); 567 while (!list_empty(&rxe_dev_list)) { 568 struct rxe_dev *rxe = 569 list_first_entry(&rxe_dev_list, struct rxe_dev, list); 570 571 list_del(&rxe->list); 572 spin_unlock_bh(&dev_list_lock); 573 rxe_remove(rxe); 574 spin_lock_bh(&dev_list_lock); 575 } 576 spin_unlock_bh(&dev_list_lock); 577 } 578 EXPORT_SYMBOL(rxe_remove_all); 579 580 static void rxe_port_event(struct rxe_dev *rxe, 581 enum ib_event_type event) 582 { 583 struct ib_event ev; 584 585 ev.device = &rxe->ib_dev; 586 ev.element.port_num = 1; 587 ev.event = event; 588 589 ib_dispatch_event(&ev); 590 } 591 592 /* Caller must hold net_info_lock */ 593 void rxe_port_up(struct rxe_dev *rxe) 594 { 595 struct rxe_port *port; 596 597 port = &rxe->port; 598 port->attr.state = IB_PORT_ACTIVE; 599 port->attr.phys_state = IB_PHYS_STATE_LINK_UP; 600 601 rxe_port_event(rxe, IB_EVENT_PORT_ACTIVE); 602 pr_info("set %s active\n", rxe->ib_dev.name); 603 } 604 605 /* Caller must hold net_info_lock */ 606 void rxe_port_down(struct rxe_dev *rxe) 607 { 608 struct rxe_port *port; 609 610 port = &rxe->port; 611 port->attr.state = IB_PORT_DOWN; 612 port->attr.phys_state = IB_PHYS_STATE_LINK_DOWN; 613 614 rxe_port_event(rxe, IB_EVENT_PORT_ERR); 615 pr_info("set %s down\n", rxe->ib_dev.name); 616 } 617 618 static int rxe_notify(struct notifier_block *not_blk, 619 unsigned long event, 620 void *arg) 621 { 622 struct net_device *ndev = netdev_notifier_info_to_dev(arg); 623 struct rxe_dev *rxe = net_to_rxe(ndev); 624 625 if (!rxe) 626 goto out; 627 628 switch (event) { 629 case NETDEV_UNREGISTER: 630 list_del(&rxe->list); 631 rxe_remove(rxe); 632 break; 633 case NETDEV_UP: 634 rxe_port_up(rxe); 635 break; 636 case NETDEV_DOWN: 637 rxe_port_down(rxe); 638 break; 639 case NETDEV_CHANGEMTU: 640 pr_info("%s changed mtu to %d\n", ndev->name, ndev->mtu); 641 rxe_set_mtu(rxe, ndev->mtu); 642 break; 643 case NETDEV_REBOOT: 644 case NETDEV_CHANGE: 645 case NETDEV_GOING_DOWN: 646 case NETDEV_CHANGEADDR: 647 case NETDEV_CHANGENAME: 648 case NETDEV_FEAT_CHANGE: 649 default: 650 pr_info("ignoring netdev event = %ld for %s\n", 651 event, ndev->name); 652 break; 653 } 654 out: 655 return NOTIFY_OK; 656 } 657 658 struct notifier_block rxe_net_notifier = { 659 .notifier_call = rxe_notify, 660 }; 661 662 int rxe_net_ipv4_init(void) 663 { 664 recv_sockets.sk4 = rxe_setup_udp_tunnel(&init_net, 665 htons(ROCE_V2_UDP_DPORT), false); 666 if (IS_ERR(recv_sockets.sk4)) { 667 recv_sockets.sk4 = NULL; 668 pr_err("Failed to create IPv4 UDP tunnel\n"); 669 return -1; 670 } 671 672 return 0; 673 } 674 675 int rxe_net_ipv6_init(void) 676 { 677 #if IS_ENABLED(CONFIG_IPV6) 678 679 recv_sockets.sk6 = rxe_setup_udp_tunnel(&init_net, 680 htons(ROCE_V2_UDP_DPORT), true); 681 if (IS_ERR(recv_sockets.sk6)) { 682 recv_sockets.sk6 = NULL; 683 pr_err("Failed to create IPv6 UDP tunnel\n"); 684 return -1; 685 } 686 #endif 687 return 0; 688 } 689 690 void rxe_net_exit(void) 691 { 692 rxe_release_udp_tunnel(recv_sockets.sk6); 693 rxe_release_udp_tunnel(recv_sockets.sk4); 694 unregister_netdevice_notifier(&rxe_net_notifier); 695 } 696 697 int rxe_net_init(void) 698 { 699 int err; 700 701 recv_sockets.sk6 = NULL; 702 703 err = rxe_net_ipv4_init(); 704 if (err) 705 return err; 706 err = rxe_net_ipv6_init(); 707 if (err) 708 goto err_out; 709 err = register_netdevice_notifier(&rxe_net_notifier); 710 if (err) { 711 pr_err("Failed to register netdev notifier\n"); 712 goto err_out; 713 } 714 return 0; 715 err_out: 716 rxe_net_exit(); 717 return err; 718 } 719