1 /* 2 * Copyright(c) 2016, 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include "qp.h" 56 #include "vt.h" 57 #include "trace.h" 58 59 static void rvt_rc_timeout(unsigned long arg); 60 61 /* 62 * Convert the AETH RNR timeout code into the number of microseconds. 63 */ 64 static const u32 ib_rvt_rnr_table[32] = { 65 655360, /* 00: 655.36 */ 66 10, /* 01: .01 */ 67 20, /* 02 .02 */ 68 30, /* 03: .03 */ 69 40, /* 04: .04 */ 70 60, /* 05: .06 */ 71 80, /* 06: .08 */ 72 120, /* 07: .12 */ 73 160, /* 08: .16 */ 74 240, /* 09: .24 */ 75 320, /* 0A: .32 */ 76 480, /* 0B: .48 */ 77 640, /* 0C: .64 */ 78 960, /* 0D: .96 */ 79 1280, /* 0E: 1.28 */ 80 1920, /* 0F: 1.92 */ 81 2560, /* 10: 2.56 */ 82 3840, /* 11: 3.84 */ 83 5120, /* 12: 5.12 */ 84 7680, /* 13: 7.68 */ 85 10240, /* 14: 10.24 */ 86 15360, /* 15: 15.36 */ 87 20480, /* 16: 20.48 */ 88 30720, /* 17: 30.72 */ 89 40960, /* 18: 40.96 */ 90 61440, /* 19: 61.44 */ 91 81920, /* 1A: 81.92 */ 92 122880, /* 1B: 122.88 */ 93 163840, /* 1C: 163.84 */ 94 245760, /* 1D: 245.76 */ 95 327680, /* 1E: 327.68 */ 96 491520 /* 1F: 491.52 */ 97 }; 98 99 /* 100 * Note that it is OK to post send work requests in the SQE and ERR 101 * states; rvt_do_send() will process them and generate error 102 * completions as per IB 1.2 C10-96. 103 */ 104 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 105 [IB_QPS_RESET] = 0, 106 [IB_QPS_INIT] = RVT_POST_RECV_OK, 107 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 108 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 109 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 110 RVT_PROCESS_NEXT_SEND_OK, 111 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 112 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 113 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 114 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 115 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 116 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 117 }; 118 EXPORT_SYMBOL(ib_rvt_state_ops); 119 120 static void get_map_page(struct rvt_qpn_table *qpt, 121 struct rvt_qpn_map *map) 122 { 123 unsigned long page = get_zeroed_page(GFP_KERNEL); 124 125 /* 126 * Free the page if someone raced with us installing it. 127 */ 128 129 spin_lock(&qpt->lock); 130 if (map->page) 131 free_page(page); 132 else 133 map->page = (void *)page; 134 spin_unlock(&qpt->lock); 135 } 136 137 /** 138 * init_qpn_table - initialize the QP number table for a device 139 * @qpt: the QPN table 140 */ 141 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 142 { 143 u32 offset, i; 144 struct rvt_qpn_map *map; 145 int ret = 0; 146 147 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 148 return -EINVAL; 149 150 spin_lock_init(&qpt->lock); 151 152 qpt->last = rdi->dparms.qpn_start; 153 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 154 155 /* 156 * Drivers may want some QPs beyond what we need for verbs let them use 157 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 158 * for those. The reserved range must be *after* the range which verbs 159 * will pick from. 160 */ 161 162 /* Figure out number of bit maps needed before reserved range */ 163 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 164 165 /* This should always be zero */ 166 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 167 168 /* Starting with the first reserved bit map */ 169 map = &qpt->map[qpt->nmaps]; 170 171 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 172 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 173 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 174 if (!map->page) { 175 get_map_page(qpt, map); 176 if (!map->page) { 177 ret = -ENOMEM; 178 break; 179 } 180 } 181 set_bit(offset, map->page); 182 offset++; 183 if (offset == RVT_BITS_PER_PAGE) { 184 /* next page */ 185 qpt->nmaps++; 186 map++; 187 offset = 0; 188 } 189 } 190 return ret; 191 } 192 193 /** 194 * free_qpn_table - free the QP number table for a device 195 * @qpt: the QPN table 196 */ 197 static void free_qpn_table(struct rvt_qpn_table *qpt) 198 { 199 int i; 200 201 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 202 free_page((unsigned long)qpt->map[i].page); 203 } 204 205 /** 206 * rvt_driver_qp_init - Init driver qp resources 207 * @rdi: rvt dev strucutre 208 * 209 * Return: 0 on success 210 */ 211 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 212 { 213 int i; 214 int ret = -ENOMEM; 215 216 if (!rdi->dparms.qp_table_size) 217 return -EINVAL; 218 219 /* 220 * If driver is not doing any QP allocation then make sure it is 221 * providing the necessary QP functions. 222 */ 223 if (!rdi->driver_f.free_all_qps || 224 !rdi->driver_f.qp_priv_alloc || 225 !rdi->driver_f.qp_priv_free || 226 !rdi->driver_f.notify_qp_reset || 227 !rdi->driver_f.notify_restart_rc) 228 return -EINVAL; 229 230 /* allocate parent object */ 231 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 232 rdi->dparms.node); 233 if (!rdi->qp_dev) 234 return -ENOMEM; 235 236 /* allocate hash table */ 237 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 238 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 239 rdi->qp_dev->qp_table = 240 kmalloc_node(rdi->qp_dev->qp_table_size * 241 sizeof(*rdi->qp_dev->qp_table), 242 GFP_KERNEL, rdi->dparms.node); 243 if (!rdi->qp_dev->qp_table) 244 goto no_qp_table; 245 246 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 247 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 248 249 spin_lock_init(&rdi->qp_dev->qpt_lock); 250 251 /* initialize qpn map */ 252 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 253 goto fail_table; 254 255 spin_lock_init(&rdi->n_qps_lock); 256 257 return 0; 258 259 fail_table: 260 kfree(rdi->qp_dev->qp_table); 261 free_qpn_table(&rdi->qp_dev->qpn_table); 262 263 no_qp_table: 264 kfree(rdi->qp_dev); 265 266 return ret; 267 } 268 269 /** 270 * free_all_qps - check for QPs still in use 271 * @qpt: the QP table to empty 272 * 273 * There should not be any QPs still in use. 274 * Free memory for table. 275 */ 276 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 277 { 278 unsigned long flags; 279 struct rvt_qp *qp; 280 unsigned n, qp_inuse = 0; 281 spinlock_t *ql; /* work around too long line below */ 282 283 if (rdi->driver_f.free_all_qps) 284 qp_inuse = rdi->driver_f.free_all_qps(rdi); 285 286 qp_inuse += rvt_mcast_tree_empty(rdi); 287 288 if (!rdi->qp_dev) 289 return qp_inuse; 290 291 ql = &rdi->qp_dev->qpt_lock; 292 spin_lock_irqsave(ql, flags); 293 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 294 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 295 lockdep_is_held(ql)); 296 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 297 298 for (; qp; qp = rcu_dereference_protected(qp->next, 299 lockdep_is_held(ql))) 300 qp_inuse++; 301 } 302 spin_unlock_irqrestore(ql, flags); 303 synchronize_rcu(); 304 return qp_inuse; 305 } 306 307 /** 308 * rvt_qp_exit - clean up qps on device exit 309 * @rdi: rvt dev structure 310 * 311 * Check for qp leaks and free resources. 312 */ 313 void rvt_qp_exit(struct rvt_dev_info *rdi) 314 { 315 u32 qps_inuse = rvt_free_all_qps(rdi); 316 317 if (qps_inuse) 318 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 319 qps_inuse); 320 if (!rdi->qp_dev) 321 return; 322 323 kfree(rdi->qp_dev->qp_table); 324 free_qpn_table(&rdi->qp_dev->qpn_table); 325 kfree(rdi->qp_dev); 326 } 327 328 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 329 struct rvt_qpn_map *map, unsigned off) 330 { 331 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 332 } 333 334 /** 335 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 336 * IB_QPT_SMI/IB_QPT_GSI 337 *@rdi: rvt device info structure 338 *@qpt: queue pair number table pointer 339 *@port_num: IB port number, 1 based, comes from core 340 * 341 * Return: The queue pair number 342 */ 343 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 344 enum ib_qp_type type, u8 port_num) 345 { 346 u32 i, offset, max_scan, qpn; 347 struct rvt_qpn_map *map; 348 u32 ret; 349 350 if (rdi->driver_f.alloc_qpn) 351 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 352 353 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 354 unsigned n; 355 356 ret = type == IB_QPT_GSI; 357 n = 1 << (ret + 2 * (port_num - 1)); 358 spin_lock(&qpt->lock); 359 if (qpt->flags & n) 360 ret = -EINVAL; 361 else 362 qpt->flags |= n; 363 spin_unlock(&qpt->lock); 364 goto bail; 365 } 366 367 qpn = qpt->last + qpt->incr; 368 if (qpn >= RVT_QPN_MAX) 369 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 370 /* offset carries bit 0 */ 371 offset = qpn & RVT_BITS_PER_PAGE_MASK; 372 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 373 max_scan = qpt->nmaps - !offset; 374 for (i = 0;;) { 375 if (unlikely(!map->page)) { 376 get_map_page(qpt, map); 377 if (unlikely(!map->page)) 378 break; 379 } 380 do { 381 if (!test_and_set_bit(offset, map->page)) { 382 qpt->last = qpn; 383 ret = qpn; 384 goto bail; 385 } 386 offset += qpt->incr; 387 /* 388 * This qpn might be bogus if offset >= BITS_PER_PAGE. 389 * That is OK. It gets re-assigned below 390 */ 391 qpn = mk_qpn(qpt, map, offset); 392 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 393 /* 394 * In order to keep the number of pages allocated to a 395 * minimum, we scan the all existing pages before increasing 396 * the size of the bitmap table. 397 */ 398 if (++i > max_scan) { 399 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 400 break; 401 map = &qpt->map[qpt->nmaps++]; 402 /* start at incr with current bit 0 */ 403 offset = qpt->incr | (offset & 1); 404 } else if (map < &qpt->map[qpt->nmaps]) { 405 ++map; 406 /* start at incr with current bit 0 */ 407 offset = qpt->incr | (offset & 1); 408 } else { 409 map = &qpt->map[0]; 410 /* wrap to first map page, invert bit 0 */ 411 offset = qpt->incr | ((offset & 1) ^ 1); 412 } 413 /* there can be no set bits in low-order QoS bits */ 414 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1)); 415 qpn = mk_qpn(qpt, map, offset); 416 } 417 418 ret = -ENOMEM; 419 420 bail: 421 return ret; 422 } 423 424 static void free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 425 { 426 struct rvt_qpn_map *map; 427 428 map = qpt->map + qpn / RVT_BITS_PER_PAGE; 429 if (map->page) 430 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 431 } 432 433 /** 434 * rvt_clear_mr_refs - Drop help mr refs 435 * @qp: rvt qp data structure 436 * @clr_sends: If shoudl clear send side or not 437 */ 438 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 439 { 440 unsigned n; 441 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 442 443 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 444 rvt_put_ss(&qp->s_rdma_read_sge); 445 446 rvt_put_ss(&qp->r_sge); 447 448 if (clr_sends) { 449 while (qp->s_last != qp->s_head) { 450 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 451 unsigned i; 452 453 for (i = 0; i < wqe->wr.num_sge; i++) { 454 struct rvt_sge *sge = &wqe->sg_list[i]; 455 456 rvt_put_mr(sge->mr); 457 } 458 if (qp->ibqp.qp_type == IB_QPT_UD || 459 qp->ibqp.qp_type == IB_QPT_SMI || 460 qp->ibqp.qp_type == IB_QPT_GSI) 461 atomic_dec(&ibah_to_rvtah( 462 wqe->ud_wr.ah)->refcount); 463 if (++qp->s_last >= qp->s_size) 464 qp->s_last = 0; 465 smp_wmb(); /* see qp_set_savail */ 466 } 467 if (qp->s_rdma_mr) { 468 rvt_put_mr(qp->s_rdma_mr); 469 qp->s_rdma_mr = NULL; 470 } 471 } 472 473 if (qp->ibqp.qp_type != IB_QPT_RC) 474 return; 475 476 for (n = 0; n < rvt_max_atomic(rdi); n++) { 477 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 478 479 if (e->rdma_sge.mr) { 480 rvt_put_mr(e->rdma_sge.mr); 481 e->rdma_sge.mr = NULL; 482 } 483 } 484 } 485 486 /** 487 * rvt_remove_qp - remove qp form table 488 * @rdi: rvt dev struct 489 * @qp: qp to remove 490 * 491 * Remove the QP from the table so it can't be found asynchronously by 492 * the receive routine. 493 */ 494 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 495 { 496 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 497 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 498 unsigned long flags; 499 int removed = 1; 500 501 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 502 503 if (rcu_dereference_protected(rvp->qp[0], 504 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 505 RCU_INIT_POINTER(rvp->qp[0], NULL); 506 } else if (rcu_dereference_protected(rvp->qp[1], 507 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 508 RCU_INIT_POINTER(rvp->qp[1], NULL); 509 } else { 510 struct rvt_qp *q; 511 struct rvt_qp __rcu **qpp; 512 513 removed = 0; 514 qpp = &rdi->qp_dev->qp_table[n]; 515 for (; (q = rcu_dereference_protected(*qpp, 516 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 517 qpp = &q->next) { 518 if (q == qp) { 519 RCU_INIT_POINTER(*qpp, 520 rcu_dereference_protected(qp->next, 521 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 522 removed = 1; 523 trace_rvt_qpremove(qp, n); 524 break; 525 } 526 } 527 } 528 529 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 530 if (removed) { 531 synchronize_rcu(); 532 rvt_put_qp(qp); 533 } 534 } 535 536 /** 537 * rvt_init_qp - initialize the QP state to the reset state 538 * @qp: the QP to init or reinit 539 * @type: the QP type 540 * 541 * This function is called from both rvt_create_qp() and 542 * rvt_reset_qp(). The difference is that the reset 543 * patch the necessary locks to protect against concurent 544 * access. 545 */ 546 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 547 enum ib_qp_type type) 548 { 549 qp->remote_qpn = 0; 550 qp->qkey = 0; 551 qp->qp_access_flags = 0; 552 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 553 qp->s_hdrwords = 0; 554 qp->s_wqe = NULL; 555 qp->s_draining = 0; 556 qp->s_next_psn = 0; 557 qp->s_last_psn = 0; 558 qp->s_sending_psn = 0; 559 qp->s_sending_hpsn = 0; 560 qp->s_psn = 0; 561 qp->r_psn = 0; 562 qp->r_msn = 0; 563 if (type == IB_QPT_RC) { 564 qp->s_state = IB_OPCODE_RC_SEND_LAST; 565 qp->r_state = IB_OPCODE_RC_SEND_LAST; 566 } else { 567 qp->s_state = IB_OPCODE_UC_SEND_LAST; 568 qp->r_state = IB_OPCODE_UC_SEND_LAST; 569 } 570 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 571 qp->r_nak_state = 0; 572 qp->r_aflags = 0; 573 qp->r_flags = 0; 574 qp->s_head = 0; 575 qp->s_tail = 0; 576 qp->s_cur = 0; 577 qp->s_acked = 0; 578 qp->s_last = 0; 579 qp->s_ssn = 1; 580 qp->s_lsn = 0; 581 qp->s_mig_state = IB_MIG_MIGRATED; 582 qp->r_head_ack_queue = 0; 583 qp->s_tail_ack_queue = 0; 584 qp->s_num_rd_atomic = 0; 585 if (qp->r_rq.wq) { 586 qp->r_rq.wq->head = 0; 587 qp->r_rq.wq->tail = 0; 588 } 589 qp->r_sge.num_sge = 0; 590 atomic_set(&qp->s_reserved_used, 0); 591 } 592 593 /** 594 * rvt_reset_qp - initialize the QP state to the reset state 595 * @qp: the QP to reset 596 * @type: the QP type 597 * 598 * r_lock, s_hlock, and s_lock are required to be held by the caller 599 */ 600 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 601 enum ib_qp_type type) 602 __must_hold(&qp->s_lock) 603 __must_hold(&qp->s_hlock) 604 __must_hold(&qp->r_lock) 605 { 606 lockdep_assert_held(&qp->r_lock); 607 lockdep_assert_held(&qp->s_hlock); 608 lockdep_assert_held(&qp->s_lock); 609 if (qp->state != IB_QPS_RESET) { 610 qp->state = IB_QPS_RESET; 611 612 /* Let drivers flush their waitlist */ 613 rdi->driver_f.flush_qp_waiters(qp); 614 rvt_stop_rc_timers(qp); 615 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 616 spin_unlock(&qp->s_lock); 617 spin_unlock(&qp->s_hlock); 618 spin_unlock_irq(&qp->r_lock); 619 620 /* Stop the send queue and the retry timer */ 621 rdi->driver_f.stop_send_queue(qp); 622 rvt_del_timers_sync(qp); 623 /* Wait for things to stop */ 624 rdi->driver_f.quiesce_qp(qp); 625 626 /* take qp out the hash and wait for it to be unused */ 627 rvt_remove_qp(rdi, qp); 628 wait_event(qp->wait, !atomic_read(&qp->refcount)); 629 630 /* grab the lock b/c it was locked at call time */ 631 spin_lock_irq(&qp->r_lock); 632 spin_lock(&qp->s_hlock); 633 spin_lock(&qp->s_lock); 634 635 rvt_clear_mr_refs(qp, 1); 636 /* 637 * Let the driver do any tear down or re-init it needs to for 638 * a qp that has been reset 639 */ 640 rdi->driver_f.notify_qp_reset(qp); 641 } 642 rvt_init_qp(rdi, qp, type); 643 lockdep_assert_held(&qp->r_lock); 644 lockdep_assert_held(&qp->s_hlock); 645 lockdep_assert_held(&qp->s_lock); 646 } 647 648 /** 649 * rvt_create_qp - create a queue pair for a device 650 * @ibpd: the protection domain who's device we create the queue pair for 651 * @init_attr: the attributes of the queue pair 652 * @udata: user data for libibverbs.so 653 * 654 * Queue pair creation is mostly an rvt issue. However, drivers have their own 655 * unique idea of what queue pair numbers mean. For instance there is a reserved 656 * range for PSM. 657 * 658 * Return: the queue pair on success, otherwise returns an errno. 659 * 660 * Called by the ib_create_qp() core verbs function. 661 */ 662 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 663 struct ib_qp_init_attr *init_attr, 664 struct ib_udata *udata) 665 { 666 struct rvt_qp *qp; 667 int err; 668 struct rvt_swqe *swq = NULL; 669 size_t sz; 670 size_t sg_list_sz; 671 struct ib_qp *ret = ERR_PTR(-ENOMEM); 672 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 673 void *priv = NULL; 674 size_t sqsize; 675 676 if (!rdi) 677 return ERR_PTR(-EINVAL); 678 679 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_sge || 680 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 681 init_attr->create_flags) 682 return ERR_PTR(-EINVAL); 683 684 /* Check receive queue parameters if no SRQ is specified. */ 685 if (!init_attr->srq) { 686 if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_sge || 687 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 688 return ERR_PTR(-EINVAL); 689 690 if (init_attr->cap.max_send_sge + 691 init_attr->cap.max_send_wr + 692 init_attr->cap.max_recv_sge + 693 init_attr->cap.max_recv_wr == 0) 694 return ERR_PTR(-EINVAL); 695 } 696 sqsize = 697 init_attr->cap.max_send_wr + 1 + 698 rdi->dparms.reserved_operations; 699 switch (init_attr->qp_type) { 700 case IB_QPT_SMI: 701 case IB_QPT_GSI: 702 if (init_attr->port_num == 0 || 703 init_attr->port_num > ibpd->device->phys_port_cnt) 704 return ERR_PTR(-EINVAL); 705 case IB_QPT_UC: 706 case IB_QPT_RC: 707 case IB_QPT_UD: 708 sz = sizeof(struct rvt_sge) * 709 init_attr->cap.max_send_sge + 710 sizeof(struct rvt_swqe); 711 swq = vzalloc_node(sqsize * sz, rdi->dparms.node); 712 if (!swq) 713 return ERR_PTR(-ENOMEM); 714 715 sz = sizeof(*qp); 716 sg_list_sz = 0; 717 if (init_attr->srq) { 718 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 719 720 if (srq->rq.max_sge > 1) 721 sg_list_sz = sizeof(*qp->r_sg_list) * 722 (srq->rq.max_sge - 1); 723 } else if (init_attr->cap.max_recv_sge > 1) 724 sg_list_sz = sizeof(*qp->r_sg_list) * 725 (init_attr->cap.max_recv_sge - 1); 726 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 727 rdi->dparms.node); 728 if (!qp) 729 goto bail_swq; 730 731 RCU_INIT_POINTER(qp->next, NULL); 732 if (init_attr->qp_type == IB_QPT_RC) { 733 qp->s_ack_queue = 734 kzalloc_node( 735 sizeof(*qp->s_ack_queue) * 736 rvt_max_atomic(rdi), 737 GFP_KERNEL, 738 rdi->dparms.node); 739 if (!qp->s_ack_queue) 740 goto bail_qp; 741 } 742 /* initialize timers needed for rc qp */ 743 setup_timer(&qp->s_timer, rvt_rc_timeout, (unsigned long)qp); 744 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 745 HRTIMER_MODE_REL); 746 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 747 748 /* 749 * Driver needs to set up it's private QP structure and do any 750 * initialization that is needed. 751 */ 752 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 753 if (IS_ERR(priv)) { 754 ret = priv; 755 goto bail_qp; 756 } 757 qp->priv = priv; 758 qp->timeout_jiffies = 759 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 760 1000UL); 761 if (init_attr->srq) { 762 sz = 0; 763 } else { 764 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 765 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 766 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 767 sizeof(struct rvt_rwqe); 768 if (udata) 769 qp->r_rq.wq = vmalloc_user( 770 sizeof(struct rvt_rwq) + 771 qp->r_rq.size * sz); 772 else 773 qp->r_rq.wq = vzalloc_node( 774 sizeof(struct rvt_rwq) + 775 qp->r_rq.size * sz, 776 rdi->dparms.node); 777 if (!qp->r_rq.wq) 778 goto bail_driver_priv; 779 } 780 781 /* 782 * ib_create_qp() will initialize qp->ibqp 783 * except for qp->ibqp.qp_num. 784 */ 785 spin_lock_init(&qp->r_lock); 786 spin_lock_init(&qp->s_hlock); 787 spin_lock_init(&qp->s_lock); 788 spin_lock_init(&qp->r_rq.lock); 789 atomic_set(&qp->refcount, 0); 790 atomic_set(&qp->local_ops_pending, 0); 791 init_waitqueue_head(&qp->wait); 792 init_timer(&qp->s_timer); 793 qp->s_timer.data = (unsigned long)qp; 794 INIT_LIST_HEAD(&qp->rspwait); 795 qp->state = IB_QPS_RESET; 796 qp->s_wq = swq; 797 qp->s_size = sqsize; 798 qp->s_avail = init_attr->cap.max_send_wr; 799 qp->s_max_sge = init_attr->cap.max_send_sge; 800 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 801 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 802 803 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 804 init_attr->qp_type, 805 init_attr->port_num); 806 if (err < 0) { 807 ret = ERR_PTR(err); 808 goto bail_rq_wq; 809 } 810 qp->ibqp.qp_num = err; 811 qp->port_num = init_attr->port_num; 812 rvt_init_qp(rdi, qp, init_attr->qp_type); 813 break; 814 815 default: 816 /* Don't support raw QPs */ 817 return ERR_PTR(-EINVAL); 818 } 819 820 init_attr->cap.max_inline_data = 0; 821 822 /* 823 * Return the address of the RWQ as the offset to mmap. 824 * See rvt_mmap() for details. 825 */ 826 if (udata && udata->outlen >= sizeof(__u64)) { 827 if (!qp->r_rq.wq) { 828 __u64 offset = 0; 829 830 err = ib_copy_to_udata(udata, &offset, 831 sizeof(offset)); 832 if (err) { 833 ret = ERR_PTR(err); 834 goto bail_qpn; 835 } 836 } else { 837 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 838 839 qp->ip = rvt_create_mmap_info(rdi, s, 840 ibpd->uobject->context, 841 qp->r_rq.wq); 842 if (!qp->ip) { 843 ret = ERR_PTR(-ENOMEM); 844 goto bail_qpn; 845 } 846 847 err = ib_copy_to_udata(udata, &qp->ip->offset, 848 sizeof(qp->ip->offset)); 849 if (err) { 850 ret = ERR_PTR(err); 851 goto bail_ip; 852 } 853 } 854 qp->pid = current->pid; 855 } 856 857 spin_lock(&rdi->n_qps_lock); 858 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 859 spin_unlock(&rdi->n_qps_lock); 860 ret = ERR_PTR(-ENOMEM); 861 goto bail_ip; 862 } 863 864 rdi->n_qps_allocated++; 865 /* 866 * Maintain a busy_jiffies variable that will be added to the timeout 867 * period in mod_retry_timer and add_retry_timer. This busy jiffies 868 * is scaled by the number of rc qps created for the device to reduce 869 * the number of timeouts occurring when there is a large number of 870 * qps. busy_jiffies is incremented every rc qp scaling interval. 871 * The scaling interval is selected based on extensive performance 872 * evaluation of targeted workloads. 873 */ 874 if (init_attr->qp_type == IB_QPT_RC) { 875 rdi->n_rc_qps++; 876 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 877 } 878 spin_unlock(&rdi->n_qps_lock); 879 880 if (qp->ip) { 881 spin_lock_irq(&rdi->pending_lock); 882 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 883 spin_unlock_irq(&rdi->pending_lock); 884 } 885 886 ret = &qp->ibqp; 887 888 /* 889 * We have our QP and its good, now keep track of what types of opcodes 890 * can be processed on this QP. We do this by keeping track of what the 891 * 3 high order bits of the opcode are. 892 */ 893 switch (init_attr->qp_type) { 894 case IB_QPT_SMI: 895 case IB_QPT_GSI: 896 case IB_QPT_UD: 897 qp->allowed_ops = IB_OPCODE_UD; 898 break; 899 case IB_QPT_RC: 900 qp->allowed_ops = IB_OPCODE_RC; 901 break; 902 case IB_QPT_UC: 903 qp->allowed_ops = IB_OPCODE_UC; 904 break; 905 default: 906 ret = ERR_PTR(-EINVAL); 907 goto bail_ip; 908 } 909 910 return ret; 911 912 bail_ip: 913 if (qp->ip) 914 kref_put(&qp->ip->ref, rvt_release_mmap_info); 915 916 bail_qpn: 917 free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 918 919 bail_rq_wq: 920 if (!qp->ip) 921 vfree(qp->r_rq.wq); 922 923 bail_driver_priv: 924 rdi->driver_f.qp_priv_free(rdi, qp); 925 926 bail_qp: 927 kfree(qp->s_ack_queue); 928 kfree(qp); 929 930 bail_swq: 931 vfree(swq); 932 933 return ret; 934 } 935 936 /** 937 * rvt_error_qp - put a QP into the error state 938 * @qp: the QP to put into the error state 939 * @err: the receive completion error to signal if a RWQE is active 940 * 941 * Flushes both send and receive work queues. 942 * 943 * Return: true if last WQE event should be generated. 944 * The QP r_lock and s_lock should be held and interrupts disabled. 945 * If we are already in error state, just return. 946 */ 947 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 948 { 949 struct ib_wc wc; 950 int ret = 0; 951 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 952 953 lockdep_assert_held(&qp->r_lock); 954 lockdep_assert_held(&qp->s_lock); 955 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 956 goto bail; 957 958 qp->state = IB_QPS_ERR; 959 960 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 961 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 962 del_timer(&qp->s_timer); 963 } 964 965 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 966 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 967 968 rdi->driver_f.notify_error_qp(qp); 969 970 /* Schedule the sending tasklet to drain the send work queue. */ 971 if (ACCESS_ONCE(qp->s_last) != qp->s_head) 972 rdi->driver_f.schedule_send(qp); 973 974 rvt_clear_mr_refs(qp, 0); 975 976 memset(&wc, 0, sizeof(wc)); 977 wc.qp = &qp->ibqp; 978 wc.opcode = IB_WC_RECV; 979 980 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 981 wc.wr_id = qp->r_wr_id; 982 wc.status = err; 983 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 984 } 985 wc.status = IB_WC_WR_FLUSH_ERR; 986 987 if (qp->r_rq.wq) { 988 struct rvt_rwq *wq; 989 u32 head; 990 u32 tail; 991 992 spin_lock(&qp->r_rq.lock); 993 994 /* sanity check pointers before trusting them */ 995 wq = qp->r_rq.wq; 996 head = wq->head; 997 if (head >= qp->r_rq.size) 998 head = 0; 999 tail = wq->tail; 1000 if (tail >= qp->r_rq.size) 1001 tail = 0; 1002 while (tail != head) { 1003 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1004 if (++tail >= qp->r_rq.size) 1005 tail = 0; 1006 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1007 } 1008 wq->tail = tail; 1009 1010 spin_unlock(&qp->r_rq.lock); 1011 } else if (qp->ibqp.event_handler) { 1012 ret = 1; 1013 } 1014 1015 bail: 1016 return ret; 1017 } 1018 EXPORT_SYMBOL(rvt_error_qp); 1019 1020 /* 1021 * Put the QP into the hash table. 1022 * The hash table holds a reference to the QP. 1023 */ 1024 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1025 { 1026 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1027 unsigned long flags; 1028 1029 rvt_get_qp(qp); 1030 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1031 1032 if (qp->ibqp.qp_num <= 1) { 1033 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1034 } else { 1035 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1036 1037 qp->next = rdi->qp_dev->qp_table[n]; 1038 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1039 trace_rvt_qpinsert(qp, n); 1040 } 1041 1042 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1043 } 1044 1045 /** 1046 * rvt_modify_qp - modify the attributes of a queue pair 1047 * @ibqp: the queue pair who's attributes we're modifying 1048 * @attr: the new attributes 1049 * @attr_mask: the mask of attributes to modify 1050 * @udata: user data for libibverbs.so 1051 * 1052 * Return: 0 on success, otherwise returns an errno. 1053 */ 1054 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1055 int attr_mask, struct ib_udata *udata) 1056 { 1057 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1058 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1059 enum ib_qp_state cur_state, new_state; 1060 struct ib_event ev; 1061 int lastwqe = 0; 1062 int mig = 0; 1063 int pmtu = 0; /* for gcc warning only */ 1064 enum rdma_link_layer link; 1065 1066 link = rdma_port_get_link_layer(ibqp->device, qp->port_num); 1067 1068 spin_lock_irq(&qp->r_lock); 1069 spin_lock(&qp->s_hlock); 1070 spin_lock(&qp->s_lock); 1071 1072 cur_state = attr_mask & IB_QP_CUR_STATE ? 1073 attr->cur_qp_state : qp->state; 1074 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1075 1076 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1077 attr_mask, link)) 1078 goto inval; 1079 1080 if (rdi->driver_f.check_modify_qp && 1081 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1082 goto inval; 1083 1084 if (attr_mask & IB_QP_AV) { 1085 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1086 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1087 goto inval; 1088 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1089 goto inval; 1090 } 1091 1092 if (attr_mask & IB_QP_ALT_PATH) { 1093 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1094 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1095 goto inval; 1096 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1097 goto inval; 1098 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1099 goto inval; 1100 } 1101 1102 if (attr_mask & IB_QP_PKEY_INDEX) 1103 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1104 goto inval; 1105 1106 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1107 if (attr->min_rnr_timer > 31) 1108 goto inval; 1109 1110 if (attr_mask & IB_QP_PORT) 1111 if (qp->ibqp.qp_type == IB_QPT_SMI || 1112 qp->ibqp.qp_type == IB_QPT_GSI || 1113 attr->port_num == 0 || 1114 attr->port_num > ibqp->device->phys_port_cnt) 1115 goto inval; 1116 1117 if (attr_mask & IB_QP_DEST_QPN) 1118 if (attr->dest_qp_num > RVT_QPN_MASK) 1119 goto inval; 1120 1121 if (attr_mask & IB_QP_RETRY_CNT) 1122 if (attr->retry_cnt > 7) 1123 goto inval; 1124 1125 if (attr_mask & IB_QP_RNR_RETRY) 1126 if (attr->rnr_retry > 7) 1127 goto inval; 1128 1129 /* 1130 * Don't allow invalid path_mtu values. OK to set greater 1131 * than the active mtu (or even the max_cap, if we have tuned 1132 * that to a small mtu. We'll set qp->path_mtu 1133 * to the lesser of requested attribute mtu and active, 1134 * for packetizing messages. 1135 * Note that the QP port has to be set in INIT and MTU in RTR. 1136 */ 1137 if (attr_mask & IB_QP_PATH_MTU) { 1138 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1139 if (pmtu < 0) 1140 goto inval; 1141 } 1142 1143 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1144 if (attr->path_mig_state == IB_MIG_REARM) { 1145 if (qp->s_mig_state == IB_MIG_ARMED) 1146 goto inval; 1147 if (new_state != IB_QPS_RTS) 1148 goto inval; 1149 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1150 if (qp->s_mig_state == IB_MIG_REARM) 1151 goto inval; 1152 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1153 goto inval; 1154 if (qp->s_mig_state == IB_MIG_ARMED) 1155 mig = 1; 1156 } else { 1157 goto inval; 1158 } 1159 } 1160 1161 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1162 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1163 goto inval; 1164 1165 switch (new_state) { 1166 case IB_QPS_RESET: 1167 if (qp->state != IB_QPS_RESET) 1168 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1169 break; 1170 1171 case IB_QPS_RTR: 1172 /* Allow event to re-trigger if QP set to RTR more than once */ 1173 qp->r_flags &= ~RVT_R_COMM_EST; 1174 qp->state = new_state; 1175 break; 1176 1177 case IB_QPS_SQD: 1178 qp->s_draining = qp->s_last != qp->s_cur; 1179 qp->state = new_state; 1180 break; 1181 1182 case IB_QPS_SQE: 1183 if (qp->ibqp.qp_type == IB_QPT_RC) 1184 goto inval; 1185 qp->state = new_state; 1186 break; 1187 1188 case IB_QPS_ERR: 1189 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1190 break; 1191 1192 default: 1193 qp->state = new_state; 1194 break; 1195 } 1196 1197 if (attr_mask & IB_QP_PKEY_INDEX) 1198 qp->s_pkey_index = attr->pkey_index; 1199 1200 if (attr_mask & IB_QP_PORT) 1201 qp->port_num = attr->port_num; 1202 1203 if (attr_mask & IB_QP_DEST_QPN) 1204 qp->remote_qpn = attr->dest_qp_num; 1205 1206 if (attr_mask & IB_QP_SQ_PSN) { 1207 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1208 qp->s_psn = qp->s_next_psn; 1209 qp->s_sending_psn = qp->s_next_psn; 1210 qp->s_last_psn = qp->s_next_psn - 1; 1211 qp->s_sending_hpsn = qp->s_last_psn; 1212 } 1213 1214 if (attr_mask & IB_QP_RQ_PSN) 1215 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1216 1217 if (attr_mask & IB_QP_ACCESS_FLAGS) 1218 qp->qp_access_flags = attr->qp_access_flags; 1219 1220 if (attr_mask & IB_QP_AV) { 1221 qp->remote_ah_attr = attr->ah_attr; 1222 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1223 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1224 } 1225 1226 if (attr_mask & IB_QP_ALT_PATH) { 1227 qp->alt_ah_attr = attr->alt_ah_attr; 1228 qp->s_alt_pkey_index = attr->alt_pkey_index; 1229 } 1230 1231 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1232 qp->s_mig_state = attr->path_mig_state; 1233 if (mig) { 1234 qp->remote_ah_attr = qp->alt_ah_attr; 1235 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1236 qp->s_pkey_index = qp->s_alt_pkey_index; 1237 } 1238 } 1239 1240 if (attr_mask & IB_QP_PATH_MTU) { 1241 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1242 qp->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1243 qp->log_pmtu = ilog2(qp->pmtu); 1244 } 1245 1246 if (attr_mask & IB_QP_RETRY_CNT) { 1247 qp->s_retry_cnt = attr->retry_cnt; 1248 qp->s_retry = attr->retry_cnt; 1249 } 1250 1251 if (attr_mask & IB_QP_RNR_RETRY) { 1252 qp->s_rnr_retry_cnt = attr->rnr_retry; 1253 qp->s_rnr_retry = attr->rnr_retry; 1254 } 1255 1256 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1257 qp->r_min_rnr_timer = attr->min_rnr_timer; 1258 1259 if (attr_mask & IB_QP_TIMEOUT) { 1260 qp->timeout = attr->timeout; 1261 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1262 } 1263 1264 if (attr_mask & IB_QP_QKEY) 1265 qp->qkey = attr->qkey; 1266 1267 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1268 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1269 1270 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1271 qp->s_max_rd_atomic = attr->max_rd_atomic; 1272 1273 if (rdi->driver_f.modify_qp) 1274 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1275 1276 spin_unlock(&qp->s_lock); 1277 spin_unlock(&qp->s_hlock); 1278 spin_unlock_irq(&qp->r_lock); 1279 1280 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1281 rvt_insert_qp(rdi, qp); 1282 1283 if (lastwqe) { 1284 ev.device = qp->ibqp.device; 1285 ev.element.qp = &qp->ibqp; 1286 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1287 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1288 } 1289 if (mig) { 1290 ev.device = qp->ibqp.device; 1291 ev.element.qp = &qp->ibqp; 1292 ev.event = IB_EVENT_PATH_MIG; 1293 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1294 } 1295 return 0; 1296 1297 inval: 1298 spin_unlock(&qp->s_lock); 1299 spin_unlock(&qp->s_hlock); 1300 spin_unlock_irq(&qp->r_lock); 1301 return -EINVAL; 1302 } 1303 1304 /** rvt_free_qpn - Free a qpn from the bit map 1305 * @qpt: QP table 1306 * @qpn: queue pair number to free 1307 */ 1308 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 1309 { 1310 struct rvt_qpn_map *map; 1311 1312 map = qpt->map + qpn / RVT_BITS_PER_PAGE; 1313 if (map->page) 1314 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 1315 } 1316 1317 /** 1318 * rvt_destroy_qp - destroy a queue pair 1319 * @ibqp: the queue pair to destroy 1320 * 1321 * Note that this can be called while the QP is actively sending or 1322 * receiving! 1323 * 1324 * Return: 0 on success. 1325 */ 1326 int rvt_destroy_qp(struct ib_qp *ibqp) 1327 { 1328 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1329 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1330 1331 spin_lock_irq(&qp->r_lock); 1332 spin_lock(&qp->s_hlock); 1333 spin_lock(&qp->s_lock); 1334 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1335 spin_unlock(&qp->s_lock); 1336 spin_unlock(&qp->s_hlock); 1337 spin_unlock_irq(&qp->r_lock); 1338 1339 /* qpn is now available for use again */ 1340 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1341 1342 spin_lock(&rdi->n_qps_lock); 1343 rdi->n_qps_allocated--; 1344 if (qp->ibqp.qp_type == IB_QPT_RC) { 1345 rdi->n_rc_qps--; 1346 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1347 } 1348 spin_unlock(&rdi->n_qps_lock); 1349 1350 if (qp->ip) 1351 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1352 else 1353 vfree(qp->r_rq.wq); 1354 vfree(qp->s_wq); 1355 rdi->driver_f.qp_priv_free(rdi, qp); 1356 kfree(qp->s_ack_queue); 1357 kfree(qp); 1358 return 0; 1359 } 1360 1361 /** 1362 * rvt_query_qp - query an ipbq 1363 * @ibqp: IB qp to query 1364 * @attr: attr struct to fill in 1365 * @attr_mask: attr mask ignored 1366 * @init_attr: struct to fill in 1367 * 1368 * Return: always 0 1369 */ 1370 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1371 int attr_mask, struct ib_qp_init_attr *init_attr) 1372 { 1373 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1374 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1375 1376 attr->qp_state = qp->state; 1377 attr->cur_qp_state = attr->qp_state; 1378 attr->path_mtu = qp->path_mtu; 1379 attr->path_mig_state = qp->s_mig_state; 1380 attr->qkey = qp->qkey; 1381 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1382 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1383 attr->dest_qp_num = qp->remote_qpn; 1384 attr->qp_access_flags = qp->qp_access_flags; 1385 attr->cap.max_send_wr = qp->s_size - 1 - 1386 rdi->dparms.reserved_operations; 1387 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1388 attr->cap.max_send_sge = qp->s_max_sge; 1389 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1390 attr->cap.max_inline_data = 0; 1391 attr->ah_attr = qp->remote_ah_attr; 1392 attr->alt_ah_attr = qp->alt_ah_attr; 1393 attr->pkey_index = qp->s_pkey_index; 1394 attr->alt_pkey_index = qp->s_alt_pkey_index; 1395 attr->en_sqd_async_notify = 0; 1396 attr->sq_draining = qp->s_draining; 1397 attr->max_rd_atomic = qp->s_max_rd_atomic; 1398 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1399 attr->min_rnr_timer = qp->r_min_rnr_timer; 1400 attr->port_num = qp->port_num; 1401 attr->timeout = qp->timeout; 1402 attr->retry_cnt = qp->s_retry_cnt; 1403 attr->rnr_retry = qp->s_rnr_retry_cnt; 1404 attr->alt_port_num = 1405 rdma_ah_get_port_num(&qp->alt_ah_attr); 1406 attr->alt_timeout = qp->alt_timeout; 1407 1408 init_attr->event_handler = qp->ibqp.event_handler; 1409 init_attr->qp_context = qp->ibqp.qp_context; 1410 init_attr->send_cq = qp->ibqp.send_cq; 1411 init_attr->recv_cq = qp->ibqp.recv_cq; 1412 init_attr->srq = qp->ibqp.srq; 1413 init_attr->cap = attr->cap; 1414 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1415 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1416 else 1417 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1418 init_attr->qp_type = qp->ibqp.qp_type; 1419 init_attr->port_num = qp->port_num; 1420 return 0; 1421 } 1422 1423 /** 1424 * rvt_post_receive - post a receive on a QP 1425 * @ibqp: the QP to post the receive on 1426 * @wr: the WR to post 1427 * @bad_wr: the first bad WR is put here 1428 * 1429 * This may be called from interrupt context. 1430 * 1431 * Return: 0 on success otherwise errno 1432 */ 1433 int rvt_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr, 1434 struct ib_recv_wr **bad_wr) 1435 { 1436 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1437 struct rvt_rwq *wq = qp->r_rq.wq; 1438 unsigned long flags; 1439 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1440 !qp->ibqp.srq; 1441 1442 /* Check that state is OK to post receive. */ 1443 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1444 *bad_wr = wr; 1445 return -EINVAL; 1446 } 1447 1448 for (; wr; wr = wr->next) { 1449 struct rvt_rwqe *wqe; 1450 u32 next; 1451 int i; 1452 1453 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1454 *bad_wr = wr; 1455 return -EINVAL; 1456 } 1457 1458 spin_lock_irqsave(&qp->r_rq.lock, flags); 1459 next = wq->head + 1; 1460 if (next >= qp->r_rq.size) 1461 next = 0; 1462 if (next == wq->tail) { 1463 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1464 *bad_wr = wr; 1465 return -ENOMEM; 1466 } 1467 if (unlikely(qp_err_flush)) { 1468 struct ib_wc wc; 1469 1470 memset(&wc, 0, sizeof(wc)); 1471 wc.qp = &qp->ibqp; 1472 wc.opcode = IB_WC_RECV; 1473 wc.wr_id = wr->wr_id; 1474 wc.status = IB_WC_WR_FLUSH_ERR; 1475 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1476 } else { 1477 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1478 wqe->wr_id = wr->wr_id; 1479 wqe->num_sge = wr->num_sge; 1480 for (i = 0; i < wr->num_sge; i++) 1481 wqe->sg_list[i] = wr->sg_list[i]; 1482 /* 1483 * Make sure queue entry is written 1484 * before the head index. 1485 */ 1486 smp_wmb(); 1487 wq->head = next; 1488 } 1489 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1490 } 1491 return 0; 1492 } 1493 1494 /** 1495 * rvt_qp_valid_operation - validate post send wr request 1496 * @qp - the qp 1497 * @post-parms - the post send table for the driver 1498 * @wr - the work request 1499 * 1500 * The routine validates the operation based on the 1501 * validation table an returns the length of the operation 1502 * which can extend beyond the ib_send_bw. Operation 1503 * dependent flags key atomic operation validation. 1504 * 1505 * There is an exception for UD qps that validates the pd and 1506 * overrides the length to include the additional UD specific 1507 * length. 1508 * 1509 * Returns a negative error or the length of the work request 1510 * for building the swqe. 1511 */ 1512 static inline int rvt_qp_valid_operation( 1513 struct rvt_qp *qp, 1514 const struct rvt_operation_params *post_parms, 1515 struct ib_send_wr *wr) 1516 { 1517 int len; 1518 1519 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1520 return -EINVAL; 1521 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1522 return -EINVAL; 1523 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1524 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1525 return -EINVAL; 1526 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1527 (wr->num_sge == 0 || 1528 wr->sg_list[0].length < sizeof(u64) || 1529 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1530 return -EINVAL; 1531 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1532 !qp->s_max_rd_atomic) 1533 return -EINVAL; 1534 len = post_parms[wr->opcode].length; 1535 /* UD specific */ 1536 if (qp->ibqp.qp_type != IB_QPT_UC && 1537 qp->ibqp.qp_type != IB_QPT_RC) { 1538 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1539 return -EINVAL; 1540 len = sizeof(struct ib_ud_wr); 1541 } 1542 return len; 1543 } 1544 1545 /** 1546 * rvt_qp_is_avail - determine queue capacity 1547 * @qp - the qp 1548 * @rdi - the rdmavt device 1549 * @reserved_op - is reserved operation 1550 * 1551 * This assumes the s_hlock is held but the s_last 1552 * qp variable is uncontrolled. 1553 * 1554 * For non reserved operations, the qp->s_avail 1555 * may be changed. 1556 * 1557 * The return value is zero or a -ENOMEM. 1558 */ 1559 static inline int rvt_qp_is_avail( 1560 struct rvt_qp *qp, 1561 struct rvt_dev_info *rdi, 1562 bool reserved_op) 1563 { 1564 u32 slast; 1565 u32 avail; 1566 u32 reserved_used; 1567 1568 /* see rvt_qp_wqe_unreserve() */ 1569 smp_mb__before_atomic(); 1570 reserved_used = atomic_read(&qp->s_reserved_used); 1571 if (unlikely(reserved_op)) { 1572 /* see rvt_qp_wqe_unreserve() */ 1573 smp_mb__before_atomic(); 1574 if (reserved_used >= rdi->dparms.reserved_operations) 1575 return -ENOMEM; 1576 return 0; 1577 } 1578 /* non-reserved operations */ 1579 if (likely(qp->s_avail)) 1580 return 0; 1581 smp_read_barrier_depends(); /* see rc.c */ 1582 slast = ACCESS_ONCE(qp->s_last); 1583 if (qp->s_head >= slast) 1584 avail = qp->s_size - (qp->s_head - slast); 1585 else 1586 avail = slast - qp->s_head; 1587 1588 /* see rvt_qp_wqe_unreserve() */ 1589 smp_mb__before_atomic(); 1590 reserved_used = atomic_read(&qp->s_reserved_used); 1591 avail = avail - 1 - 1592 (rdi->dparms.reserved_operations - reserved_used); 1593 /* insure we don't assign a negative s_avail */ 1594 if ((s32)avail <= 0) 1595 return -ENOMEM; 1596 qp->s_avail = avail; 1597 if (WARN_ON(qp->s_avail > 1598 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1599 rvt_pr_err(rdi, 1600 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1601 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1602 qp->s_head, qp->s_tail, qp->s_cur, 1603 qp->s_acked, qp->s_last); 1604 return 0; 1605 } 1606 1607 /** 1608 * rvt_post_one_wr - post one RC, UC, or UD send work request 1609 * @qp: the QP to post on 1610 * @wr: the work request to send 1611 */ 1612 static int rvt_post_one_wr(struct rvt_qp *qp, 1613 struct ib_send_wr *wr, 1614 int *call_send) 1615 { 1616 struct rvt_swqe *wqe; 1617 u32 next; 1618 int i; 1619 int j; 1620 int acc; 1621 struct rvt_lkey_table *rkt; 1622 struct rvt_pd *pd; 1623 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1624 u8 log_pmtu; 1625 int ret; 1626 size_t cplen; 1627 bool reserved_op; 1628 int local_ops_delayed = 0; 1629 1630 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1631 1632 /* IB spec says that num_sge == 0 is OK. */ 1633 if (unlikely(wr->num_sge > qp->s_max_sge)) 1634 return -EINVAL; 1635 1636 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1637 if (ret < 0) 1638 return ret; 1639 cplen = ret; 1640 1641 /* 1642 * Local operations include fast register and local invalidate. 1643 * Fast register needs to be processed immediately because the 1644 * registered lkey may be used by following work requests and the 1645 * lkey needs to be valid at the time those requests are posted. 1646 * Local invalidate can be processed immediately if fencing is 1647 * not required and no previous local invalidate ops are pending. 1648 * Signaled local operations that have been processed immediately 1649 * need to have requests with "completion only" flags set posted 1650 * to the send queue in order to generate completions. 1651 */ 1652 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1653 switch (wr->opcode) { 1654 case IB_WR_REG_MR: 1655 ret = rvt_fast_reg_mr(qp, 1656 reg_wr(wr)->mr, 1657 reg_wr(wr)->key, 1658 reg_wr(wr)->access); 1659 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1660 return ret; 1661 break; 1662 case IB_WR_LOCAL_INV: 1663 if ((wr->send_flags & IB_SEND_FENCE) || 1664 atomic_read(&qp->local_ops_pending)) { 1665 local_ops_delayed = 1; 1666 } else { 1667 ret = rvt_invalidate_rkey( 1668 qp, wr->ex.invalidate_rkey); 1669 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1670 return ret; 1671 } 1672 break; 1673 default: 1674 return -EINVAL; 1675 } 1676 } 1677 1678 reserved_op = rdi->post_parms[wr->opcode].flags & 1679 RVT_OPERATION_USE_RESERVE; 1680 /* check for avail */ 1681 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1682 if (ret) 1683 return ret; 1684 next = qp->s_head + 1; 1685 if (next >= qp->s_size) 1686 next = 0; 1687 1688 rkt = &rdi->lkey_table; 1689 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1690 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1691 1692 /* cplen has length from above */ 1693 memcpy(&wqe->wr, wr, cplen); 1694 1695 wqe->length = 0; 1696 j = 0; 1697 if (wr->num_sge) { 1698 acc = wr->opcode >= IB_WR_RDMA_READ ? 1699 IB_ACCESS_LOCAL_WRITE : 0; 1700 for (i = 0; i < wr->num_sge; i++) { 1701 u32 length = wr->sg_list[i].length; 1702 int ok; 1703 1704 if (length == 0) 1705 continue; 1706 ok = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], 1707 &wr->sg_list[i], acc); 1708 if (!ok) { 1709 ret = -EINVAL; 1710 goto bail_inval_free; 1711 } 1712 wqe->length += length; 1713 j++; 1714 } 1715 wqe->wr.num_sge = j; 1716 } 1717 1718 /* general part of wqe valid - allow for driver checks */ 1719 if (rdi->driver_f.check_send_wqe) { 1720 ret = rdi->driver_f.check_send_wqe(qp, wqe); 1721 if (ret < 0) 1722 goto bail_inval_free; 1723 if (ret) 1724 *call_send = ret; 1725 } 1726 1727 log_pmtu = qp->log_pmtu; 1728 if (qp->ibqp.qp_type != IB_QPT_UC && 1729 qp->ibqp.qp_type != IB_QPT_RC) { 1730 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 1731 1732 log_pmtu = ah->log_pmtu; 1733 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 1734 } 1735 1736 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 1737 if (local_ops_delayed) 1738 atomic_inc(&qp->local_ops_pending); 1739 else 1740 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 1741 wqe->ssn = 0; 1742 wqe->psn = 0; 1743 wqe->lpsn = 0; 1744 } else { 1745 wqe->ssn = qp->s_ssn++; 1746 wqe->psn = qp->s_next_psn; 1747 wqe->lpsn = wqe->psn + 1748 (wqe->length ? 1749 ((wqe->length - 1) >> log_pmtu) : 1750 0); 1751 qp->s_next_psn = wqe->lpsn + 1; 1752 } 1753 if (unlikely(reserved_op)) { 1754 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 1755 rvt_qp_wqe_reserve(qp, wqe); 1756 } else { 1757 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 1758 qp->s_avail--; 1759 } 1760 trace_rvt_post_one_wr(qp, wqe); 1761 smp_wmb(); /* see request builders */ 1762 qp->s_head = next; 1763 1764 return 0; 1765 1766 bail_inval_free: 1767 /* release mr holds */ 1768 while (j) { 1769 struct rvt_sge *sge = &wqe->sg_list[--j]; 1770 1771 rvt_put_mr(sge->mr); 1772 } 1773 return ret; 1774 } 1775 1776 /** 1777 * rvt_post_send - post a send on a QP 1778 * @ibqp: the QP to post the send on 1779 * @wr: the list of work requests to post 1780 * @bad_wr: the first bad WR is put here 1781 * 1782 * This may be called from interrupt context. 1783 * 1784 * Return: 0 on success else errno 1785 */ 1786 int rvt_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr, 1787 struct ib_send_wr **bad_wr) 1788 { 1789 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1790 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1791 unsigned long flags = 0; 1792 int call_send; 1793 unsigned nreq = 0; 1794 int err = 0; 1795 1796 spin_lock_irqsave(&qp->s_hlock, flags); 1797 1798 /* 1799 * Ensure QP state is such that we can send. If not bail out early, 1800 * there is no need to do this every time we post a send. 1801 */ 1802 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 1803 spin_unlock_irqrestore(&qp->s_hlock, flags); 1804 return -EINVAL; 1805 } 1806 1807 /* 1808 * If the send queue is empty, and we only have a single WR then just go 1809 * ahead and kick the send engine into gear. Otherwise we will always 1810 * just schedule the send to happen later. 1811 */ 1812 call_send = qp->s_head == ACCESS_ONCE(qp->s_last) && !wr->next; 1813 1814 for (; wr; wr = wr->next) { 1815 err = rvt_post_one_wr(qp, wr, &call_send); 1816 if (unlikely(err)) { 1817 *bad_wr = wr; 1818 goto bail; 1819 } 1820 nreq++; 1821 } 1822 bail: 1823 spin_unlock_irqrestore(&qp->s_hlock, flags); 1824 if (nreq) { 1825 if (call_send) 1826 rdi->driver_f.do_send(qp); 1827 else 1828 rdi->driver_f.schedule_send_no_lock(qp); 1829 } 1830 return err; 1831 } 1832 1833 /** 1834 * rvt_post_srq_receive - post a receive on a shared receive queue 1835 * @ibsrq: the SRQ to post the receive on 1836 * @wr: the list of work requests to post 1837 * @bad_wr: A pointer to the first WR to cause a problem is put here 1838 * 1839 * This may be called from interrupt context. 1840 * 1841 * Return: 0 on success else errno 1842 */ 1843 int rvt_post_srq_recv(struct ib_srq *ibsrq, struct ib_recv_wr *wr, 1844 struct ib_recv_wr **bad_wr) 1845 { 1846 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 1847 struct rvt_rwq *wq; 1848 unsigned long flags; 1849 1850 for (; wr; wr = wr->next) { 1851 struct rvt_rwqe *wqe; 1852 u32 next; 1853 int i; 1854 1855 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 1856 *bad_wr = wr; 1857 return -EINVAL; 1858 } 1859 1860 spin_lock_irqsave(&srq->rq.lock, flags); 1861 wq = srq->rq.wq; 1862 next = wq->head + 1; 1863 if (next >= srq->rq.size) 1864 next = 0; 1865 if (next == wq->tail) { 1866 spin_unlock_irqrestore(&srq->rq.lock, flags); 1867 *bad_wr = wr; 1868 return -ENOMEM; 1869 } 1870 1871 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 1872 wqe->wr_id = wr->wr_id; 1873 wqe->num_sge = wr->num_sge; 1874 for (i = 0; i < wr->num_sge; i++) 1875 wqe->sg_list[i] = wr->sg_list[i]; 1876 /* Make sure queue entry is written before the head index. */ 1877 smp_wmb(); 1878 wq->head = next; 1879 spin_unlock_irqrestore(&srq->rq.lock, flags); 1880 } 1881 return 0; 1882 } 1883 1884 /** 1885 * qp_comm_est - handle trap with QP established 1886 * @qp: the QP 1887 */ 1888 void rvt_comm_est(struct rvt_qp *qp) 1889 { 1890 qp->r_flags |= RVT_R_COMM_EST; 1891 if (qp->ibqp.event_handler) { 1892 struct ib_event ev; 1893 1894 ev.device = qp->ibqp.device; 1895 ev.element.qp = &qp->ibqp; 1896 ev.event = IB_EVENT_COMM_EST; 1897 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1898 } 1899 } 1900 EXPORT_SYMBOL(rvt_comm_est); 1901 1902 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 1903 { 1904 unsigned long flags; 1905 int lastwqe; 1906 1907 spin_lock_irqsave(&qp->s_lock, flags); 1908 lastwqe = rvt_error_qp(qp, err); 1909 spin_unlock_irqrestore(&qp->s_lock, flags); 1910 1911 if (lastwqe) { 1912 struct ib_event ev; 1913 1914 ev.device = qp->ibqp.device; 1915 ev.element.qp = &qp->ibqp; 1916 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1917 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1918 } 1919 } 1920 EXPORT_SYMBOL(rvt_rc_error); 1921 1922 /* 1923 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 1924 * @index - the index 1925 * return usec from an index into ib_rvt_rnr_table 1926 */ 1927 unsigned long rvt_rnr_tbl_to_usec(u32 index) 1928 { 1929 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 1930 } 1931 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 1932 1933 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 1934 { 1935 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 1936 IB_AETH_CREDIT_MASK]; 1937 } 1938 1939 /* 1940 * rvt_add_retry_timer - add/start a retry timer 1941 * @qp - the QP 1942 * add a retry timer on the QP 1943 */ 1944 void rvt_add_retry_timer(struct rvt_qp *qp) 1945 { 1946 struct ib_qp *ibqp = &qp->ibqp; 1947 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1948 1949 lockdep_assert_held(&qp->s_lock); 1950 qp->s_flags |= RVT_S_TIMER; 1951 /* 4.096 usec. * (1 << qp->timeout) */ 1952 qp->s_timer.expires = jiffies + qp->timeout_jiffies + 1953 rdi->busy_jiffies; 1954 add_timer(&qp->s_timer); 1955 } 1956 EXPORT_SYMBOL(rvt_add_retry_timer); 1957 1958 /** 1959 * rvt_add_rnr_timer - add/start an rnr timer 1960 * @qp - the QP 1961 * @aeth - aeth of RNR timeout, simulated aeth for loopback 1962 * add an rnr timer on the QP 1963 */ 1964 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 1965 { 1966 u32 to; 1967 1968 lockdep_assert_held(&qp->s_lock); 1969 qp->s_flags |= RVT_S_WAIT_RNR; 1970 to = rvt_aeth_to_usec(aeth); 1971 hrtimer_start(&qp->s_rnr_timer, 1972 ns_to_ktime(1000 * to), HRTIMER_MODE_REL); 1973 } 1974 EXPORT_SYMBOL(rvt_add_rnr_timer); 1975 1976 /** 1977 * rvt_stop_rc_timers - stop all timers 1978 * @qp - the QP 1979 * stop any pending timers 1980 */ 1981 void rvt_stop_rc_timers(struct rvt_qp *qp) 1982 { 1983 lockdep_assert_held(&qp->s_lock); 1984 /* Remove QP from all timers */ 1985 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1986 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1987 del_timer(&qp->s_timer); 1988 hrtimer_try_to_cancel(&qp->s_rnr_timer); 1989 } 1990 } 1991 EXPORT_SYMBOL(rvt_stop_rc_timers); 1992 1993 /** 1994 * rvt_stop_rnr_timer - stop an rnr timer 1995 * @qp - the QP 1996 * 1997 * stop an rnr timer and return if the timer 1998 * had been pending. 1999 */ 2000 static int rvt_stop_rnr_timer(struct rvt_qp *qp) 2001 { 2002 int rval = 0; 2003 2004 lockdep_assert_held(&qp->s_lock); 2005 /* Remove QP from rnr timer */ 2006 if (qp->s_flags & RVT_S_WAIT_RNR) { 2007 qp->s_flags &= ~RVT_S_WAIT_RNR; 2008 rval = hrtimer_try_to_cancel(&qp->s_rnr_timer); 2009 } 2010 return rval; 2011 } 2012 2013 /** 2014 * rvt_del_timers_sync - wait for any timeout routines to exit 2015 * @qp - the QP 2016 */ 2017 void rvt_del_timers_sync(struct rvt_qp *qp) 2018 { 2019 del_timer_sync(&qp->s_timer); 2020 hrtimer_cancel(&qp->s_rnr_timer); 2021 } 2022 EXPORT_SYMBOL(rvt_del_timers_sync); 2023 2024 /** 2025 * This is called from s_timer for missing responses. 2026 */ 2027 static void rvt_rc_timeout(unsigned long arg) 2028 { 2029 struct rvt_qp *qp = (struct rvt_qp *)arg; 2030 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2031 unsigned long flags; 2032 2033 spin_lock_irqsave(&qp->r_lock, flags); 2034 spin_lock(&qp->s_lock); 2035 if (qp->s_flags & RVT_S_TIMER) { 2036 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2037 2038 qp->s_flags &= ~RVT_S_TIMER; 2039 rvp->n_rc_timeouts++; 2040 del_timer(&qp->s_timer); 2041 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2042 if (rdi->driver_f.notify_restart_rc) 2043 rdi->driver_f.notify_restart_rc(qp, 2044 qp->s_last_psn + 1, 2045 1); 2046 rdi->driver_f.schedule_send(qp); 2047 } 2048 spin_unlock(&qp->s_lock); 2049 spin_unlock_irqrestore(&qp->r_lock, flags); 2050 } 2051 2052 /* 2053 * This is called from s_timer for RNR timeouts. 2054 */ 2055 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2056 { 2057 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2058 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2059 unsigned long flags; 2060 2061 spin_lock_irqsave(&qp->s_lock, flags); 2062 rvt_stop_rnr_timer(qp); 2063 rdi->driver_f.schedule_send(qp); 2064 spin_unlock_irqrestore(&qp->s_lock, flags); 2065 return HRTIMER_NORESTART; 2066 } 2067 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2068