xref: /linux/drivers/infiniband/sw/rdmavt/qp.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2016 - 2020 Intel Corporation.
4  */
5 
6 #include <linux/hash.h>
7 #include <linux/bitops.h>
8 #include <linux/lockdep.h>
9 #include <linux/vmalloc.h>
10 #include <linux/slab.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/ib_hdrs.h>
13 #include <rdma/opa_addr.h>
14 #include <rdma/uverbs_ioctl.h>
15 #include "qp.h"
16 #include "vt.h"
17 #include "trace.h"
18 
19 #define RVT_RWQ_COUNT_THRESHOLD 16
20 
21 static void rvt_rc_timeout(struct timer_list *t);
22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
23 			 enum ib_qp_type type);
24 
25 /*
26  * Convert the AETH RNR timeout code into the number of microseconds.
27  */
28 static const u32 ib_rvt_rnr_table[32] = {
29 	655360, /* 00: 655.36 */
30 	10,     /* 01:    .01 */
31 	20,     /* 02     .02 */
32 	30,     /* 03:    .03 */
33 	40,     /* 04:    .04 */
34 	60,     /* 05:    .06 */
35 	80,     /* 06:    .08 */
36 	120,    /* 07:    .12 */
37 	160,    /* 08:    .16 */
38 	240,    /* 09:    .24 */
39 	320,    /* 0A:    .32 */
40 	480,    /* 0B:    .48 */
41 	640,    /* 0C:    .64 */
42 	960,    /* 0D:    .96 */
43 	1280,   /* 0E:   1.28 */
44 	1920,   /* 0F:   1.92 */
45 	2560,   /* 10:   2.56 */
46 	3840,   /* 11:   3.84 */
47 	5120,   /* 12:   5.12 */
48 	7680,   /* 13:   7.68 */
49 	10240,  /* 14:  10.24 */
50 	15360,  /* 15:  15.36 */
51 	20480,  /* 16:  20.48 */
52 	30720,  /* 17:  30.72 */
53 	40960,  /* 18:  40.96 */
54 	61440,  /* 19:  61.44 */
55 	81920,  /* 1A:  81.92 */
56 	122880, /* 1B: 122.88 */
57 	163840, /* 1C: 163.84 */
58 	245760, /* 1D: 245.76 */
59 	327680, /* 1E: 327.68 */
60 	491520  /* 1F: 491.52 */
61 };
62 
63 /*
64  * Note that it is OK to post send work requests in the SQE and ERR
65  * states; rvt_do_send() will process them and generate error
66  * completions as per IB 1.2 C10-96.
67  */
68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
69 	[IB_QPS_RESET] = 0,
70 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
71 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
72 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
73 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
74 	    RVT_PROCESS_NEXT_SEND_OK,
75 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
76 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
77 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
78 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
79 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
80 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
81 };
82 EXPORT_SYMBOL(ib_rvt_state_ops);
83 
84 /* platform specific: return the last level cache (llc) size, in KiB */
85 static int rvt_wss_llc_size(void)
86 {
87 	/* assume that the boot CPU value is universal for all CPUs */
88 	return boot_cpu_data.x86_cache_size;
89 }
90 
91 /* platform specific: cacheless copy */
92 static void cacheless_memcpy(void *dst, void *src, size_t n)
93 {
94 	/*
95 	 * Use the only available X64 cacheless copy.  Add a __user cast
96 	 * to quiet sparse.  The src agument is already in the kernel so
97 	 * there are no security issues.  The extra fault recovery machinery
98 	 * is not invoked.
99 	 */
100 	__copy_user_nocache(dst, (void __user *)src, n);
101 }
102 
103 void rvt_wss_exit(struct rvt_dev_info *rdi)
104 {
105 	struct rvt_wss *wss = rdi->wss;
106 
107 	if (!wss)
108 		return;
109 
110 	/* coded to handle partially initialized and repeat callers */
111 	kfree(wss->entries);
112 	wss->entries = NULL;
113 	kfree(rdi->wss);
114 	rdi->wss = NULL;
115 }
116 
117 /*
118  * rvt_wss_init - Init wss data structures
119  *
120  * Return: 0 on success
121  */
122 int rvt_wss_init(struct rvt_dev_info *rdi)
123 {
124 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
125 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
126 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
127 	long llc_size;
128 	long llc_bits;
129 	long table_size;
130 	long table_bits;
131 	struct rvt_wss *wss;
132 	int node = rdi->dparms.node;
133 
134 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
135 		rdi->wss = NULL;
136 		return 0;
137 	}
138 
139 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
140 	if (!rdi->wss)
141 		return -ENOMEM;
142 	wss = rdi->wss;
143 
144 	/* check for a valid percent range - default to 80 if none or invalid */
145 	if (wss_threshold < 1 || wss_threshold > 100)
146 		wss_threshold = 80;
147 
148 	/* reject a wildly large period */
149 	if (wss_clean_period > 1000000)
150 		wss_clean_period = 256;
151 
152 	/* reject a zero period */
153 	if (wss_clean_period == 0)
154 		wss_clean_period = 1;
155 
156 	/*
157 	 * Calculate the table size - the next power of 2 larger than the
158 	 * LLC size.  LLC size is in KiB.
159 	 */
160 	llc_size = rvt_wss_llc_size() * 1024;
161 	table_size = roundup_pow_of_two(llc_size);
162 
163 	/* one bit per page in rounded up table */
164 	llc_bits = llc_size / PAGE_SIZE;
165 	table_bits = table_size / PAGE_SIZE;
166 	wss->pages_mask = table_bits - 1;
167 	wss->num_entries = table_bits / BITS_PER_LONG;
168 
169 	wss->threshold = (llc_bits * wss_threshold) / 100;
170 	if (wss->threshold == 0)
171 		wss->threshold = 1;
172 
173 	wss->clean_period = wss_clean_period;
174 	atomic_set(&wss->clean_counter, wss_clean_period);
175 
176 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
177 				    GFP_KERNEL, node);
178 	if (!wss->entries) {
179 		rvt_wss_exit(rdi);
180 		return -ENOMEM;
181 	}
182 
183 	return 0;
184 }
185 
186 /*
187  * Advance the clean counter.  When the clean period has expired,
188  * clean an entry.
189  *
190  * This is implemented in atomics to avoid locking.  Because multiple
191  * variables are involved, it can be racy which can lead to slightly
192  * inaccurate information.  Since this is only a heuristic, this is
193  * OK.  Any innaccuracies will clean themselves out as the counter
194  * advances.  That said, it is unlikely the entry clean operation will
195  * race - the next possible racer will not start until the next clean
196  * period.
197  *
198  * The clean counter is implemented as a decrement to zero.  When zero
199  * is reached an entry is cleaned.
200  */
201 static void wss_advance_clean_counter(struct rvt_wss *wss)
202 {
203 	int entry;
204 	int weight;
205 	unsigned long bits;
206 
207 	/* become the cleaner if we decrement the counter to zero */
208 	if (atomic_dec_and_test(&wss->clean_counter)) {
209 		/*
210 		 * Set, not add, the clean period.  This avoids an issue
211 		 * where the counter could decrement below the clean period.
212 		 * Doing a set can result in lost decrements, slowing the
213 		 * clean advance.  Since this a heuristic, this possible
214 		 * slowdown is OK.
215 		 *
216 		 * An alternative is to loop, advancing the counter by a
217 		 * clean period until the result is > 0. However, this could
218 		 * lead to several threads keeping another in the clean loop.
219 		 * This could be mitigated by limiting the number of times
220 		 * we stay in the loop.
221 		 */
222 		atomic_set(&wss->clean_counter, wss->clean_period);
223 
224 		/*
225 		 * Uniquely grab the entry to clean and move to next.
226 		 * The current entry is always the lower bits of
227 		 * wss.clean_entry.  The table size, wss.num_entries,
228 		 * is always a power-of-2.
229 		 */
230 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
231 			& (wss->num_entries - 1);
232 
233 		/* clear the entry and count the bits */
234 		bits = xchg(&wss->entries[entry], 0);
235 		weight = hweight64((u64)bits);
236 		/* only adjust the contended total count if needed */
237 		if (weight)
238 			atomic_sub(weight, &wss->total_count);
239 	}
240 }
241 
242 /*
243  * Insert the given address into the working set array.
244  */
245 static void wss_insert(struct rvt_wss *wss, void *address)
246 {
247 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
248 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
249 	u32 nr = page & (BITS_PER_LONG - 1);
250 
251 	if (!test_and_set_bit(nr, &wss->entries[entry]))
252 		atomic_inc(&wss->total_count);
253 
254 	wss_advance_clean_counter(wss);
255 }
256 
257 /*
258  * Is the working set larger than the threshold?
259  */
260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
261 {
262 	return atomic_read(&wss->total_count) >= wss->threshold;
263 }
264 
265 static void get_map_page(struct rvt_qpn_table *qpt,
266 			 struct rvt_qpn_map *map)
267 {
268 	unsigned long page = get_zeroed_page(GFP_KERNEL);
269 
270 	/*
271 	 * Free the page if someone raced with us installing it.
272 	 */
273 
274 	spin_lock(&qpt->lock);
275 	if (map->page)
276 		free_page(page);
277 	else
278 		map->page = (void *)page;
279 	spin_unlock(&qpt->lock);
280 }
281 
282 /**
283  * init_qpn_table - initialize the QP number table for a device
284  * @rdi: rvt dev struct
285  * @qpt: the QPN table
286  */
287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
288 {
289 	u32 offset, i;
290 	struct rvt_qpn_map *map;
291 	int ret = 0;
292 
293 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
294 		return -EINVAL;
295 
296 	spin_lock_init(&qpt->lock);
297 
298 	qpt->last = rdi->dparms.qpn_start;
299 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
300 
301 	/*
302 	 * Drivers may want some QPs beyond what we need for verbs let them use
303 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
304 	 * for those. The reserved range must be *after* the range which verbs
305 	 * will pick from.
306 	 */
307 
308 	/* Figure out number of bit maps needed before reserved range */
309 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
310 
311 	/* This should always be zero */
312 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
313 
314 	/* Starting with the first reserved bit map */
315 	map = &qpt->map[qpt->nmaps];
316 
317 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
318 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
319 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
320 		if (!map->page) {
321 			get_map_page(qpt, map);
322 			if (!map->page) {
323 				ret = -ENOMEM;
324 				break;
325 			}
326 		}
327 		set_bit(offset, map->page);
328 		offset++;
329 		if (offset == RVT_BITS_PER_PAGE) {
330 			/* next page */
331 			qpt->nmaps++;
332 			map++;
333 			offset = 0;
334 		}
335 	}
336 	return ret;
337 }
338 
339 /**
340  * free_qpn_table - free the QP number table for a device
341  * @qpt: the QPN table
342  */
343 static void free_qpn_table(struct rvt_qpn_table *qpt)
344 {
345 	int i;
346 
347 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
348 		free_page((unsigned long)qpt->map[i].page);
349 }
350 
351 /**
352  * rvt_driver_qp_init - Init driver qp resources
353  * @rdi: rvt dev strucutre
354  *
355  * Return: 0 on success
356  */
357 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
358 {
359 	int i;
360 	int ret = -ENOMEM;
361 
362 	if (!rdi->dparms.qp_table_size)
363 		return -EINVAL;
364 
365 	/*
366 	 * If driver is not doing any QP allocation then make sure it is
367 	 * providing the necessary QP functions.
368 	 */
369 	if (!rdi->driver_f.free_all_qps ||
370 	    !rdi->driver_f.qp_priv_alloc ||
371 	    !rdi->driver_f.qp_priv_free ||
372 	    !rdi->driver_f.notify_qp_reset ||
373 	    !rdi->driver_f.notify_restart_rc)
374 		return -EINVAL;
375 
376 	/* allocate parent object */
377 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
378 				   rdi->dparms.node);
379 	if (!rdi->qp_dev)
380 		return -ENOMEM;
381 
382 	/* allocate hash table */
383 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
384 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
385 	rdi->qp_dev->qp_table =
386 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
387 			     sizeof(*rdi->qp_dev->qp_table),
388 			     GFP_KERNEL, rdi->dparms.node);
389 	if (!rdi->qp_dev->qp_table)
390 		goto no_qp_table;
391 
392 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
393 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
394 
395 	spin_lock_init(&rdi->qp_dev->qpt_lock);
396 
397 	/* initialize qpn map */
398 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
399 		goto fail_table;
400 
401 	spin_lock_init(&rdi->n_qps_lock);
402 
403 	return 0;
404 
405 fail_table:
406 	kfree(rdi->qp_dev->qp_table);
407 	free_qpn_table(&rdi->qp_dev->qpn_table);
408 
409 no_qp_table:
410 	kfree(rdi->qp_dev);
411 
412 	return ret;
413 }
414 
415 /**
416  * rvt_free_qp_cb - callback function to reset a qp
417  * @qp: the qp to reset
418  * @v: a 64-bit value
419  *
420  * This function resets the qp and removes it from the
421  * qp hash table.
422  */
423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
424 {
425 	unsigned int *qp_inuse = (unsigned int *)v;
426 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
427 
428 	/* Reset the qp and remove it from the qp hash list */
429 	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
430 
431 	/* Increment the qp_inuse count */
432 	(*qp_inuse)++;
433 }
434 
435 /**
436  * rvt_free_all_qps - check for QPs still in use
437  * @rdi: rvt device info structure
438  *
439  * There should not be any QPs still in use.
440  * Free memory for table.
441  * Return the number of QPs still in use.
442  */
443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
444 {
445 	unsigned int qp_inuse = 0;
446 
447 	qp_inuse += rvt_mcast_tree_empty(rdi);
448 
449 	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
450 
451 	return qp_inuse;
452 }
453 
454 /**
455  * rvt_qp_exit - clean up qps on device exit
456  * @rdi: rvt dev structure
457  *
458  * Check for qp leaks and free resources.
459  */
460 void rvt_qp_exit(struct rvt_dev_info *rdi)
461 {
462 	u32 qps_inuse = rvt_free_all_qps(rdi);
463 
464 	if (qps_inuse)
465 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
466 			   qps_inuse);
467 
468 	kfree(rdi->qp_dev->qp_table);
469 	free_qpn_table(&rdi->qp_dev->qpn_table);
470 	kfree(rdi->qp_dev);
471 }
472 
473 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
474 			      struct rvt_qpn_map *map, unsigned off)
475 {
476 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
477 }
478 
479 /**
480  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
481  *	       IB_QPT_SMI/IB_QPT_GSI
482  * @rdi: rvt device info structure
483  * @qpt: queue pair number table pointer
484  * @type: the QP type
485  * @port_num: IB port number, 1 based, comes from core
486  * @exclude_prefix: prefix of special queue pair number being allocated
487  *
488  * Return: The queue pair number
489  */
490 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
491 		     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
492 {
493 	u32 i, offset, max_scan, qpn;
494 	struct rvt_qpn_map *map;
495 	int ret;
496 	u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
497 		RVT_AIP_QPN_MAX : RVT_QPN_MAX;
498 
499 	if (rdi->driver_f.alloc_qpn)
500 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
501 
502 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
503 		unsigned n;
504 
505 		ret = type == IB_QPT_GSI;
506 		n = 1 << (ret + 2 * (port_num - 1));
507 		spin_lock(&qpt->lock);
508 		if (qpt->flags & n)
509 			ret = -EINVAL;
510 		else
511 			qpt->flags |= n;
512 		spin_unlock(&qpt->lock);
513 
514 		return ret;
515 	}
516 
517 	qpn = qpt->last + qpt->incr;
518 	if (qpn >= max_qpn)
519 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
520 	/* offset carries bit 0 */
521 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
522 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
523 	max_scan = qpt->nmaps - !offset;
524 	for (i = 0;;) {
525 		if (unlikely(!map->page)) {
526 			get_map_page(qpt, map);
527 			if (unlikely(!map->page))
528 				break;
529 		}
530 		do {
531 			if (!test_and_set_bit(offset, map->page)) {
532 				qpt->last = qpn;
533 				ret = qpn;
534 
535 				return ret;
536 			}
537 			offset += qpt->incr;
538 			/*
539 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
540 			 * That is OK.   It gets re-assigned below
541 			 */
542 			qpn = mk_qpn(qpt, map, offset);
543 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
544 		/*
545 		 * In order to keep the number of pages allocated to a
546 		 * minimum, we scan the all existing pages before increasing
547 		 * the size of the bitmap table.
548 		 */
549 		if (++i > max_scan) {
550 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
551 				break;
552 			map = &qpt->map[qpt->nmaps++];
553 			/* start at incr with current bit 0 */
554 			offset = qpt->incr | (offset & 1);
555 		} else if (map < &qpt->map[qpt->nmaps]) {
556 			++map;
557 			/* start at incr with current bit 0 */
558 			offset = qpt->incr | (offset & 1);
559 		} else {
560 			map = &qpt->map[0];
561 			/* wrap to first map page, invert bit 0 */
562 			offset = qpt->incr | ((offset & 1) ^ 1);
563 		}
564 		/* there can be no set bits in low-order QoS bits */
565 		WARN_ON(rdi->dparms.qos_shift > 1 &&
566 			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
567 		qpn = mk_qpn(qpt, map, offset);
568 	}
569 
570 	return -ENOMEM;
571 }
572 
573 /**
574  * rvt_clear_mr_refs - Drop help mr refs
575  * @qp: rvt qp data structure
576  * @clr_sends: If shoudl clear send side or not
577  */
578 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
579 {
580 	unsigned n;
581 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
582 
583 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
584 		rvt_put_ss(&qp->s_rdma_read_sge);
585 
586 	rvt_put_ss(&qp->r_sge);
587 
588 	if (clr_sends) {
589 		while (qp->s_last != qp->s_head) {
590 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
591 
592 			rvt_put_qp_swqe(qp, wqe);
593 			if (++qp->s_last >= qp->s_size)
594 				qp->s_last = 0;
595 			smp_wmb(); /* see qp_set_savail */
596 		}
597 		if (qp->s_rdma_mr) {
598 			rvt_put_mr(qp->s_rdma_mr);
599 			qp->s_rdma_mr = NULL;
600 		}
601 	}
602 
603 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
604 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
605 
606 		if (e->rdma_sge.mr) {
607 			rvt_put_mr(e->rdma_sge.mr);
608 			e->rdma_sge.mr = NULL;
609 		}
610 	}
611 }
612 
613 /**
614  * rvt_swqe_has_lkey - return true if lkey is used by swqe
615  * @wqe: the send wqe
616  * @lkey: the lkey
617  *
618  * Test the swqe for using lkey
619  */
620 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
621 {
622 	int i;
623 
624 	for (i = 0; i < wqe->wr.num_sge; i++) {
625 		struct rvt_sge *sge = &wqe->sg_list[i];
626 
627 		if (rvt_mr_has_lkey(sge->mr, lkey))
628 			return true;
629 	}
630 	return false;
631 }
632 
633 /**
634  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
635  * @qp: the rvt_qp
636  * @lkey: the lkey
637  */
638 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
639 {
640 	u32 s_last = qp->s_last;
641 
642 	while (s_last != qp->s_head) {
643 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
644 
645 		if (rvt_swqe_has_lkey(wqe, lkey))
646 			return true;
647 
648 		if (++s_last >= qp->s_size)
649 			s_last = 0;
650 	}
651 	if (qp->s_rdma_mr)
652 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
653 			return true;
654 	return false;
655 }
656 
657 /**
658  * rvt_qp_acks_has_lkey - return true if acks have lkey
659  * @qp: the qp
660  * @lkey: the lkey
661  */
662 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
663 {
664 	int i;
665 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
666 
667 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
668 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
669 
670 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
671 			return true;
672 	}
673 	return false;
674 }
675 
676 /**
677  * rvt_qp_mr_clean - clean up remote ops for lkey
678  * @qp: the qp
679  * @lkey: the lkey that is being de-registered
680  *
681  * This routine checks if the lkey is being used by
682  * the qp.
683  *
684  * If so, the qp is put into an error state to elminate
685  * any references from the qp.
686  */
687 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
688 {
689 	bool lastwqe = false;
690 
691 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
692 	    qp->ibqp.qp_type == IB_QPT_GSI)
693 		/* avoid special QPs */
694 		return;
695 	spin_lock_irq(&qp->r_lock);
696 	spin_lock(&qp->s_hlock);
697 	spin_lock(&qp->s_lock);
698 
699 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
700 		goto check_lwqe;
701 
702 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
703 	    rvt_qp_sends_has_lkey(qp, lkey) ||
704 	    rvt_qp_acks_has_lkey(qp, lkey))
705 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
706 check_lwqe:
707 	spin_unlock(&qp->s_lock);
708 	spin_unlock(&qp->s_hlock);
709 	spin_unlock_irq(&qp->r_lock);
710 	if (lastwqe) {
711 		struct ib_event ev;
712 
713 		ev.device = qp->ibqp.device;
714 		ev.element.qp = &qp->ibqp;
715 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
716 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
717 	}
718 }
719 
720 /**
721  * rvt_remove_qp - remove qp form table
722  * @rdi: rvt dev struct
723  * @qp: qp to remove
724  *
725  * Remove the QP from the table so it can't be found asynchronously by
726  * the receive routine.
727  */
728 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
729 {
730 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
731 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
732 	unsigned long flags;
733 	int removed = 1;
734 
735 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
736 
737 	if (rcu_dereference_protected(rvp->qp[0],
738 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
739 		RCU_INIT_POINTER(rvp->qp[0], NULL);
740 	} else if (rcu_dereference_protected(rvp->qp[1],
741 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
742 		RCU_INIT_POINTER(rvp->qp[1], NULL);
743 	} else {
744 		struct rvt_qp *q;
745 		struct rvt_qp __rcu **qpp;
746 
747 		removed = 0;
748 		qpp = &rdi->qp_dev->qp_table[n];
749 		for (; (q = rcu_dereference_protected(*qpp,
750 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
751 			qpp = &q->next) {
752 			if (q == qp) {
753 				RCU_INIT_POINTER(*qpp,
754 				     rcu_dereference_protected(qp->next,
755 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
756 				removed = 1;
757 				trace_rvt_qpremove(qp, n);
758 				break;
759 			}
760 		}
761 	}
762 
763 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
764 	if (removed) {
765 		synchronize_rcu();
766 		rvt_put_qp(qp);
767 	}
768 }
769 
770 /**
771  * rvt_alloc_rq - allocate memory for user or kernel buffer
772  * @rq: receive queue data structure
773  * @size: number of request queue entries
774  * @node: The NUMA node
775  * @udata: True if user data is available or not false
776  *
777  * Return: If memory allocation failed, return -ENONEM
778  * This function is used by both shared receive
779  * queues and non-shared receive queues to allocate
780  * memory.
781  */
782 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
783 		 struct ib_udata *udata)
784 {
785 	if (udata) {
786 		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
787 		if (!rq->wq)
788 			goto bail;
789 		/* need kwq with no buffers */
790 		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
791 		if (!rq->kwq)
792 			goto bail;
793 		rq->kwq->curr_wq = rq->wq->wq;
794 	} else {
795 		/* need kwq with buffers */
796 		rq->kwq =
797 			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
798 		if (!rq->kwq)
799 			goto bail;
800 		rq->kwq->curr_wq = rq->kwq->wq;
801 	}
802 
803 	spin_lock_init(&rq->kwq->p_lock);
804 	spin_lock_init(&rq->kwq->c_lock);
805 	return 0;
806 bail:
807 	rvt_free_rq(rq);
808 	return -ENOMEM;
809 }
810 
811 /**
812  * rvt_init_qp - initialize the QP state to the reset state
813  * @rdi: rvt dev struct
814  * @qp: the QP to init or reinit
815  * @type: the QP type
816  *
817  * This function is called from both rvt_create_qp() and
818  * rvt_reset_qp().   The difference is that the reset
819  * patch the necessary locks to protect against concurent
820  * access.
821  */
822 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
823 			enum ib_qp_type type)
824 {
825 	qp->remote_qpn = 0;
826 	qp->qkey = 0;
827 	qp->qp_access_flags = 0;
828 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
829 	qp->s_hdrwords = 0;
830 	qp->s_wqe = NULL;
831 	qp->s_draining = 0;
832 	qp->s_next_psn = 0;
833 	qp->s_last_psn = 0;
834 	qp->s_sending_psn = 0;
835 	qp->s_sending_hpsn = 0;
836 	qp->s_psn = 0;
837 	qp->r_psn = 0;
838 	qp->r_msn = 0;
839 	if (type == IB_QPT_RC) {
840 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
841 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
842 	} else {
843 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
844 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
845 	}
846 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
847 	qp->r_nak_state = 0;
848 	qp->r_aflags = 0;
849 	qp->r_flags = 0;
850 	qp->s_head = 0;
851 	qp->s_tail = 0;
852 	qp->s_cur = 0;
853 	qp->s_acked = 0;
854 	qp->s_last = 0;
855 	qp->s_ssn = 1;
856 	qp->s_lsn = 0;
857 	qp->s_mig_state = IB_MIG_MIGRATED;
858 	qp->r_head_ack_queue = 0;
859 	qp->s_tail_ack_queue = 0;
860 	qp->s_acked_ack_queue = 0;
861 	qp->s_num_rd_atomic = 0;
862 	qp->r_sge.num_sge = 0;
863 	atomic_set(&qp->s_reserved_used, 0);
864 }
865 
866 /**
867  * _rvt_reset_qp - initialize the QP state to the reset state
868  * @rdi: rvt dev struct
869  * @qp: the QP to reset
870  * @type: the QP type
871  *
872  * r_lock, s_hlock, and s_lock are required to be held by the caller
873  */
874 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
875 			  enum ib_qp_type type)
876 	__must_hold(&qp->s_lock)
877 	__must_hold(&qp->s_hlock)
878 	__must_hold(&qp->r_lock)
879 {
880 	lockdep_assert_held(&qp->r_lock);
881 	lockdep_assert_held(&qp->s_hlock);
882 	lockdep_assert_held(&qp->s_lock);
883 	if (qp->state != IB_QPS_RESET) {
884 		qp->state = IB_QPS_RESET;
885 
886 		/* Let drivers flush their waitlist */
887 		rdi->driver_f.flush_qp_waiters(qp);
888 		rvt_stop_rc_timers(qp);
889 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
890 		spin_unlock(&qp->s_lock);
891 		spin_unlock(&qp->s_hlock);
892 		spin_unlock_irq(&qp->r_lock);
893 
894 		/* Stop the send queue and the retry timer */
895 		rdi->driver_f.stop_send_queue(qp);
896 		rvt_del_timers_sync(qp);
897 		/* Wait for things to stop */
898 		rdi->driver_f.quiesce_qp(qp);
899 
900 		/* take qp out the hash and wait for it to be unused */
901 		rvt_remove_qp(rdi, qp);
902 
903 		/* grab the lock b/c it was locked at call time */
904 		spin_lock_irq(&qp->r_lock);
905 		spin_lock(&qp->s_hlock);
906 		spin_lock(&qp->s_lock);
907 
908 		rvt_clear_mr_refs(qp, 1);
909 		/*
910 		 * Let the driver do any tear down or re-init it needs to for
911 		 * a qp that has been reset
912 		 */
913 		rdi->driver_f.notify_qp_reset(qp);
914 	}
915 	rvt_init_qp(rdi, qp, type);
916 	lockdep_assert_held(&qp->r_lock);
917 	lockdep_assert_held(&qp->s_hlock);
918 	lockdep_assert_held(&qp->s_lock);
919 }
920 
921 /**
922  * rvt_reset_qp - initialize the QP state to the reset state
923  * @rdi: the device info
924  * @qp: the QP to reset
925  * @type: the QP type
926  *
927  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
928  * before calling _rvt_reset_qp().
929  */
930 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
931 			 enum ib_qp_type type)
932 {
933 	spin_lock_irq(&qp->r_lock);
934 	spin_lock(&qp->s_hlock);
935 	spin_lock(&qp->s_lock);
936 	_rvt_reset_qp(rdi, qp, type);
937 	spin_unlock(&qp->s_lock);
938 	spin_unlock(&qp->s_hlock);
939 	spin_unlock_irq(&qp->r_lock);
940 }
941 
942 /**
943  * rvt_free_qpn - Free a qpn from the bit map
944  * @qpt: QP table
945  * @qpn: queue pair number to free
946  */
947 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
948 {
949 	struct rvt_qpn_map *map;
950 
951 	if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
952 		qpn &= RVT_AIP_QP_SUFFIX;
953 
954 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
955 	if (map->page)
956 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
957 }
958 
959 /**
960  * get_allowed_ops - Given a QP type return the appropriate allowed OP
961  * @type: valid, supported, QP type
962  */
963 static u8 get_allowed_ops(enum ib_qp_type type)
964 {
965 	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
966 		IB_OPCODE_UC : IB_OPCODE_UD;
967 }
968 
969 /**
970  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
971  * @qp: Valid QP with allowed_ops set
972  *
973  * The rvt_swqe data structure being used is a union, so this is
974  * only valid for UD QPs.
975  */
976 static void free_ud_wq_attr(struct rvt_qp *qp)
977 {
978 	struct rvt_swqe *wqe;
979 	int i;
980 
981 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
982 		wqe = rvt_get_swqe_ptr(qp, i);
983 		kfree(wqe->ud_wr.attr);
984 		wqe->ud_wr.attr = NULL;
985 	}
986 }
987 
988 /**
989  * alloc_ud_wq_attr - AH attribute cache for UD QPs
990  * @qp: Valid QP with allowed_ops set
991  * @node: Numa node for allocation
992  *
993  * The rvt_swqe data structure being used is a union, so this is
994  * only valid for UD QPs.
995  */
996 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
997 {
998 	struct rvt_swqe *wqe;
999 	int i;
1000 
1001 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1002 		wqe = rvt_get_swqe_ptr(qp, i);
1003 		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1004 					       GFP_KERNEL, node);
1005 		if (!wqe->ud_wr.attr) {
1006 			free_ud_wq_attr(qp);
1007 			return -ENOMEM;
1008 		}
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 /**
1015  * rvt_create_qp - create a queue pair for a device
1016  * @ibqp: the queue pair
1017  * @init_attr: the attributes of the queue pair
1018  * @udata: user data for libibverbs.so
1019  *
1020  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1021  * unique idea of what queue pair numbers mean. For instance there is a reserved
1022  * range for PSM.
1023  *
1024  * Return: 0 on success, otherwise returns an errno.
1025  *
1026  * Called by the ib_create_qp() core verbs function.
1027  */
1028 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1029 		  struct ib_udata *udata)
1030 {
1031 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1032 	int ret = -ENOMEM;
1033 	struct rvt_swqe *swq = NULL;
1034 	size_t sz;
1035 	size_t sg_list_sz = 0;
1036 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1037 	void *priv = NULL;
1038 	size_t sqsize;
1039 	u8 exclude_prefix = 0;
1040 
1041 	if (!rdi)
1042 		return -EINVAL;
1043 
1044 	if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1045 		return -EOPNOTSUPP;
1046 
1047 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1048 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1049 		return -EINVAL;
1050 
1051 	/* Check receive queue parameters if no SRQ is specified. */
1052 	if (!init_attr->srq) {
1053 		if (init_attr->cap.max_recv_sge >
1054 		    rdi->dparms.props.max_recv_sge ||
1055 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1056 			return -EINVAL;
1057 
1058 		if (init_attr->cap.max_send_sge +
1059 		    init_attr->cap.max_send_wr +
1060 		    init_attr->cap.max_recv_sge +
1061 		    init_attr->cap.max_recv_wr == 0)
1062 			return -EINVAL;
1063 	}
1064 	sqsize =
1065 		init_attr->cap.max_send_wr + 1 +
1066 		rdi->dparms.reserved_operations;
1067 	switch (init_attr->qp_type) {
1068 	case IB_QPT_SMI:
1069 	case IB_QPT_GSI:
1070 		if (init_attr->port_num == 0 ||
1071 		    init_attr->port_num > ibqp->device->phys_port_cnt)
1072 			return -EINVAL;
1073 		fallthrough;
1074 	case IB_QPT_UC:
1075 	case IB_QPT_RC:
1076 	case IB_QPT_UD:
1077 		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1078 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1079 		if (!swq)
1080 			return -ENOMEM;
1081 
1082 		if (init_attr->srq) {
1083 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1084 
1085 			if (srq->rq.max_sge > 1)
1086 				sg_list_sz = sizeof(*qp->r_sg_list) *
1087 					(srq->rq.max_sge - 1);
1088 		} else if (init_attr->cap.max_recv_sge > 1)
1089 			sg_list_sz = sizeof(*qp->r_sg_list) *
1090 				(init_attr->cap.max_recv_sge - 1);
1091 		qp->r_sg_list =
1092 			kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1093 		if (!qp->r_sg_list)
1094 			goto bail_qp;
1095 		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1096 
1097 		RCU_INIT_POINTER(qp->next, NULL);
1098 		if (init_attr->qp_type == IB_QPT_RC) {
1099 			qp->s_ack_queue =
1100 				kcalloc_node(rvt_max_atomic(rdi),
1101 					     sizeof(*qp->s_ack_queue),
1102 					     GFP_KERNEL,
1103 					     rdi->dparms.node);
1104 			if (!qp->s_ack_queue)
1105 				goto bail_qp;
1106 		}
1107 		/* initialize timers needed for rc qp */
1108 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1109 		hrtimer_setup(&qp->s_rnr_timer, rvt_rc_rnr_retry, CLOCK_MONOTONIC,
1110 			      HRTIMER_MODE_REL);
1111 
1112 		/*
1113 		 * Driver needs to set up it's private QP structure and do any
1114 		 * initialization that is needed.
1115 		 */
1116 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1117 		if (IS_ERR(priv)) {
1118 			ret = PTR_ERR(priv);
1119 			goto bail_qp;
1120 		}
1121 		qp->priv = priv;
1122 		qp->timeout_jiffies =
1123 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1124 				1000UL);
1125 		if (init_attr->srq) {
1126 			sz = 0;
1127 		} else {
1128 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1129 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1130 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1131 				sizeof(struct rvt_rwqe);
1132 			ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1133 					   rdi->dparms.node, udata);
1134 			if (ret)
1135 				goto bail_driver_priv;
1136 		}
1137 
1138 		/*
1139 		 * ib_create_qp() will initialize qp->ibqp
1140 		 * except for qp->ibqp.qp_num.
1141 		 */
1142 		spin_lock_init(&qp->r_lock);
1143 		spin_lock_init(&qp->s_hlock);
1144 		spin_lock_init(&qp->s_lock);
1145 		atomic_set(&qp->refcount, 0);
1146 		atomic_set(&qp->local_ops_pending, 0);
1147 		init_waitqueue_head(&qp->wait);
1148 		INIT_LIST_HEAD(&qp->rspwait);
1149 		qp->state = IB_QPS_RESET;
1150 		qp->s_wq = swq;
1151 		qp->s_size = sqsize;
1152 		qp->s_avail = init_attr->cap.max_send_wr;
1153 		qp->s_max_sge = init_attr->cap.max_send_sge;
1154 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1155 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1156 		ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1157 		if (ret)
1158 			goto bail_rq_rvt;
1159 
1160 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1161 			exclude_prefix = RVT_AIP_QP_PREFIX;
1162 
1163 		ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1164 				init_attr->qp_type,
1165 				init_attr->port_num,
1166 				exclude_prefix);
1167 		if (ret < 0)
1168 			goto bail_rq_wq;
1169 
1170 		qp->ibqp.qp_num = ret;
1171 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1172 			qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1173 		qp->port_num = init_attr->port_num;
1174 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1175 		if (rdi->driver_f.qp_priv_init) {
1176 			ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1177 			if (ret)
1178 				goto bail_rq_wq;
1179 		}
1180 		break;
1181 
1182 	default:
1183 		/* Don't support raw QPs */
1184 		return -EOPNOTSUPP;
1185 	}
1186 
1187 	init_attr->cap.max_inline_data = 0;
1188 
1189 	/*
1190 	 * Return the address of the RWQ as the offset to mmap.
1191 	 * See rvt_mmap() for details.
1192 	 */
1193 	if (udata && udata->outlen >= sizeof(__u64)) {
1194 		if (!qp->r_rq.wq) {
1195 			__u64 offset = 0;
1196 
1197 			ret = ib_copy_to_udata(udata, &offset,
1198 					       sizeof(offset));
1199 			if (ret)
1200 				goto bail_qpn;
1201 		} else {
1202 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1203 
1204 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1205 						      qp->r_rq.wq);
1206 			if (IS_ERR(qp->ip)) {
1207 				ret = PTR_ERR(qp->ip);
1208 				goto bail_qpn;
1209 			}
1210 
1211 			ret = ib_copy_to_udata(udata, &qp->ip->offset,
1212 					       sizeof(qp->ip->offset));
1213 			if (ret)
1214 				goto bail_ip;
1215 		}
1216 		qp->pid = current->pid;
1217 	}
1218 
1219 	spin_lock(&rdi->n_qps_lock);
1220 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1221 		spin_unlock(&rdi->n_qps_lock);
1222 		ret = -ENOMEM;
1223 		goto bail_ip;
1224 	}
1225 
1226 	rdi->n_qps_allocated++;
1227 	/*
1228 	 * Maintain a busy_jiffies variable that will be added to the timeout
1229 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1230 	 * is scaled by the number of rc qps created for the device to reduce
1231 	 * the number of timeouts occurring when there is a large number of
1232 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1233 	 * The scaling interval is selected based on extensive performance
1234 	 * evaluation of targeted workloads.
1235 	 */
1236 	if (init_attr->qp_type == IB_QPT_RC) {
1237 		rdi->n_rc_qps++;
1238 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1239 	}
1240 	spin_unlock(&rdi->n_qps_lock);
1241 
1242 	if (qp->ip) {
1243 		spin_lock_irq(&rdi->pending_lock);
1244 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1245 		spin_unlock_irq(&rdi->pending_lock);
1246 	}
1247 
1248 	return 0;
1249 
1250 bail_ip:
1251 	if (qp->ip)
1252 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1253 
1254 bail_qpn:
1255 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1256 
1257 bail_rq_wq:
1258 	free_ud_wq_attr(qp);
1259 
1260 bail_rq_rvt:
1261 	rvt_free_rq(&qp->r_rq);
1262 
1263 bail_driver_priv:
1264 	rdi->driver_f.qp_priv_free(rdi, qp);
1265 
1266 bail_qp:
1267 	kfree(qp->s_ack_queue);
1268 	kfree(qp->r_sg_list);
1269 	vfree(swq);
1270 	return ret;
1271 }
1272 
1273 /**
1274  * rvt_error_qp - put a QP into the error state
1275  * @qp: the QP to put into the error state
1276  * @err: the receive completion error to signal if a RWQE is active
1277  *
1278  * Flushes both send and receive work queues.
1279  *
1280  * Return: true if last WQE event should be generated.
1281  * The QP r_lock and s_lock should be held and interrupts disabled.
1282  * If we are already in error state, just return.
1283  */
1284 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1285 {
1286 	struct ib_wc wc;
1287 	int ret = 0;
1288 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1289 
1290 	lockdep_assert_held(&qp->r_lock);
1291 	lockdep_assert_held(&qp->s_lock);
1292 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1293 		goto bail;
1294 
1295 	qp->state = IB_QPS_ERR;
1296 
1297 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1298 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1299 		timer_delete(&qp->s_timer);
1300 	}
1301 
1302 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1303 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1304 
1305 	rdi->driver_f.notify_error_qp(qp);
1306 
1307 	/* Schedule the sending tasklet to drain the send work queue. */
1308 	if (READ_ONCE(qp->s_last) != qp->s_head)
1309 		rdi->driver_f.schedule_send(qp);
1310 
1311 	rvt_clear_mr_refs(qp, 0);
1312 
1313 	memset(&wc, 0, sizeof(wc));
1314 	wc.qp = &qp->ibqp;
1315 	wc.opcode = IB_WC_RECV;
1316 
1317 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1318 		wc.wr_id = qp->r_wr_id;
1319 		wc.status = err;
1320 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1321 	}
1322 	wc.status = IB_WC_WR_FLUSH_ERR;
1323 
1324 	if (qp->r_rq.kwq) {
1325 		u32 head;
1326 		u32 tail;
1327 		struct rvt_rwq *wq = NULL;
1328 		struct rvt_krwq *kwq = NULL;
1329 
1330 		spin_lock(&qp->r_rq.kwq->c_lock);
1331 		/* qp->ip used to validate if there is a  user buffer mmaped */
1332 		if (qp->ip) {
1333 			wq = qp->r_rq.wq;
1334 			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1335 			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1336 		} else {
1337 			kwq = qp->r_rq.kwq;
1338 			head = kwq->head;
1339 			tail = kwq->tail;
1340 		}
1341 		/* sanity check pointers before trusting them */
1342 		if (head >= qp->r_rq.size)
1343 			head = 0;
1344 		if (tail >= qp->r_rq.size)
1345 			tail = 0;
1346 		while (tail != head) {
1347 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1348 			if (++tail >= qp->r_rq.size)
1349 				tail = 0;
1350 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1351 		}
1352 		if (qp->ip)
1353 			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1354 		else
1355 			kwq->tail = tail;
1356 		spin_unlock(&qp->r_rq.kwq->c_lock);
1357 	} else if (qp->ibqp.event_handler) {
1358 		ret = 1;
1359 	}
1360 
1361 bail:
1362 	return ret;
1363 }
1364 EXPORT_SYMBOL(rvt_error_qp);
1365 
1366 /*
1367  * Put the QP into the hash table.
1368  * The hash table holds a reference to the QP.
1369  */
1370 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1371 {
1372 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1373 	unsigned long flags;
1374 
1375 	rvt_get_qp(qp);
1376 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1377 
1378 	if (qp->ibqp.qp_num <= 1) {
1379 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1380 	} else {
1381 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1382 
1383 		qp->next = rdi->qp_dev->qp_table[n];
1384 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1385 		trace_rvt_qpinsert(qp, n);
1386 	}
1387 
1388 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1389 }
1390 
1391 /**
1392  * rvt_modify_qp - modify the attributes of a queue pair
1393  * @ibqp: the queue pair who's attributes we're modifying
1394  * @attr: the new attributes
1395  * @attr_mask: the mask of attributes to modify
1396  * @udata: user data for libibverbs.so
1397  *
1398  * Return: 0 on success, otherwise returns an errno.
1399  */
1400 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1401 		  int attr_mask, struct ib_udata *udata)
1402 {
1403 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1404 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1405 	enum ib_qp_state cur_state, new_state;
1406 	struct ib_event ev;
1407 	int lastwqe = 0;
1408 	int mig = 0;
1409 	int pmtu = 0; /* for gcc warning only */
1410 	int opa_ah;
1411 
1412 	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1413 		return -EOPNOTSUPP;
1414 
1415 	spin_lock_irq(&qp->r_lock);
1416 	spin_lock(&qp->s_hlock);
1417 	spin_lock(&qp->s_lock);
1418 
1419 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1420 		attr->cur_qp_state : qp->state;
1421 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1422 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1423 
1424 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1425 				attr_mask))
1426 		goto inval;
1427 
1428 	if (rdi->driver_f.check_modify_qp &&
1429 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1430 		goto inval;
1431 
1432 	if (attr_mask & IB_QP_AV) {
1433 		if (opa_ah) {
1434 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1435 				opa_get_mcast_base(OPA_MCAST_NR))
1436 				goto inval;
1437 		} else {
1438 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1439 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1440 				goto inval;
1441 		}
1442 
1443 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1444 			goto inval;
1445 	}
1446 
1447 	if (attr_mask & IB_QP_ALT_PATH) {
1448 		if (opa_ah) {
1449 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1450 				opa_get_mcast_base(OPA_MCAST_NR))
1451 				goto inval;
1452 		} else {
1453 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1454 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1455 				goto inval;
1456 		}
1457 
1458 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1459 			goto inval;
1460 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1461 			goto inval;
1462 	}
1463 
1464 	if (attr_mask & IB_QP_PKEY_INDEX)
1465 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1466 			goto inval;
1467 
1468 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1469 		if (attr->min_rnr_timer > 31)
1470 			goto inval;
1471 
1472 	if (attr_mask & IB_QP_PORT)
1473 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1474 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1475 		    attr->port_num == 0 ||
1476 		    attr->port_num > ibqp->device->phys_port_cnt)
1477 			goto inval;
1478 
1479 	if (attr_mask & IB_QP_DEST_QPN)
1480 		if (attr->dest_qp_num > RVT_QPN_MASK)
1481 			goto inval;
1482 
1483 	if (attr_mask & IB_QP_RETRY_CNT)
1484 		if (attr->retry_cnt > 7)
1485 			goto inval;
1486 
1487 	if (attr_mask & IB_QP_RNR_RETRY)
1488 		if (attr->rnr_retry > 7)
1489 			goto inval;
1490 
1491 	/*
1492 	 * Don't allow invalid path_mtu values.  OK to set greater
1493 	 * than the active mtu (or even the max_cap, if we have tuned
1494 	 * that to a small mtu.  We'll set qp->path_mtu
1495 	 * to the lesser of requested attribute mtu and active,
1496 	 * for packetizing messages.
1497 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1498 	 */
1499 	if (attr_mask & IB_QP_PATH_MTU) {
1500 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1501 		if (pmtu < 0)
1502 			goto inval;
1503 	}
1504 
1505 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1506 		if (attr->path_mig_state == IB_MIG_REARM) {
1507 			if (qp->s_mig_state == IB_MIG_ARMED)
1508 				goto inval;
1509 			if (new_state != IB_QPS_RTS)
1510 				goto inval;
1511 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1512 			if (qp->s_mig_state == IB_MIG_REARM)
1513 				goto inval;
1514 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1515 				goto inval;
1516 			if (qp->s_mig_state == IB_MIG_ARMED)
1517 				mig = 1;
1518 		} else {
1519 			goto inval;
1520 		}
1521 	}
1522 
1523 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1524 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1525 			goto inval;
1526 
1527 	switch (new_state) {
1528 	case IB_QPS_RESET:
1529 		if (qp->state != IB_QPS_RESET)
1530 			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1531 		break;
1532 
1533 	case IB_QPS_RTR:
1534 		/* Allow event to re-trigger if QP set to RTR more than once */
1535 		qp->r_flags &= ~RVT_R_COMM_EST;
1536 		qp->state = new_state;
1537 		break;
1538 
1539 	case IB_QPS_SQD:
1540 		qp->s_draining = qp->s_last != qp->s_cur;
1541 		qp->state = new_state;
1542 		break;
1543 
1544 	case IB_QPS_SQE:
1545 		if (qp->ibqp.qp_type == IB_QPT_RC)
1546 			goto inval;
1547 		qp->state = new_state;
1548 		break;
1549 
1550 	case IB_QPS_ERR:
1551 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1552 		break;
1553 
1554 	default:
1555 		qp->state = new_state;
1556 		break;
1557 	}
1558 
1559 	if (attr_mask & IB_QP_PKEY_INDEX)
1560 		qp->s_pkey_index = attr->pkey_index;
1561 
1562 	if (attr_mask & IB_QP_PORT)
1563 		qp->port_num = attr->port_num;
1564 
1565 	if (attr_mask & IB_QP_DEST_QPN)
1566 		qp->remote_qpn = attr->dest_qp_num;
1567 
1568 	if (attr_mask & IB_QP_SQ_PSN) {
1569 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1570 		qp->s_psn = qp->s_next_psn;
1571 		qp->s_sending_psn = qp->s_next_psn;
1572 		qp->s_last_psn = qp->s_next_psn - 1;
1573 		qp->s_sending_hpsn = qp->s_last_psn;
1574 	}
1575 
1576 	if (attr_mask & IB_QP_RQ_PSN)
1577 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1578 
1579 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1580 		qp->qp_access_flags = attr->qp_access_flags;
1581 
1582 	if (attr_mask & IB_QP_AV) {
1583 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1584 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1585 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1586 	}
1587 
1588 	if (attr_mask & IB_QP_ALT_PATH) {
1589 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1590 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1591 	}
1592 
1593 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1594 		qp->s_mig_state = attr->path_mig_state;
1595 		if (mig) {
1596 			qp->remote_ah_attr = qp->alt_ah_attr;
1597 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1598 			qp->s_pkey_index = qp->s_alt_pkey_index;
1599 		}
1600 	}
1601 
1602 	if (attr_mask & IB_QP_PATH_MTU) {
1603 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1604 		qp->log_pmtu = ilog2(qp->pmtu);
1605 	}
1606 
1607 	if (attr_mask & IB_QP_RETRY_CNT) {
1608 		qp->s_retry_cnt = attr->retry_cnt;
1609 		qp->s_retry = attr->retry_cnt;
1610 	}
1611 
1612 	if (attr_mask & IB_QP_RNR_RETRY) {
1613 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1614 		qp->s_rnr_retry = attr->rnr_retry;
1615 	}
1616 
1617 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1618 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1619 
1620 	if (attr_mask & IB_QP_TIMEOUT) {
1621 		qp->timeout = attr->timeout;
1622 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1623 	}
1624 
1625 	if (attr_mask & IB_QP_QKEY)
1626 		qp->qkey = attr->qkey;
1627 
1628 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1629 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1630 
1631 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1632 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1633 
1634 	if (rdi->driver_f.modify_qp)
1635 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1636 
1637 	spin_unlock(&qp->s_lock);
1638 	spin_unlock(&qp->s_hlock);
1639 	spin_unlock_irq(&qp->r_lock);
1640 
1641 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1642 		rvt_insert_qp(rdi, qp);
1643 
1644 	if (lastwqe) {
1645 		ev.device = qp->ibqp.device;
1646 		ev.element.qp = &qp->ibqp;
1647 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1648 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1649 	}
1650 	if (mig) {
1651 		ev.device = qp->ibqp.device;
1652 		ev.element.qp = &qp->ibqp;
1653 		ev.event = IB_EVENT_PATH_MIG;
1654 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1655 	}
1656 	return 0;
1657 
1658 inval:
1659 	spin_unlock(&qp->s_lock);
1660 	spin_unlock(&qp->s_hlock);
1661 	spin_unlock_irq(&qp->r_lock);
1662 	return -EINVAL;
1663 }
1664 
1665 /**
1666  * rvt_destroy_qp - destroy a queue pair
1667  * @ibqp: the queue pair to destroy
1668  * @udata: unused by the driver
1669  *
1670  * Note that this can be called while the QP is actively sending or
1671  * receiving!
1672  *
1673  * Return: 0 on success.
1674  */
1675 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1676 {
1677 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1678 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1679 
1680 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1681 
1682 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1683 	/* qpn is now available for use again */
1684 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1685 
1686 	spin_lock(&rdi->n_qps_lock);
1687 	rdi->n_qps_allocated--;
1688 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1689 		rdi->n_rc_qps--;
1690 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1691 	}
1692 	spin_unlock(&rdi->n_qps_lock);
1693 
1694 	if (qp->ip)
1695 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1696 	kvfree(qp->r_rq.kwq);
1697 	rdi->driver_f.qp_priv_free(rdi, qp);
1698 	kfree(qp->s_ack_queue);
1699 	kfree(qp->r_sg_list);
1700 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1701 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1702 	free_ud_wq_attr(qp);
1703 	vfree(qp->s_wq);
1704 	return 0;
1705 }
1706 
1707 /**
1708  * rvt_query_qp - query an ipbq
1709  * @ibqp: IB qp to query
1710  * @attr: attr struct to fill in
1711  * @attr_mask: attr mask ignored
1712  * @init_attr: struct to fill in
1713  *
1714  * Return: always 0
1715  */
1716 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1717 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1718 {
1719 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1720 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1721 
1722 	attr->qp_state = qp->state;
1723 	attr->cur_qp_state = attr->qp_state;
1724 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1725 	attr->path_mig_state = qp->s_mig_state;
1726 	attr->qkey = qp->qkey;
1727 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1728 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1729 	attr->dest_qp_num = qp->remote_qpn;
1730 	attr->qp_access_flags = qp->qp_access_flags;
1731 	attr->cap.max_send_wr = qp->s_size - 1 -
1732 		rdi->dparms.reserved_operations;
1733 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1734 	attr->cap.max_send_sge = qp->s_max_sge;
1735 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1736 	attr->cap.max_inline_data = 0;
1737 	attr->ah_attr = qp->remote_ah_attr;
1738 	attr->alt_ah_attr = qp->alt_ah_attr;
1739 	attr->pkey_index = qp->s_pkey_index;
1740 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1741 	attr->en_sqd_async_notify = 0;
1742 	attr->sq_draining = qp->s_draining;
1743 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1744 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1745 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1746 	attr->port_num = qp->port_num;
1747 	attr->timeout = qp->timeout;
1748 	attr->retry_cnt = qp->s_retry_cnt;
1749 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1750 	attr->alt_port_num =
1751 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1752 	attr->alt_timeout = qp->alt_timeout;
1753 
1754 	init_attr->event_handler = qp->ibqp.event_handler;
1755 	init_attr->qp_context = qp->ibqp.qp_context;
1756 	init_attr->send_cq = qp->ibqp.send_cq;
1757 	init_attr->recv_cq = qp->ibqp.recv_cq;
1758 	init_attr->srq = qp->ibqp.srq;
1759 	init_attr->cap = attr->cap;
1760 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1761 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1762 	else
1763 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1764 	init_attr->qp_type = qp->ibqp.qp_type;
1765 	init_attr->port_num = qp->port_num;
1766 	return 0;
1767 }
1768 
1769 /**
1770  * rvt_post_recv - post a receive on a QP
1771  * @ibqp: the QP to post the receive on
1772  * @wr: the WR to post
1773  * @bad_wr: the first bad WR is put here
1774  *
1775  * This may be called from interrupt context.
1776  *
1777  * Return: 0 on success otherwise errno
1778  */
1779 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1780 		  const struct ib_recv_wr **bad_wr)
1781 {
1782 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1783 	struct rvt_krwq *wq = qp->r_rq.kwq;
1784 	unsigned long flags;
1785 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1786 				!qp->ibqp.srq;
1787 
1788 	/* Check that state is OK to post receive. */
1789 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1790 		*bad_wr = wr;
1791 		return -EINVAL;
1792 	}
1793 
1794 	for (; wr; wr = wr->next) {
1795 		struct rvt_rwqe *wqe;
1796 		u32 next;
1797 		int i;
1798 
1799 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1800 			*bad_wr = wr;
1801 			return -EINVAL;
1802 		}
1803 
1804 		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1805 		next = wq->head + 1;
1806 		if (next >= qp->r_rq.size)
1807 			next = 0;
1808 		if (next == READ_ONCE(wq->tail)) {
1809 			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1810 			*bad_wr = wr;
1811 			return -ENOMEM;
1812 		}
1813 		if (unlikely(qp_err_flush)) {
1814 			struct ib_wc wc;
1815 
1816 			memset(&wc, 0, sizeof(wc));
1817 			wc.qp = &qp->ibqp;
1818 			wc.opcode = IB_WC_RECV;
1819 			wc.wr_id = wr->wr_id;
1820 			wc.status = IB_WC_WR_FLUSH_ERR;
1821 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1822 		} else {
1823 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1824 			wqe->wr_id = wr->wr_id;
1825 			wqe->num_sge = wr->num_sge;
1826 			for (i = 0; i < wr->num_sge; i++) {
1827 				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1828 				wqe->sg_list[i].length = wr->sg_list[i].length;
1829 				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1830 			}
1831 			/*
1832 			 * Make sure queue entry is written
1833 			 * before the head index.
1834 			 */
1835 			smp_store_release(&wq->head, next);
1836 		}
1837 		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1838 	}
1839 	return 0;
1840 }
1841 
1842 /**
1843  * rvt_qp_valid_operation - validate post send wr request
1844  * @qp: the qp
1845  * @post_parms: the post send table for the driver
1846  * @wr: the work request
1847  *
1848  * The routine validates the operation based on the
1849  * validation table an returns the length of the operation
1850  * which can extend beyond the ib_send_bw.  Operation
1851  * dependent flags key atomic operation validation.
1852  *
1853  * There is an exception for UD qps that validates the pd and
1854  * overrides the length to include the additional UD specific
1855  * length.
1856  *
1857  * Returns a negative error or the length of the work request
1858  * for building the swqe.
1859  */
1860 static inline int rvt_qp_valid_operation(
1861 	struct rvt_qp *qp,
1862 	const struct rvt_operation_params *post_parms,
1863 	const struct ib_send_wr *wr)
1864 {
1865 	int len;
1866 
1867 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1868 		return -EINVAL;
1869 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1870 		return -EINVAL;
1871 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1872 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1873 		return -EINVAL;
1874 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1875 	    (wr->num_sge == 0 ||
1876 	     wr->sg_list[0].length < sizeof(u64) ||
1877 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1878 		return -EINVAL;
1879 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1880 	    !qp->s_max_rd_atomic)
1881 		return -EINVAL;
1882 	len = post_parms[wr->opcode].length;
1883 	/* UD specific */
1884 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1885 	    qp->ibqp.qp_type != IB_QPT_RC) {
1886 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1887 			return -EINVAL;
1888 		len = sizeof(struct ib_ud_wr);
1889 	}
1890 	return len;
1891 }
1892 
1893 /**
1894  * rvt_qp_is_avail - determine queue capacity
1895  * @qp: the qp
1896  * @rdi: the rdmavt device
1897  * @reserved_op: is reserved operation
1898  *
1899  * This assumes the s_hlock is held but the s_last
1900  * qp variable is uncontrolled.
1901  *
1902  * For non reserved operations, the qp->s_avail
1903  * may be changed.
1904  *
1905  * The return value is zero or a -ENOMEM.
1906  */
1907 static inline int rvt_qp_is_avail(
1908 	struct rvt_qp *qp,
1909 	struct rvt_dev_info *rdi,
1910 	bool reserved_op)
1911 {
1912 	u32 slast;
1913 	u32 avail;
1914 	u32 reserved_used;
1915 
1916 	/* see rvt_qp_wqe_unreserve() */
1917 	smp_mb__before_atomic();
1918 	if (unlikely(reserved_op)) {
1919 		/* see rvt_qp_wqe_unreserve() */
1920 		reserved_used = atomic_read(&qp->s_reserved_used);
1921 		if (reserved_used >= rdi->dparms.reserved_operations)
1922 			return -ENOMEM;
1923 		return 0;
1924 	}
1925 	/* non-reserved operations */
1926 	if (likely(qp->s_avail))
1927 		return 0;
1928 	/* See rvt_qp_complete_swqe() */
1929 	slast = smp_load_acquire(&qp->s_last);
1930 	if (qp->s_head >= slast)
1931 		avail = qp->s_size - (qp->s_head - slast);
1932 	else
1933 		avail = slast - qp->s_head;
1934 
1935 	reserved_used = atomic_read(&qp->s_reserved_used);
1936 	avail =  avail - 1 -
1937 		(rdi->dparms.reserved_operations - reserved_used);
1938 	/* insure we don't assign a negative s_avail */
1939 	if ((s32)avail <= 0)
1940 		return -ENOMEM;
1941 	qp->s_avail = avail;
1942 	if (WARN_ON(qp->s_avail >
1943 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1944 		rvt_pr_err(rdi,
1945 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1946 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1947 			   qp->s_head, qp->s_tail, qp->s_cur,
1948 			   qp->s_acked, qp->s_last);
1949 	return 0;
1950 }
1951 
1952 /**
1953  * rvt_post_one_wr - post one RC, UC, or UD send work request
1954  * @qp: the QP to post on
1955  * @wr: the work request to send
1956  * @call_send: kick the send engine into gear
1957  */
1958 static int rvt_post_one_wr(struct rvt_qp *qp,
1959 			   const struct ib_send_wr *wr,
1960 			   bool *call_send)
1961 {
1962 	struct rvt_swqe *wqe;
1963 	u32 next;
1964 	int i;
1965 	int j;
1966 	int acc;
1967 	struct rvt_lkey_table *rkt;
1968 	struct rvt_pd *pd;
1969 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1970 	u8 log_pmtu;
1971 	int ret;
1972 	size_t cplen;
1973 	bool reserved_op;
1974 	int local_ops_delayed = 0;
1975 
1976 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1977 
1978 	/* IB spec says that num_sge == 0 is OK. */
1979 	if (unlikely(wr->num_sge > qp->s_max_sge))
1980 		return -EINVAL;
1981 
1982 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1983 	if (ret < 0)
1984 		return ret;
1985 	cplen = ret;
1986 
1987 	/*
1988 	 * Local operations include fast register and local invalidate.
1989 	 * Fast register needs to be processed immediately because the
1990 	 * registered lkey may be used by following work requests and the
1991 	 * lkey needs to be valid at the time those requests are posted.
1992 	 * Local invalidate can be processed immediately if fencing is
1993 	 * not required and no previous local invalidate ops are pending.
1994 	 * Signaled local operations that have been processed immediately
1995 	 * need to have requests with "completion only" flags set posted
1996 	 * to the send queue in order to generate completions.
1997 	 */
1998 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1999 		switch (wr->opcode) {
2000 		case IB_WR_REG_MR:
2001 			ret = rvt_fast_reg_mr(qp,
2002 					      reg_wr(wr)->mr,
2003 					      reg_wr(wr)->key,
2004 					      reg_wr(wr)->access);
2005 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2006 				return ret;
2007 			break;
2008 		case IB_WR_LOCAL_INV:
2009 			if ((wr->send_flags & IB_SEND_FENCE) ||
2010 			    atomic_read(&qp->local_ops_pending)) {
2011 				local_ops_delayed = 1;
2012 			} else {
2013 				ret = rvt_invalidate_rkey(
2014 					qp, wr->ex.invalidate_rkey);
2015 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2016 					return ret;
2017 			}
2018 			break;
2019 		default:
2020 			return -EINVAL;
2021 		}
2022 	}
2023 
2024 	reserved_op = rdi->post_parms[wr->opcode].flags &
2025 			RVT_OPERATION_USE_RESERVE;
2026 	/* check for avail */
2027 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2028 	if (ret)
2029 		return ret;
2030 	next = qp->s_head + 1;
2031 	if (next >= qp->s_size)
2032 		next = 0;
2033 
2034 	rkt = &rdi->lkey_table;
2035 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2036 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2037 
2038 	/* cplen has length from above */
2039 	memcpy(&wqe->ud_wr, wr, cplen);
2040 
2041 	wqe->length = 0;
2042 	j = 0;
2043 	if (wr->num_sge) {
2044 		struct rvt_sge *last_sge = NULL;
2045 
2046 		acc = wr->opcode >= IB_WR_RDMA_READ ?
2047 			IB_ACCESS_LOCAL_WRITE : 0;
2048 		for (i = 0; i < wr->num_sge; i++) {
2049 			u32 length = wr->sg_list[i].length;
2050 
2051 			if (length == 0)
2052 				continue;
2053 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2054 					  &wr->sg_list[i], acc);
2055 			if (unlikely(ret < 0))
2056 				goto bail_inval_free;
2057 			wqe->length += length;
2058 			if (ret)
2059 				last_sge = &wqe->sg_list[j];
2060 			j += ret;
2061 		}
2062 		wqe->wr.num_sge = j;
2063 	}
2064 
2065 	/*
2066 	 * Calculate and set SWQE PSN values prior to handing it off
2067 	 * to the driver's check routine. This give the driver the
2068 	 * opportunity to adjust PSN values based on internal checks.
2069 	 */
2070 	log_pmtu = qp->log_pmtu;
2071 	if (qp->allowed_ops == IB_OPCODE_UD) {
2072 		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2073 
2074 		log_pmtu = ah->log_pmtu;
2075 		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2076 	}
2077 
2078 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2079 		if (local_ops_delayed)
2080 			atomic_inc(&qp->local_ops_pending);
2081 		else
2082 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2083 		wqe->ssn = 0;
2084 		wqe->psn = 0;
2085 		wqe->lpsn = 0;
2086 	} else {
2087 		wqe->ssn = qp->s_ssn++;
2088 		wqe->psn = qp->s_next_psn;
2089 		wqe->lpsn = wqe->psn +
2090 				(wqe->length ?
2091 					((wqe->length - 1) >> log_pmtu) :
2092 					0);
2093 	}
2094 
2095 	/* general part of wqe valid - allow for driver checks */
2096 	if (rdi->driver_f.setup_wqe) {
2097 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2098 		if (ret < 0)
2099 			goto bail_inval_free_ref;
2100 	}
2101 
2102 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2103 		qp->s_next_psn = wqe->lpsn + 1;
2104 
2105 	if (unlikely(reserved_op)) {
2106 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2107 		rvt_qp_wqe_reserve(qp, wqe);
2108 	} else {
2109 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2110 		qp->s_avail--;
2111 	}
2112 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2113 	smp_wmb(); /* see request builders */
2114 	qp->s_head = next;
2115 
2116 	return 0;
2117 
2118 bail_inval_free_ref:
2119 	if (qp->allowed_ops == IB_OPCODE_UD)
2120 		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2121 bail_inval_free:
2122 	/* release mr holds */
2123 	while (j) {
2124 		struct rvt_sge *sge = &wqe->sg_list[--j];
2125 
2126 		rvt_put_mr(sge->mr);
2127 	}
2128 	return ret;
2129 }
2130 
2131 /**
2132  * rvt_post_send - post a send on a QP
2133  * @ibqp: the QP to post the send on
2134  * @wr: the list of work requests to post
2135  * @bad_wr: the first bad WR is put here
2136  *
2137  * This may be called from interrupt context.
2138  *
2139  * Return: 0 on success else errno
2140  */
2141 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2142 		  const struct ib_send_wr **bad_wr)
2143 {
2144 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2145 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2146 	unsigned long flags = 0;
2147 	bool call_send;
2148 	unsigned nreq = 0;
2149 	int err = 0;
2150 
2151 	spin_lock_irqsave(&qp->s_hlock, flags);
2152 
2153 	/*
2154 	 * Ensure QP state is such that we can send. If not bail out early,
2155 	 * there is no need to do this every time we post a send.
2156 	 */
2157 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2158 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2159 		return -EINVAL;
2160 	}
2161 
2162 	/*
2163 	 * If the send queue is empty, and we only have a single WR then just go
2164 	 * ahead and kick the send engine into gear. Otherwise we will always
2165 	 * just schedule the send to happen later.
2166 	 */
2167 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2168 
2169 	for (; wr; wr = wr->next) {
2170 		err = rvt_post_one_wr(qp, wr, &call_send);
2171 		if (unlikely(err)) {
2172 			*bad_wr = wr;
2173 			goto bail;
2174 		}
2175 		nreq++;
2176 	}
2177 bail:
2178 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2179 	if (nreq) {
2180 		/*
2181 		 * Only call do_send if there is exactly one packet, and the
2182 		 * driver said it was ok.
2183 		 */
2184 		if (nreq == 1 && call_send)
2185 			rdi->driver_f.do_send(qp);
2186 		else
2187 			rdi->driver_f.schedule_send_no_lock(qp);
2188 	}
2189 	return err;
2190 }
2191 
2192 /**
2193  * rvt_post_srq_recv - post a receive on a shared receive queue
2194  * @ibsrq: the SRQ to post the receive on
2195  * @wr: the list of work requests to post
2196  * @bad_wr: A pointer to the first WR to cause a problem is put here
2197  *
2198  * This may be called from interrupt context.
2199  *
2200  * Return: 0 on success else errno
2201  */
2202 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2203 		      const struct ib_recv_wr **bad_wr)
2204 {
2205 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2206 	struct rvt_krwq *wq;
2207 	unsigned long flags;
2208 
2209 	for (; wr; wr = wr->next) {
2210 		struct rvt_rwqe *wqe;
2211 		u32 next;
2212 		int i;
2213 
2214 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2215 			*bad_wr = wr;
2216 			return -EINVAL;
2217 		}
2218 
2219 		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2220 		wq = srq->rq.kwq;
2221 		next = wq->head + 1;
2222 		if (next >= srq->rq.size)
2223 			next = 0;
2224 		if (next == READ_ONCE(wq->tail)) {
2225 			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2226 			*bad_wr = wr;
2227 			return -ENOMEM;
2228 		}
2229 
2230 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2231 		wqe->wr_id = wr->wr_id;
2232 		wqe->num_sge = wr->num_sge;
2233 		for (i = 0; i < wr->num_sge; i++) {
2234 			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2235 			wqe->sg_list[i].length = wr->sg_list[i].length;
2236 			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2237 		}
2238 		/* Make sure queue entry is written before the head index. */
2239 		smp_store_release(&wq->head, next);
2240 		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2241 	}
2242 	return 0;
2243 }
2244 
2245 /*
2246  * rvt used the internal kernel struct as part of its ABI, for now make sure
2247  * the kernel struct does not change layout. FIXME: rvt should never cast the
2248  * user struct to a kernel struct.
2249  */
2250 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2251 {
2252 	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2253 		     offsetof(struct rvt_wqe_sge, addr));
2254 	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2255 		     offsetof(struct rvt_wqe_sge, length));
2256 	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2257 		     offsetof(struct rvt_wqe_sge, lkey));
2258 	return (struct ib_sge *)sge;
2259 }
2260 
2261 /*
2262  * Validate a RWQE and fill in the SGE state.
2263  * Return 1 if OK.
2264  */
2265 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2266 {
2267 	int i, j, ret;
2268 	struct ib_wc wc;
2269 	struct rvt_lkey_table *rkt;
2270 	struct rvt_pd *pd;
2271 	struct rvt_sge_state *ss;
2272 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2273 
2274 	rkt = &rdi->lkey_table;
2275 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2276 	ss = &qp->r_sge;
2277 	ss->sg_list = qp->r_sg_list;
2278 	qp->r_len = 0;
2279 	for (i = j = 0; i < wqe->num_sge; i++) {
2280 		if (wqe->sg_list[i].length == 0)
2281 			continue;
2282 		/* Check LKEY */
2283 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2284 				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2285 				  IB_ACCESS_LOCAL_WRITE);
2286 		if (unlikely(ret <= 0))
2287 			goto bad_lkey;
2288 		qp->r_len += wqe->sg_list[i].length;
2289 		j++;
2290 	}
2291 	ss->num_sge = j;
2292 	ss->total_len = qp->r_len;
2293 	return 1;
2294 
2295 bad_lkey:
2296 	while (j) {
2297 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2298 
2299 		rvt_put_mr(sge->mr);
2300 	}
2301 	ss->num_sge = 0;
2302 	memset(&wc, 0, sizeof(wc));
2303 	wc.wr_id = wqe->wr_id;
2304 	wc.status = IB_WC_LOC_PROT_ERR;
2305 	wc.opcode = IB_WC_RECV;
2306 	wc.qp = &qp->ibqp;
2307 	/* Signal solicited completion event. */
2308 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2309 	return 0;
2310 }
2311 
2312 /**
2313  * get_rvt_head - get head indices of the circular buffer
2314  * @rq: data structure for request queue entry
2315  * @ip: the QP
2316  *
2317  * Return - head index value
2318  */
2319 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2320 {
2321 	u32 head;
2322 
2323 	if (ip)
2324 		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2325 	else
2326 		head = rq->kwq->head;
2327 
2328 	return head;
2329 }
2330 
2331 /**
2332  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2333  * @qp: the QP
2334  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2335  *
2336  * Return -1 if there is a local error, 0 if no RWQE is available,
2337  * otherwise return 1.
2338  *
2339  * Can be called from interrupt level.
2340  */
2341 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2342 {
2343 	unsigned long flags;
2344 	struct rvt_rq *rq;
2345 	struct rvt_krwq *kwq = NULL;
2346 	struct rvt_rwq *wq;
2347 	struct rvt_srq *srq;
2348 	struct rvt_rwqe *wqe;
2349 	void (*handler)(struct ib_event *, void *);
2350 	u32 tail;
2351 	u32 head;
2352 	int ret;
2353 	void *ip = NULL;
2354 
2355 	if (qp->ibqp.srq) {
2356 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2357 		handler = srq->ibsrq.event_handler;
2358 		rq = &srq->rq;
2359 		ip = srq->ip;
2360 	} else {
2361 		srq = NULL;
2362 		handler = NULL;
2363 		rq = &qp->r_rq;
2364 		ip = qp->ip;
2365 	}
2366 
2367 	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2368 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2369 		ret = 0;
2370 		goto unlock;
2371 	}
2372 	kwq = rq->kwq;
2373 	if (ip) {
2374 		wq = rq->wq;
2375 		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2376 	} else {
2377 		tail = kwq->tail;
2378 	}
2379 
2380 	/* Validate tail before using it since it is user writable. */
2381 	if (tail >= rq->size)
2382 		tail = 0;
2383 
2384 	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2385 		head = get_rvt_head(rq, ip);
2386 		kwq->count = rvt_get_rq_count(rq, head, tail);
2387 	}
2388 	if (unlikely(kwq->count == 0)) {
2389 		ret = 0;
2390 		goto unlock;
2391 	}
2392 	/* Make sure entry is read after the count is read. */
2393 	smp_rmb();
2394 	wqe = rvt_get_rwqe_ptr(rq, tail);
2395 	/*
2396 	 * Even though we update the tail index in memory, the verbs
2397 	 * consumer is not supposed to post more entries until a
2398 	 * completion is generated.
2399 	 */
2400 	if (++tail >= rq->size)
2401 		tail = 0;
2402 	if (ip)
2403 		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2404 	else
2405 		kwq->tail = tail;
2406 	if (!wr_id_only && !init_sge(qp, wqe)) {
2407 		ret = -1;
2408 		goto unlock;
2409 	}
2410 	qp->r_wr_id = wqe->wr_id;
2411 
2412 	kwq->count--;
2413 	ret = 1;
2414 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2415 	if (handler) {
2416 		/*
2417 		 * Validate head pointer value and compute
2418 		 * the number of remaining WQEs.
2419 		 */
2420 		if (kwq->count < srq->limit) {
2421 			kwq->count =
2422 				rvt_get_rq_count(rq,
2423 						 get_rvt_head(rq, ip), tail);
2424 			if (kwq->count < srq->limit) {
2425 				struct ib_event ev;
2426 
2427 				srq->limit = 0;
2428 				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2429 				ev.device = qp->ibqp.device;
2430 				ev.element.srq = qp->ibqp.srq;
2431 				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2432 				handler(&ev, srq->ibsrq.srq_context);
2433 				goto bail;
2434 			}
2435 		}
2436 	}
2437 unlock:
2438 	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2439 bail:
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL(rvt_get_rwqe);
2443 
2444 /**
2445  * rvt_comm_est - handle trap with QP established
2446  * @qp: the QP
2447  */
2448 void rvt_comm_est(struct rvt_qp *qp)
2449 {
2450 	qp->r_flags |= RVT_R_COMM_EST;
2451 	if (qp->ibqp.event_handler) {
2452 		struct ib_event ev;
2453 
2454 		ev.device = qp->ibqp.device;
2455 		ev.element.qp = &qp->ibqp;
2456 		ev.event = IB_EVENT_COMM_EST;
2457 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2458 	}
2459 }
2460 EXPORT_SYMBOL(rvt_comm_est);
2461 
2462 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2463 {
2464 	unsigned long flags;
2465 	int lastwqe;
2466 
2467 	spin_lock_irqsave(&qp->s_lock, flags);
2468 	lastwqe = rvt_error_qp(qp, err);
2469 	spin_unlock_irqrestore(&qp->s_lock, flags);
2470 
2471 	if (lastwqe) {
2472 		struct ib_event ev;
2473 
2474 		ev.device = qp->ibqp.device;
2475 		ev.element.qp = &qp->ibqp;
2476 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2477 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2478 	}
2479 }
2480 EXPORT_SYMBOL(rvt_rc_error);
2481 
2482 /*
2483  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2484  *  @index - the index
2485  *  return usec from an index into ib_rvt_rnr_table
2486  */
2487 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2488 {
2489 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2490 }
2491 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2492 
2493 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2494 {
2495 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2496 				  IB_AETH_CREDIT_MASK];
2497 }
2498 
2499 /*
2500  *  rvt_add_retry_timer_ext - add/start a retry timer
2501  *  @qp - the QP
2502  *  @shift - timeout shift to wait for multiple packets
2503  *  add a retry timer on the QP
2504  */
2505 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2506 {
2507 	struct ib_qp *ibqp = &qp->ibqp;
2508 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2509 
2510 	lockdep_assert_held(&qp->s_lock);
2511 	qp->s_flags |= RVT_S_TIMER;
2512        /* 4.096 usec. * (1 << qp->timeout) */
2513 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2514 			      (qp->timeout_jiffies << shift);
2515 	add_timer(&qp->s_timer);
2516 }
2517 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2518 
2519 /**
2520  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2521  * @qp: the QP
2522  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2523  */
2524 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2525 {
2526 	u32 to;
2527 
2528 	lockdep_assert_held(&qp->s_lock);
2529 	qp->s_flags |= RVT_S_WAIT_RNR;
2530 	to = rvt_aeth_to_usec(aeth);
2531 	trace_rvt_rnrnak_add(qp, to);
2532 	hrtimer_start(&qp->s_rnr_timer,
2533 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2534 }
2535 EXPORT_SYMBOL(rvt_add_rnr_timer);
2536 
2537 /**
2538  * rvt_stop_rc_timers - stop all timers
2539  * @qp: the QP
2540  * stop any pending timers
2541  */
2542 void rvt_stop_rc_timers(struct rvt_qp *qp)
2543 {
2544 	lockdep_assert_held(&qp->s_lock);
2545 	/* Remove QP from all timers */
2546 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2547 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2548 		timer_delete(&qp->s_timer);
2549 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2550 	}
2551 }
2552 EXPORT_SYMBOL(rvt_stop_rc_timers);
2553 
2554 /**
2555  * rvt_stop_rnr_timer - stop an rnr timer
2556  * @qp: the QP
2557  *
2558  * stop an rnr timer and return if the timer
2559  * had been pending.
2560  */
2561 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2562 {
2563 	lockdep_assert_held(&qp->s_lock);
2564 	/* Remove QP from rnr timer */
2565 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2566 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2567 		trace_rvt_rnrnak_stop(qp, 0);
2568 	}
2569 }
2570 
2571 /**
2572  * rvt_del_timers_sync - wait for any timeout routines to exit
2573  * @qp: the QP
2574  */
2575 void rvt_del_timers_sync(struct rvt_qp *qp)
2576 {
2577 	timer_delete_sync(&qp->s_timer);
2578 	hrtimer_cancel(&qp->s_rnr_timer);
2579 }
2580 EXPORT_SYMBOL(rvt_del_timers_sync);
2581 
2582 /*
2583  * This is called from s_timer for missing responses.
2584  */
2585 static void rvt_rc_timeout(struct timer_list *t)
2586 {
2587 	struct rvt_qp *qp = timer_container_of(qp, t, s_timer);
2588 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2589 	unsigned long flags;
2590 
2591 	spin_lock_irqsave(&qp->r_lock, flags);
2592 	spin_lock(&qp->s_lock);
2593 	if (qp->s_flags & RVT_S_TIMER) {
2594 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2595 
2596 		qp->s_flags &= ~RVT_S_TIMER;
2597 		rvp->n_rc_timeouts++;
2598 		timer_delete(&qp->s_timer);
2599 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2600 		if (rdi->driver_f.notify_restart_rc)
2601 			rdi->driver_f.notify_restart_rc(qp,
2602 							qp->s_last_psn + 1,
2603 							1);
2604 		rdi->driver_f.schedule_send(qp);
2605 	}
2606 	spin_unlock(&qp->s_lock);
2607 	spin_unlock_irqrestore(&qp->r_lock, flags);
2608 }
2609 
2610 /*
2611  * This is called from s_timer for RNR timeouts.
2612  */
2613 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2614 {
2615 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2616 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2617 	unsigned long flags;
2618 
2619 	spin_lock_irqsave(&qp->s_lock, flags);
2620 	rvt_stop_rnr_timer(qp);
2621 	trace_rvt_rnrnak_timeout(qp, 0);
2622 	rdi->driver_f.schedule_send(qp);
2623 	spin_unlock_irqrestore(&qp->s_lock, flags);
2624 	return HRTIMER_NORESTART;
2625 }
2626 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2627 
2628 /**
2629  * rvt_qp_iter_init - initial for QP iteration
2630  * @rdi: rvt devinfo
2631  * @v: u64 value
2632  * @cb: user-defined callback
2633  *
2634  * This returns an iterator suitable for iterating QPs
2635  * in the system.
2636  *
2637  * The @cb is a user-defined callback and @v is a 64-bit
2638  * value passed to and relevant for processing in the
2639  * @cb.  An example use case would be to alter QP processing
2640  * based on criteria not part of the rvt_qp.
2641  *
2642  * Use cases that require memory allocation to succeed
2643  * must preallocate appropriately.
2644  *
2645  * Return: a pointer to an rvt_qp_iter or NULL
2646  */
2647 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2648 				     u64 v,
2649 				     void (*cb)(struct rvt_qp *qp, u64 v))
2650 {
2651 	struct rvt_qp_iter *i;
2652 
2653 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2654 	if (!i)
2655 		return NULL;
2656 
2657 	i->rdi = rdi;
2658 	/* number of special QPs (SMI/GSI) for device */
2659 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2660 	i->v = v;
2661 	i->cb = cb;
2662 
2663 	return i;
2664 }
2665 EXPORT_SYMBOL(rvt_qp_iter_init);
2666 
2667 /**
2668  * rvt_qp_iter_next - return the next QP in iter
2669  * @iter: the iterator
2670  *
2671  * Fine grained QP iterator suitable for use
2672  * with debugfs seq_file mechanisms.
2673  *
2674  * Updates iter->qp with the current QP when the return
2675  * value is 0.
2676  *
2677  * Return: 0 - iter->qp is valid 1 - no more QPs
2678  */
2679 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2680 	__must_hold(RCU)
2681 {
2682 	int n = iter->n;
2683 	int ret = 1;
2684 	struct rvt_qp *pqp = iter->qp;
2685 	struct rvt_qp *qp;
2686 	struct rvt_dev_info *rdi = iter->rdi;
2687 
2688 	/*
2689 	 * The approach is to consider the special qps
2690 	 * as additional table entries before the
2691 	 * real hash table.  Since the qp code sets
2692 	 * the qp->next hash link to NULL, this works just fine.
2693 	 *
2694 	 * iter->specials is 2 * # ports
2695 	 *
2696 	 * n = 0..iter->specials is the special qp indices
2697 	 *
2698 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2699 	 * the potential hash bucket entries
2700 	 *
2701 	 */
2702 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2703 		if (pqp) {
2704 			qp = rcu_dereference(pqp->next);
2705 		} else {
2706 			if (n < iter->specials) {
2707 				struct rvt_ibport *rvp;
2708 				int pidx;
2709 
2710 				pidx = n % rdi->ibdev.phys_port_cnt;
2711 				rvp = rdi->ports[pidx];
2712 				qp = rcu_dereference(rvp->qp[n & 1]);
2713 			} else {
2714 				qp = rcu_dereference(
2715 					rdi->qp_dev->qp_table[
2716 						(n - iter->specials)]);
2717 			}
2718 		}
2719 		pqp = qp;
2720 		if (qp) {
2721 			iter->qp = qp;
2722 			iter->n = n;
2723 			return 0;
2724 		}
2725 	}
2726 	return ret;
2727 }
2728 EXPORT_SYMBOL(rvt_qp_iter_next);
2729 
2730 /**
2731  * rvt_qp_iter - iterate all QPs
2732  * @rdi: rvt devinfo
2733  * @v: a 64-bit value
2734  * @cb: a callback
2735  *
2736  * This provides a way for iterating all QPs.
2737  *
2738  * The @cb is a user-defined callback and @v is a 64-bit
2739  * value passed to and relevant for processing in the
2740  * cb.  An example use case would be to alter QP processing
2741  * based on criteria not part of the rvt_qp.
2742  *
2743  * The code has an internal iterator to simplify
2744  * non seq_file use cases.
2745  */
2746 void rvt_qp_iter(struct rvt_dev_info *rdi,
2747 		 u64 v,
2748 		 void (*cb)(struct rvt_qp *qp, u64 v))
2749 {
2750 	int ret;
2751 	struct rvt_qp_iter i = {
2752 		.rdi = rdi,
2753 		.specials = rdi->ibdev.phys_port_cnt * 2,
2754 		.v = v,
2755 		.cb = cb
2756 	};
2757 
2758 	rcu_read_lock();
2759 	do {
2760 		ret = rvt_qp_iter_next(&i);
2761 		if (!ret) {
2762 			rvt_get_qp(i.qp);
2763 			rcu_read_unlock();
2764 			i.cb(i.qp, i.v);
2765 			rcu_read_lock();
2766 			rvt_put_qp(i.qp);
2767 		}
2768 	} while (!ret);
2769 	rcu_read_unlock();
2770 }
2771 EXPORT_SYMBOL(rvt_qp_iter);
2772 
2773 /*
2774  * This should be called with s_lock and r_lock held.
2775  */
2776 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2777 		       enum ib_wc_status status)
2778 {
2779 	u32 old_last, last;
2780 	struct rvt_dev_info *rdi;
2781 
2782 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2783 		return;
2784 	rdi = ib_to_rvt(qp->ibqp.device);
2785 
2786 	old_last = qp->s_last;
2787 	trace_rvt_qp_send_completion(qp, wqe, old_last);
2788 	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2789 				    status);
2790 	if (qp->s_acked == old_last)
2791 		qp->s_acked = last;
2792 	if (qp->s_cur == old_last)
2793 		qp->s_cur = last;
2794 	if (qp->s_tail == old_last)
2795 		qp->s_tail = last;
2796 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2797 		qp->s_draining = 0;
2798 }
2799 EXPORT_SYMBOL(rvt_send_complete);
2800 
2801 /**
2802  * rvt_copy_sge - copy data to SGE memory
2803  * @qp: associated QP
2804  * @ss: the SGE state
2805  * @data: the data to copy
2806  * @length: the length of the data
2807  * @release: boolean to release MR
2808  * @copy_last: do a separate copy of the last 8 bytes
2809  */
2810 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2811 		  void *data, u32 length,
2812 		  bool release, bool copy_last)
2813 {
2814 	struct rvt_sge *sge = &ss->sge;
2815 	int i;
2816 	bool in_last = false;
2817 	bool cacheless_copy = false;
2818 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2819 	struct rvt_wss *wss = rdi->wss;
2820 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2821 
2822 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2823 		cacheless_copy = length >= PAGE_SIZE;
2824 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2825 		if (length >= PAGE_SIZE) {
2826 			/*
2827 			 * NOTE: this *assumes*:
2828 			 * o The first vaddr is the dest.
2829 			 * o If multiple pages, then vaddr is sequential.
2830 			 */
2831 			wss_insert(wss, sge->vaddr);
2832 			if (length >= (2 * PAGE_SIZE))
2833 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2834 
2835 			cacheless_copy = wss_exceeds_threshold(wss);
2836 		} else {
2837 			wss_advance_clean_counter(wss);
2838 		}
2839 	}
2840 
2841 	if (copy_last) {
2842 		if (length > 8) {
2843 			length -= 8;
2844 		} else {
2845 			copy_last = false;
2846 			in_last = true;
2847 		}
2848 	}
2849 
2850 again:
2851 	while (length) {
2852 		u32 len = rvt_get_sge_length(sge, length);
2853 
2854 		WARN_ON_ONCE(len == 0);
2855 		if (unlikely(in_last)) {
2856 			/* enforce byte transfer ordering */
2857 			for (i = 0; i < len; i++)
2858 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2859 		} else if (cacheless_copy) {
2860 			cacheless_memcpy(sge->vaddr, data, len);
2861 		} else {
2862 			memcpy(sge->vaddr, data, len);
2863 		}
2864 		rvt_update_sge(ss, len, release);
2865 		data += len;
2866 		length -= len;
2867 	}
2868 
2869 	if (copy_last) {
2870 		copy_last = false;
2871 		in_last = true;
2872 		length = 8;
2873 		goto again;
2874 	}
2875 }
2876 EXPORT_SYMBOL(rvt_copy_sge);
2877 
2878 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2879 					  struct rvt_qp *sqp)
2880 {
2881 	rvp->n_pkt_drops++;
2882 	/*
2883 	 * For RC, the requester would timeout and retry so
2884 	 * shortcut the timeouts and just signal too many retries.
2885 	 */
2886 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2887 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2888 }
2889 
2890 /**
2891  * rvt_ruc_loopback - handle UC and RC loopback requests
2892  * @sqp: the sending QP
2893  *
2894  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2895  * Note that although we are single threaded due to the send engine, we still
2896  * have to protect against post_send().  We don't have to worry about
2897  * receive interrupts since this is a connected protocol and all packets
2898  * will pass through here.
2899  */
2900 void rvt_ruc_loopback(struct rvt_qp *sqp)
2901 {
2902 	struct rvt_ibport *rvp =  NULL;
2903 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2904 	struct rvt_qp *qp;
2905 	struct rvt_swqe *wqe;
2906 	struct rvt_sge *sge;
2907 	unsigned long flags;
2908 	struct ib_wc wc;
2909 	u64 sdata;
2910 	atomic64_t *maddr;
2911 	enum ib_wc_status send_status;
2912 	bool release;
2913 	int ret;
2914 	bool copy_last = false;
2915 	int local_ops = 0;
2916 
2917 	rcu_read_lock();
2918 	rvp = rdi->ports[sqp->port_num - 1];
2919 
2920 	/*
2921 	 * Note that we check the responder QP state after
2922 	 * checking the requester's state.
2923 	 */
2924 
2925 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2926 			    sqp->remote_qpn);
2927 
2928 	spin_lock_irqsave(&sqp->s_lock, flags);
2929 
2930 	/* Return if we are already busy processing a work request. */
2931 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2932 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2933 		goto unlock;
2934 
2935 	sqp->s_flags |= RVT_S_BUSY;
2936 
2937 again:
2938 	if (sqp->s_last == READ_ONCE(sqp->s_head))
2939 		goto clr_busy;
2940 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2941 
2942 	/* Return if it is not OK to start a new work request. */
2943 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2944 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2945 			goto clr_busy;
2946 		/* We are in the error state, flush the work request. */
2947 		send_status = IB_WC_WR_FLUSH_ERR;
2948 		goto flush_send;
2949 	}
2950 
2951 	/*
2952 	 * We can rely on the entry not changing without the s_lock
2953 	 * being held until we update s_last.
2954 	 * We increment s_cur to indicate s_last is in progress.
2955 	 */
2956 	if (sqp->s_last == sqp->s_cur) {
2957 		if (++sqp->s_cur >= sqp->s_size)
2958 			sqp->s_cur = 0;
2959 	}
2960 	spin_unlock_irqrestore(&sqp->s_lock, flags);
2961 
2962 	if (!qp) {
2963 		send_status = loopback_qp_drop(rvp, sqp);
2964 		goto serr_no_r_lock;
2965 	}
2966 	spin_lock_irqsave(&qp->r_lock, flags);
2967 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2968 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2969 		send_status = loopback_qp_drop(rvp, sqp);
2970 		goto serr;
2971 	}
2972 
2973 	memset(&wc, 0, sizeof(wc));
2974 	send_status = IB_WC_SUCCESS;
2975 
2976 	release = true;
2977 	sqp->s_sge.sge = wqe->sg_list[0];
2978 	sqp->s_sge.sg_list = wqe->sg_list + 1;
2979 	sqp->s_sge.num_sge = wqe->wr.num_sge;
2980 	sqp->s_len = wqe->length;
2981 	switch (wqe->wr.opcode) {
2982 	case IB_WR_REG_MR:
2983 		goto send_comp;
2984 
2985 	case IB_WR_LOCAL_INV:
2986 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2987 			if (rvt_invalidate_rkey(sqp,
2988 						wqe->wr.ex.invalidate_rkey))
2989 				send_status = IB_WC_LOC_PROT_ERR;
2990 			local_ops = 1;
2991 		}
2992 		goto send_comp;
2993 
2994 	case IB_WR_SEND_WITH_INV:
2995 	case IB_WR_SEND_WITH_IMM:
2996 	case IB_WR_SEND:
2997 		ret = rvt_get_rwqe(qp, false);
2998 		if (ret < 0)
2999 			goto op_err;
3000 		if (!ret)
3001 			goto rnr_nak;
3002 		if (wqe->length > qp->r_len)
3003 			goto inv_err;
3004 		switch (wqe->wr.opcode) {
3005 		case IB_WR_SEND_WITH_INV:
3006 			if (!rvt_invalidate_rkey(qp,
3007 						 wqe->wr.ex.invalidate_rkey)) {
3008 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3009 				wc.ex.invalidate_rkey =
3010 					wqe->wr.ex.invalidate_rkey;
3011 			}
3012 			break;
3013 		case IB_WR_SEND_WITH_IMM:
3014 			wc.wc_flags = IB_WC_WITH_IMM;
3015 			wc.ex.imm_data = wqe->wr.ex.imm_data;
3016 			break;
3017 		default:
3018 			break;
3019 		}
3020 		break;
3021 
3022 	case IB_WR_RDMA_WRITE_WITH_IMM:
3023 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3024 			goto inv_err;
3025 		wc.wc_flags = IB_WC_WITH_IMM;
3026 		wc.ex.imm_data = wqe->wr.ex.imm_data;
3027 		ret = rvt_get_rwqe(qp, true);
3028 		if (ret < 0)
3029 			goto op_err;
3030 		if (!ret)
3031 			goto rnr_nak;
3032 		/* skip copy_last set and qp_access_flags recheck */
3033 		goto do_write;
3034 	case IB_WR_RDMA_WRITE:
3035 		copy_last = rvt_is_user_qp(qp);
3036 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3037 			goto inv_err;
3038 do_write:
3039 		if (wqe->length == 0)
3040 			break;
3041 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3042 					  wqe->rdma_wr.remote_addr,
3043 					  wqe->rdma_wr.rkey,
3044 					  IB_ACCESS_REMOTE_WRITE)))
3045 			goto acc_err;
3046 		qp->r_sge.sg_list = NULL;
3047 		qp->r_sge.num_sge = 1;
3048 		qp->r_sge.total_len = wqe->length;
3049 		break;
3050 
3051 	case IB_WR_RDMA_READ:
3052 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3053 			goto inv_err;
3054 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3055 					  wqe->rdma_wr.remote_addr,
3056 					  wqe->rdma_wr.rkey,
3057 					  IB_ACCESS_REMOTE_READ)))
3058 			goto acc_err;
3059 		release = false;
3060 		sqp->s_sge.sg_list = NULL;
3061 		sqp->s_sge.num_sge = 1;
3062 		qp->r_sge.sge = wqe->sg_list[0];
3063 		qp->r_sge.sg_list = wqe->sg_list + 1;
3064 		qp->r_sge.num_sge = wqe->wr.num_sge;
3065 		qp->r_sge.total_len = wqe->length;
3066 		break;
3067 
3068 	case IB_WR_ATOMIC_CMP_AND_SWP:
3069 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3070 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3071 			goto inv_err;
3072 		if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3073 			goto inv_err;
3074 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3075 					  wqe->atomic_wr.remote_addr,
3076 					  wqe->atomic_wr.rkey,
3077 					  IB_ACCESS_REMOTE_ATOMIC)))
3078 			goto acc_err;
3079 		/* Perform atomic OP and save result. */
3080 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3081 		sdata = wqe->atomic_wr.compare_add;
3082 		*(u64 *)sqp->s_sge.sge.vaddr =
3083 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3084 			(u64)atomic64_add_return(sdata, maddr) - sdata :
3085 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3086 				      sdata, wqe->atomic_wr.swap);
3087 		rvt_put_mr(qp->r_sge.sge.mr);
3088 		qp->r_sge.num_sge = 0;
3089 		goto send_comp;
3090 
3091 	default:
3092 		send_status = IB_WC_LOC_QP_OP_ERR;
3093 		goto serr;
3094 	}
3095 
3096 	sge = &sqp->s_sge.sge;
3097 	while (sqp->s_len) {
3098 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3099 
3100 		WARN_ON_ONCE(len == 0);
3101 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3102 			     len, release, copy_last);
3103 		rvt_update_sge(&sqp->s_sge, len, !release);
3104 		sqp->s_len -= len;
3105 	}
3106 	if (release)
3107 		rvt_put_ss(&qp->r_sge);
3108 
3109 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3110 		goto send_comp;
3111 
3112 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3113 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3114 	else
3115 		wc.opcode = IB_WC_RECV;
3116 	wc.wr_id = qp->r_wr_id;
3117 	wc.status = IB_WC_SUCCESS;
3118 	wc.byte_len = wqe->length;
3119 	wc.qp = &qp->ibqp;
3120 	wc.src_qp = qp->remote_qpn;
3121 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3122 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3123 	wc.port_num = 1;
3124 	/* Signal completion event if the solicited bit is set. */
3125 	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3126 
3127 send_comp:
3128 	spin_unlock_irqrestore(&qp->r_lock, flags);
3129 	spin_lock_irqsave(&sqp->s_lock, flags);
3130 	rvp->n_loop_pkts++;
3131 flush_send:
3132 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3133 	spin_lock(&sqp->r_lock);
3134 	rvt_send_complete(sqp, wqe, send_status);
3135 	spin_unlock(&sqp->r_lock);
3136 	if (local_ops) {
3137 		atomic_dec(&sqp->local_ops_pending);
3138 		local_ops = 0;
3139 	}
3140 	goto again;
3141 
3142 rnr_nak:
3143 	/* Handle RNR NAK */
3144 	if (qp->ibqp.qp_type == IB_QPT_UC)
3145 		goto send_comp;
3146 	rvp->n_rnr_naks++;
3147 	/*
3148 	 * Note: we don't need the s_lock held since the BUSY flag
3149 	 * makes this single threaded.
3150 	 */
3151 	if (sqp->s_rnr_retry == 0) {
3152 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3153 		goto serr;
3154 	}
3155 	if (sqp->s_rnr_retry_cnt < 7)
3156 		sqp->s_rnr_retry--;
3157 	spin_unlock_irqrestore(&qp->r_lock, flags);
3158 	spin_lock_irqsave(&sqp->s_lock, flags);
3159 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3160 		goto clr_busy;
3161 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3162 				IB_AETH_CREDIT_SHIFT);
3163 	goto clr_busy;
3164 
3165 op_err:
3166 	send_status = IB_WC_REM_OP_ERR;
3167 	wc.status = IB_WC_LOC_QP_OP_ERR;
3168 	goto err;
3169 
3170 inv_err:
3171 	send_status =
3172 		sqp->ibqp.qp_type == IB_QPT_RC ?
3173 			IB_WC_REM_INV_REQ_ERR :
3174 			IB_WC_SUCCESS;
3175 	wc.status = IB_WC_LOC_QP_OP_ERR;
3176 	goto err;
3177 
3178 acc_err:
3179 	send_status = IB_WC_REM_ACCESS_ERR;
3180 	wc.status = IB_WC_LOC_PROT_ERR;
3181 err:
3182 	/* responder goes to error state */
3183 	rvt_rc_error(qp, wc.status);
3184 
3185 serr:
3186 	spin_unlock_irqrestore(&qp->r_lock, flags);
3187 serr_no_r_lock:
3188 	spin_lock_irqsave(&sqp->s_lock, flags);
3189 	spin_lock(&sqp->r_lock);
3190 	rvt_send_complete(sqp, wqe, send_status);
3191 	spin_unlock(&sqp->r_lock);
3192 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3193 		int lastwqe;
3194 
3195 		spin_lock(&sqp->r_lock);
3196 		lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3197 		spin_unlock(&sqp->r_lock);
3198 
3199 		sqp->s_flags &= ~RVT_S_BUSY;
3200 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3201 		if (lastwqe) {
3202 			struct ib_event ev;
3203 
3204 			ev.device = sqp->ibqp.device;
3205 			ev.element.qp = &sqp->ibqp;
3206 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3207 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3208 		}
3209 		goto done;
3210 	}
3211 clr_busy:
3212 	sqp->s_flags &= ~RVT_S_BUSY;
3213 unlock:
3214 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3215 done:
3216 	rcu_read_unlock();
3217 }
3218 EXPORT_SYMBOL(rvt_ruc_loopback);
3219