xref: /linux/drivers/infiniband/sw/rdmavt/qp.c (revision 5e3c6a312a0946d2d83e32359612cbb925a8bed0)
1 /*
2  * Copyright(c) 2016 - 2019 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60 
61 #define RVT_RWQ_COUNT_THRESHOLD 16
62 
63 static void rvt_rc_timeout(struct timer_list *t);
64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
65 			 enum ib_qp_type type);
66 
67 /*
68  * Convert the AETH RNR timeout code into the number of microseconds.
69  */
70 static const u32 ib_rvt_rnr_table[32] = {
71 	655360, /* 00: 655.36 */
72 	10,     /* 01:    .01 */
73 	20,     /* 02     .02 */
74 	30,     /* 03:    .03 */
75 	40,     /* 04:    .04 */
76 	60,     /* 05:    .06 */
77 	80,     /* 06:    .08 */
78 	120,    /* 07:    .12 */
79 	160,    /* 08:    .16 */
80 	240,    /* 09:    .24 */
81 	320,    /* 0A:    .32 */
82 	480,    /* 0B:    .48 */
83 	640,    /* 0C:    .64 */
84 	960,    /* 0D:    .96 */
85 	1280,   /* 0E:   1.28 */
86 	1920,   /* 0F:   1.92 */
87 	2560,   /* 10:   2.56 */
88 	3840,   /* 11:   3.84 */
89 	5120,   /* 12:   5.12 */
90 	7680,   /* 13:   7.68 */
91 	10240,  /* 14:  10.24 */
92 	15360,  /* 15:  15.36 */
93 	20480,  /* 16:  20.48 */
94 	30720,  /* 17:  30.72 */
95 	40960,  /* 18:  40.96 */
96 	61440,  /* 19:  61.44 */
97 	81920,  /* 1A:  81.92 */
98 	122880, /* 1B: 122.88 */
99 	163840, /* 1C: 163.84 */
100 	245760, /* 1D: 245.76 */
101 	327680, /* 1E: 327.68 */
102 	491520  /* 1F: 491.52 */
103 };
104 
105 /*
106  * Note that it is OK to post send work requests in the SQE and ERR
107  * states; rvt_do_send() will process them and generate error
108  * completions as per IB 1.2 C10-96.
109  */
110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
111 	[IB_QPS_RESET] = 0,
112 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
113 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
114 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
116 	    RVT_PROCESS_NEXT_SEND_OK,
117 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
119 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
120 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
122 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
123 };
124 EXPORT_SYMBOL(ib_rvt_state_ops);
125 
126 /* platform specific: return the last level cache (llc) size, in KiB */
127 static int rvt_wss_llc_size(void)
128 {
129 	/* assume that the boot CPU value is universal for all CPUs */
130 	return boot_cpu_data.x86_cache_size;
131 }
132 
133 /* platform specific: cacheless copy */
134 static void cacheless_memcpy(void *dst, void *src, size_t n)
135 {
136 	/*
137 	 * Use the only available X64 cacheless copy.  Add a __user cast
138 	 * to quiet sparse.  The src agument is already in the kernel so
139 	 * there are no security issues.  The extra fault recovery machinery
140 	 * is not invoked.
141 	 */
142 	__copy_user_nocache(dst, (void __user *)src, n, 0);
143 }
144 
145 void rvt_wss_exit(struct rvt_dev_info *rdi)
146 {
147 	struct rvt_wss *wss = rdi->wss;
148 
149 	if (!wss)
150 		return;
151 
152 	/* coded to handle partially initialized and repeat callers */
153 	kfree(wss->entries);
154 	wss->entries = NULL;
155 	kfree(rdi->wss);
156 	rdi->wss = NULL;
157 }
158 
159 /**
160  * rvt_wss_init - Init wss data structures
161  *
162  * Return: 0 on success
163  */
164 int rvt_wss_init(struct rvt_dev_info *rdi)
165 {
166 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
167 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
168 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
169 	long llc_size;
170 	long llc_bits;
171 	long table_size;
172 	long table_bits;
173 	struct rvt_wss *wss;
174 	int node = rdi->dparms.node;
175 
176 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
177 		rdi->wss = NULL;
178 		return 0;
179 	}
180 
181 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
182 	if (!rdi->wss)
183 		return -ENOMEM;
184 	wss = rdi->wss;
185 
186 	/* check for a valid percent range - default to 80 if none or invalid */
187 	if (wss_threshold < 1 || wss_threshold > 100)
188 		wss_threshold = 80;
189 
190 	/* reject a wildly large period */
191 	if (wss_clean_period > 1000000)
192 		wss_clean_period = 256;
193 
194 	/* reject a zero period */
195 	if (wss_clean_period == 0)
196 		wss_clean_period = 1;
197 
198 	/*
199 	 * Calculate the table size - the next power of 2 larger than the
200 	 * LLC size.  LLC size is in KiB.
201 	 */
202 	llc_size = rvt_wss_llc_size() * 1024;
203 	table_size = roundup_pow_of_two(llc_size);
204 
205 	/* one bit per page in rounded up table */
206 	llc_bits = llc_size / PAGE_SIZE;
207 	table_bits = table_size / PAGE_SIZE;
208 	wss->pages_mask = table_bits - 1;
209 	wss->num_entries = table_bits / BITS_PER_LONG;
210 
211 	wss->threshold = (llc_bits * wss_threshold) / 100;
212 	if (wss->threshold == 0)
213 		wss->threshold = 1;
214 
215 	wss->clean_period = wss_clean_period;
216 	atomic_set(&wss->clean_counter, wss_clean_period);
217 
218 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
219 				    GFP_KERNEL, node);
220 	if (!wss->entries) {
221 		rvt_wss_exit(rdi);
222 		return -ENOMEM;
223 	}
224 
225 	return 0;
226 }
227 
228 /*
229  * Advance the clean counter.  When the clean period has expired,
230  * clean an entry.
231  *
232  * This is implemented in atomics to avoid locking.  Because multiple
233  * variables are involved, it can be racy which can lead to slightly
234  * inaccurate information.  Since this is only a heuristic, this is
235  * OK.  Any innaccuracies will clean themselves out as the counter
236  * advances.  That said, it is unlikely the entry clean operation will
237  * race - the next possible racer will not start until the next clean
238  * period.
239  *
240  * The clean counter is implemented as a decrement to zero.  When zero
241  * is reached an entry is cleaned.
242  */
243 static void wss_advance_clean_counter(struct rvt_wss *wss)
244 {
245 	int entry;
246 	int weight;
247 	unsigned long bits;
248 
249 	/* become the cleaner if we decrement the counter to zero */
250 	if (atomic_dec_and_test(&wss->clean_counter)) {
251 		/*
252 		 * Set, not add, the clean period.  This avoids an issue
253 		 * where the counter could decrement below the clean period.
254 		 * Doing a set can result in lost decrements, slowing the
255 		 * clean advance.  Since this a heuristic, this possible
256 		 * slowdown is OK.
257 		 *
258 		 * An alternative is to loop, advancing the counter by a
259 		 * clean period until the result is > 0. However, this could
260 		 * lead to several threads keeping another in the clean loop.
261 		 * This could be mitigated by limiting the number of times
262 		 * we stay in the loop.
263 		 */
264 		atomic_set(&wss->clean_counter, wss->clean_period);
265 
266 		/*
267 		 * Uniquely grab the entry to clean and move to next.
268 		 * The current entry is always the lower bits of
269 		 * wss.clean_entry.  The table size, wss.num_entries,
270 		 * is always a power-of-2.
271 		 */
272 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
273 			& (wss->num_entries - 1);
274 
275 		/* clear the entry and count the bits */
276 		bits = xchg(&wss->entries[entry], 0);
277 		weight = hweight64((u64)bits);
278 		/* only adjust the contended total count if needed */
279 		if (weight)
280 			atomic_sub(weight, &wss->total_count);
281 	}
282 }
283 
284 /*
285  * Insert the given address into the working set array.
286  */
287 static void wss_insert(struct rvt_wss *wss, void *address)
288 {
289 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
290 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
291 	u32 nr = page & (BITS_PER_LONG - 1);
292 
293 	if (!test_and_set_bit(nr, &wss->entries[entry]))
294 		atomic_inc(&wss->total_count);
295 
296 	wss_advance_clean_counter(wss);
297 }
298 
299 /*
300  * Is the working set larger than the threshold?
301  */
302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
303 {
304 	return atomic_read(&wss->total_count) >= wss->threshold;
305 }
306 
307 static void get_map_page(struct rvt_qpn_table *qpt,
308 			 struct rvt_qpn_map *map)
309 {
310 	unsigned long page = get_zeroed_page(GFP_KERNEL);
311 
312 	/*
313 	 * Free the page if someone raced with us installing it.
314 	 */
315 
316 	spin_lock(&qpt->lock);
317 	if (map->page)
318 		free_page(page);
319 	else
320 		map->page = (void *)page;
321 	spin_unlock(&qpt->lock);
322 }
323 
324 /**
325  * init_qpn_table - initialize the QP number table for a device
326  * @qpt: the QPN table
327  */
328 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
329 {
330 	u32 offset, i;
331 	struct rvt_qpn_map *map;
332 	int ret = 0;
333 
334 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
335 		return -EINVAL;
336 
337 	spin_lock_init(&qpt->lock);
338 
339 	qpt->last = rdi->dparms.qpn_start;
340 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
341 
342 	/*
343 	 * Drivers may want some QPs beyond what we need for verbs let them use
344 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
345 	 * for those. The reserved range must be *after* the range which verbs
346 	 * will pick from.
347 	 */
348 
349 	/* Figure out number of bit maps needed before reserved range */
350 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
351 
352 	/* This should always be zero */
353 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
354 
355 	/* Starting with the first reserved bit map */
356 	map = &qpt->map[qpt->nmaps];
357 
358 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
359 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
360 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
361 		if (!map->page) {
362 			get_map_page(qpt, map);
363 			if (!map->page) {
364 				ret = -ENOMEM;
365 				break;
366 			}
367 		}
368 		set_bit(offset, map->page);
369 		offset++;
370 		if (offset == RVT_BITS_PER_PAGE) {
371 			/* next page */
372 			qpt->nmaps++;
373 			map++;
374 			offset = 0;
375 		}
376 	}
377 	return ret;
378 }
379 
380 /**
381  * free_qpn_table - free the QP number table for a device
382  * @qpt: the QPN table
383  */
384 static void free_qpn_table(struct rvt_qpn_table *qpt)
385 {
386 	int i;
387 
388 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
389 		free_page((unsigned long)qpt->map[i].page);
390 }
391 
392 /**
393  * rvt_driver_qp_init - Init driver qp resources
394  * @rdi: rvt dev strucutre
395  *
396  * Return: 0 on success
397  */
398 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
399 {
400 	int i;
401 	int ret = -ENOMEM;
402 
403 	if (!rdi->dparms.qp_table_size)
404 		return -EINVAL;
405 
406 	/*
407 	 * If driver is not doing any QP allocation then make sure it is
408 	 * providing the necessary QP functions.
409 	 */
410 	if (!rdi->driver_f.free_all_qps ||
411 	    !rdi->driver_f.qp_priv_alloc ||
412 	    !rdi->driver_f.qp_priv_free ||
413 	    !rdi->driver_f.notify_qp_reset ||
414 	    !rdi->driver_f.notify_restart_rc)
415 		return -EINVAL;
416 
417 	/* allocate parent object */
418 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
419 				   rdi->dparms.node);
420 	if (!rdi->qp_dev)
421 		return -ENOMEM;
422 
423 	/* allocate hash table */
424 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
425 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
426 	rdi->qp_dev->qp_table =
427 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
428 			     sizeof(*rdi->qp_dev->qp_table),
429 			     GFP_KERNEL, rdi->dparms.node);
430 	if (!rdi->qp_dev->qp_table)
431 		goto no_qp_table;
432 
433 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
434 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
435 
436 	spin_lock_init(&rdi->qp_dev->qpt_lock);
437 
438 	/* initialize qpn map */
439 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
440 		goto fail_table;
441 
442 	spin_lock_init(&rdi->n_qps_lock);
443 
444 	return 0;
445 
446 fail_table:
447 	kfree(rdi->qp_dev->qp_table);
448 	free_qpn_table(&rdi->qp_dev->qpn_table);
449 
450 no_qp_table:
451 	kfree(rdi->qp_dev);
452 
453 	return ret;
454 }
455 
456 /**
457  * rvt_free_qp_cb - callback function to reset a qp
458  * @qp: the qp to reset
459  * @v: a 64-bit value
460  *
461  * This function resets the qp and removes it from the
462  * qp hash table.
463  */
464 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
465 {
466 	unsigned int *qp_inuse = (unsigned int *)v;
467 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
468 
469 	/* Reset the qp and remove it from the qp hash list */
470 	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
471 
472 	/* Increment the qp_inuse count */
473 	(*qp_inuse)++;
474 }
475 
476 /**
477  * rvt_free_all_qps - check for QPs still in use
478  * @rdi: rvt device info structure
479  *
480  * There should not be any QPs still in use.
481  * Free memory for table.
482  * Return the number of QPs still in use.
483  */
484 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
485 {
486 	unsigned int qp_inuse = 0;
487 
488 	qp_inuse += rvt_mcast_tree_empty(rdi);
489 
490 	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
491 
492 	return qp_inuse;
493 }
494 
495 /**
496  * rvt_qp_exit - clean up qps on device exit
497  * @rdi: rvt dev structure
498  *
499  * Check for qp leaks and free resources.
500  */
501 void rvt_qp_exit(struct rvt_dev_info *rdi)
502 {
503 	u32 qps_inuse = rvt_free_all_qps(rdi);
504 
505 	if (qps_inuse)
506 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
507 			   qps_inuse);
508 	if (!rdi->qp_dev)
509 		return;
510 
511 	kfree(rdi->qp_dev->qp_table);
512 	free_qpn_table(&rdi->qp_dev->qpn_table);
513 	kfree(rdi->qp_dev);
514 }
515 
516 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
517 			      struct rvt_qpn_map *map, unsigned off)
518 {
519 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
520 }
521 
522 /**
523  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
524  *	       IB_QPT_SMI/IB_QPT_GSI
525  * @rdi: rvt device info structure
526  * @qpt: queue pair number table pointer
527  * @port_num: IB port number, 1 based, comes from core
528  *
529  * Return: The queue pair number
530  */
531 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
532 		     enum ib_qp_type type, u8 port_num)
533 {
534 	u32 i, offset, max_scan, qpn;
535 	struct rvt_qpn_map *map;
536 	u32 ret;
537 
538 	if (rdi->driver_f.alloc_qpn)
539 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
540 
541 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
542 		unsigned n;
543 
544 		ret = type == IB_QPT_GSI;
545 		n = 1 << (ret + 2 * (port_num - 1));
546 		spin_lock(&qpt->lock);
547 		if (qpt->flags & n)
548 			ret = -EINVAL;
549 		else
550 			qpt->flags |= n;
551 		spin_unlock(&qpt->lock);
552 		goto bail;
553 	}
554 
555 	qpn = qpt->last + qpt->incr;
556 	if (qpn >= RVT_QPN_MAX)
557 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
558 	/* offset carries bit 0 */
559 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
560 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
561 	max_scan = qpt->nmaps - !offset;
562 	for (i = 0;;) {
563 		if (unlikely(!map->page)) {
564 			get_map_page(qpt, map);
565 			if (unlikely(!map->page))
566 				break;
567 		}
568 		do {
569 			if (!test_and_set_bit(offset, map->page)) {
570 				qpt->last = qpn;
571 				ret = qpn;
572 				goto bail;
573 			}
574 			offset += qpt->incr;
575 			/*
576 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
577 			 * That is OK.   It gets re-assigned below
578 			 */
579 			qpn = mk_qpn(qpt, map, offset);
580 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
581 		/*
582 		 * In order to keep the number of pages allocated to a
583 		 * minimum, we scan the all existing pages before increasing
584 		 * the size of the bitmap table.
585 		 */
586 		if (++i > max_scan) {
587 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
588 				break;
589 			map = &qpt->map[qpt->nmaps++];
590 			/* start at incr with current bit 0 */
591 			offset = qpt->incr | (offset & 1);
592 		} else if (map < &qpt->map[qpt->nmaps]) {
593 			++map;
594 			/* start at incr with current bit 0 */
595 			offset = qpt->incr | (offset & 1);
596 		} else {
597 			map = &qpt->map[0];
598 			/* wrap to first map page, invert bit 0 */
599 			offset = qpt->incr | ((offset & 1) ^ 1);
600 		}
601 		/* there can be no set bits in low-order QoS bits */
602 		WARN_ON(rdi->dparms.qos_shift > 1 &&
603 			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
604 		qpn = mk_qpn(qpt, map, offset);
605 	}
606 
607 	ret = -ENOMEM;
608 
609 bail:
610 	return ret;
611 }
612 
613 /**
614  * rvt_clear_mr_refs - Drop help mr refs
615  * @qp: rvt qp data structure
616  * @clr_sends: If shoudl clear send side or not
617  */
618 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
619 {
620 	unsigned n;
621 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
622 
623 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
624 		rvt_put_ss(&qp->s_rdma_read_sge);
625 
626 	rvt_put_ss(&qp->r_sge);
627 
628 	if (clr_sends) {
629 		while (qp->s_last != qp->s_head) {
630 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
631 
632 			rvt_put_qp_swqe(qp, wqe);
633 			if (++qp->s_last >= qp->s_size)
634 				qp->s_last = 0;
635 			smp_wmb(); /* see qp_set_savail */
636 		}
637 		if (qp->s_rdma_mr) {
638 			rvt_put_mr(qp->s_rdma_mr);
639 			qp->s_rdma_mr = NULL;
640 		}
641 	}
642 
643 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
644 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
645 
646 		if (e->rdma_sge.mr) {
647 			rvt_put_mr(e->rdma_sge.mr);
648 			e->rdma_sge.mr = NULL;
649 		}
650 	}
651 }
652 
653 /**
654  * rvt_swqe_has_lkey - return true if lkey is used by swqe
655  * @wqe - the send wqe
656  * @lkey - the lkey
657  *
658  * Test the swqe for using lkey
659  */
660 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
661 {
662 	int i;
663 
664 	for (i = 0; i < wqe->wr.num_sge; i++) {
665 		struct rvt_sge *sge = &wqe->sg_list[i];
666 
667 		if (rvt_mr_has_lkey(sge->mr, lkey))
668 			return true;
669 	}
670 	return false;
671 }
672 
673 /**
674  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
675  * @qp - the rvt_qp
676  * @lkey - the lkey
677  */
678 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
679 {
680 	u32 s_last = qp->s_last;
681 
682 	while (s_last != qp->s_head) {
683 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
684 
685 		if (rvt_swqe_has_lkey(wqe, lkey))
686 			return true;
687 
688 		if (++s_last >= qp->s_size)
689 			s_last = 0;
690 	}
691 	if (qp->s_rdma_mr)
692 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
693 			return true;
694 	return false;
695 }
696 
697 /**
698  * rvt_qp_acks_has_lkey - return true if acks have lkey
699  * @qp - the qp
700  * @lkey - the lkey
701  */
702 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
703 {
704 	int i;
705 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
706 
707 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
708 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
709 
710 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
711 			return true;
712 	}
713 	return false;
714 }
715 
716 /*
717  * rvt_qp_mr_clean - clean up remote ops for lkey
718  * @qp - the qp
719  * @lkey - the lkey that is being de-registered
720  *
721  * This routine checks if the lkey is being used by
722  * the qp.
723  *
724  * If so, the qp is put into an error state to elminate
725  * any references from the qp.
726  */
727 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
728 {
729 	bool lastwqe = false;
730 
731 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
732 	    qp->ibqp.qp_type == IB_QPT_GSI)
733 		/* avoid special QPs */
734 		return;
735 	spin_lock_irq(&qp->r_lock);
736 	spin_lock(&qp->s_hlock);
737 	spin_lock(&qp->s_lock);
738 
739 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
740 		goto check_lwqe;
741 
742 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
743 	    rvt_qp_sends_has_lkey(qp, lkey) ||
744 	    rvt_qp_acks_has_lkey(qp, lkey))
745 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
746 check_lwqe:
747 	spin_unlock(&qp->s_lock);
748 	spin_unlock(&qp->s_hlock);
749 	spin_unlock_irq(&qp->r_lock);
750 	if (lastwqe) {
751 		struct ib_event ev;
752 
753 		ev.device = qp->ibqp.device;
754 		ev.element.qp = &qp->ibqp;
755 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
756 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
757 	}
758 }
759 
760 /**
761  * rvt_remove_qp - remove qp form table
762  * @rdi: rvt dev struct
763  * @qp: qp to remove
764  *
765  * Remove the QP from the table so it can't be found asynchronously by
766  * the receive routine.
767  */
768 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
769 {
770 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
771 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
772 	unsigned long flags;
773 	int removed = 1;
774 
775 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
776 
777 	if (rcu_dereference_protected(rvp->qp[0],
778 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
779 		RCU_INIT_POINTER(rvp->qp[0], NULL);
780 	} else if (rcu_dereference_protected(rvp->qp[1],
781 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
782 		RCU_INIT_POINTER(rvp->qp[1], NULL);
783 	} else {
784 		struct rvt_qp *q;
785 		struct rvt_qp __rcu **qpp;
786 
787 		removed = 0;
788 		qpp = &rdi->qp_dev->qp_table[n];
789 		for (; (q = rcu_dereference_protected(*qpp,
790 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
791 			qpp = &q->next) {
792 			if (q == qp) {
793 				RCU_INIT_POINTER(*qpp,
794 				     rcu_dereference_protected(qp->next,
795 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
796 				removed = 1;
797 				trace_rvt_qpremove(qp, n);
798 				break;
799 			}
800 		}
801 	}
802 
803 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
804 	if (removed) {
805 		synchronize_rcu();
806 		rvt_put_qp(qp);
807 	}
808 }
809 
810 /**
811  * rvt_alloc_rq - allocate memory for user or kernel buffer
812  * @rq: receive queue data structure
813  * @size: number of request queue entries
814  * @node: The NUMA node
815  * @udata: True if user data is available or not false
816  *
817  * Return: If memory allocation failed, return -ENONEM
818  * This function is used by both shared receive
819  * queues and non-shared receive queues to allocate
820  * memory.
821  */
822 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
823 		 struct ib_udata *udata)
824 {
825 	if (udata) {
826 		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
827 		if (!rq->wq)
828 			goto bail;
829 		/* need kwq with no buffers */
830 		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
831 		if (!rq->kwq)
832 			goto bail;
833 		rq->kwq->curr_wq = rq->wq->wq;
834 	} else {
835 		/* need kwq with buffers */
836 		rq->kwq =
837 			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
838 		if (!rq->kwq)
839 			goto bail;
840 		rq->kwq->curr_wq = rq->kwq->wq;
841 	}
842 
843 	spin_lock_init(&rq->kwq->p_lock);
844 	spin_lock_init(&rq->kwq->c_lock);
845 	return 0;
846 bail:
847 	rvt_free_rq(rq);
848 	return -ENOMEM;
849 }
850 
851 /**
852  * rvt_init_qp - initialize the QP state to the reset state
853  * @qp: the QP to init or reinit
854  * @type: the QP type
855  *
856  * This function is called from both rvt_create_qp() and
857  * rvt_reset_qp().   The difference is that the reset
858  * patch the necessary locks to protect against concurent
859  * access.
860  */
861 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
862 			enum ib_qp_type type)
863 {
864 	qp->remote_qpn = 0;
865 	qp->qkey = 0;
866 	qp->qp_access_flags = 0;
867 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
868 	qp->s_hdrwords = 0;
869 	qp->s_wqe = NULL;
870 	qp->s_draining = 0;
871 	qp->s_next_psn = 0;
872 	qp->s_last_psn = 0;
873 	qp->s_sending_psn = 0;
874 	qp->s_sending_hpsn = 0;
875 	qp->s_psn = 0;
876 	qp->r_psn = 0;
877 	qp->r_msn = 0;
878 	if (type == IB_QPT_RC) {
879 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
880 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
881 	} else {
882 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
883 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
884 	}
885 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
886 	qp->r_nak_state = 0;
887 	qp->r_aflags = 0;
888 	qp->r_flags = 0;
889 	qp->s_head = 0;
890 	qp->s_tail = 0;
891 	qp->s_cur = 0;
892 	qp->s_acked = 0;
893 	qp->s_last = 0;
894 	qp->s_ssn = 1;
895 	qp->s_lsn = 0;
896 	qp->s_mig_state = IB_MIG_MIGRATED;
897 	qp->r_head_ack_queue = 0;
898 	qp->s_tail_ack_queue = 0;
899 	qp->s_acked_ack_queue = 0;
900 	qp->s_num_rd_atomic = 0;
901 	if (qp->r_rq.kwq)
902 		qp->r_rq.kwq->count = qp->r_rq.size;
903 	qp->r_sge.num_sge = 0;
904 	atomic_set(&qp->s_reserved_used, 0);
905 }
906 
907 /**
908  * _rvt_reset_qp - initialize the QP state to the reset state
909  * @qp: the QP to reset
910  * @type: the QP type
911  *
912  * r_lock, s_hlock, and s_lock are required to be held by the caller
913  */
914 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
915 			  enum ib_qp_type type)
916 	__must_hold(&qp->s_lock)
917 	__must_hold(&qp->s_hlock)
918 	__must_hold(&qp->r_lock)
919 {
920 	lockdep_assert_held(&qp->r_lock);
921 	lockdep_assert_held(&qp->s_hlock);
922 	lockdep_assert_held(&qp->s_lock);
923 	if (qp->state != IB_QPS_RESET) {
924 		qp->state = IB_QPS_RESET;
925 
926 		/* Let drivers flush their waitlist */
927 		rdi->driver_f.flush_qp_waiters(qp);
928 		rvt_stop_rc_timers(qp);
929 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
930 		spin_unlock(&qp->s_lock);
931 		spin_unlock(&qp->s_hlock);
932 		spin_unlock_irq(&qp->r_lock);
933 
934 		/* Stop the send queue and the retry timer */
935 		rdi->driver_f.stop_send_queue(qp);
936 		rvt_del_timers_sync(qp);
937 		/* Wait for things to stop */
938 		rdi->driver_f.quiesce_qp(qp);
939 
940 		/* take qp out the hash and wait for it to be unused */
941 		rvt_remove_qp(rdi, qp);
942 
943 		/* grab the lock b/c it was locked at call time */
944 		spin_lock_irq(&qp->r_lock);
945 		spin_lock(&qp->s_hlock);
946 		spin_lock(&qp->s_lock);
947 
948 		rvt_clear_mr_refs(qp, 1);
949 		/*
950 		 * Let the driver do any tear down or re-init it needs to for
951 		 * a qp that has been reset
952 		 */
953 		rdi->driver_f.notify_qp_reset(qp);
954 	}
955 	rvt_init_qp(rdi, qp, type);
956 	lockdep_assert_held(&qp->r_lock);
957 	lockdep_assert_held(&qp->s_hlock);
958 	lockdep_assert_held(&qp->s_lock);
959 }
960 
961 /**
962  * rvt_reset_qp - initialize the QP state to the reset state
963  * @rdi: the device info
964  * @qp: the QP to reset
965  * @type: the QP type
966  *
967  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
968  * before calling _rvt_reset_qp().
969  */
970 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
971 			 enum ib_qp_type type)
972 {
973 	spin_lock_irq(&qp->r_lock);
974 	spin_lock(&qp->s_hlock);
975 	spin_lock(&qp->s_lock);
976 	_rvt_reset_qp(rdi, qp, type);
977 	spin_unlock(&qp->s_lock);
978 	spin_unlock(&qp->s_hlock);
979 	spin_unlock_irq(&qp->r_lock);
980 }
981 
982 /** rvt_free_qpn - Free a qpn from the bit map
983  * @qpt: QP table
984  * @qpn: queue pair number to free
985  */
986 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
987 {
988 	struct rvt_qpn_map *map;
989 
990 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
991 	if (map->page)
992 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
993 }
994 
995 /**
996  * get_allowed_ops - Given a QP type return the appropriate allowed OP
997  * @type: valid, supported, QP type
998  */
999 static u8 get_allowed_ops(enum ib_qp_type type)
1000 {
1001 	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1002 		IB_OPCODE_UC : IB_OPCODE_UD;
1003 }
1004 
1005 /**
1006  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1007  * @qp: Valid QP with allowed_ops set
1008  *
1009  * The rvt_swqe data structure being used is a union, so this is
1010  * only valid for UD QPs.
1011  */
1012 static void free_ud_wq_attr(struct rvt_qp *qp)
1013 {
1014 	struct rvt_swqe *wqe;
1015 	int i;
1016 
1017 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1018 		wqe = rvt_get_swqe_ptr(qp, i);
1019 		kfree(wqe->ud_wr.attr);
1020 		wqe->ud_wr.attr = NULL;
1021 	}
1022 }
1023 
1024 /**
1025  * alloc_ud_wq_attr - AH attribute cache for UD QPs
1026  * @qp: Valid QP with allowed_ops set
1027  * @node: Numa node for allocation
1028  *
1029  * The rvt_swqe data structure being used is a union, so this is
1030  * only valid for UD QPs.
1031  */
1032 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1033 {
1034 	struct rvt_swqe *wqe;
1035 	int i;
1036 
1037 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1038 		wqe = rvt_get_swqe_ptr(qp, i);
1039 		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1040 					       GFP_KERNEL, node);
1041 		if (!wqe->ud_wr.attr) {
1042 			free_ud_wq_attr(qp);
1043 			return -ENOMEM;
1044 		}
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  * rvt_create_qp - create a queue pair for a device
1052  * @ibpd: the protection domain who's device we create the queue pair for
1053  * @init_attr: the attributes of the queue pair
1054  * @udata: user data for libibverbs.so
1055  *
1056  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1057  * unique idea of what queue pair numbers mean. For instance there is a reserved
1058  * range for PSM.
1059  *
1060  * Return: the queue pair on success, otherwise returns an errno.
1061  *
1062  * Called by the ib_create_qp() core verbs function.
1063  */
1064 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1065 			    struct ib_qp_init_attr *init_attr,
1066 			    struct ib_udata *udata)
1067 {
1068 	struct rvt_qp *qp;
1069 	int err;
1070 	struct rvt_swqe *swq = NULL;
1071 	size_t sz;
1072 	size_t sg_list_sz;
1073 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
1074 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1075 	void *priv = NULL;
1076 	size_t sqsize;
1077 
1078 	if (!rdi)
1079 		return ERR_PTR(-EINVAL);
1080 
1081 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1082 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
1083 	    init_attr->create_flags)
1084 		return ERR_PTR(-EINVAL);
1085 
1086 	/* Check receive queue parameters if no SRQ is specified. */
1087 	if (!init_attr->srq) {
1088 		if (init_attr->cap.max_recv_sge >
1089 		    rdi->dparms.props.max_recv_sge ||
1090 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1091 			return ERR_PTR(-EINVAL);
1092 
1093 		if (init_attr->cap.max_send_sge +
1094 		    init_attr->cap.max_send_wr +
1095 		    init_attr->cap.max_recv_sge +
1096 		    init_attr->cap.max_recv_wr == 0)
1097 			return ERR_PTR(-EINVAL);
1098 	}
1099 	sqsize =
1100 		init_attr->cap.max_send_wr + 1 +
1101 		rdi->dparms.reserved_operations;
1102 	switch (init_attr->qp_type) {
1103 	case IB_QPT_SMI:
1104 	case IB_QPT_GSI:
1105 		if (init_attr->port_num == 0 ||
1106 		    init_attr->port_num > ibpd->device->phys_port_cnt)
1107 			return ERR_PTR(-EINVAL);
1108 		/* fall through */
1109 	case IB_QPT_UC:
1110 	case IB_QPT_RC:
1111 	case IB_QPT_UD:
1112 		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1113 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1114 		if (!swq)
1115 			return ERR_PTR(-ENOMEM);
1116 
1117 		sz = sizeof(*qp);
1118 		sg_list_sz = 0;
1119 		if (init_attr->srq) {
1120 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1121 
1122 			if (srq->rq.max_sge > 1)
1123 				sg_list_sz = sizeof(*qp->r_sg_list) *
1124 					(srq->rq.max_sge - 1);
1125 		} else if (init_attr->cap.max_recv_sge > 1)
1126 			sg_list_sz = sizeof(*qp->r_sg_list) *
1127 				(init_attr->cap.max_recv_sge - 1);
1128 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1129 				  rdi->dparms.node);
1130 		if (!qp)
1131 			goto bail_swq;
1132 		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1133 
1134 		RCU_INIT_POINTER(qp->next, NULL);
1135 		if (init_attr->qp_type == IB_QPT_RC) {
1136 			qp->s_ack_queue =
1137 				kcalloc_node(rvt_max_atomic(rdi),
1138 					     sizeof(*qp->s_ack_queue),
1139 					     GFP_KERNEL,
1140 					     rdi->dparms.node);
1141 			if (!qp->s_ack_queue)
1142 				goto bail_qp;
1143 		}
1144 		/* initialize timers needed for rc qp */
1145 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1146 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1147 			     HRTIMER_MODE_REL);
1148 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1149 
1150 		/*
1151 		 * Driver needs to set up it's private QP structure and do any
1152 		 * initialization that is needed.
1153 		 */
1154 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1155 		if (IS_ERR(priv)) {
1156 			ret = priv;
1157 			goto bail_qp;
1158 		}
1159 		qp->priv = priv;
1160 		qp->timeout_jiffies =
1161 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1162 				1000UL);
1163 		if (init_attr->srq) {
1164 			sz = 0;
1165 		} else {
1166 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1167 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1168 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1169 				sizeof(struct rvt_rwqe);
1170 			err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1171 					   rdi->dparms.node, udata);
1172 			if (err) {
1173 				ret = ERR_PTR(err);
1174 				goto bail_driver_priv;
1175 			}
1176 		}
1177 
1178 		/*
1179 		 * ib_create_qp() will initialize qp->ibqp
1180 		 * except for qp->ibqp.qp_num.
1181 		 */
1182 		spin_lock_init(&qp->r_lock);
1183 		spin_lock_init(&qp->s_hlock);
1184 		spin_lock_init(&qp->s_lock);
1185 		atomic_set(&qp->refcount, 0);
1186 		atomic_set(&qp->local_ops_pending, 0);
1187 		init_waitqueue_head(&qp->wait);
1188 		INIT_LIST_HEAD(&qp->rspwait);
1189 		qp->state = IB_QPS_RESET;
1190 		qp->s_wq = swq;
1191 		qp->s_size = sqsize;
1192 		qp->s_avail = init_attr->cap.max_send_wr;
1193 		qp->s_max_sge = init_attr->cap.max_send_sge;
1194 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1195 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1196 		err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1197 		if (err) {
1198 			ret = (ERR_PTR(err));
1199 			goto bail_driver_priv;
1200 		}
1201 
1202 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1203 				init_attr->qp_type,
1204 				init_attr->port_num);
1205 		if (err < 0) {
1206 			ret = ERR_PTR(err);
1207 			goto bail_rq_wq;
1208 		}
1209 		qp->ibqp.qp_num = err;
1210 		qp->port_num = init_attr->port_num;
1211 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1212 		if (rdi->driver_f.qp_priv_init) {
1213 			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1214 			if (err) {
1215 				ret = ERR_PTR(err);
1216 				goto bail_rq_wq;
1217 			}
1218 		}
1219 		break;
1220 
1221 	default:
1222 		/* Don't support raw QPs */
1223 		return ERR_PTR(-EINVAL);
1224 	}
1225 
1226 	init_attr->cap.max_inline_data = 0;
1227 
1228 	/*
1229 	 * Return the address of the RWQ as the offset to mmap.
1230 	 * See rvt_mmap() for details.
1231 	 */
1232 	if (udata && udata->outlen >= sizeof(__u64)) {
1233 		if (!qp->r_rq.wq) {
1234 			__u64 offset = 0;
1235 
1236 			err = ib_copy_to_udata(udata, &offset,
1237 					       sizeof(offset));
1238 			if (err) {
1239 				ret = ERR_PTR(err);
1240 				goto bail_qpn;
1241 			}
1242 		} else {
1243 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1244 
1245 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1246 						      qp->r_rq.wq);
1247 			if (!qp->ip) {
1248 				ret = ERR_PTR(-ENOMEM);
1249 				goto bail_qpn;
1250 			}
1251 
1252 			err = ib_copy_to_udata(udata, &qp->ip->offset,
1253 					       sizeof(qp->ip->offset));
1254 			if (err) {
1255 				ret = ERR_PTR(err);
1256 				goto bail_ip;
1257 			}
1258 		}
1259 		qp->pid = current->pid;
1260 	}
1261 
1262 	spin_lock(&rdi->n_qps_lock);
1263 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1264 		spin_unlock(&rdi->n_qps_lock);
1265 		ret = ERR_PTR(-ENOMEM);
1266 		goto bail_ip;
1267 	}
1268 
1269 	rdi->n_qps_allocated++;
1270 	/*
1271 	 * Maintain a busy_jiffies variable that will be added to the timeout
1272 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1273 	 * is scaled by the number of rc qps created for the device to reduce
1274 	 * the number of timeouts occurring when there is a large number of
1275 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1276 	 * The scaling interval is selected based on extensive performance
1277 	 * evaluation of targeted workloads.
1278 	 */
1279 	if (init_attr->qp_type == IB_QPT_RC) {
1280 		rdi->n_rc_qps++;
1281 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1282 	}
1283 	spin_unlock(&rdi->n_qps_lock);
1284 
1285 	if (qp->ip) {
1286 		spin_lock_irq(&rdi->pending_lock);
1287 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1288 		spin_unlock_irq(&rdi->pending_lock);
1289 	}
1290 
1291 	ret = &qp->ibqp;
1292 
1293 	return ret;
1294 
1295 bail_ip:
1296 	if (qp->ip)
1297 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1298 
1299 bail_qpn:
1300 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1301 
1302 bail_rq_wq:
1303 	rvt_free_rq(&qp->r_rq);
1304 	free_ud_wq_attr(qp);
1305 
1306 bail_driver_priv:
1307 	rdi->driver_f.qp_priv_free(rdi, qp);
1308 
1309 bail_qp:
1310 	kfree(qp->s_ack_queue);
1311 	kfree(qp);
1312 
1313 bail_swq:
1314 	vfree(swq);
1315 
1316 	return ret;
1317 }
1318 
1319 /**
1320  * rvt_error_qp - put a QP into the error state
1321  * @qp: the QP to put into the error state
1322  * @err: the receive completion error to signal if a RWQE is active
1323  *
1324  * Flushes both send and receive work queues.
1325  *
1326  * Return: true if last WQE event should be generated.
1327  * The QP r_lock and s_lock should be held and interrupts disabled.
1328  * If we are already in error state, just return.
1329  */
1330 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1331 {
1332 	struct ib_wc wc;
1333 	int ret = 0;
1334 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1335 
1336 	lockdep_assert_held(&qp->r_lock);
1337 	lockdep_assert_held(&qp->s_lock);
1338 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1339 		goto bail;
1340 
1341 	qp->state = IB_QPS_ERR;
1342 
1343 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1344 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1345 		del_timer(&qp->s_timer);
1346 	}
1347 
1348 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1349 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1350 
1351 	rdi->driver_f.notify_error_qp(qp);
1352 
1353 	/* Schedule the sending tasklet to drain the send work queue. */
1354 	if (READ_ONCE(qp->s_last) != qp->s_head)
1355 		rdi->driver_f.schedule_send(qp);
1356 
1357 	rvt_clear_mr_refs(qp, 0);
1358 
1359 	memset(&wc, 0, sizeof(wc));
1360 	wc.qp = &qp->ibqp;
1361 	wc.opcode = IB_WC_RECV;
1362 
1363 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1364 		wc.wr_id = qp->r_wr_id;
1365 		wc.status = err;
1366 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1367 	}
1368 	wc.status = IB_WC_WR_FLUSH_ERR;
1369 
1370 	if (qp->r_rq.kwq) {
1371 		u32 head;
1372 		u32 tail;
1373 		struct rvt_rwq *wq = NULL;
1374 		struct rvt_krwq *kwq = NULL;
1375 
1376 		spin_lock(&qp->r_rq.kwq->c_lock);
1377 		/* qp->ip used to validate if there is a  user buffer mmaped */
1378 		if (qp->ip) {
1379 			wq = qp->r_rq.wq;
1380 			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1381 			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1382 		} else {
1383 			kwq = qp->r_rq.kwq;
1384 			head = kwq->head;
1385 			tail = kwq->tail;
1386 		}
1387 		/* sanity check pointers before trusting them */
1388 		if (head >= qp->r_rq.size)
1389 			head = 0;
1390 		if (tail >= qp->r_rq.size)
1391 			tail = 0;
1392 		while (tail != head) {
1393 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1394 			if (++tail >= qp->r_rq.size)
1395 				tail = 0;
1396 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1397 		}
1398 		if (qp->ip)
1399 			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1400 		else
1401 			kwq->tail = tail;
1402 		spin_unlock(&qp->r_rq.kwq->c_lock);
1403 	} else if (qp->ibqp.event_handler) {
1404 		ret = 1;
1405 	}
1406 
1407 bail:
1408 	return ret;
1409 }
1410 EXPORT_SYMBOL(rvt_error_qp);
1411 
1412 /*
1413  * Put the QP into the hash table.
1414  * The hash table holds a reference to the QP.
1415  */
1416 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1417 {
1418 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1419 	unsigned long flags;
1420 
1421 	rvt_get_qp(qp);
1422 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1423 
1424 	if (qp->ibqp.qp_num <= 1) {
1425 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1426 	} else {
1427 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1428 
1429 		qp->next = rdi->qp_dev->qp_table[n];
1430 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1431 		trace_rvt_qpinsert(qp, n);
1432 	}
1433 
1434 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1435 }
1436 
1437 /**
1438  * rvt_modify_qp - modify the attributes of a queue pair
1439  * @ibqp: the queue pair who's attributes we're modifying
1440  * @attr: the new attributes
1441  * @attr_mask: the mask of attributes to modify
1442  * @udata: user data for libibverbs.so
1443  *
1444  * Return: 0 on success, otherwise returns an errno.
1445  */
1446 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1447 		  int attr_mask, struct ib_udata *udata)
1448 {
1449 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1450 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1451 	enum ib_qp_state cur_state, new_state;
1452 	struct ib_event ev;
1453 	int lastwqe = 0;
1454 	int mig = 0;
1455 	int pmtu = 0; /* for gcc warning only */
1456 	int opa_ah;
1457 
1458 	spin_lock_irq(&qp->r_lock);
1459 	spin_lock(&qp->s_hlock);
1460 	spin_lock(&qp->s_lock);
1461 
1462 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1463 		attr->cur_qp_state : qp->state;
1464 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1465 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1466 
1467 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1468 				attr_mask))
1469 		goto inval;
1470 
1471 	if (rdi->driver_f.check_modify_qp &&
1472 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1473 		goto inval;
1474 
1475 	if (attr_mask & IB_QP_AV) {
1476 		if (opa_ah) {
1477 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1478 				opa_get_mcast_base(OPA_MCAST_NR))
1479 				goto inval;
1480 		} else {
1481 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1482 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1483 				goto inval;
1484 		}
1485 
1486 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1487 			goto inval;
1488 	}
1489 
1490 	if (attr_mask & IB_QP_ALT_PATH) {
1491 		if (opa_ah) {
1492 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1493 				opa_get_mcast_base(OPA_MCAST_NR))
1494 				goto inval;
1495 		} else {
1496 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1497 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1498 				goto inval;
1499 		}
1500 
1501 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1502 			goto inval;
1503 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1504 			goto inval;
1505 	}
1506 
1507 	if (attr_mask & IB_QP_PKEY_INDEX)
1508 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1509 			goto inval;
1510 
1511 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1512 		if (attr->min_rnr_timer > 31)
1513 			goto inval;
1514 
1515 	if (attr_mask & IB_QP_PORT)
1516 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1517 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1518 		    attr->port_num == 0 ||
1519 		    attr->port_num > ibqp->device->phys_port_cnt)
1520 			goto inval;
1521 
1522 	if (attr_mask & IB_QP_DEST_QPN)
1523 		if (attr->dest_qp_num > RVT_QPN_MASK)
1524 			goto inval;
1525 
1526 	if (attr_mask & IB_QP_RETRY_CNT)
1527 		if (attr->retry_cnt > 7)
1528 			goto inval;
1529 
1530 	if (attr_mask & IB_QP_RNR_RETRY)
1531 		if (attr->rnr_retry > 7)
1532 			goto inval;
1533 
1534 	/*
1535 	 * Don't allow invalid path_mtu values.  OK to set greater
1536 	 * than the active mtu (or even the max_cap, if we have tuned
1537 	 * that to a small mtu.  We'll set qp->path_mtu
1538 	 * to the lesser of requested attribute mtu and active,
1539 	 * for packetizing messages.
1540 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1541 	 */
1542 	if (attr_mask & IB_QP_PATH_MTU) {
1543 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1544 		if (pmtu < 0)
1545 			goto inval;
1546 	}
1547 
1548 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1549 		if (attr->path_mig_state == IB_MIG_REARM) {
1550 			if (qp->s_mig_state == IB_MIG_ARMED)
1551 				goto inval;
1552 			if (new_state != IB_QPS_RTS)
1553 				goto inval;
1554 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1555 			if (qp->s_mig_state == IB_MIG_REARM)
1556 				goto inval;
1557 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1558 				goto inval;
1559 			if (qp->s_mig_state == IB_MIG_ARMED)
1560 				mig = 1;
1561 		} else {
1562 			goto inval;
1563 		}
1564 	}
1565 
1566 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1567 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1568 			goto inval;
1569 
1570 	switch (new_state) {
1571 	case IB_QPS_RESET:
1572 		if (qp->state != IB_QPS_RESET)
1573 			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1574 		break;
1575 
1576 	case IB_QPS_RTR:
1577 		/* Allow event to re-trigger if QP set to RTR more than once */
1578 		qp->r_flags &= ~RVT_R_COMM_EST;
1579 		qp->state = new_state;
1580 		break;
1581 
1582 	case IB_QPS_SQD:
1583 		qp->s_draining = qp->s_last != qp->s_cur;
1584 		qp->state = new_state;
1585 		break;
1586 
1587 	case IB_QPS_SQE:
1588 		if (qp->ibqp.qp_type == IB_QPT_RC)
1589 			goto inval;
1590 		qp->state = new_state;
1591 		break;
1592 
1593 	case IB_QPS_ERR:
1594 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1595 		break;
1596 
1597 	default:
1598 		qp->state = new_state;
1599 		break;
1600 	}
1601 
1602 	if (attr_mask & IB_QP_PKEY_INDEX)
1603 		qp->s_pkey_index = attr->pkey_index;
1604 
1605 	if (attr_mask & IB_QP_PORT)
1606 		qp->port_num = attr->port_num;
1607 
1608 	if (attr_mask & IB_QP_DEST_QPN)
1609 		qp->remote_qpn = attr->dest_qp_num;
1610 
1611 	if (attr_mask & IB_QP_SQ_PSN) {
1612 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1613 		qp->s_psn = qp->s_next_psn;
1614 		qp->s_sending_psn = qp->s_next_psn;
1615 		qp->s_last_psn = qp->s_next_psn - 1;
1616 		qp->s_sending_hpsn = qp->s_last_psn;
1617 	}
1618 
1619 	if (attr_mask & IB_QP_RQ_PSN)
1620 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1621 
1622 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1623 		qp->qp_access_flags = attr->qp_access_flags;
1624 
1625 	if (attr_mask & IB_QP_AV) {
1626 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1627 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1628 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1629 	}
1630 
1631 	if (attr_mask & IB_QP_ALT_PATH) {
1632 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1633 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1634 	}
1635 
1636 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1637 		qp->s_mig_state = attr->path_mig_state;
1638 		if (mig) {
1639 			qp->remote_ah_attr = qp->alt_ah_attr;
1640 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1641 			qp->s_pkey_index = qp->s_alt_pkey_index;
1642 		}
1643 	}
1644 
1645 	if (attr_mask & IB_QP_PATH_MTU) {
1646 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1647 		qp->log_pmtu = ilog2(qp->pmtu);
1648 	}
1649 
1650 	if (attr_mask & IB_QP_RETRY_CNT) {
1651 		qp->s_retry_cnt = attr->retry_cnt;
1652 		qp->s_retry = attr->retry_cnt;
1653 	}
1654 
1655 	if (attr_mask & IB_QP_RNR_RETRY) {
1656 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1657 		qp->s_rnr_retry = attr->rnr_retry;
1658 	}
1659 
1660 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1661 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1662 
1663 	if (attr_mask & IB_QP_TIMEOUT) {
1664 		qp->timeout = attr->timeout;
1665 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1666 	}
1667 
1668 	if (attr_mask & IB_QP_QKEY)
1669 		qp->qkey = attr->qkey;
1670 
1671 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1672 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1673 
1674 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1675 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1676 
1677 	if (rdi->driver_f.modify_qp)
1678 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1679 
1680 	spin_unlock(&qp->s_lock);
1681 	spin_unlock(&qp->s_hlock);
1682 	spin_unlock_irq(&qp->r_lock);
1683 
1684 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1685 		rvt_insert_qp(rdi, qp);
1686 
1687 	if (lastwqe) {
1688 		ev.device = qp->ibqp.device;
1689 		ev.element.qp = &qp->ibqp;
1690 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1691 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1692 	}
1693 	if (mig) {
1694 		ev.device = qp->ibqp.device;
1695 		ev.element.qp = &qp->ibqp;
1696 		ev.event = IB_EVENT_PATH_MIG;
1697 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1698 	}
1699 	return 0;
1700 
1701 inval:
1702 	spin_unlock(&qp->s_lock);
1703 	spin_unlock(&qp->s_hlock);
1704 	spin_unlock_irq(&qp->r_lock);
1705 	return -EINVAL;
1706 }
1707 
1708 /**
1709  * rvt_destroy_qp - destroy a queue pair
1710  * @ibqp: the queue pair to destroy
1711  *
1712  * Note that this can be called while the QP is actively sending or
1713  * receiving!
1714  *
1715  * Return: 0 on success.
1716  */
1717 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1718 {
1719 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1720 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1721 
1722 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1723 
1724 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1725 	/* qpn is now available for use again */
1726 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1727 
1728 	spin_lock(&rdi->n_qps_lock);
1729 	rdi->n_qps_allocated--;
1730 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1731 		rdi->n_rc_qps--;
1732 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1733 	}
1734 	spin_unlock(&rdi->n_qps_lock);
1735 
1736 	if (qp->ip)
1737 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1738 	kvfree(qp->r_rq.kwq);
1739 	rdi->driver_f.qp_priv_free(rdi, qp);
1740 	kfree(qp->s_ack_queue);
1741 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1742 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1743 	free_ud_wq_attr(qp);
1744 	vfree(qp->s_wq);
1745 	kfree(qp);
1746 	return 0;
1747 }
1748 
1749 /**
1750  * rvt_query_qp - query an ipbq
1751  * @ibqp: IB qp to query
1752  * @attr: attr struct to fill in
1753  * @attr_mask: attr mask ignored
1754  * @init_attr: struct to fill in
1755  *
1756  * Return: always 0
1757  */
1758 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1759 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1760 {
1761 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1762 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1763 
1764 	attr->qp_state = qp->state;
1765 	attr->cur_qp_state = attr->qp_state;
1766 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1767 	attr->path_mig_state = qp->s_mig_state;
1768 	attr->qkey = qp->qkey;
1769 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1770 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1771 	attr->dest_qp_num = qp->remote_qpn;
1772 	attr->qp_access_flags = qp->qp_access_flags;
1773 	attr->cap.max_send_wr = qp->s_size - 1 -
1774 		rdi->dparms.reserved_operations;
1775 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1776 	attr->cap.max_send_sge = qp->s_max_sge;
1777 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1778 	attr->cap.max_inline_data = 0;
1779 	attr->ah_attr = qp->remote_ah_attr;
1780 	attr->alt_ah_attr = qp->alt_ah_attr;
1781 	attr->pkey_index = qp->s_pkey_index;
1782 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1783 	attr->en_sqd_async_notify = 0;
1784 	attr->sq_draining = qp->s_draining;
1785 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1786 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1787 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1788 	attr->port_num = qp->port_num;
1789 	attr->timeout = qp->timeout;
1790 	attr->retry_cnt = qp->s_retry_cnt;
1791 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1792 	attr->alt_port_num =
1793 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1794 	attr->alt_timeout = qp->alt_timeout;
1795 
1796 	init_attr->event_handler = qp->ibqp.event_handler;
1797 	init_attr->qp_context = qp->ibqp.qp_context;
1798 	init_attr->send_cq = qp->ibqp.send_cq;
1799 	init_attr->recv_cq = qp->ibqp.recv_cq;
1800 	init_attr->srq = qp->ibqp.srq;
1801 	init_attr->cap = attr->cap;
1802 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1803 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1804 	else
1805 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1806 	init_attr->qp_type = qp->ibqp.qp_type;
1807 	init_attr->port_num = qp->port_num;
1808 	return 0;
1809 }
1810 
1811 /**
1812  * rvt_post_receive - post a receive on a QP
1813  * @ibqp: the QP to post the receive on
1814  * @wr: the WR to post
1815  * @bad_wr: the first bad WR is put here
1816  *
1817  * This may be called from interrupt context.
1818  *
1819  * Return: 0 on success otherwise errno
1820  */
1821 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1822 		  const struct ib_recv_wr **bad_wr)
1823 {
1824 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1825 	struct rvt_krwq *wq = qp->r_rq.kwq;
1826 	unsigned long flags;
1827 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1828 				!qp->ibqp.srq;
1829 
1830 	/* Check that state is OK to post receive. */
1831 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1832 		*bad_wr = wr;
1833 		return -EINVAL;
1834 	}
1835 
1836 	for (; wr; wr = wr->next) {
1837 		struct rvt_rwqe *wqe;
1838 		u32 next;
1839 		int i;
1840 
1841 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1842 			*bad_wr = wr;
1843 			return -EINVAL;
1844 		}
1845 
1846 		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1847 		next = wq->head + 1;
1848 		if (next >= qp->r_rq.size)
1849 			next = 0;
1850 		if (next == READ_ONCE(wq->tail)) {
1851 			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1852 			*bad_wr = wr;
1853 			return -ENOMEM;
1854 		}
1855 		if (unlikely(qp_err_flush)) {
1856 			struct ib_wc wc;
1857 
1858 			memset(&wc, 0, sizeof(wc));
1859 			wc.qp = &qp->ibqp;
1860 			wc.opcode = IB_WC_RECV;
1861 			wc.wr_id = wr->wr_id;
1862 			wc.status = IB_WC_WR_FLUSH_ERR;
1863 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1864 		} else {
1865 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1866 			wqe->wr_id = wr->wr_id;
1867 			wqe->num_sge = wr->num_sge;
1868 			for (i = 0; i < wr->num_sge; i++) {
1869 				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1870 				wqe->sg_list[i].length = wr->sg_list[i].length;
1871 				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1872 			}
1873 			/*
1874 			 * Make sure queue entry is written
1875 			 * before the head index.
1876 			 */
1877 			smp_store_release(&wq->head, next);
1878 		}
1879 		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1880 	}
1881 	return 0;
1882 }
1883 
1884 /**
1885  * rvt_qp_valid_operation - validate post send wr request
1886  * @qp - the qp
1887  * @post-parms - the post send table for the driver
1888  * @wr - the work request
1889  *
1890  * The routine validates the operation based on the
1891  * validation table an returns the length of the operation
1892  * which can extend beyond the ib_send_bw.  Operation
1893  * dependent flags key atomic operation validation.
1894  *
1895  * There is an exception for UD qps that validates the pd and
1896  * overrides the length to include the additional UD specific
1897  * length.
1898  *
1899  * Returns a negative error or the length of the work request
1900  * for building the swqe.
1901  */
1902 static inline int rvt_qp_valid_operation(
1903 	struct rvt_qp *qp,
1904 	const struct rvt_operation_params *post_parms,
1905 	const struct ib_send_wr *wr)
1906 {
1907 	int len;
1908 
1909 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1910 		return -EINVAL;
1911 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1912 		return -EINVAL;
1913 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1914 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1915 		return -EINVAL;
1916 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1917 	    (wr->num_sge == 0 ||
1918 	     wr->sg_list[0].length < sizeof(u64) ||
1919 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1920 		return -EINVAL;
1921 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1922 	    !qp->s_max_rd_atomic)
1923 		return -EINVAL;
1924 	len = post_parms[wr->opcode].length;
1925 	/* UD specific */
1926 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1927 	    qp->ibqp.qp_type != IB_QPT_RC) {
1928 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1929 			return -EINVAL;
1930 		len = sizeof(struct ib_ud_wr);
1931 	}
1932 	return len;
1933 }
1934 
1935 /**
1936  * rvt_qp_is_avail - determine queue capacity
1937  * @qp: the qp
1938  * @rdi: the rdmavt device
1939  * @reserved_op: is reserved operation
1940  *
1941  * This assumes the s_hlock is held but the s_last
1942  * qp variable is uncontrolled.
1943  *
1944  * For non reserved operations, the qp->s_avail
1945  * may be changed.
1946  *
1947  * The return value is zero or a -ENOMEM.
1948  */
1949 static inline int rvt_qp_is_avail(
1950 	struct rvt_qp *qp,
1951 	struct rvt_dev_info *rdi,
1952 	bool reserved_op)
1953 {
1954 	u32 slast;
1955 	u32 avail;
1956 	u32 reserved_used;
1957 
1958 	/* see rvt_qp_wqe_unreserve() */
1959 	smp_mb__before_atomic();
1960 	if (unlikely(reserved_op)) {
1961 		/* see rvt_qp_wqe_unreserve() */
1962 		reserved_used = atomic_read(&qp->s_reserved_used);
1963 		if (reserved_used >= rdi->dparms.reserved_operations)
1964 			return -ENOMEM;
1965 		return 0;
1966 	}
1967 	/* non-reserved operations */
1968 	if (likely(qp->s_avail))
1969 		return 0;
1970 	/* See rvt_qp_complete_swqe() */
1971 	slast = smp_load_acquire(&qp->s_last);
1972 	if (qp->s_head >= slast)
1973 		avail = qp->s_size - (qp->s_head - slast);
1974 	else
1975 		avail = slast - qp->s_head;
1976 
1977 	reserved_used = atomic_read(&qp->s_reserved_used);
1978 	avail =  avail - 1 -
1979 		(rdi->dparms.reserved_operations - reserved_used);
1980 	/* insure we don't assign a negative s_avail */
1981 	if ((s32)avail <= 0)
1982 		return -ENOMEM;
1983 	qp->s_avail = avail;
1984 	if (WARN_ON(qp->s_avail >
1985 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1986 		rvt_pr_err(rdi,
1987 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1988 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1989 			   qp->s_head, qp->s_tail, qp->s_cur,
1990 			   qp->s_acked, qp->s_last);
1991 	return 0;
1992 }
1993 
1994 /**
1995  * rvt_post_one_wr - post one RC, UC, or UD send work request
1996  * @qp: the QP to post on
1997  * @wr: the work request to send
1998  */
1999 static int rvt_post_one_wr(struct rvt_qp *qp,
2000 			   const struct ib_send_wr *wr,
2001 			   bool *call_send)
2002 {
2003 	struct rvt_swqe *wqe;
2004 	u32 next;
2005 	int i;
2006 	int j;
2007 	int acc;
2008 	struct rvt_lkey_table *rkt;
2009 	struct rvt_pd *pd;
2010 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2011 	u8 log_pmtu;
2012 	int ret;
2013 	size_t cplen;
2014 	bool reserved_op;
2015 	int local_ops_delayed = 0;
2016 
2017 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2018 
2019 	/* IB spec says that num_sge == 0 is OK. */
2020 	if (unlikely(wr->num_sge > qp->s_max_sge))
2021 		return -EINVAL;
2022 
2023 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2024 	if (ret < 0)
2025 		return ret;
2026 	cplen = ret;
2027 
2028 	/*
2029 	 * Local operations include fast register and local invalidate.
2030 	 * Fast register needs to be processed immediately because the
2031 	 * registered lkey may be used by following work requests and the
2032 	 * lkey needs to be valid at the time those requests are posted.
2033 	 * Local invalidate can be processed immediately if fencing is
2034 	 * not required and no previous local invalidate ops are pending.
2035 	 * Signaled local operations that have been processed immediately
2036 	 * need to have requests with "completion only" flags set posted
2037 	 * to the send queue in order to generate completions.
2038 	 */
2039 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2040 		switch (wr->opcode) {
2041 		case IB_WR_REG_MR:
2042 			ret = rvt_fast_reg_mr(qp,
2043 					      reg_wr(wr)->mr,
2044 					      reg_wr(wr)->key,
2045 					      reg_wr(wr)->access);
2046 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2047 				return ret;
2048 			break;
2049 		case IB_WR_LOCAL_INV:
2050 			if ((wr->send_flags & IB_SEND_FENCE) ||
2051 			    atomic_read(&qp->local_ops_pending)) {
2052 				local_ops_delayed = 1;
2053 			} else {
2054 				ret = rvt_invalidate_rkey(
2055 					qp, wr->ex.invalidate_rkey);
2056 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2057 					return ret;
2058 			}
2059 			break;
2060 		default:
2061 			return -EINVAL;
2062 		}
2063 	}
2064 
2065 	reserved_op = rdi->post_parms[wr->opcode].flags &
2066 			RVT_OPERATION_USE_RESERVE;
2067 	/* check for avail */
2068 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2069 	if (ret)
2070 		return ret;
2071 	next = qp->s_head + 1;
2072 	if (next >= qp->s_size)
2073 		next = 0;
2074 
2075 	rkt = &rdi->lkey_table;
2076 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2077 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2078 
2079 	/* cplen has length from above */
2080 	memcpy(&wqe->wr, wr, cplen);
2081 
2082 	wqe->length = 0;
2083 	j = 0;
2084 	if (wr->num_sge) {
2085 		struct rvt_sge *last_sge = NULL;
2086 
2087 		acc = wr->opcode >= IB_WR_RDMA_READ ?
2088 			IB_ACCESS_LOCAL_WRITE : 0;
2089 		for (i = 0; i < wr->num_sge; i++) {
2090 			u32 length = wr->sg_list[i].length;
2091 
2092 			if (length == 0)
2093 				continue;
2094 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2095 					  &wr->sg_list[i], acc);
2096 			if (unlikely(ret < 0))
2097 				goto bail_inval_free;
2098 			wqe->length += length;
2099 			if (ret)
2100 				last_sge = &wqe->sg_list[j];
2101 			j += ret;
2102 		}
2103 		wqe->wr.num_sge = j;
2104 	}
2105 
2106 	/*
2107 	 * Calculate and set SWQE PSN values prior to handing it off
2108 	 * to the driver's check routine. This give the driver the
2109 	 * opportunity to adjust PSN values based on internal checks.
2110 	 */
2111 	log_pmtu = qp->log_pmtu;
2112 	if (qp->allowed_ops == IB_OPCODE_UD) {
2113 		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2114 
2115 		log_pmtu = ah->log_pmtu;
2116 		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2117 	}
2118 
2119 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2120 		if (local_ops_delayed)
2121 			atomic_inc(&qp->local_ops_pending);
2122 		else
2123 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2124 		wqe->ssn = 0;
2125 		wqe->psn = 0;
2126 		wqe->lpsn = 0;
2127 	} else {
2128 		wqe->ssn = qp->s_ssn++;
2129 		wqe->psn = qp->s_next_psn;
2130 		wqe->lpsn = wqe->psn +
2131 				(wqe->length ?
2132 					((wqe->length - 1) >> log_pmtu) :
2133 					0);
2134 	}
2135 
2136 	/* general part of wqe valid - allow for driver checks */
2137 	if (rdi->driver_f.setup_wqe) {
2138 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2139 		if (ret < 0)
2140 			goto bail_inval_free_ref;
2141 	}
2142 
2143 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2144 		qp->s_next_psn = wqe->lpsn + 1;
2145 
2146 	if (unlikely(reserved_op)) {
2147 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2148 		rvt_qp_wqe_reserve(qp, wqe);
2149 	} else {
2150 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2151 		qp->s_avail--;
2152 	}
2153 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2154 	smp_wmb(); /* see request builders */
2155 	qp->s_head = next;
2156 
2157 	return 0;
2158 
2159 bail_inval_free_ref:
2160 	if (qp->allowed_ops == IB_OPCODE_UD)
2161 		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2162 bail_inval_free:
2163 	/* release mr holds */
2164 	while (j) {
2165 		struct rvt_sge *sge = &wqe->sg_list[--j];
2166 
2167 		rvt_put_mr(sge->mr);
2168 	}
2169 	return ret;
2170 }
2171 
2172 /**
2173  * rvt_post_send - post a send on a QP
2174  * @ibqp: the QP to post the send on
2175  * @wr: the list of work requests to post
2176  * @bad_wr: the first bad WR is put here
2177  *
2178  * This may be called from interrupt context.
2179  *
2180  * Return: 0 on success else errno
2181  */
2182 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2183 		  const struct ib_send_wr **bad_wr)
2184 {
2185 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2186 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2187 	unsigned long flags = 0;
2188 	bool call_send;
2189 	unsigned nreq = 0;
2190 	int err = 0;
2191 
2192 	spin_lock_irqsave(&qp->s_hlock, flags);
2193 
2194 	/*
2195 	 * Ensure QP state is such that we can send. If not bail out early,
2196 	 * there is no need to do this every time we post a send.
2197 	 */
2198 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2199 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2200 		return -EINVAL;
2201 	}
2202 
2203 	/*
2204 	 * If the send queue is empty, and we only have a single WR then just go
2205 	 * ahead and kick the send engine into gear. Otherwise we will always
2206 	 * just schedule the send to happen later.
2207 	 */
2208 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2209 
2210 	for (; wr; wr = wr->next) {
2211 		err = rvt_post_one_wr(qp, wr, &call_send);
2212 		if (unlikely(err)) {
2213 			*bad_wr = wr;
2214 			goto bail;
2215 		}
2216 		nreq++;
2217 	}
2218 bail:
2219 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2220 	if (nreq) {
2221 		/*
2222 		 * Only call do_send if there is exactly one packet, and the
2223 		 * driver said it was ok.
2224 		 */
2225 		if (nreq == 1 && call_send)
2226 			rdi->driver_f.do_send(qp);
2227 		else
2228 			rdi->driver_f.schedule_send_no_lock(qp);
2229 	}
2230 	return err;
2231 }
2232 
2233 /**
2234  * rvt_post_srq_receive - post a receive on a shared receive queue
2235  * @ibsrq: the SRQ to post the receive on
2236  * @wr: the list of work requests to post
2237  * @bad_wr: A pointer to the first WR to cause a problem is put here
2238  *
2239  * This may be called from interrupt context.
2240  *
2241  * Return: 0 on success else errno
2242  */
2243 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2244 		      const struct ib_recv_wr **bad_wr)
2245 {
2246 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2247 	struct rvt_krwq *wq;
2248 	unsigned long flags;
2249 
2250 	for (; wr; wr = wr->next) {
2251 		struct rvt_rwqe *wqe;
2252 		u32 next;
2253 		int i;
2254 
2255 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2256 			*bad_wr = wr;
2257 			return -EINVAL;
2258 		}
2259 
2260 		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2261 		wq = srq->rq.kwq;
2262 		next = wq->head + 1;
2263 		if (next >= srq->rq.size)
2264 			next = 0;
2265 		if (next == READ_ONCE(wq->tail)) {
2266 			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2267 			*bad_wr = wr;
2268 			return -ENOMEM;
2269 		}
2270 
2271 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2272 		wqe->wr_id = wr->wr_id;
2273 		wqe->num_sge = wr->num_sge;
2274 		for (i = 0; i < wr->num_sge; i++) {
2275 			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2276 			wqe->sg_list[i].length = wr->sg_list[i].length;
2277 			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2278 		}
2279 		/* Make sure queue entry is written before the head index. */
2280 		smp_store_release(&wq->head, next);
2281 		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2282 	}
2283 	return 0;
2284 }
2285 
2286 /*
2287  * rvt used the internal kernel struct as part of its ABI, for now make sure
2288  * the kernel struct does not change layout. FIXME: rvt should never cast the
2289  * user struct to a kernel struct.
2290  */
2291 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2292 {
2293 	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2294 		     offsetof(struct rvt_wqe_sge, addr));
2295 	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2296 		     offsetof(struct rvt_wqe_sge, length));
2297 	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2298 		     offsetof(struct rvt_wqe_sge, lkey));
2299 	return (struct ib_sge *)sge;
2300 }
2301 
2302 /*
2303  * Validate a RWQE and fill in the SGE state.
2304  * Return 1 if OK.
2305  */
2306 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2307 {
2308 	int i, j, ret;
2309 	struct ib_wc wc;
2310 	struct rvt_lkey_table *rkt;
2311 	struct rvt_pd *pd;
2312 	struct rvt_sge_state *ss;
2313 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2314 
2315 	rkt = &rdi->lkey_table;
2316 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2317 	ss = &qp->r_sge;
2318 	ss->sg_list = qp->r_sg_list;
2319 	qp->r_len = 0;
2320 	for (i = j = 0; i < wqe->num_sge; i++) {
2321 		if (wqe->sg_list[i].length == 0)
2322 			continue;
2323 		/* Check LKEY */
2324 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2325 				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2326 				  IB_ACCESS_LOCAL_WRITE);
2327 		if (unlikely(ret <= 0))
2328 			goto bad_lkey;
2329 		qp->r_len += wqe->sg_list[i].length;
2330 		j++;
2331 	}
2332 	ss->num_sge = j;
2333 	ss->total_len = qp->r_len;
2334 	return 1;
2335 
2336 bad_lkey:
2337 	while (j) {
2338 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2339 
2340 		rvt_put_mr(sge->mr);
2341 	}
2342 	ss->num_sge = 0;
2343 	memset(&wc, 0, sizeof(wc));
2344 	wc.wr_id = wqe->wr_id;
2345 	wc.status = IB_WC_LOC_PROT_ERR;
2346 	wc.opcode = IB_WC_RECV;
2347 	wc.qp = &qp->ibqp;
2348 	/* Signal solicited completion event. */
2349 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2350 	return 0;
2351 }
2352 
2353 /**
2354  * get_count - count numbers of request work queue entries
2355  * in circular buffer
2356  * @rq: data structure for request queue entry
2357  * @tail: tail indices of the circular buffer
2358  * @head: head indices of the circular buffer
2359  *
2360  * Return - total number of entries in the circular buffer
2361  */
2362 static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head)
2363 {
2364 	u32 count;
2365 
2366 	count = head;
2367 
2368 	if (count >= rq->size)
2369 		count = 0;
2370 	if (count < tail)
2371 		count += rq->size - tail;
2372 	else
2373 		count -= tail;
2374 
2375 	return count;
2376 }
2377 
2378 /**
2379  * get_rvt_head - get head indices of the circular buffer
2380  * @rq: data structure for request queue entry
2381  * @ip: the QP
2382  *
2383  * Return - head index value
2384  */
2385 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2386 {
2387 	u32 head;
2388 
2389 	if (ip)
2390 		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2391 	else
2392 		head = rq->kwq->head;
2393 
2394 	return head;
2395 }
2396 
2397 /**
2398  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2399  * @qp: the QP
2400  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2401  *
2402  * Return -1 if there is a local error, 0 if no RWQE is available,
2403  * otherwise return 1.
2404  *
2405  * Can be called from interrupt level.
2406  */
2407 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2408 {
2409 	unsigned long flags;
2410 	struct rvt_rq *rq;
2411 	struct rvt_krwq *kwq = NULL;
2412 	struct rvt_rwq *wq;
2413 	struct rvt_srq *srq;
2414 	struct rvt_rwqe *wqe;
2415 	void (*handler)(struct ib_event *, void *);
2416 	u32 tail;
2417 	u32 head;
2418 	int ret;
2419 	void *ip = NULL;
2420 
2421 	if (qp->ibqp.srq) {
2422 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2423 		handler = srq->ibsrq.event_handler;
2424 		rq = &srq->rq;
2425 		ip = srq->ip;
2426 	} else {
2427 		srq = NULL;
2428 		handler = NULL;
2429 		rq = &qp->r_rq;
2430 		ip = qp->ip;
2431 	}
2432 
2433 	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2434 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2435 		ret = 0;
2436 		goto unlock;
2437 	}
2438 	kwq = rq->kwq;
2439 	if (ip) {
2440 		wq = rq->wq;
2441 		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2442 	} else {
2443 		tail = kwq->tail;
2444 	}
2445 
2446 	/* Validate tail before using it since it is user writable. */
2447 	if (tail >= rq->size)
2448 		tail = 0;
2449 
2450 	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2451 		head = get_rvt_head(rq, ip);
2452 		kwq->count = get_count(rq, tail, head);
2453 	}
2454 	if (unlikely(kwq->count == 0)) {
2455 		ret = 0;
2456 		goto unlock;
2457 	}
2458 	/* Make sure entry is read after the count is read. */
2459 	smp_rmb();
2460 	wqe = rvt_get_rwqe_ptr(rq, tail);
2461 	/*
2462 	 * Even though we update the tail index in memory, the verbs
2463 	 * consumer is not supposed to post more entries until a
2464 	 * completion is generated.
2465 	 */
2466 	if (++tail >= rq->size)
2467 		tail = 0;
2468 	if (ip)
2469 		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2470 	else
2471 		kwq->tail = tail;
2472 	if (!wr_id_only && !init_sge(qp, wqe)) {
2473 		ret = -1;
2474 		goto unlock;
2475 	}
2476 	qp->r_wr_id = wqe->wr_id;
2477 
2478 	kwq->count--;
2479 	ret = 1;
2480 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2481 	if (handler) {
2482 		/*
2483 		 * Validate head pointer value and compute
2484 		 * the number of remaining WQEs.
2485 		 */
2486 		if (kwq->count < srq->limit) {
2487 			kwq->count = get_count(rq, tail, get_rvt_head(rq, ip));
2488 			if (kwq->count < srq->limit) {
2489 				struct ib_event ev;
2490 
2491 				srq->limit = 0;
2492 				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2493 				ev.device = qp->ibqp.device;
2494 				ev.element.srq = qp->ibqp.srq;
2495 				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2496 				handler(&ev, srq->ibsrq.srq_context);
2497 				goto bail;
2498 			}
2499 		}
2500 	}
2501 unlock:
2502 	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2503 bail:
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL(rvt_get_rwqe);
2507 
2508 /**
2509  * qp_comm_est - handle trap with QP established
2510  * @qp: the QP
2511  */
2512 void rvt_comm_est(struct rvt_qp *qp)
2513 {
2514 	qp->r_flags |= RVT_R_COMM_EST;
2515 	if (qp->ibqp.event_handler) {
2516 		struct ib_event ev;
2517 
2518 		ev.device = qp->ibqp.device;
2519 		ev.element.qp = &qp->ibqp;
2520 		ev.event = IB_EVENT_COMM_EST;
2521 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2522 	}
2523 }
2524 EXPORT_SYMBOL(rvt_comm_est);
2525 
2526 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2527 {
2528 	unsigned long flags;
2529 	int lastwqe;
2530 
2531 	spin_lock_irqsave(&qp->s_lock, flags);
2532 	lastwqe = rvt_error_qp(qp, err);
2533 	spin_unlock_irqrestore(&qp->s_lock, flags);
2534 
2535 	if (lastwqe) {
2536 		struct ib_event ev;
2537 
2538 		ev.device = qp->ibqp.device;
2539 		ev.element.qp = &qp->ibqp;
2540 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2541 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2542 	}
2543 }
2544 EXPORT_SYMBOL(rvt_rc_error);
2545 
2546 /*
2547  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2548  *  @index - the index
2549  *  return usec from an index into ib_rvt_rnr_table
2550  */
2551 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2552 {
2553 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2554 }
2555 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2556 
2557 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2558 {
2559 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2560 				  IB_AETH_CREDIT_MASK];
2561 }
2562 
2563 /*
2564  *  rvt_add_retry_timer_ext - add/start a retry timer
2565  *  @qp - the QP
2566  *  @shift - timeout shift to wait for multiple packets
2567  *  add a retry timer on the QP
2568  */
2569 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2570 {
2571 	struct ib_qp *ibqp = &qp->ibqp;
2572 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2573 
2574 	lockdep_assert_held(&qp->s_lock);
2575 	qp->s_flags |= RVT_S_TIMER;
2576        /* 4.096 usec. * (1 << qp->timeout) */
2577 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2578 			      (qp->timeout_jiffies << shift);
2579 	add_timer(&qp->s_timer);
2580 }
2581 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2582 
2583 /**
2584  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2585  * @qp: the QP
2586  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2587  */
2588 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2589 {
2590 	u32 to;
2591 
2592 	lockdep_assert_held(&qp->s_lock);
2593 	qp->s_flags |= RVT_S_WAIT_RNR;
2594 	to = rvt_aeth_to_usec(aeth);
2595 	trace_rvt_rnrnak_add(qp, to);
2596 	hrtimer_start(&qp->s_rnr_timer,
2597 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2598 }
2599 EXPORT_SYMBOL(rvt_add_rnr_timer);
2600 
2601 /**
2602  * rvt_stop_rc_timers - stop all timers
2603  * @qp: the QP
2604  * stop any pending timers
2605  */
2606 void rvt_stop_rc_timers(struct rvt_qp *qp)
2607 {
2608 	lockdep_assert_held(&qp->s_lock);
2609 	/* Remove QP from all timers */
2610 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2611 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2612 		del_timer(&qp->s_timer);
2613 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2614 	}
2615 }
2616 EXPORT_SYMBOL(rvt_stop_rc_timers);
2617 
2618 /**
2619  * rvt_stop_rnr_timer - stop an rnr timer
2620  * @qp - the QP
2621  *
2622  * stop an rnr timer and return if the timer
2623  * had been pending.
2624  */
2625 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2626 {
2627 	lockdep_assert_held(&qp->s_lock);
2628 	/* Remove QP from rnr timer */
2629 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2630 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2631 		trace_rvt_rnrnak_stop(qp, 0);
2632 	}
2633 }
2634 
2635 /**
2636  * rvt_del_timers_sync - wait for any timeout routines to exit
2637  * @qp: the QP
2638  */
2639 void rvt_del_timers_sync(struct rvt_qp *qp)
2640 {
2641 	del_timer_sync(&qp->s_timer);
2642 	hrtimer_cancel(&qp->s_rnr_timer);
2643 }
2644 EXPORT_SYMBOL(rvt_del_timers_sync);
2645 
2646 /*
2647  * This is called from s_timer for missing responses.
2648  */
2649 static void rvt_rc_timeout(struct timer_list *t)
2650 {
2651 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2652 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2653 	unsigned long flags;
2654 
2655 	spin_lock_irqsave(&qp->r_lock, flags);
2656 	spin_lock(&qp->s_lock);
2657 	if (qp->s_flags & RVT_S_TIMER) {
2658 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2659 
2660 		qp->s_flags &= ~RVT_S_TIMER;
2661 		rvp->n_rc_timeouts++;
2662 		del_timer(&qp->s_timer);
2663 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2664 		if (rdi->driver_f.notify_restart_rc)
2665 			rdi->driver_f.notify_restart_rc(qp,
2666 							qp->s_last_psn + 1,
2667 							1);
2668 		rdi->driver_f.schedule_send(qp);
2669 	}
2670 	spin_unlock(&qp->s_lock);
2671 	spin_unlock_irqrestore(&qp->r_lock, flags);
2672 }
2673 
2674 /*
2675  * This is called from s_timer for RNR timeouts.
2676  */
2677 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2678 {
2679 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2680 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2681 	unsigned long flags;
2682 
2683 	spin_lock_irqsave(&qp->s_lock, flags);
2684 	rvt_stop_rnr_timer(qp);
2685 	trace_rvt_rnrnak_timeout(qp, 0);
2686 	rdi->driver_f.schedule_send(qp);
2687 	spin_unlock_irqrestore(&qp->s_lock, flags);
2688 	return HRTIMER_NORESTART;
2689 }
2690 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2691 
2692 /**
2693  * rvt_qp_iter_init - initial for QP iteration
2694  * @rdi: rvt devinfo
2695  * @v: u64 value
2696  * @cb: user-defined callback
2697  *
2698  * This returns an iterator suitable for iterating QPs
2699  * in the system.
2700  *
2701  * The @cb is a user-defined callback and @v is a 64-bit
2702  * value passed to and relevant for processing in the
2703  * @cb.  An example use case would be to alter QP processing
2704  * based on criteria not part of the rvt_qp.
2705  *
2706  * Use cases that require memory allocation to succeed
2707  * must preallocate appropriately.
2708  *
2709  * Return: a pointer to an rvt_qp_iter or NULL
2710  */
2711 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2712 				     u64 v,
2713 				     void (*cb)(struct rvt_qp *qp, u64 v))
2714 {
2715 	struct rvt_qp_iter *i;
2716 
2717 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2718 	if (!i)
2719 		return NULL;
2720 
2721 	i->rdi = rdi;
2722 	/* number of special QPs (SMI/GSI) for device */
2723 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2724 	i->v = v;
2725 	i->cb = cb;
2726 
2727 	return i;
2728 }
2729 EXPORT_SYMBOL(rvt_qp_iter_init);
2730 
2731 /**
2732  * rvt_qp_iter_next - return the next QP in iter
2733  * @iter: the iterator
2734  *
2735  * Fine grained QP iterator suitable for use
2736  * with debugfs seq_file mechanisms.
2737  *
2738  * Updates iter->qp with the current QP when the return
2739  * value is 0.
2740  *
2741  * Return: 0 - iter->qp is valid 1 - no more QPs
2742  */
2743 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2744 	__must_hold(RCU)
2745 {
2746 	int n = iter->n;
2747 	int ret = 1;
2748 	struct rvt_qp *pqp = iter->qp;
2749 	struct rvt_qp *qp;
2750 	struct rvt_dev_info *rdi = iter->rdi;
2751 
2752 	/*
2753 	 * The approach is to consider the special qps
2754 	 * as additional table entries before the
2755 	 * real hash table.  Since the qp code sets
2756 	 * the qp->next hash link to NULL, this works just fine.
2757 	 *
2758 	 * iter->specials is 2 * # ports
2759 	 *
2760 	 * n = 0..iter->specials is the special qp indices
2761 	 *
2762 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2763 	 * the potential hash bucket entries
2764 	 *
2765 	 */
2766 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2767 		if (pqp) {
2768 			qp = rcu_dereference(pqp->next);
2769 		} else {
2770 			if (n < iter->specials) {
2771 				struct rvt_ibport *rvp;
2772 				int pidx;
2773 
2774 				pidx = n % rdi->ibdev.phys_port_cnt;
2775 				rvp = rdi->ports[pidx];
2776 				qp = rcu_dereference(rvp->qp[n & 1]);
2777 			} else {
2778 				qp = rcu_dereference(
2779 					rdi->qp_dev->qp_table[
2780 						(n - iter->specials)]);
2781 			}
2782 		}
2783 		pqp = qp;
2784 		if (qp) {
2785 			iter->qp = qp;
2786 			iter->n = n;
2787 			return 0;
2788 		}
2789 	}
2790 	return ret;
2791 }
2792 EXPORT_SYMBOL(rvt_qp_iter_next);
2793 
2794 /**
2795  * rvt_qp_iter - iterate all QPs
2796  * @rdi: rvt devinfo
2797  * @v: a 64-bit value
2798  * @cb: a callback
2799  *
2800  * This provides a way for iterating all QPs.
2801  *
2802  * The @cb is a user-defined callback and @v is a 64-bit
2803  * value passed to and relevant for processing in the
2804  * cb.  An example use case would be to alter QP processing
2805  * based on criteria not part of the rvt_qp.
2806  *
2807  * The code has an internal iterator to simplify
2808  * non seq_file use cases.
2809  */
2810 void rvt_qp_iter(struct rvt_dev_info *rdi,
2811 		 u64 v,
2812 		 void (*cb)(struct rvt_qp *qp, u64 v))
2813 {
2814 	int ret;
2815 	struct rvt_qp_iter i = {
2816 		.rdi = rdi,
2817 		.specials = rdi->ibdev.phys_port_cnt * 2,
2818 		.v = v,
2819 		.cb = cb
2820 	};
2821 
2822 	rcu_read_lock();
2823 	do {
2824 		ret = rvt_qp_iter_next(&i);
2825 		if (!ret) {
2826 			rvt_get_qp(i.qp);
2827 			rcu_read_unlock();
2828 			i.cb(i.qp, i.v);
2829 			rcu_read_lock();
2830 			rvt_put_qp(i.qp);
2831 		}
2832 	} while (!ret);
2833 	rcu_read_unlock();
2834 }
2835 EXPORT_SYMBOL(rvt_qp_iter);
2836 
2837 /*
2838  * This should be called with s_lock held.
2839  */
2840 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2841 		       enum ib_wc_status status)
2842 {
2843 	u32 old_last, last;
2844 	struct rvt_dev_info *rdi;
2845 
2846 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2847 		return;
2848 	rdi = ib_to_rvt(qp->ibqp.device);
2849 
2850 	old_last = qp->s_last;
2851 	trace_rvt_qp_send_completion(qp, wqe, old_last);
2852 	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2853 				    status);
2854 	if (qp->s_acked == old_last)
2855 		qp->s_acked = last;
2856 	if (qp->s_cur == old_last)
2857 		qp->s_cur = last;
2858 	if (qp->s_tail == old_last)
2859 		qp->s_tail = last;
2860 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2861 		qp->s_draining = 0;
2862 }
2863 EXPORT_SYMBOL(rvt_send_complete);
2864 
2865 /**
2866  * rvt_copy_sge - copy data to SGE memory
2867  * @qp: associated QP
2868  * @ss: the SGE state
2869  * @data: the data to copy
2870  * @length: the length of the data
2871  * @release: boolean to release MR
2872  * @copy_last: do a separate copy of the last 8 bytes
2873  */
2874 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2875 		  void *data, u32 length,
2876 		  bool release, bool copy_last)
2877 {
2878 	struct rvt_sge *sge = &ss->sge;
2879 	int i;
2880 	bool in_last = false;
2881 	bool cacheless_copy = false;
2882 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2883 	struct rvt_wss *wss = rdi->wss;
2884 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2885 
2886 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2887 		cacheless_copy = length >= PAGE_SIZE;
2888 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2889 		if (length >= PAGE_SIZE) {
2890 			/*
2891 			 * NOTE: this *assumes*:
2892 			 * o The first vaddr is the dest.
2893 			 * o If multiple pages, then vaddr is sequential.
2894 			 */
2895 			wss_insert(wss, sge->vaddr);
2896 			if (length >= (2 * PAGE_SIZE))
2897 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2898 
2899 			cacheless_copy = wss_exceeds_threshold(wss);
2900 		} else {
2901 			wss_advance_clean_counter(wss);
2902 		}
2903 	}
2904 
2905 	if (copy_last) {
2906 		if (length > 8) {
2907 			length -= 8;
2908 		} else {
2909 			copy_last = false;
2910 			in_last = true;
2911 		}
2912 	}
2913 
2914 again:
2915 	while (length) {
2916 		u32 len = rvt_get_sge_length(sge, length);
2917 
2918 		WARN_ON_ONCE(len == 0);
2919 		if (unlikely(in_last)) {
2920 			/* enforce byte transfer ordering */
2921 			for (i = 0; i < len; i++)
2922 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2923 		} else if (cacheless_copy) {
2924 			cacheless_memcpy(sge->vaddr, data, len);
2925 		} else {
2926 			memcpy(sge->vaddr, data, len);
2927 		}
2928 		rvt_update_sge(ss, len, release);
2929 		data += len;
2930 		length -= len;
2931 	}
2932 
2933 	if (copy_last) {
2934 		copy_last = false;
2935 		in_last = true;
2936 		length = 8;
2937 		goto again;
2938 	}
2939 }
2940 EXPORT_SYMBOL(rvt_copy_sge);
2941 
2942 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2943 					  struct rvt_qp *sqp)
2944 {
2945 	rvp->n_pkt_drops++;
2946 	/*
2947 	 * For RC, the requester would timeout and retry so
2948 	 * shortcut the timeouts and just signal too many retries.
2949 	 */
2950 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2951 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2952 }
2953 
2954 /**
2955  * ruc_loopback - handle UC and RC loopback requests
2956  * @sqp: the sending QP
2957  *
2958  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2959  * Note that although we are single threaded due to the send engine, we still
2960  * have to protect against post_send().  We don't have to worry about
2961  * receive interrupts since this is a connected protocol and all packets
2962  * will pass through here.
2963  */
2964 void rvt_ruc_loopback(struct rvt_qp *sqp)
2965 {
2966 	struct rvt_ibport *rvp =  NULL;
2967 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2968 	struct rvt_qp *qp;
2969 	struct rvt_swqe *wqe;
2970 	struct rvt_sge *sge;
2971 	unsigned long flags;
2972 	struct ib_wc wc;
2973 	u64 sdata;
2974 	atomic64_t *maddr;
2975 	enum ib_wc_status send_status;
2976 	bool release;
2977 	int ret;
2978 	bool copy_last = false;
2979 	int local_ops = 0;
2980 
2981 	rcu_read_lock();
2982 	rvp = rdi->ports[sqp->port_num - 1];
2983 
2984 	/*
2985 	 * Note that we check the responder QP state after
2986 	 * checking the requester's state.
2987 	 */
2988 
2989 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2990 			    sqp->remote_qpn);
2991 
2992 	spin_lock_irqsave(&sqp->s_lock, flags);
2993 
2994 	/* Return if we are already busy processing a work request. */
2995 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2996 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2997 		goto unlock;
2998 
2999 	sqp->s_flags |= RVT_S_BUSY;
3000 
3001 again:
3002 	if (sqp->s_last == READ_ONCE(sqp->s_head))
3003 		goto clr_busy;
3004 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
3005 
3006 	/* Return if it is not OK to start a new work request. */
3007 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
3008 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
3009 			goto clr_busy;
3010 		/* We are in the error state, flush the work request. */
3011 		send_status = IB_WC_WR_FLUSH_ERR;
3012 		goto flush_send;
3013 	}
3014 
3015 	/*
3016 	 * We can rely on the entry not changing without the s_lock
3017 	 * being held until we update s_last.
3018 	 * We increment s_cur to indicate s_last is in progress.
3019 	 */
3020 	if (sqp->s_last == sqp->s_cur) {
3021 		if (++sqp->s_cur >= sqp->s_size)
3022 			sqp->s_cur = 0;
3023 	}
3024 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3025 
3026 	if (!qp) {
3027 		send_status = loopback_qp_drop(rvp, sqp);
3028 		goto serr_no_r_lock;
3029 	}
3030 	spin_lock_irqsave(&qp->r_lock, flags);
3031 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3032 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3033 		send_status = loopback_qp_drop(rvp, sqp);
3034 		goto serr;
3035 	}
3036 
3037 	memset(&wc, 0, sizeof(wc));
3038 	send_status = IB_WC_SUCCESS;
3039 
3040 	release = true;
3041 	sqp->s_sge.sge = wqe->sg_list[0];
3042 	sqp->s_sge.sg_list = wqe->sg_list + 1;
3043 	sqp->s_sge.num_sge = wqe->wr.num_sge;
3044 	sqp->s_len = wqe->length;
3045 	switch (wqe->wr.opcode) {
3046 	case IB_WR_REG_MR:
3047 		goto send_comp;
3048 
3049 	case IB_WR_LOCAL_INV:
3050 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3051 			if (rvt_invalidate_rkey(sqp,
3052 						wqe->wr.ex.invalidate_rkey))
3053 				send_status = IB_WC_LOC_PROT_ERR;
3054 			local_ops = 1;
3055 		}
3056 		goto send_comp;
3057 
3058 	case IB_WR_SEND_WITH_INV:
3059 	case IB_WR_SEND_WITH_IMM:
3060 	case IB_WR_SEND:
3061 		ret = rvt_get_rwqe(qp, false);
3062 		if (ret < 0)
3063 			goto op_err;
3064 		if (!ret)
3065 			goto rnr_nak;
3066 		if (wqe->length > qp->r_len)
3067 			goto inv_err;
3068 		switch (wqe->wr.opcode) {
3069 		case IB_WR_SEND_WITH_INV:
3070 			if (!rvt_invalidate_rkey(qp,
3071 						 wqe->wr.ex.invalidate_rkey)) {
3072 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3073 				wc.ex.invalidate_rkey =
3074 					wqe->wr.ex.invalidate_rkey;
3075 			}
3076 			break;
3077 		case IB_WR_SEND_WITH_IMM:
3078 			wc.wc_flags = IB_WC_WITH_IMM;
3079 			wc.ex.imm_data = wqe->wr.ex.imm_data;
3080 			break;
3081 		default:
3082 			break;
3083 		}
3084 		break;
3085 
3086 	case IB_WR_RDMA_WRITE_WITH_IMM:
3087 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3088 			goto inv_err;
3089 		wc.wc_flags = IB_WC_WITH_IMM;
3090 		wc.ex.imm_data = wqe->wr.ex.imm_data;
3091 		ret = rvt_get_rwqe(qp, true);
3092 		if (ret < 0)
3093 			goto op_err;
3094 		if (!ret)
3095 			goto rnr_nak;
3096 		/* skip copy_last set and qp_access_flags recheck */
3097 		goto do_write;
3098 	case IB_WR_RDMA_WRITE:
3099 		copy_last = rvt_is_user_qp(qp);
3100 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3101 			goto inv_err;
3102 do_write:
3103 		if (wqe->length == 0)
3104 			break;
3105 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3106 					  wqe->rdma_wr.remote_addr,
3107 					  wqe->rdma_wr.rkey,
3108 					  IB_ACCESS_REMOTE_WRITE)))
3109 			goto acc_err;
3110 		qp->r_sge.sg_list = NULL;
3111 		qp->r_sge.num_sge = 1;
3112 		qp->r_sge.total_len = wqe->length;
3113 		break;
3114 
3115 	case IB_WR_RDMA_READ:
3116 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3117 			goto inv_err;
3118 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3119 					  wqe->rdma_wr.remote_addr,
3120 					  wqe->rdma_wr.rkey,
3121 					  IB_ACCESS_REMOTE_READ)))
3122 			goto acc_err;
3123 		release = false;
3124 		sqp->s_sge.sg_list = NULL;
3125 		sqp->s_sge.num_sge = 1;
3126 		qp->r_sge.sge = wqe->sg_list[0];
3127 		qp->r_sge.sg_list = wqe->sg_list + 1;
3128 		qp->r_sge.num_sge = wqe->wr.num_sge;
3129 		qp->r_sge.total_len = wqe->length;
3130 		break;
3131 
3132 	case IB_WR_ATOMIC_CMP_AND_SWP:
3133 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3134 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3135 			goto inv_err;
3136 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3137 					  wqe->atomic_wr.remote_addr,
3138 					  wqe->atomic_wr.rkey,
3139 					  IB_ACCESS_REMOTE_ATOMIC)))
3140 			goto acc_err;
3141 		/* Perform atomic OP and save result. */
3142 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3143 		sdata = wqe->atomic_wr.compare_add;
3144 		*(u64 *)sqp->s_sge.sge.vaddr =
3145 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3146 			(u64)atomic64_add_return(sdata, maddr) - sdata :
3147 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3148 				      sdata, wqe->atomic_wr.swap);
3149 		rvt_put_mr(qp->r_sge.sge.mr);
3150 		qp->r_sge.num_sge = 0;
3151 		goto send_comp;
3152 
3153 	default:
3154 		send_status = IB_WC_LOC_QP_OP_ERR;
3155 		goto serr;
3156 	}
3157 
3158 	sge = &sqp->s_sge.sge;
3159 	while (sqp->s_len) {
3160 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3161 
3162 		WARN_ON_ONCE(len == 0);
3163 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3164 			     len, release, copy_last);
3165 		rvt_update_sge(&sqp->s_sge, len, !release);
3166 		sqp->s_len -= len;
3167 	}
3168 	if (release)
3169 		rvt_put_ss(&qp->r_sge);
3170 
3171 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3172 		goto send_comp;
3173 
3174 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3175 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3176 	else
3177 		wc.opcode = IB_WC_RECV;
3178 	wc.wr_id = qp->r_wr_id;
3179 	wc.status = IB_WC_SUCCESS;
3180 	wc.byte_len = wqe->length;
3181 	wc.qp = &qp->ibqp;
3182 	wc.src_qp = qp->remote_qpn;
3183 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3184 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3185 	wc.port_num = 1;
3186 	/* Signal completion event if the solicited bit is set. */
3187 	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3188 
3189 send_comp:
3190 	spin_unlock_irqrestore(&qp->r_lock, flags);
3191 	spin_lock_irqsave(&sqp->s_lock, flags);
3192 	rvp->n_loop_pkts++;
3193 flush_send:
3194 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3195 	rvt_send_complete(sqp, wqe, send_status);
3196 	if (local_ops) {
3197 		atomic_dec(&sqp->local_ops_pending);
3198 		local_ops = 0;
3199 	}
3200 	goto again;
3201 
3202 rnr_nak:
3203 	/* Handle RNR NAK */
3204 	if (qp->ibqp.qp_type == IB_QPT_UC)
3205 		goto send_comp;
3206 	rvp->n_rnr_naks++;
3207 	/*
3208 	 * Note: we don't need the s_lock held since the BUSY flag
3209 	 * makes this single threaded.
3210 	 */
3211 	if (sqp->s_rnr_retry == 0) {
3212 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3213 		goto serr;
3214 	}
3215 	if (sqp->s_rnr_retry_cnt < 7)
3216 		sqp->s_rnr_retry--;
3217 	spin_unlock_irqrestore(&qp->r_lock, flags);
3218 	spin_lock_irqsave(&sqp->s_lock, flags);
3219 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3220 		goto clr_busy;
3221 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3222 				IB_AETH_CREDIT_SHIFT);
3223 	goto clr_busy;
3224 
3225 op_err:
3226 	send_status = IB_WC_REM_OP_ERR;
3227 	wc.status = IB_WC_LOC_QP_OP_ERR;
3228 	goto err;
3229 
3230 inv_err:
3231 	send_status =
3232 		sqp->ibqp.qp_type == IB_QPT_RC ?
3233 			IB_WC_REM_INV_REQ_ERR :
3234 			IB_WC_SUCCESS;
3235 	wc.status = IB_WC_LOC_QP_OP_ERR;
3236 	goto err;
3237 
3238 acc_err:
3239 	send_status = IB_WC_REM_ACCESS_ERR;
3240 	wc.status = IB_WC_LOC_PROT_ERR;
3241 err:
3242 	/* responder goes to error state */
3243 	rvt_rc_error(qp, wc.status);
3244 
3245 serr:
3246 	spin_unlock_irqrestore(&qp->r_lock, flags);
3247 serr_no_r_lock:
3248 	spin_lock_irqsave(&sqp->s_lock, flags);
3249 	rvt_send_complete(sqp, wqe, send_status);
3250 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3251 		int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3252 
3253 		sqp->s_flags &= ~RVT_S_BUSY;
3254 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3255 		if (lastwqe) {
3256 			struct ib_event ev;
3257 
3258 			ev.device = sqp->ibqp.device;
3259 			ev.element.qp = &sqp->ibqp;
3260 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3261 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3262 		}
3263 		goto done;
3264 	}
3265 clr_busy:
3266 	sqp->s_flags &= ~RVT_S_BUSY;
3267 unlock:
3268 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3269 done:
3270 	rcu_read_unlock();
3271 }
3272 EXPORT_SYMBOL(rvt_ruc_loopback);
3273