1 /* 2 * Copyright(c) 2016 - 2019 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include <rdma/uverbs_ioctl.h> 57 #include "qp.h" 58 #include "vt.h" 59 #include "trace.h" 60 61 #define RVT_RWQ_COUNT_THRESHOLD 16 62 63 static void rvt_rc_timeout(struct timer_list *t); 64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 65 enum ib_qp_type type); 66 67 /* 68 * Convert the AETH RNR timeout code into the number of microseconds. 69 */ 70 static const u32 ib_rvt_rnr_table[32] = { 71 655360, /* 00: 655.36 */ 72 10, /* 01: .01 */ 73 20, /* 02 .02 */ 74 30, /* 03: .03 */ 75 40, /* 04: .04 */ 76 60, /* 05: .06 */ 77 80, /* 06: .08 */ 78 120, /* 07: .12 */ 79 160, /* 08: .16 */ 80 240, /* 09: .24 */ 81 320, /* 0A: .32 */ 82 480, /* 0B: .48 */ 83 640, /* 0C: .64 */ 84 960, /* 0D: .96 */ 85 1280, /* 0E: 1.28 */ 86 1920, /* 0F: 1.92 */ 87 2560, /* 10: 2.56 */ 88 3840, /* 11: 3.84 */ 89 5120, /* 12: 5.12 */ 90 7680, /* 13: 7.68 */ 91 10240, /* 14: 10.24 */ 92 15360, /* 15: 15.36 */ 93 20480, /* 16: 20.48 */ 94 30720, /* 17: 30.72 */ 95 40960, /* 18: 40.96 */ 96 61440, /* 19: 61.44 */ 97 81920, /* 1A: 81.92 */ 98 122880, /* 1B: 122.88 */ 99 163840, /* 1C: 163.84 */ 100 245760, /* 1D: 245.76 */ 101 327680, /* 1E: 327.68 */ 102 491520 /* 1F: 491.52 */ 103 }; 104 105 /* 106 * Note that it is OK to post send work requests in the SQE and ERR 107 * states; rvt_do_send() will process them and generate error 108 * completions as per IB 1.2 C10-96. 109 */ 110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 111 [IB_QPS_RESET] = 0, 112 [IB_QPS_INIT] = RVT_POST_RECV_OK, 113 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 114 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 115 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 116 RVT_PROCESS_NEXT_SEND_OK, 117 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 118 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 119 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 120 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 121 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 122 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 123 }; 124 EXPORT_SYMBOL(ib_rvt_state_ops); 125 126 /* platform specific: return the last level cache (llc) size, in KiB */ 127 static int rvt_wss_llc_size(void) 128 { 129 /* assume that the boot CPU value is universal for all CPUs */ 130 return boot_cpu_data.x86_cache_size; 131 } 132 133 /* platform specific: cacheless copy */ 134 static void cacheless_memcpy(void *dst, void *src, size_t n) 135 { 136 /* 137 * Use the only available X64 cacheless copy. Add a __user cast 138 * to quiet sparse. The src agument is already in the kernel so 139 * there are no security issues. The extra fault recovery machinery 140 * is not invoked. 141 */ 142 __copy_user_nocache(dst, (void __user *)src, n, 0); 143 } 144 145 void rvt_wss_exit(struct rvt_dev_info *rdi) 146 { 147 struct rvt_wss *wss = rdi->wss; 148 149 if (!wss) 150 return; 151 152 /* coded to handle partially initialized and repeat callers */ 153 kfree(wss->entries); 154 wss->entries = NULL; 155 kfree(rdi->wss); 156 rdi->wss = NULL; 157 } 158 159 /** 160 * rvt_wss_init - Init wss data structures 161 * 162 * Return: 0 on success 163 */ 164 int rvt_wss_init(struct rvt_dev_info *rdi) 165 { 166 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 167 unsigned int wss_threshold = rdi->dparms.wss_threshold; 168 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 169 long llc_size; 170 long llc_bits; 171 long table_size; 172 long table_bits; 173 struct rvt_wss *wss; 174 int node = rdi->dparms.node; 175 176 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 177 rdi->wss = NULL; 178 return 0; 179 } 180 181 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 182 if (!rdi->wss) 183 return -ENOMEM; 184 wss = rdi->wss; 185 186 /* check for a valid percent range - default to 80 if none or invalid */ 187 if (wss_threshold < 1 || wss_threshold > 100) 188 wss_threshold = 80; 189 190 /* reject a wildly large period */ 191 if (wss_clean_period > 1000000) 192 wss_clean_period = 256; 193 194 /* reject a zero period */ 195 if (wss_clean_period == 0) 196 wss_clean_period = 1; 197 198 /* 199 * Calculate the table size - the next power of 2 larger than the 200 * LLC size. LLC size is in KiB. 201 */ 202 llc_size = rvt_wss_llc_size() * 1024; 203 table_size = roundup_pow_of_two(llc_size); 204 205 /* one bit per page in rounded up table */ 206 llc_bits = llc_size / PAGE_SIZE; 207 table_bits = table_size / PAGE_SIZE; 208 wss->pages_mask = table_bits - 1; 209 wss->num_entries = table_bits / BITS_PER_LONG; 210 211 wss->threshold = (llc_bits * wss_threshold) / 100; 212 if (wss->threshold == 0) 213 wss->threshold = 1; 214 215 wss->clean_period = wss_clean_period; 216 atomic_set(&wss->clean_counter, wss_clean_period); 217 218 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 219 GFP_KERNEL, node); 220 if (!wss->entries) { 221 rvt_wss_exit(rdi); 222 return -ENOMEM; 223 } 224 225 return 0; 226 } 227 228 /* 229 * Advance the clean counter. When the clean period has expired, 230 * clean an entry. 231 * 232 * This is implemented in atomics to avoid locking. Because multiple 233 * variables are involved, it can be racy which can lead to slightly 234 * inaccurate information. Since this is only a heuristic, this is 235 * OK. Any innaccuracies will clean themselves out as the counter 236 * advances. That said, it is unlikely the entry clean operation will 237 * race - the next possible racer will not start until the next clean 238 * period. 239 * 240 * The clean counter is implemented as a decrement to zero. When zero 241 * is reached an entry is cleaned. 242 */ 243 static void wss_advance_clean_counter(struct rvt_wss *wss) 244 { 245 int entry; 246 int weight; 247 unsigned long bits; 248 249 /* become the cleaner if we decrement the counter to zero */ 250 if (atomic_dec_and_test(&wss->clean_counter)) { 251 /* 252 * Set, not add, the clean period. This avoids an issue 253 * where the counter could decrement below the clean period. 254 * Doing a set can result in lost decrements, slowing the 255 * clean advance. Since this a heuristic, this possible 256 * slowdown is OK. 257 * 258 * An alternative is to loop, advancing the counter by a 259 * clean period until the result is > 0. However, this could 260 * lead to several threads keeping another in the clean loop. 261 * This could be mitigated by limiting the number of times 262 * we stay in the loop. 263 */ 264 atomic_set(&wss->clean_counter, wss->clean_period); 265 266 /* 267 * Uniquely grab the entry to clean and move to next. 268 * The current entry is always the lower bits of 269 * wss.clean_entry. The table size, wss.num_entries, 270 * is always a power-of-2. 271 */ 272 entry = (atomic_inc_return(&wss->clean_entry) - 1) 273 & (wss->num_entries - 1); 274 275 /* clear the entry and count the bits */ 276 bits = xchg(&wss->entries[entry], 0); 277 weight = hweight64((u64)bits); 278 /* only adjust the contended total count if needed */ 279 if (weight) 280 atomic_sub(weight, &wss->total_count); 281 } 282 } 283 284 /* 285 * Insert the given address into the working set array. 286 */ 287 static void wss_insert(struct rvt_wss *wss, void *address) 288 { 289 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 290 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 291 u32 nr = page & (BITS_PER_LONG - 1); 292 293 if (!test_and_set_bit(nr, &wss->entries[entry])) 294 atomic_inc(&wss->total_count); 295 296 wss_advance_clean_counter(wss); 297 } 298 299 /* 300 * Is the working set larger than the threshold? 301 */ 302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 303 { 304 return atomic_read(&wss->total_count) >= wss->threshold; 305 } 306 307 static void get_map_page(struct rvt_qpn_table *qpt, 308 struct rvt_qpn_map *map) 309 { 310 unsigned long page = get_zeroed_page(GFP_KERNEL); 311 312 /* 313 * Free the page if someone raced with us installing it. 314 */ 315 316 spin_lock(&qpt->lock); 317 if (map->page) 318 free_page(page); 319 else 320 map->page = (void *)page; 321 spin_unlock(&qpt->lock); 322 } 323 324 /** 325 * init_qpn_table - initialize the QP number table for a device 326 * @qpt: the QPN table 327 */ 328 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 329 { 330 u32 offset, i; 331 struct rvt_qpn_map *map; 332 int ret = 0; 333 334 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 335 return -EINVAL; 336 337 spin_lock_init(&qpt->lock); 338 339 qpt->last = rdi->dparms.qpn_start; 340 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 341 342 /* 343 * Drivers may want some QPs beyond what we need for verbs let them use 344 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 345 * for those. The reserved range must be *after* the range which verbs 346 * will pick from. 347 */ 348 349 /* Figure out number of bit maps needed before reserved range */ 350 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 351 352 /* This should always be zero */ 353 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 354 355 /* Starting with the first reserved bit map */ 356 map = &qpt->map[qpt->nmaps]; 357 358 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 359 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 360 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 361 if (!map->page) { 362 get_map_page(qpt, map); 363 if (!map->page) { 364 ret = -ENOMEM; 365 break; 366 } 367 } 368 set_bit(offset, map->page); 369 offset++; 370 if (offset == RVT_BITS_PER_PAGE) { 371 /* next page */ 372 qpt->nmaps++; 373 map++; 374 offset = 0; 375 } 376 } 377 return ret; 378 } 379 380 /** 381 * free_qpn_table - free the QP number table for a device 382 * @qpt: the QPN table 383 */ 384 static void free_qpn_table(struct rvt_qpn_table *qpt) 385 { 386 int i; 387 388 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 389 free_page((unsigned long)qpt->map[i].page); 390 } 391 392 /** 393 * rvt_driver_qp_init - Init driver qp resources 394 * @rdi: rvt dev strucutre 395 * 396 * Return: 0 on success 397 */ 398 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 399 { 400 int i; 401 int ret = -ENOMEM; 402 403 if (!rdi->dparms.qp_table_size) 404 return -EINVAL; 405 406 /* 407 * If driver is not doing any QP allocation then make sure it is 408 * providing the necessary QP functions. 409 */ 410 if (!rdi->driver_f.free_all_qps || 411 !rdi->driver_f.qp_priv_alloc || 412 !rdi->driver_f.qp_priv_free || 413 !rdi->driver_f.notify_qp_reset || 414 !rdi->driver_f.notify_restart_rc) 415 return -EINVAL; 416 417 /* allocate parent object */ 418 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 419 rdi->dparms.node); 420 if (!rdi->qp_dev) 421 return -ENOMEM; 422 423 /* allocate hash table */ 424 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 425 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 426 rdi->qp_dev->qp_table = 427 kmalloc_array_node(rdi->qp_dev->qp_table_size, 428 sizeof(*rdi->qp_dev->qp_table), 429 GFP_KERNEL, rdi->dparms.node); 430 if (!rdi->qp_dev->qp_table) 431 goto no_qp_table; 432 433 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 434 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 435 436 spin_lock_init(&rdi->qp_dev->qpt_lock); 437 438 /* initialize qpn map */ 439 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 440 goto fail_table; 441 442 spin_lock_init(&rdi->n_qps_lock); 443 444 return 0; 445 446 fail_table: 447 kfree(rdi->qp_dev->qp_table); 448 free_qpn_table(&rdi->qp_dev->qpn_table); 449 450 no_qp_table: 451 kfree(rdi->qp_dev); 452 453 return ret; 454 } 455 456 /** 457 * rvt_free_qp_cb - callback function to reset a qp 458 * @qp: the qp to reset 459 * @v: a 64-bit value 460 * 461 * This function resets the qp and removes it from the 462 * qp hash table. 463 */ 464 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) 465 { 466 unsigned int *qp_inuse = (unsigned int *)v; 467 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 468 469 /* Reset the qp and remove it from the qp hash list */ 470 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); 471 472 /* Increment the qp_inuse count */ 473 (*qp_inuse)++; 474 } 475 476 /** 477 * rvt_free_all_qps - check for QPs still in use 478 * @rdi: rvt device info structure 479 * 480 * There should not be any QPs still in use. 481 * Free memory for table. 482 * Return the number of QPs still in use. 483 */ 484 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 485 { 486 unsigned int qp_inuse = 0; 487 488 qp_inuse += rvt_mcast_tree_empty(rdi); 489 490 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); 491 492 return qp_inuse; 493 } 494 495 /** 496 * rvt_qp_exit - clean up qps on device exit 497 * @rdi: rvt dev structure 498 * 499 * Check for qp leaks and free resources. 500 */ 501 void rvt_qp_exit(struct rvt_dev_info *rdi) 502 { 503 u32 qps_inuse = rvt_free_all_qps(rdi); 504 505 if (qps_inuse) 506 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 507 qps_inuse); 508 if (!rdi->qp_dev) 509 return; 510 511 kfree(rdi->qp_dev->qp_table); 512 free_qpn_table(&rdi->qp_dev->qpn_table); 513 kfree(rdi->qp_dev); 514 } 515 516 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 517 struct rvt_qpn_map *map, unsigned off) 518 { 519 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 520 } 521 522 /** 523 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 524 * IB_QPT_SMI/IB_QPT_GSI 525 * @rdi: rvt device info structure 526 * @qpt: queue pair number table pointer 527 * @port_num: IB port number, 1 based, comes from core 528 * 529 * Return: The queue pair number 530 */ 531 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 532 enum ib_qp_type type, u8 port_num) 533 { 534 u32 i, offset, max_scan, qpn; 535 struct rvt_qpn_map *map; 536 u32 ret; 537 538 if (rdi->driver_f.alloc_qpn) 539 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 540 541 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 542 unsigned n; 543 544 ret = type == IB_QPT_GSI; 545 n = 1 << (ret + 2 * (port_num - 1)); 546 spin_lock(&qpt->lock); 547 if (qpt->flags & n) 548 ret = -EINVAL; 549 else 550 qpt->flags |= n; 551 spin_unlock(&qpt->lock); 552 goto bail; 553 } 554 555 qpn = qpt->last + qpt->incr; 556 if (qpn >= RVT_QPN_MAX) 557 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 558 /* offset carries bit 0 */ 559 offset = qpn & RVT_BITS_PER_PAGE_MASK; 560 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 561 max_scan = qpt->nmaps - !offset; 562 for (i = 0;;) { 563 if (unlikely(!map->page)) { 564 get_map_page(qpt, map); 565 if (unlikely(!map->page)) 566 break; 567 } 568 do { 569 if (!test_and_set_bit(offset, map->page)) { 570 qpt->last = qpn; 571 ret = qpn; 572 goto bail; 573 } 574 offset += qpt->incr; 575 /* 576 * This qpn might be bogus if offset >= BITS_PER_PAGE. 577 * That is OK. It gets re-assigned below 578 */ 579 qpn = mk_qpn(qpt, map, offset); 580 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 581 /* 582 * In order to keep the number of pages allocated to a 583 * minimum, we scan the all existing pages before increasing 584 * the size of the bitmap table. 585 */ 586 if (++i > max_scan) { 587 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 588 break; 589 map = &qpt->map[qpt->nmaps++]; 590 /* start at incr with current bit 0 */ 591 offset = qpt->incr | (offset & 1); 592 } else if (map < &qpt->map[qpt->nmaps]) { 593 ++map; 594 /* start at incr with current bit 0 */ 595 offset = qpt->incr | (offset & 1); 596 } else { 597 map = &qpt->map[0]; 598 /* wrap to first map page, invert bit 0 */ 599 offset = qpt->incr | ((offset & 1) ^ 1); 600 } 601 /* there can be no set bits in low-order QoS bits */ 602 WARN_ON(rdi->dparms.qos_shift > 1 && 603 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 604 qpn = mk_qpn(qpt, map, offset); 605 } 606 607 ret = -ENOMEM; 608 609 bail: 610 return ret; 611 } 612 613 /** 614 * rvt_clear_mr_refs - Drop help mr refs 615 * @qp: rvt qp data structure 616 * @clr_sends: If shoudl clear send side or not 617 */ 618 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 619 { 620 unsigned n; 621 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 622 623 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 624 rvt_put_ss(&qp->s_rdma_read_sge); 625 626 rvt_put_ss(&qp->r_sge); 627 628 if (clr_sends) { 629 while (qp->s_last != qp->s_head) { 630 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 631 632 rvt_put_qp_swqe(qp, wqe); 633 if (++qp->s_last >= qp->s_size) 634 qp->s_last = 0; 635 smp_wmb(); /* see qp_set_savail */ 636 } 637 if (qp->s_rdma_mr) { 638 rvt_put_mr(qp->s_rdma_mr); 639 qp->s_rdma_mr = NULL; 640 } 641 } 642 643 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 644 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 645 646 if (e->rdma_sge.mr) { 647 rvt_put_mr(e->rdma_sge.mr); 648 e->rdma_sge.mr = NULL; 649 } 650 } 651 } 652 653 /** 654 * rvt_swqe_has_lkey - return true if lkey is used by swqe 655 * @wqe - the send wqe 656 * @lkey - the lkey 657 * 658 * Test the swqe for using lkey 659 */ 660 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 661 { 662 int i; 663 664 for (i = 0; i < wqe->wr.num_sge; i++) { 665 struct rvt_sge *sge = &wqe->sg_list[i]; 666 667 if (rvt_mr_has_lkey(sge->mr, lkey)) 668 return true; 669 } 670 return false; 671 } 672 673 /** 674 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 675 * @qp - the rvt_qp 676 * @lkey - the lkey 677 */ 678 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 679 { 680 u32 s_last = qp->s_last; 681 682 while (s_last != qp->s_head) { 683 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 684 685 if (rvt_swqe_has_lkey(wqe, lkey)) 686 return true; 687 688 if (++s_last >= qp->s_size) 689 s_last = 0; 690 } 691 if (qp->s_rdma_mr) 692 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 693 return true; 694 return false; 695 } 696 697 /** 698 * rvt_qp_acks_has_lkey - return true if acks have lkey 699 * @qp - the qp 700 * @lkey - the lkey 701 */ 702 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 703 { 704 int i; 705 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 706 707 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 708 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 709 710 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 711 return true; 712 } 713 return false; 714 } 715 716 /* 717 * rvt_qp_mr_clean - clean up remote ops for lkey 718 * @qp - the qp 719 * @lkey - the lkey that is being de-registered 720 * 721 * This routine checks if the lkey is being used by 722 * the qp. 723 * 724 * If so, the qp is put into an error state to elminate 725 * any references from the qp. 726 */ 727 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 728 { 729 bool lastwqe = false; 730 731 if (qp->ibqp.qp_type == IB_QPT_SMI || 732 qp->ibqp.qp_type == IB_QPT_GSI) 733 /* avoid special QPs */ 734 return; 735 spin_lock_irq(&qp->r_lock); 736 spin_lock(&qp->s_hlock); 737 spin_lock(&qp->s_lock); 738 739 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 740 goto check_lwqe; 741 742 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 743 rvt_qp_sends_has_lkey(qp, lkey) || 744 rvt_qp_acks_has_lkey(qp, lkey)) 745 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 746 check_lwqe: 747 spin_unlock(&qp->s_lock); 748 spin_unlock(&qp->s_hlock); 749 spin_unlock_irq(&qp->r_lock); 750 if (lastwqe) { 751 struct ib_event ev; 752 753 ev.device = qp->ibqp.device; 754 ev.element.qp = &qp->ibqp; 755 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 756 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 757 } 758 } 759 760 /** 761 * rvt_remove_qp - remove qp form table 762 * @rdi: rvt dev struct 763 * @qp: qp to remove 764 * 765 * Remove the QP from the table so it can't be found asynchronously by 766 * the receive routine. 767 */ 768 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 769 { 770 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 771 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 772 unsigned long flags; 773 int removed = 1; 774 775 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 776 777 if (rcu_dereference_protected(rvp->qp[0], 778 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 779 RCU_INIT_POINTER(rvp->qp[0], NULL); 780 } else if (rcu_dereference_protected(rvp->qp[1], 781 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 782 RCU_INIT_POINTER(rvp->qp[1], NULL); 783 } else { 784 struct rvt_qp *q; 785 struct rvt_qp __rcu **qpp; 786 787 removed = 0; 788 qpp = &rdi->qp_dev->qp_table[n]; 789 for (; (q = rcu_dereference_protected(*qpp, 790 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 791 qpp = &q->next) { 792 if (q == qp) { 793 RCU_INIT_POINTER(*qpp, 794 rcu_dereference_protected(qp->next, 795 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 796 removed = 1; 797 trace_rvt_qpremove(qp, n); 798 break; 799 } 800 } 801 } 802 803 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 804 if (removed) { 805 synchronize_rcu(); 806 rvt_put_qp(qp); 807 } 808 } 809 810 /** 811 * rvt_alloc_rq - allocate memory for user or kernel buffer 812 * @rq: receive queue data structure 813 * @size: number of request queue entries 814 * @node: The NUMA node 815 * @udata: True if user data is available or not false 816 * 817 * Return: If memory allocation failed, return -ENONEM 818 * This function is used by both shared receive 819 * queues and non-shared receive queues to allocate 820 * memory. 821 */ 822 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, 823 struct ib_udata *udata) 824 { 825 if (udata) { 826 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); 827 if (!rq->wq) 828 goto bail; 829 /* need kwq with no buffers */ 830 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); 831 if (!rq->kwq) 832 goto bail; 833 rq->kwq->curr_wq = rq->wq->wq; 834 } else { 835 /* need kwq with buffers */ 836 rq->kwq = 837 vzalloc_node(sizeof(struct rvt_krwq) + size, node); 838 if (!rq->kwq) 839 goto bail; 840 rq->kwq->curr_wq = rq->kwq->wq; 841 } 842 843 spin_lock_init(&rq->kwq->p_lock); 844 spin_lock_init(&rq->kwq->c_lock); 845 return 0; 846 bail: 847 rvt_free_rq(rq); 848 return -ENOMEM; 849 } 850 851 /** 852 * rvt_init_qp - initialize the QP state to the reset state 853 * @qp: the QP to init or reinit 854 * @type: the QP type 855 * 856 * This function is called from both rvt_create_qp() and 857 * rvt_reset_qp(). The difference is that the reset 858 * patch the necessary locks to protect against concurent 859 * access. 860 */ 861 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 862 enum ib_qp_type type) 863 { 864 qp->remote_qpn = 0; 865 qp->qkey = 0; 866 qp->qp_access_flags = 0; 867 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 868 qp->s_hdrwords = 0; 869 qp->s_wqe = NULL; 870 qp->s_draining = 0; 871 qp->s_next_psn = 0; 872 qp->s_last_psn = 0; 873 qp->s_sending_psn = 0; 874 qp->s_sending_hpsn = 0; 875 qp->s_psn = 0; 876 qp->r_psn = 0; 877 qp->r_msn = 0; 878 if (type == IB_QPT_RC) { 879 qp->s_state = IB_OPCODE_RC_SEND_LAST; 880 qp->r_state = IB_OPCODE_RC_SEND_LAST; 881 } else { 882 qp->s_state = IB_OPCODE_UC_SEND_LAST; 883 qp->r_state = IB_OPCODE_UC_SEND_LAST; 884 } 885 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 886 qp->r_nak_state = 0; 887 qp->r_aflags = 0; 888 qp->r_flags = 0; 889 qp->s_head = 0; 890 qp->s_tail = 0; 891 qp->s_cur = 0; 892 qp->s_acked = 0; 893 qp->s_last = 0; 894 qp->s_ssn = 1; 895 qp->s_lsn = 0; 896 qp->s_mig_state = IB_MIG_MIGRATED; 897 qp->r_head_ack_queue = 0; 898 qp->s_tail_ack_queue = 0; 899 qp->s_acked_ack_queue = 0; 900 qp->s_num_rd_atomic = 0; 901 if (qp->r_rq.kwq) 902 qp->r_rq.kwq->count = qp->r_rq.size; 903 qp->r_sge.num_sge = 0; 904 atomic_set(&qp->s_reserved_used, 0); 905 } 906 907 /** 908 * _rvt_reset_qp - initialize the QP state to the reset state 909 * @qp: the QP to reset 910 * @type: the QP type 911 * 912 * r_lock, s_hlock, and s_lock are required to be held by the caller 913 */ 914 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 915 enum ib_qp_type type) 916 __must_hold(&qp->s_lock) 917 __must_hold(&qp->s_hlock) 918 __must_hold(&qp->r_lock) 919 { 920 lockdep_assert_held(&qp->r_lock); 921 lockdep_assert_held(&qp->s_hlock); 922 lockdep_assert_held(&qp->s_lock); 923 if (qp->state != IB_QPS_RESET) { 924 qp->state = IB_QPS_RESET; 925 926 /* Let drivers flush their waitlist */ 927 rdi->driver_f.flush_qp_waiters(qp); 928 rvt_stop_rc_timers(qp); 929 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 930 spin_unlock(&qp->s_lock); 931 spin_unlock(&qp->s_hlock); 932 spin_unlock_irq(&qp->r_lock); 933 934 /* Stop the send queue and the retry timer */ 935 rdi->driver_f.stop_send_queue(qp); 936 rvt_del_timers_sync(qp); 937 /* Wait for things to stop */ 938 rdi->driver_f.quiesce_qp(qp); 939 940 /* take qp out the hash and wait for it to be unused */ 941 rvt_remove_qp(rdi, qp); 942 943 /* grab the lock b/c it was locked at call time */ 944 spin_lock_irq(&qp->r_lock); 945 spin_lock(&qp->s_hlock); 946 spin_lock(&qp->s_lock); 947 948 rvt_clear_mr_refs(qp, 1); 949 /* 950 * Let the driver do any tear down or re-init it needs to for 951 * a qp that has been reset 952 */ 953 rdi->driver_f.notify_qp_reset(qp); 954 } 955 rvt_init_qp(rdi, qp, type); 956 lockdep_assert_held(&qp->r_lock); 957 lockdep_assert_held(&qp->s_hlock); 958 lockdep_assert_held(&qp->s_lock); 959 } 960 961 /** 962 * rvt_reset_qp - initialize the QP state to the reset state 963 * @rdi: the device info 964 * @qp: the QP to reset 965 * @type: the QP type 966 * 967 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock 968 * before calling _rvt_reset_qp(). 969 */ 970 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 971 enum ib_qp_type type) 972 { 973 spin_lock_irq(&qp->r_lock); 974 spin_lock(&qp->s_hlock); 975 spin_lock(&qp->s_lock); 976 _rvt_reset_qp(rdi, qp, type); 977 spin_unlock(&qp->s_lock); 978 spin_unlock(&qp->s_hlock); 979 spin_unlock_irq(&qp->r_lock); 980 } 981 982 /** rvt_free_qpn - Free a qpn from the bit map 983 * @qpt: QP table 984 * @qpn: queue pair number to free 985 */ 986 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 987 { 988 struct rvt_qpn_map *map; 989 990 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 991 if (map->page) 992 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 993 } 994 995 /** 996 * get_allowed_ops - Given a QP type return the appropriate allowed OP 997 * @type: valid, supported, QP type 998 */ 999 static u8 get_allowed_ops(enum ib_qp_type type) 1000 { 1001 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? 1002 IB_OPCODE_UC : IB_OPCODE_UD; 1003 } 1004 1005 /** 1006 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs 1007 * @qp: Valid QP with allowed_ops set 1008 * 1009 * The rvt_swqe data structure being used is a union, so this is 1010 * only valid for UD QPs. 1011 */ 1012 static void free_ud_wq_attr(struct rvt_qp *qp) 1013 { 1014 struct rvt_swqe *wqe; 1015 int i; 1016 1017 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1018 wqe = rvt_get_swqe_ptr(qp, i); 1019 kfree(wqe->ud_wr.attr); 1020 wqe->ud_wr.attr = NULL; 1021 } 1022 } 1023 1024 /** 1025 * alloc_ud_wq_attr - AH attribute cache for UD QPs 1026 * @qp: Valid QP with allowed_ops set 1027 * @node: Numa node for allocation 1028 * 1029 * The rvt_swqe data structure being used is a union, so this is 1030 * only valid for UD QPs. 1031 */ 1032 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) 1033 { 1034 struct rvt_swqe *wqe; 1035 int i; 1036 1037 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1038 wqe = rvt_get_swqe_ptr(qp, i); 1039 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), 1040 GFP_KERNEL, node); 1041 if (!wqe->ud_wr.attr) { 1042 free_ud_wq_attr(qp); 1043 return -ENOMEM; 1044 } 1045 } 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * rvt_create_qp - create a queue pair for a device 1052 * @ibpd: the protection domain who's device we create the queue pair for 1053 * @init_attr: the attributes of the queue pair 1054 * @udata: user data for libibverbs.so 1055 * 1056 * Queue pair creation is mostly an rvt issue. However, drivers have their own 1057 * unique idea of what queue pair numbers mean. For instance there is a reserved 1058 * range for PSM. 1059 * 1060 * Return: the queue pair on success, otherwise returns an errno. 1061 * 1062 * Called by the ib_create_qp() core verbs function. 1063 */ 1064 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 1065 struct ib_qp_init_attr *init_attr, 1066 struct ib_udata *udata) 1067 { 1068 struct rvt_qp *qp; 1069 int err; 1070 struct rvt_swqe *swq = NULL; 1071 size_t sz; 1072 size_t sg_list_sz; 1073 struct ib_qp *ret = ERR_PTR(-ENOMEM); 1074 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 1075 void *priv = NULL; 1076 size_t sqsize; 1077 1078 if (!rdi) 1079 return ERR_PTR(-EINVAL); 1080 1081 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 1082 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 1083 init_attr->create_flags) 1084 return ERR_PTR(-EINVAL); 1085 1086 /* Check receive queue parameters if no SRQ is specified. */ 1087 if (!init_attr->srq) { 1088 if (init_attr->cap.max_recv_sge > 1089 rdi->dparms.props.max_recv_sge || 1090 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 1091 return ERR_PTR(-EINVAL); 1092 1093 if (init_attr->cap.max_send_sge + 1094 init_attr->cap.max_send_wr + 1095 init_attr->cap.max_recv_sge + 1096 init_attr->cap.max_recv_wr == 0) 1097 return ERR_PTR(-EINVAL); 1098 } 1099 sqsize = 1100 init_attr->cap.max_send_wr + 1 + 1101 rdi->dparms.reserved_operations; 1102 switch (init_attr->qp_type) { 1103 case IB_QPT_SMI: 1104 case IB_QPT_GSI: 1105 if (init_attr->port_num == 0 || 1106 init_attr->port_num > ibpd->device->phys_port_cnt) 1107 return ERR_PTR(-EINVAL); 1108 /* fall through */ 1109 case IB_QPT_UC: 1110 case IB_QPT_RC: 1111 case IB_QPT_UD: 1112 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); 1113 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 1114 if (!swq) 1115 return ERR_PTR(-ENOMEM); 1116 1117 sz = sizeof(*qp); 1118 sg_list_sz = 0; 1119 if (init_attr->srq) { 1120 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1121 1122 if (srq->rq.max_sge > 1) 1123 sg_list_sz = sizeof(*qp->r_sg_list) * 1124 (srq->rq.max_sge - 1); 1125 } else if (init_attr->cap.max_recv_sge > 1) 1126 sg_list_sz = sizeof(*qp->r_sg_list) * 1127 (init_attr->cap.max_recv_sge - 1); 1128 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1129 rdi->dparms.node); 1130 if (!qp) 1131 goto bail_swq; 1132 qp->allowed_ops = get_allowed_ops(init_attr->qp_type); 1133 1134 RCU_INIT_POINTER(qp->next, NULL); 1135 if (init_attr->qp_type == IB_QPT_RC) { 1136 qp->s_ack_queue = 1137 kcalloc_node(rvt_max_atomic(rdi), 1138 sizeof(*qp->s_ack_queue), 1139 GFP_KERNEL, 1140 rdi->dparms.node); 1141 if (!qp->s_ack_queue) 1142 goto bail_qp; 1143 } 1144 /* initialize timers needed for rc qp */ 1145 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1146 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1147 HRTIMER_MODE_REL); 1148 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1149 1150 /* 1151 * Driver needs to set up it's private QP structure and do any 1152 * initialization that is needed. 1153 */ 1154 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1155 if (IS_ERR(priv)) { 1156 ret = priv; 1157 goto bail_qp; 1158 } 1159 qp->priv = priv; 1160 qp->timeout_jiffies = 1161 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1162 1000UL); 1163 if (init_attr->srq) { 1164 sz = 0; 1165 } else { 1166 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1167 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1168 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1169 sizeof(struct rvt_rwqe); 1170 err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, 1171 rdi->dparms.node, udata); 1172 if (err) { 1173 ret = ERR_PTR(err); 1174 goto bail_driver_priv; 1175 } 1176 } 1177 1178 /* 1179 * ib_create_qp() will initialize qp->ibqp 1180 * except for qp->ibqp.qp_num. 1181 */ 1182 spin_lock_init(&qp->r_lock); 1183 spin_lock_init(&qp->s_hlock); 1184 spin_lock_init(&qp->s_lock); 1185 atomic_set(&qp->refcount, 0); 1186 atomic_set(&qp->local_ops_pending, 0); 1187 init_waitqueue_head(&qp->wait); 1188 INIT_LIST_HEAD(&qp->rspwait); 1189 qp->state = IB_QPS_RESET; 1190 qp->s_wq = swq; 1191 qp->s_size = sqsize; 1192 qp->s_avail = init_attr->cap.max_send_wr; 1193 qp->s_max_sge = init_attr->cap.max_send_sge; 1194 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1195 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1196 err = alloc_ud_wq_attr(qp, rdi->dparms.node); 1197 if (err) { 1198 ret = (ERR_PTR(err)); 1199 goto bail_driver_priv; 1200 } 1201 1202 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1203 init_attr->qp_type, 1204 init_attr->port_num); 1205 if (err < 0) { 1206 ret = ERR_PTR(err); 1207 goto bail_rq_wq; 1208 } 1209 qp->ibqp.qp_num = err; 1210 qp->port_num = init_attr->port_num; 1211 rvt_init_qp(rdi, qp, init_attr->qp_type); 1212 if (rdi->driver_f.qp_priv_init) { 1213 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1214 if (err) { 1215 ret = ERR_PTR(err); 1216 goto bail_rq_wq; 1217 } 1218 } 1219 break; 1220 1221 default: 1222 /* Don't support raw QPs */ 1223 return ERR_PTR(-EINVAL); 1224 } 1225 1226 init_attr->cap.max_inline_data = 0; 1227 1228 /* 1229 * Return the address of the RWQ as the offset to mmap. 1230 * See rvt_mmap() for details. 1231 */ 1232 if (udata && udata->outlen >= sizeof(__u64)) { 1233 if (!qp->r_rq.wq) { 1234 __u64 offset = 0; 1235 1236 err = ib_copy_to_udata(udata, &offset, 1237 sizeof(offset)); 1238 if (err) { 1239 ret = ERR_PTR(err); 1240 goto bail_qpn; 1241 } 1242 } else { 1243 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1244 1245 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1246 qp->r_rq.wq); 1247 if (!qp->ip) { 1248 ret = ERR_PTR(-ENOMEM); 1249 goto bail_qpn; 1250 } 1251 1252 err = ib_copy_to_udata(udata, &qp->ip->offset, 1253 sizeof(qp->ip->offset)); 1254 if (err) { 1255 ret = ERR_PTR(err); 1256 goto bail_ip; 1257 } 1258 } 1259 qp->pid = current->pid; 1260 } 1261 1262 spin_lock(&rdi->n_qps_lock); 1263 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1264 spin_unlock(&rdi->n_qps_lock); 1265 ret = ERR_PTR(-ENOMEM); 1266 goto bail_ip; 1267 } 1268 1269 rdi->n_qps_allocated++; 1270 /* 1271 * Maintain a busy_jiffies variable that will be added to the timeout 1272 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1273 * is scaled by the number of rc qps created for the device to reduce 1274 * the number of timeouts occurring when there is a large number of 1275 * qps. busy_jiffies is incremented every rc qp scaling interval. 1276 * The scaling interval is selected based on extensive performance 1277 * evaluation of targeted workloads. 1278 */ 1279 if (init_attr->qp_type == IB_QPT_RC) { 1280 rdi->n_rc_qps++; 1281 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1282 } 1283 spin_unlock(&rdi->n_qps_lock); 1284 1285 if (qp->ip) { 1286 spin_lock_irq(&rdi->pending_lock); 1287 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1288 spin_unlock_irq(&rdi->pending_lock); 1289 } 1290 1291 ret = &qp->ibqp; 1292 1293 return ret; 1294 1295 bail_ip: 1296 if (qp->ip) 1297 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1298 1299 bail_qpn: 1300 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1301 1302 bail_rq_wq: 1303 rvt_free_rq(&qp->r_rq); 1304 free_ud_wq_attr(qp); 1305 1306 bail_driver_priv: 1307 rdi->driver_f.qp_priv_free(rdi, qp); 1308 1309 bail_qp: 1310 kfree(qp->s_ack_queue); 1311 kfree(qp); 1312 1313 bail_swq: 1314 vfree(swq); 1315 1316 return ret; 1317 } 1318 1319 /** 1320 * rvt_error_qp - put a QP into the error state 1321 * @qp: the QP to put into the error state 1322 * @err: the receive completion error to signal if a RWQE is active 1323 * 1324 * Flushes both send and receive work queues. 1325 * 1326 * Return: true if last WQE event should be generated. 1327 * The QP r_lock and s_lock should be held and interrupts disabled. 1328 * If we are already in error state, just return. 1329 */ 1330 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1331 { 1332 struct ib_wc wc; 1333 int ret = 0; 1334 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1335 1336 lockdep_assert_held(&qp->r_lock); 1337 lockdep_assert_held(&qp->s_lock); 1338 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1339 goto bail; 1340 1341 qp->state = IB_QPS_ERR; 1342 1343 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1344 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1345 del_timer(&qp->s_timer); 1346 } 1347 1348 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1349 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1350 1351 rdi->driver_f.notify_error_qp(qp); 1352 1353 /* Schedule the sending tasklet to drain the send work queue. */ 1354 if (READ_ONCE(qp->s_last) != qp->s_head) 1355 rdi->driver_f.schedule_send(qp); 1356 1357 rvt_clear_mr_refs(qp, 0); 1358 1359 memset(&wc, 0, sizeof(wc)); 1360 wc.qp = &qp->ibqp; 1361 wc.opcode = IB_WC_RECV; 1362 1363 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1364 wc.wr_id = qp->r_wr_id; 1365 wc.status = err; 1366 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1367 } 1368 wc.status = IB_WC_WR_FLUSH_ERR; 1369 1370 if (qp->r_rq.kwq) { 1371 u32 head; 1372 u32 tail; 1373 struct rvt_rwq *wq = NULL; 1374 struct rvt_krwq *kwq = NULL; 1375 1376 spin_lock(&qp->r_rq.kwq->c_lock); 1377 /* qp->ip used to validate if there is a user buffer mmaped */ 1378 if (qp->ip) { 1379 wq = qp->r_rq.wq; 1380 head = RDMA_READ_UAPI_ATOMIC(wq->head); 1381 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 1382 } else { 1383 kwq = qp->r_rq.kwq; 1384 head = kwq->head; 1385 tail = kwq->tail; 1386 } 1387 /* sanity check pointers before trusting them */ 1388 if (head >= qp->r_rq.size) 1389 head = 0; 1390 if (tail >= qp->r_rq.size) 1391 tail = 0; 1392 while (tail != head) { 1393 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1394 if (++tail >= qp->r_rq.size) 1395 tail = 0; 1396 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1397 } 1398 if (qp->ip) 1399 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 1400 else 1401 kwq->tail = tail; 1402 spin_unlock(&qp->r_rq.kwq->c_lock); 1403 } else if (qp->ibqp.event_handler) { 1404 ret = 1; 1405 } 1406 1407 bail: 1408 return ret; 1409 } 1410 EXPORT_SYMBOL(rvt_error_qp); 1411 1412 /* 1413 * Put the QP into the hash table. 1414 * The hash table holds a reference to the QP. 1415 */ 1416 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1417 { 1418 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1419 unsigned long flags; 1420 1421 rvt_get_qp(qp); 1422 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1423 1424 if (qp->ibqp.qp_num <= 1) { 1425 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1426 } else { 1427 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1428 1429 qp->next = rdi->qp_dev->qp_table[n]; 1430 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1431 trace_rvt_qpinsert(qp, n); 1432 } 1433 1434 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1435 } 1436 1437 /** 1438 * rvt_modify_qp - modify the attributes of a queue pair 1439 * @ibqp: the queue pair who's attributes we're modifying 1440 * @attr: the new attributes 1441 * @attr_mask: the mask of attributes to modify 1442 * @udata: user data for libibverbs.so 1443 * 1444 * Return: 0 on success, otherwise returns an errno. 1445 */ 1446 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1447 int attr_mask, struct ib_udata *udata) 1448 { 1449 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1450 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1451 enum ib_qp_state cur_state, new_state; 1452 struct ib_event ev; 1453 int lastwqe = 0; 1454 int mig = 0; 1455 int pmtu = 0; /* for gcc warning only */ 1456 int opa_ah; 1457 1458 spin_lock_irq(&qp->r_lock); 1459 spin_lock(&qp->s_hlock); 1460 spin_lock(&qp->s_lock); 1461 1462 cur_state = attr_mask & IB_QP_CUR_STATE ? 1463 attr->cur_qp_state : qp->state; 1464 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1465 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1466 1467 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1468 attr_mask)) 1469 goto inval; 1470 1471 if (rdi->driver_f.check_modify_qp && 1472 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1473 goto inval; 1474 1475 if (attr_mask & IB_QP_AV) { 1476 if (opa_ah) { 1477 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1478 opa_get_mcast_base(OPA_MCAST_NR)) 1479 goto inval; 1480 } else { 1481 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1482 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1483 goto inval; 1484 } 1485 1486 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1487 goto inval; 1488 } 1489 1490 if (attr_mask & IB_QP_ALT_PATH) { 1491 if (opa_ah) { 1492 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1493 opa_get_mcast_base(OPA_MCAST_NR)) 1494 goto inval; 1495 } else { 1496 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1497 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1498 goto inval; 1499 } 1500 1501 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1502 goto inval; 1503 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1504 goto inval; 1505 } 1506 1507 if (attr_mask & IB_QP_PKEY_INDEX) 1508 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1509 goto inval; 1510 1511 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1512 if (attr->min_rnr_timer > 31) 1513 goto inval; 1514 1515 if (attr_mask & IB_QP_PORT) 1516 if (qp->ibqp.qp_type == IB_QPT_SMI || 1517 qp->ibqp.qp_type == IB_QPT_GSI || 1518 attr->port_num == 0 || 1519 attr->port_num > ibqp->device->phys_port_cnt) 1520 goto inval; 1521 1522 if (attr_mask & IB_QP_DEST_QPN) 1523 if (attr->dest_qp_num > RVT_QPN_MASK) 1524 goto inval; 1525 1526 if (attr_mask & IB_QP_RETRY_CNT) 1527 if (attr->retry_cnt > 7) 1528 goto inval; 1529 1530 if (attr_mask & IB_QP_RNR_RETRY) 1531 if (attr->rnr_retry > 7) 1532 goto inval; 1533 1534 /* 1535 * Don't allow invalid path_mtu values. OK to set greater 1536 * than the active mtu (or even the max_cap, if we have tuned 1537 * that to a small mtu. We'll set qp->path_mtu 1538 * to the lesser of requested attribute mtu and active, 1539 * for packetizing messages. 1540 * Note that the QP port has to be set in INIT and MTU in RTR. 1541 */ 1542 if (attr_mask & IB_QP_PATH_MTU) { 1543 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1544 if (pmtu < 0) 1545 goto inval; 1546 } 1547 1548 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1549 if (attr->path_mig_state == IB_MIG_REARM) { 1550 if (qp->s_mig_state == IB_MIG_ARMED) 1551 goto inval; 1552 if (new_state != IB_QPS_RTS) 1553 goto inval; 1554 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1555 if (qp->s_mig_state == IB_MIG_REARM) 1556 goto inval; 1557 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1558 goto inval; 1559 if (qp->s_mig_state == IB_MIG_ARMED) 1560 mig = 1; 1561 } else { 1562 goto inval; 1563 } 1564 } 1565 1566 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1567 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1568 goto inval; 1569 1570 switch (new_state) { 1571 case IB_QPS_RESET: 1572 if (qp->state != IB_QPS_RESET) 1573 _rvt_reset_qp(rdi, qp, ibqp->qp_type); 1574 break; 1575 1576 case IB_QPS_RTR: 1577 /* Allow event to re-trigger if QP set to RTR more than once */ 1578 qp->r_flags &= ~RVT_R_COMM_EST; 1579 qp->state = new_state; 1580 break; 1581 1582 case IB_QPS_SQD: 1583 qp->s_draining = qp->s_last != qp->s_cur; 1584 qp->state = new_state; 1585 break; 1586 1587 case IB_QPS_SQE: 1588 if (qp->ibqp.qp_type == IB_QPT_RC) 1589 goto inval; 1590 qp->state = new_state; 1591 break; 1592 1593 case IB_QPS_ERR: 1594 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1595 break; 1596 1597 default: 1598 qp->state = new_state; 1599 break; 1600 } 1601 1602 if (attr_mask & IB_QP_PKEY_INDEX) 1603 qp->s_pkey_index = attr->pkey_index; 1604 1605 if (attr_mask & IB_QP_PORT) 1606 qp->port_num = attr->port_num; 1607 1608 if (attr_mask & IB_QP_DEST_QPN) 1609 qp->remote_qpn = attr->dest_qp_num; 1610 1611 if (attr_mask & IB_QP_SQ_PSN) { 1612 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1613 qp->s_psn = qp->s_next_psn; 1614 qp->s_sending_psn = qp->s_next_psn; 1615 qp->s_last_psn = qp->s_next_psn - 1; 1616 qp->s_sending_hpsn = qp->s_last_psn; 1617 } 1618 1619 if (attr_mask & IB_QP_RQ_PSN) 1620 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1621 1622 if (attr_mask & IB_QP_ACCESS_FLAGS) 1623 qp->qp_access_flags = attr->qp_access_flags; 1624 1625 if (attr_mask & IB_QP_AV) { 1626 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1627 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1628 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1629 } 1630 1631 if (attr_mask & IB_QP_ALT_PATH) { 1632 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1633 qp->s_alt_pkey_index = attr->alt_pkey_index; 1634 } 1635 1636 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1637 qp->s_mig_state = attr->path_mig_state; 1638 if (mig) { 1639 qp->remote_ah_attr = qp->alt_ah_attr; 1640 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1641 qp->s_pkey_index = qp->s_alt_pkey_index; 1642 } 1643 } 1644 1645 if (attr_mask & IB_QP_PATH_MTU) { 1646 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1647 qp->log_pmtu = ilog2(qp->pmtu); 1648 } 1649 1650 if (attr_mask & IB_QP_RETRY_CNT) { 1651 qp->s_retry_cnt = attr->retry_cnt; 1652 qp->s_retry = attr->retry_cnt; 1653 } 1654 1655 if (attr_mask & IB_QP_RNR_RETRY) { 1656 qp->s_rnr_retry_cnt = attr->rnr_retry; 1657 qp->s_rnr_retry = attr->rnr_retry; 1658 } 1659 1660 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1661 qp->r_min_rnr_timer = attr->min_rnr_timer; 1662 1663 if (attr_mask & IB_QP_TIMEOUT) { 1664 qp->timeout = attr->timeout; 1665 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1666 } 1667 1668 if (attr_mask & IB_QP_QKEY) 1669 qp->qkey = attr->qkey; 1670 1671 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1672 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1673 1674 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1675 qp->s_max_rd_atomic = attr->max_rd_atomic; 1676 1677 if (rdi->driver_f.modify_qp) 1678 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1679 1680 spin_unlock(&qp->s_lock); 1681 spin_unlock(&qp->s_hlock); 1682 spin_unlock_irq(&qp->r_lock); 1683 1684 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1685 rvt_insert_qp(rdi, qp); 1686 1687 if (lastwqe) { 1688 ev.device = qp->ibqp.device; 1689 ev.element.qp = &qp->ibqp; 1690 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1691 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1692 } 1693 if (mig) { 1694 ev.device = qp->ibqp.device; 1695 ev.element.qp = &qp->ibqp; 1696 ev.event = IB_EVENT_PATH_MIG; 1697 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1698 } 1699 return 0; 1700 1701 inval: 1702 spin_unlock(&qp->s_lock); 1703 spin_unlock(&qp->s_hlock); 1704 spin_unlock_irq(&qp->r_lock); 1705 return -EINVAL; 1706 } 1707 1708 /** 1709 * rvt_destroy_qp - destroy a queue pair 1710 * @ibqp: the queue pair to destroy 1711 * 1712 * Note that this can be called while the QP is actively sending or 1713 * receiving! 1714 * 1715 * Return: 0 on success. 1716 */ 1717 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1718 { 1719 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1720 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1721 1722 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1723 1724 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1725 /* qpn is now available for use again */ 1726 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1727 1728 spin_lock(&rdi->n_qps_lock); 1729 rdi->n_qps_allocated--; 1730 if (qp->ibqp.qp_type == IB_QPT_RC) { 1731 rdi->n_rc_qps--; 1732 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1733 } 1734 spin_unlock(&rdi->n_qps_lock); 1735 1736 if (qp->ip) 1737 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1738 kvfree(qp->r_rq.kwq); 1739 rdi->driver_f.qp_priv_free(rdi, qp); 1740 kfree(qp->s_ack_queue); 1741 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1742 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1743 free_ud_wq_attr(qp); 1744 vfree(qp->s_wq); 1745 kfree(qp); 1746 return 0; 1747 } 1748 1749 /** 1750 * rvt_query_qp - query an ipbq 1751 * @ibqp: IB qp to query 1752 * @attr: attr struct to fill in 1753 * @attr_mask: attr mask ignored 1754 * @init_attr: struct to fill in 1755 * 1756 * Return: always 0 1757 */ 1758 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1759 int attr_mask, struct ib_qp_init_attr *init_attr) 1760 { 1761 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1762 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1763 1764 attr->qp_state = qp->state; 1765 attr->cur_qp_state = attr->qp_state; 1766 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1767 attr->path_mig_state = qp->s_mig_state; 1768 attr->qkey = qp->qkey; 1769 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1770 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1771 attr->dest_qp_num = qp->remote_qpn; 1772 attr->qp_access_flags = qp->qp_access_flags; 1773 attr->cap.max_send_wr = qp->s_size - 1 - 1774 rdi->dparms.reserved_operations; 1775 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1776 attr->cap.max_send_sge = qp->s_max_sge; 1777 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1778 attr->cap.max_inline_data = 0; 1779 attr->ah_attr = qp->remote_ah_attr; 1780 attr->alt_ah_attr = qp->alt_ah_attr; 1781 attr->pkey_index = qp->s_pkey_index; 1782 attr->alt_pkey_index = qp->s_alt_pkey_index; 1783 attr->en_sqd_async_notify = 0; 1784 attr->sq_draining = qp->s_draining; 1785 attr->max_rd_atomic = qp->s_max_rd_atomic; 1786 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1787 attr->min_rnr_timer = qp->r_min_rnr_timer; 1788 attr->port_num = qp->port_num; 1789 attr->timeout = qp->timeout; 1790 attr->retry_cnt = qp->s_retry_cnt; 1791 attr->rnr_retry = qp->s_rnr_retry_cnt; 1792 attr->alt_port_num = 1793 rdma_ah_get_port_num(&qp->alt_ah_attr); 1794 attr->alt_timeout = qp->alt_timeout; 1795 1796 init_attr->event_handler = qp->ibqp.event_handler; 1797 init_attr->qp_context = qp->ibqp.qp_context; 1798 init_attr->send_cq = qp->ibqp.send_cq; 1799 init_attr->recv_cq = qp->ibqp.recv_cq; 1800 init_attr->srq = qp->ibqp.srq; 1801 init_attr->cap = attr->cap; 1802 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1803 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1804 else 1805 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1806 init_attr->qp_type = qp->ibqp.qp_type; 1807 init_attr->port_num = qp->port_num; 1808 return 0; 1809 } 1810 1811 /** 1812 * rvt_post_receive - post a receive on a QP 1813 * @ibqp: the QP to post the receive on 1814 * @wr: the WR to post 1815 * @bad_wr: the first bad WR is put here 1816 * 1817 * This may be called from interrupt context. 1818 * 1819 * Return: 0 on success otherwise errno 1820 */ 1821 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1822 const struct ib_recv_wr **bad_wr) 1823 { 1824 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1825 struct rvt_krwq *wq = qp->r_rq.kwq; 1826 unsigned long flags; 1827 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1828 !qp->ibqp.srq; 1829 1830 /* Check that state is OK to post receive. */ 1831 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1832 *bad_wr = wr; 1833 return -EINVAL; 1834 } 1835 1836 for (; wr; wr = wr->next) { 1837 struct rvt_rwqe *wqe; 1838 u32 next; 1839 int i; 1840 1841 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1842 *bad_wr = wr; 1843 return -EINVAL; 1844 } 1845 1846 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); 1847 next = wq->head + 1; 1848 if (next >= qp->r_rq.size) 1849 next = 0; 1850 if (next == READ_ONCE(wq->tail)) { 1851 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1852 *bad_wr = wr; 1853 return -ENOMEM; 1854 } 1855 if (unlikely(qp_err_flush)) { 1856 struct ib_wc wc; 1857 1858 memset(&wc, 0, sizeof(wc)); 1859 wc.qp = &qp->ibqp; 1860 wc.opcode = IB_WC_RECV; 1861 wc.wr_id = wr->wr_id; 1862 wc.status = IB_WC_WR_FLUSH_ERR; 1863 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1864 } else { 1865 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1866 wqe->wr_id = wr->wr_id; 1867 wqe->num_sge = wr->num_sge; 1868 for (i = 0; i < wr->num_sge; i++) { 1869 wqe->sg_list[i].addr = wr->sg_list[i].addr; 1870 wqe->sg_list[i].length = wr->sg_list[i].length; 1871 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 1872 } 1873 /* 1874 * Make sure queue entry is written 1875 * before the head index. 1876 */ 1877 smp_store_release(&wq->head, next); 1878 } 1879 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1880 } 1881 return 0; 1882 } 1883 1884 /** 1885 * rvt_qp_valid_operation - validate post send wr request 1886 * @qp - the qp 1887 * @post-parms - the post send table for the driver 1888 * @wr - the work request 1889 * 1890 * The routine validates the operation based on the 1891 * validation table an returns the length of the operation 1892 * which can extend beyond the ib_send_bw. Operation 1893 * dependent flags key atomic operation validation. 1894 * 1895 * There is an exception for UD qps that validates the pd and 1896 * overrides the length to include the additional UD specific 1897 * length. 1898 * 1899 * Returns a negative error or the length of the work request 1900 * for building the swqe. 1901 */ 1902 static inline int rvt_qp_valid_operation( 1903 struct rvt_qp *qp, 1904 const struct rvt_operation_params *post_parms, 1905 const struct ib_send_wr *wr) 1906 { 1907 int len; 1908 1909 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1910 return -EINVAL; 1911 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1912 return -EINVAL; 1913 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1914 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1915 return -EINVAL; 1916 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1917 (wr->num_sge == 0 || 1918 wr->sg_list[0].length < sizeof(u64) || 1919 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1920 return -EINVAL; 1921 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1922 !qp->s_max_rd_atomic) 1923 return -EINVAL; 1924 len = post_parms[wr->opcode].length; 1925 /* UD specific */ 1926 if (qp->ibqp.qp_type != IB_QPT_UC && 1927 qp->ibqp.qp_type != IB_QPT_RC) { 1928 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1929 return -EINVAL; 1930 len = sizeof(struct ib_ud_wr); 1931 } 1932 return len; 1933 } 1934 1935 /** 1936 * rvt_qp_is_avail - determine queue capacity 1937 * @qp: the qp 1938 * @rdi: the rdmavt device 1939 * @reserved_op: is reserved operation 1940 * 1941 * This assumes the s_hlock is held but the s_last 1942 * qp variable is uncontrolled. 1943 * 1944 * For non reserved operations, the qp->s_avail 1945 * may be changed. 1946 * 1947 * The return value is zero or a -ENOMEM. 1948 */ 1949 static inline int rvt_qp_is_avail( 1950 struct rvt_qp *qp, 1951 struct rvt_dev_info *rdi, 1952 bool reserved_op) 1953 { 1954 u32 slast; 1955 u32 avail; 1956 u32 reserved_used; 1957 1958 /* see rvt_qp_wqe_unreserve() */ 1959 smp_mb__before_atomic(); 1960 if (unlikely(reserved_op)) { 1961 /* see rvt_qp_wqe_unreserve() */ 1962 reserved_used = atomic_read(&qp->s_reserved_used); 1963 if (reserved_used >= rdi->dparms.reserved_operations) 1964 return -ENOMEM; 1965 return 0; 1966 } 1967 /* non-reserved operations */ 1968 if (likely(qp->s_avail)) 1969 return 0; 1970 /* See rvt_qp_complete_swqe() */ 1971 slast = smp_load_acquire(&qp->s_last); 1972 if (qp->s_head >= slast) 1973 avail = qp->s_size - (qp->s_head - slast); 1974 else 1975 avail = slast - qp->s_head; 1976 1977 reserved_used = atomic_read(&qp->s_reserved_used); 1978 avail = avail - 1 - 1979 (rdi->dparms.reserved_operations - reserved_used); 1980 /* insure we don't assign a negative s_avail */ 1981 if ((s32)avail <= 0) 1982 return -ENOMEM; 1983 qp->s_avail = avail; 1984 if (WARN_ON(qp->s_avail > 1985 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1986 rvt_pr_err(rdi, 1987 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1988 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1989 qp->s_head, qp->s_tail, qp->s_cur, 1990 qp->s_acked, qp->s_last); 1991 return 0; 1992 } 1993 1994 /** 1995 * rvt_post_one_wr - post one RC, UC, or UD send work request 1996 * @qp: the QP to post on 1997 * @wr: the work request to send 1998 */ 1999 static int rvt_post_one_wr(struct rvt_qp *qp, 2000 const struct ib_send_wr *wr, 2001 bool *call_send) 2002 { 2003 struct rvt_swqe *wqe; 2004 u32 next; 2005 int i; 2006 int j; 2007 int acc; 2008 struct rvt_lkey_table *rkt; 2009 struct rvt_pd *pd; 2010 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2011 u8 log_pmtu; 2012 int ret; 2013 size_t cplen; 2014 bool reserved_op; 2015 int local_ops_delayed = 0; 2016 2017 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 2018 2019 /* IB spec says that num_sge == 0 is OK. */ 2020 if (unlikely(wr->num_sge > qp->s_max_sge)) 2021 return -EINVAL; 2022 2023 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 2024 if (ret < 0) 2025 return ret; 2026 cplen = ret; 2027 2028 /* 2029 * Local operations include fast register and local invalidate. 2030 * Fast register needs to be processed immediately because the 2031 * registered lkey may be used by following work requests and the 2032 * lkey needs to be valid at the time those requests are posted. 2033 * Local invalidate can be processed immediately if fencing is 2034 * not required and no previous local invalidate ops are pending. 2035 * Signaled local operations that have been processed immediately 2036 * need to have requests with "completion only" flags set posted 2037 * to the send queue in order to generate completions. 2038 */ 2039 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 2040 switch (wr->opcode) { 2041 case IB_WR_REG_MR: 2042 ret = rvt_fast_reg_mr(qp, 2043 reg_wr(wr)->mr, 2044 reg_wr(wr)->key, 2045 reg_wr(wr)->access); 2046 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2047 return ret; 2048 break; 2049 case IB_WR_LOCAL_INV: 2050 if ((wr->send_flags & IB_SEND_FENCE) || 2051 atomic_read(&qp->local_ops_pending)) { 2052 local_ops_delayed = 1; 2053 } else { 2054 ret = rvt_invalidate_rkey( 2055 qp, wr->ex.invalidate_rkey); 2056 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2057 return ret; 2058 } 2059 break; 2060 default: 2061 return -EINVAL; 2062 } 2063 } 2064 2065 reserved_op = rdi->post_parms[wr->opcode].flags & 2066 RVT_OPERATION_USE_RESERVE; 2067 /* check for avail */ 2068 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 2069 if (ret) 2070 return ret; 2071 next = qp->s_head + 1; 2072 if (next >= qp->s_size) 2073 next = 0; 2074 2075 rkt = &rdi->lkey_table; 2076 pd = ibpd_to_rvtpd(qp->ibqp.pd); 2077 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 2078 2079 /* cplen has length from above */ 2080 memcpy(&wqe->wr, wr, cplen); 2081 2082 wqe->length = 0; 2083 j = 0; 2084 if (wr->num_sge) { 2085 struct rvt_sge *last_sge = NULL; 2086 2087 acc = wr->opcode >= IB_WR_RDMA_READ ? 2088 IB_ACCESS_LOCAL_WRITE : 0; 2089 for (i = 0; i < wr->num_sge; i++) { 2090 u32 length = wr->sg_list[i].length; 2091 2092 if (length == 0) 2093 continue; 2094 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2095 &wr->sg_list[i], acc); 2096 if (unlikely(ret < 0)) 2097 goto bail_inval_free; 2098 wqe->length += length; 2099 if (ret) 2100 last_sge = &wqe->sg_list[j]; 2101 j += ret; 2102 } 2103 wqe->wr.num_sge = j; 2104 } 2105 2106 /* 2107 * Calculate and set SWQE PSN values prior to handing it off 2108 * to the driver's check routine. This give the driver the 2109 * opportunity to adjust PSN values based on internal checks. 2110 */ 2111 log_pmtu = qp->log_pmtu; 2112 if (qp->allowed_ops == IB_OPCODE_UD) { 2113 struct rvt_ah *ah = rvt_get_swqe_ah(wqe); 2114 2115 log_pmtu = ah->log_pmtu; 2116 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); 2117 } 2118 2119 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2120 if (local_ops_delayed) 2121 atomic_inc(&qp->local_ops_pending); 2122 else 2123 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2124 wqe->ssn = 0; 2125 wqe->psn = 0; 2126 wqe->lpsn = 0; 2127 } else { 2128 wqe->ssn = qp->s_ssn++; 2129 wqe->psn = qp->s_next_psn; 2130 wqe->lpsn = wqe->psn + 2131 (wqe->length ? 2132 ((wqe->length - 1) >> log_pmtu) : 2133 0); 2134 } 2135 2136 /* general part of wqe valid - allow for driver checks */ 2137 if (rdi->driver_f.setup_wqe) { 2138 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2139 if (ret < 0) 2140 goto bail_inval_free_ref; 2141 } 2142 2143 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2144 qp->s_next_psn = wqe->lpsn + 1; 2145 2146 if (unlikely(reserved_op)) { 2147 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2148 rvt_qp_wqe_reserve(qp, wqe); 2149 } else { 2150 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2151 qp->s_avail--; 2152 } 2153 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2154 smp_wmb(); /* see request builders */ 2155 qp->s_head = next; 2156 2157 return 0; 2158 2159 bail_inval_free_ref: 2160 if (qp->allowed_ops == IB_OPCODE_UD) 2161 rdma_destroy_ah_attr(wqe->ud_wr.attr); 2162 bail_inval_free: 2163 /* release mr holds */ 2164 while (j) { 2165 struct rvt_sge *sge = &wqe->sg_list[--j]; 2166 2167 rvt_put_mr(sge->mr); 2168 } 2169 return ret; 2170 } 2171 2172 /** 2173 * rvt_post_send - post a send on a QP 2174 * @ibqp: the QP to post the send on 2175 * @wr: the list of work requests to post 2176 * @bad_wr: the first bad WR is put here 2177 * 2178 * This may be called from interrupt context. 2179 * 2180 * Return: 0 on success else errno 2181 */ 2182 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2183 const struct ib_send_wr **bad_wr) 2184 { 2185 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2186 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2187 unsigned long flags = 0; 2188 bool call_send; 2189 unsigned nreq = 0; 2190 int err = 0; 2191 2192 spin_lock_irqsave(&qp->s_hlock, flags); 2193 2194 /* 2195 * Ensure QP state is such that we can send. If not bail out early, 2196 * there is no need to do this every time we post a send. 2197 */ 2198 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2199 spin_unlock_irqrestore(&qp->s_hlock, flags); 2200 return -EINVAL; 2201 } 2202 2203 /* 2204 * If the send queue is empty, and we only have a single WR then just go 2205 * ahead and kick the send engine into gear. Otherwise we will always 2206 * just schedule the send to happen later. 2207 */ 2208 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2209 2210 for (; wr; wr = wr->next) { 2211 err = rvt_post_one_wr(qp, wr, &call_send); 2212 if (unlikely(err)) { 2213 *bad_wr = wr; 2214 goto bail; 2215 } 2216 nreq++; 2217 } 2218 bail: 2219 spin_unlock_irqrestore(&qp->s_hlock, flags); 2220 if (nreq) { 2221 /* 2222 * Only call do_send if there is exactly one packet, and the 2223 * driver said it was ok. 2224 */ 2225 if (nreq == 1 && call_send) 2226 rdi->driver_f.do_send(qp); 2227 else 2228 rdi->driver_f.schedule_send_no_lock(qp); 2229 } 2230 return err; 2231 } 2232 2233 /** 2234 * rvt_post_srq_receive - post a receive on a shared receive queue 2235 * @ibsrq: the SRQ to post the receive on 2236 * @wr: the list of work requests to post 2237 * @bad_wr: A pointer to the first WR to cause a problem is put here 2238 * 2239 * This may be called from interrupt context. 2240 * 2241 * Return: 0 on success else errno 2242 */ 2243 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2244 const struct ib_recv_wr **bad_wr) 2245 { 2246 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2247 struct rvt_krwq *wq; 2248 unsigned long flags; 2249 2250 for (; wr; wr = wr->next) { 2251 struct rvt_rwqe *wqe; 2252 u32 next; 2253 int i; 2254 2255 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2256 *bad_wr = wr; 2257 return -EINVAL; 2258 } 2259 2260 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); 2261 wq = srq->rq.kwq; 2262 next = wq->head + 1; 2263 if (next >= srq->rq.size) 2264 next = 0; 2265 if (next == READ_ONCE(wq->tail)) { 2266 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2267 *bad_wr = wr; 2268 return -ENOMEM; 2269 } 2270 2271 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2272 wqe->wr_id = wr->wr_id; 2273 wqe->num_sge = wr->num_sge; 2274 for (i = 0; i < wr->num_sge; i++) { 2275 wqe->sg_list[i].addr = wr->sg_list[i].addr; 2276 wqe->sg_list[i].length = wr->sg_list[i].length; 2277 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 2278 } 2279 /* Make sure queue entry is written before the head index. */ 2280 smp_store_release(&wq->head, next); 2281 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2282 } 2283 return 0; 2284 } 2285 2286 /* 2287 * rvt used the internal kernel struct as part of its ABI, for now make sure 2288 * the kernel struct does not change layout. FIXME: rvt should never cast the 2289 * user struct to a kernel struct. 2290 */ 2291 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) 2292 { 2293 BUILD_BUG_ON(offsetof(struct ib_sge, addr) != 2294 offsetof(struct rvt_wqe_sge, addr)); 2295 BUILD_BUG_ON(offsetof(struct ib_sge, length) != 2296 offsetof(struct rvt_wqe_sge, length)); 2297 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != 2298 offsetof(struct rvt_wqe_sge, lkey)); 2299 return (struct ib_sge *)sge; 2300 } 2301 2302 /* 2303 * Validate a RWQE and fill in the SGE state. 2304 * Return 1 if OK. 2305 */ 2306 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2307 { 2308 int i, j, ret; 2309 struct ib_wc wc; 2310 struct rvt_lkey_table *rkt; 2311 struct rvt_pd *pd; 2312 struct rvt_sge_state *ss; 2313 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2314 2315 rkt = &rdi->lkey_table; 2316 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2317 ss = &qp->r_sge; 2318 ss->sg_list = qp->r_sg_list; 2319 qp->r_len = 0; 2320 for (i = j = 0; i < wqe->num_sge; i++) { 2321 if (wqe->sg_list[i].length == 0) 2322 continue; 2323 /* Check LKEY */ 2324 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2325 NULL, rvt_cast_sge(&wqe->sg_list[i]), 2326 IB_ACCESS_LOCAL_WRITE); 2327 if (unlikely(ret <= 0)) 2328 goto bad_lkey; 2329 qp->r_len += wqe->sg_list[i].length; 2330 j++; 2331 } 2332 ss->num_sge = j; 2333 ss->total_len = qp->r_len; 2334 return 1; 2335 2336 bad_lkey: 2337 while (j) { 2338 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2339 2340 rvt_put_mr(sge->mr); 2341 } 2342 ss->num_sge = 0; 2343 memset(&wc, 0, sizeof(wc)); 2344 wc.wr_id = wqe->wr_id; 2345 wc.status = IB_WC_LOC_PROT_ERR; 2346 wc.opcode = IB_WC_RECV; 2347 wc.qp = &qp->ibqp; 2348 /* Signal solicited completion event. */ 2349 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2350 return 0; 2351 } 2352 2353 /** 2354 * get_count - count numbers of request work queue entries 2355 * in circular buffer 2356 * @rq: data structure for request queue entry 2357 * @tail: tail indices of the circular buffer 2358 * @head: head indices of the circular buffer 2359 * 2360 * Return - total number of entries in the circular buffer 2361 */ 2362 static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head) 2363 { 2364 u32 count; 2365 2366 count = head; 2367 2368 if (count >= rq->size) 2369 count = 0; 2370 if (count < tail) 2371 count += rq->size - tail; 2372 else 2373 count -= tail; 2374 2375 return count; 2376 } 2377 2378 /** 2379 * get_rvt_head - get head indices of the circular buffer 2380 * @rq: data structure for request queue entry 2381 * @ip: the QP 2382 * 2383 * Return - head index value 2384 */ 2385 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) 2386 { 2387 u32 head; 2388 2389 if (ip) 2390 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); 2391 else 2392 head = rq->kwq->head; 2393 2394 return head; 2395 } 2396 2397 /** 2398 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2399 * @qp: the QP 2400 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2401 * 2402 * Return -1 if there is a local error, 0 if no RWQE is available, 2403 * otherwise return 1. 2404 * 2405 * Can be called from interrupt level. 2406 */ 2407 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2408 { 2409 unsigned long flags; 2410 struct rvt_rq *rq; 2411 struct rvt_krwq *kwq = NULL; 2412 struct rvt_rwq *wq; 2413 struct rvt_srq *srq; 2414 struct rvt_rwqe *wqe; 2415 void (*handler)(struct ib_event *, void *); 2416 u32 tail; 2417 u32 head; 2418 int ret; 2419 void *ip = NULL; 2420 2421 if (qp->ibqp.srq) { 2422 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2423 handler = srq->ibsrq.event_handler; 2424 rq = &srq->rq; 2425 ip = srq->ip; 2426 } else { 2427 srq = NULL; 2428 handler = NULL; 2429 rq = &qp->r_rq; 2430 ip = qp->ip; 2431 } 2432 2433 spin_lock_irqsave(&rq->kwq->c_lock, flags); 2434 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2435 ret = 0; 2436 goto unlock; 2437 } 2438 kwq = rq->kwq; 2439 if (ip) { 2440 wq = rq->wq; 2441 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 2442 } else { 2443 tail = kwq->tail; 2444 } 2445 2446 /* Validate tail before using it since it is user writable. */ 2447 if (tail >= rq->size) 2448 tail = 0; 2449 2450 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { 2451 head = get_rvt_head(rq, ip); 2452 kwq->count = get_count(rq, tail, head); 2453 } 2454 if (unlikely(kwq->count == 0)) { 2455 ret = 0; 2456 goto unlock; 2457 } 2458 /* Make sure entry is read after the count is read. */ 2459 smp_rmb(); 2460 wqe = rvt_get_rwqe_ptr(rq, tail); 2461 /* 2462 * Even though we update the tail index in memory, the verbs 2463 * consumer is not supposed to post more entries until a 2464 * completion is generated. 2465 */ 2466 if (++tail >= rq->size) 2467 tail = 0; 2468 if (ip) 2469 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 2470 else 2471 kwq->tail = tail; 2472 if (!wr_id_only && !init_sge(qp, wqe)) { 2473 ret = -1; 2474 goto unlock; 2475 } 2476 qp->r_wr_id = wqe->wr_id; 2477 2478 kwq->count--; 2479 ret = 1; 2480 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2481 if (handler) { 2482 /* 2483 * Validate head pointer value and compute 2484 * the number of remaining WQEs. 2485 */ 2486 if (kwq->count < srq->limit) { 2487 kwq->count = get_count(rq, tail, get_rvt_head(rq, ip)); 2488 if (kwq->count < srq->limit) { 2489 struct ib_event ev; 2490 2491 srq->limit = 0; 2492 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2493 ev.device = qp->ibqp.device; 2494 ev.element.srq = qp->ibqp.srq; 2495 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2496 handler(&ev, srq->ibsrq.srq_context); 2497 goto bail; 2498 } 2499 } 2500 } 2501 unlock: 2502 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2503 bail: 2504 return ret; 2505 } 2506 EXPORT_SYMBOL(rvt_get_rwqe); 2507 2508 /** 2509 * qp_comm_est - handle trap with QP established 2510 * @qp: the QP 2511 */ 2512 void rvt_comm_est(struct rvt_qp *qp) 2513 { 2514 qp->r_flags |= RVT_R_COMM_EST; 2515 if (qp->ibqp.event_handler) { 2516 struct ib_event ev; 2517 2518 ev.device = qp->ibqp.device; 2519 ev.element.qp = &qp->ibqp; 2520 ev.event = IB_EVENT_COMM_EST; 2521 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2522 } 2523 } 2524 EXPORT_SYMBOL(rvt_comm_est); 2525 2526 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2527 { 2528 unsigned long flags; 2529 int lastwqe; 2530 2531 spin_lock_irqsave(&qp->s_lock, flags); 2532 lastwqe = rvt_error_qp(qp, err); 2533 spin_unlock_irqrestore(&qp->s_lock, flags); 2534 2535 if (lastwqe) { 2536 struct ib_event ev; 2537 2538 ev.device = qp->ibqp.device; 2539 ev.element.qp = &qp->ibqp; 2540 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2541 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2542 } 2543 } 2544 EXPORT_SYMBOL(rvt_rc_error); 2545 2546 /* 2547 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2548 * @index - the index 2549 * return usec from an index into ib_rvt_rnr_table 2550 */ 2551 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2552 { 2553 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2554 } 2555 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2556 2557 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2558 { 2559 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2560 IB_AETH_CREDIT_MASK]; 2561 } 2562 2563 /* 2564 * rvt_add_retry_timer_ext - add/start a retry timer 2565 * @qp - the QP 2566 * @shift - timeout shift to wait for multiple packets 2567 * add a retry timer on the QP 2568 */ 2569 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2570 { 2571 struct ib_qp *ibqp = &qp->ibqp; 2572 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2573 2574 lockdep_assert_held(&qp->s_lock); 2575 qp->s_flags |= RVT_S_TIMER; 2576 /* 4.096 usec. * (1 << qp->timeout) */ 2577 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2578 (qp->timeout_jiffies << shift); 2579 add_timer(&qp->s_timer); 2580 } 2581 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2582 2583 /** 2584 * rvt_add_rnr_timer - add/start an rnr timer on the QP 2585 * @qp: the QP 2586 * @aeth: aeth of RNR timeout, simulated aeth for loopback 2587 */ 2588 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2589 { 2590 u32 to; 2591 2592 lockdep_assert_held(&qp->s_lock); 2593 qp->s_flags |= RVT_S_WAIT_RNR; 2594 to = rvt_aeth_to_usec(aeth); 2595 trace_rvt_rnrnak_add(qp, to); 2596 hrtimer_start(&qp->s_rnr_timer, 2597 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2598 } 2599 EXPORT_SYMBOL(rvt_add_rnr_timer); 2600 2601 /** 2602 * rvt_stop_rc_timers - stop all timers 2603 * @qp: the QP 2604 * stop any pending timers 2605 */ 2606 void rvt_stop_rc_timers(struct rvt_qp *qp) 2607 { 2608 lockdep_assert_held(&qp->s_lock); 2609 /* Remove QP from all timers */ 2610 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2611 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2612 del_timer(&qp->s_timer); 2613 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2614 } 2615 } 2616 EXPORT_SYMBOL(rvt_stop_rc_timers); 2617 2618 /** 2619 * rvt_stop_rnr_timer - stop an rnr timer 2620 * @qp - the QP 2621 * 2622 * stop an rnr timer and return if the timer 2623 * had been pending. 2624 */ 2625 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2626 { 2627 lockdep_assert_held(&qp->s_lock); 2628 /* Remove QP from rnr timer */ 2629 if (qp->s_flags & RVT_S_WAIT_RNR) { 2630 qp->s_flags &= ~RVT_S_WAIT_RNR; 2631 trace_rvt_rnrnak_stop(qp, 0); 2632 } 2633 } 2634 2635 /** 2636 * rvt_del_timers_sync - wait for any timeout routines to exit 2637 * @qp: the QP 2638 */ 2639 void rvt_del_timers_sync(struct rvt_qp *qp) 2640 { 2641 del_timer_sync(&qp->s_timer); 2642 hrtimer_cancel(&qp->s_rnr_timer); 2643 } 2644 EXPORT_SYMBOL(rvt_del_timers_sync); 2645 2646 /* 2647 * This is called from s_timer for missing responses. 2648 */ 2649 static void rvt_rc_timeout(struct timer_list *t) 2650 { 2651 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2652 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2653 unsigned long flags; 2654 2655 spin_lock_irqsave(&qp->r_lock, flags); 2656 spin_lock(&qp->s_lock); 2657 if (qp->s_flags & RVT_S_TIMER) { 2658 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2659 2660 qp->s_flags &= ~RVT_S_TIMER; 2661 rvp->n_rc_timeouts++; 2662 del_timer(&qp->s_timer); 2663 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2664 if (rdi->driver_f.notify_restart_rc) 2665 rdi->driver_f.notify_restart_rc(qp, 2666 qp->s_last_psn + 1, 2667 1); 2668 rdi->driver_f.schedule_send(qp); 2669 } 2670 spin_unlock(&qp->s_lock); 2671 spin_unlock_irqrestore(&qp->r_lock, flags); 2672 } 2673 2674 /* 2675 * This is called from s_timer for RNR timeouts. 2676 */ 2677 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2678 { 2679 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2680 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2681 unsigned long flags; 2682 2683 spin_lock_irqsave(&qp->s_lock, flags); 2684 rvt_stop_rnr_timer(qp); 2685 trace_rvt_rnrnak_timeout(qp, 0); 2686 rdi->driver_f.schedule_send(qp); 2687 spin_unlock_irqrestore(&qp->s_lock, flags); 2688 return HRTIMER_NORESTART; 2689 } 2690 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2691 2692 /** 2693 * rvt_qp_iter_init - initial for QP iteration 2694 * @rdi: rvt devinfo 2695 * @v: u64 value 2696 * @cb: user-defined callback 2697 * 2698 * This returns an iterator suitable for iterating QPs 2699 * in the system. 2700 * 2701 * The @cb is a user-defined callback and @v is a 64-bit 2702 * value passed to and relevant for processing in the 2703 * @cb. An example use case would be to alter QP processing 2704 * based on criteria not part of the rvt_qp. 2705 * 2706 * Use cases that require memory allocation to succeed 2707 * must preallocate appropriately. 2708 * 2709 * Return: a pointer to an rvt_qp_iter or NULL 2710 */ 2711 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2712 u64 v, 2713 void (*cb)(struct rvt_qp *qp, u64 v)) 2714 { 2715 struct rvt_qp_iter *i; 2716 2717 i = kzalloc(sizeof(*i), GFP_KERNEL); 2718 if (!i) 2719 return NULL; 2720 2721 i->rdi = rdi; 2722 /* number of special QPs (SMI/GSI) for device */ 2723 i->specials = rdi->ibdev.phys_port_cnt * 2; 2724 i->v = v; 2725 i->cb = cb; 2726 2727 return i; 2728 } 2729 EXPORT_SYMBOL(rvt_qp_iter_init); 2730 2731 /** 2732 * rvt_qp_iter_next - return the next QP in iter 2733 * @iter: the iterator 2734 * 2735 * Fine grained QP iterator suitable for use 2736 * with debugfs seq_file mechanisms. 2737 * 2738 * Updates iter->qp with the current QP when the return 2739 * value is 0. 2740 * 2741 * Return: 0 - iter->qp is valid 1 - no more QPs 2742 */ 2743 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2744 __must_hold(RCU) 2745 { 2746 int n = iter->n; 2747 int ret = 1; 2748 struct rvt_qp *pqp = iter->qp; 2749 struct rvt_qp *qp; 2750 struct rvt_dev_info *rdi = iter->rdi; 2751 2752 /* 2753 * The approach is to consider the special qps 2754 * as additional table entries before the 2755 * real hash table. Since the qp code sets 2756 * the qp->next hash link to NULL, this works just fine. 2757 * 2758 * iter->specials is 2 * # ports 2759 * 2760 * n = 0..iter->specials is the special qp indices 2761 * 2762 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2763 * the potential hash bucket entries 2764 * 2765 */ 2766 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2767 if (pqp) { 2768 qp = rcu_dereference(pqp->next); 2769 } else { 2770 if (n < iter->specials) { 2771 struct rvt_ibport *rvp; 2772 int pidx; 2773 2774 pidx = n % rdi->ibdev.phys_port_cnt; 2775 rvp = rdi->ports[pidx]; 2776 qp = rcu_dereference(rvp->qp[n & 1]); 2777 } else { 2778 qp = rcu_dereference( 2779 rdi->qp_dev->qp_table[ 2780 (n - iter->specials)]); 2781 } 2782 } 2783 pqp = qp; 2784 if (qp) { 2785 iter->qp = qp; 2786 iter->n = n; 2787 return 0; 2788 } 2789 } 2790 return ret; 2791 } 2792 EXPORT_SYMBOL(rvt_qp_iter_next); 2793 2794 /** 2795 * rvt_qp_iter - iterate all QPs 2796 * @rdi: rvt devinfo 2797 * @v: a 64-bit value 2798 * @cb: a callback 2799 * 2800 * This provides a way for iterating all QPs. 2801 * 2802 * The @cb is a user-defined callback and @v is a 64-bit 2803 * value passed to and relevant for processing in the 2804 * cb. An example use case would be to alter QP processing 2805 * based on criteria not part of the rvt_qp. 2806 * 2807 * The code has an internal iterator to simplify 2808 * non seq_file use cases. 2809 */ 2810 void rvt_qp_iter(struct rvt_dev_info *rdi, 2811 u64 v, 2812 void (*cb)(struct rvt_qp *qp, u64 v)) 2813 { 2814 int ret; 2815 struct rvt_qp_iter i = { 2816 .rdi = rdi, 2817 .specials = rdi->ibdev.phys_port_cnt * 2, 2818 .v = v, 2819 .cb = cb 2820 }; 2821 2822 rcu_read_lock(); 2823 do { 2824 ret = rvt_qp_iter_next(&i); 2825 if (!ret) { 2826 rvt_get_qp(i.qp); 2827 rcu_read_unlock(); 2828 i.cb(i.qp, i.v); 2829 rcu_read_lock(); 2830 rvt_put_qp(i.qp); 2831 } 2832 } while (!ret); 2833 rcu_read_unlock(); 2834 } 2835 EXPORT_SYMBOL(rvt_qp_iter); 2836 2837 /* 2838 * This should be called with s_lock held. 2839 */ 2840 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2841 enum ib_wc_status status) 2842 { 2843 u32 old_last, last; 2844 struct rvt_dev_info *rdi; 2845 2846 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2847 return; 2848 rdi = ib_to_rvt(qp->ibqp.device); 2849 2850 old_last = qp->s_last; 2851 trace_rvt_qp_send_completion(qp, wqe, old_last); 2852 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], 2853 status); 2854 if (qp->s_acked == old_last) 2855 qp->s_acked = last; 2856 if (qp->s_cur == old_last) 2857 qp->s_cur = last; 2858 if (qp->s_tail == old_last) 2859 qp->s_tail = last; 2860 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2861 qp->s_draining = 0; 2862 } 2863 EXPORT_SYMBOL(rvt_send_complete); 2864 2865 /** 2866 * rvt_copy_sge - copy data to SGE memory 2867 * @qp: associated QP 2868 * @ss: the SGE state 2869 * @data: the data to copy 2870 * @length: the length of the data 2871 * @release: boolean to release MR 2872 * @copy_last: do a separate copy of the last 8 bytes 2873 */ 2874 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2875 void *data, u32 length, 2876 bool release, bool copy_last) 2877 { 2878 struct rvt_sge *sge = &ss->sge; 2879 int i; 2880 bool in_last = false; 2881 bool cacheless_copy = false; 2882 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2883 struct rvt_wss *wss = rdi->wss; 2884 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2885 2886 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2887 cacheless_copy = length >= PAGE_SIZE; 2888 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2889 if (length >= PAGE_SIZE) { 2890 /* 2891 * NOTE: this *assumes*: 2892 * o The first vaddr is the dest. 2893 * o If multiple pages, then vaddr is sequential. 2894 */ 2895 wss_insert(wss, sge->vaddr); 2896 if (length >= (2 * PAGE_SIZE)) 2897 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2898 2899 cacheless_copy = wss_exceeds_threshold(wss); 2900 } else { 2901 wss_advance_clean_counter(wss); 2902 } 2903 } 2904 2905 if (copy_last) { 2906 if (length > 8) { 2907 length -= 8; 2908 } else { 2909 copy_last = false; 2910 in_last = true; 2911 } 2912 } 2913 2914 again: 2915 while (length) { 2916 u32 len = rvt_get_sge_length(sge, length); 2917 2918 WARN_ON_ONCE(len == 0); 2919 if (unlikely(in_last)) { 2920 /* enforce byte transfer ordering */ 2921 for (i = 0; i < len; i++) 2922 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2923 } else if (cacheless_copy) { 2924 cacheless_memcpy(sge->vaddr, data, len); 2925 } else { 2926 memcpy(sge->vaddr, data, len); 2927 } 2928 rvt_update_sge(ss, len, release); 2929 data += len; 2930 length -= len; 2931 } 2932 2933 if (copy_last) { 2934 copy_last = false; 2935 in_last = true; 2936 length = 8; 2937 goto again; 2938 } 2939 } 2940 EXPORT_SYMBOL(rvt_copy_sge); 2941 2942 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2943 struct rvt_qp *sqp) 2944 { 2945 rvp->n_pkt_drops++; 2946 /* 2947 * For RC, the requester would timeout and retry so 2948 * shortcut the timeouts and just signal too many retries. 2949 */ 2950 return sqp->ibqp.qp_type == IB_QPT_RC ? 2951 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2952 } 2953 2954 /** 2955 * ruc_loopback - handle UC and RC loopback requests 2956 * @sqp: the sending QP 2957 * 2958 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2959 * Note that although we are single threaded due to the send engine, we still 2960 * have to protect against post_send(). We don't have to worry about 2961 * receive interrupts since this is a connected protocol and all packets 2962 * will pass through here. 2963 */ 2964 void rvt_ruc_loopback(struct rvt_qp *sqp) 2965 { 2966 struct rvt_ibport *rvp = NULL; 2967 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2968 struct rvt_qp *qp; 2969 struct rvt_swqe *wqe; 2970 struct rvt_sge *sge; 2971 unsigned long flags; 2972 struct ib_wc wc; 2973 u64 sdata; 2974 atomic64_t *maddr; 2975 enum ib_wc_status send_status; 2976 bool release; 2977 int ret; 2978 bool copy_last = false; 2979 int local_ops = 0; 2980 2981 rcu_read_lock(); 2982 rvp = rdi->ports[sqp->port_num - 1]; 2983 2984 /* 2985 * Note that we check the responder QP state after 2986 * checking the requester's state. 2987 */ 2988 2989 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2990 sqp->remote_qpn); 2991 2992 spin_lock_irqsave(&sqp->s_lock, flags); 2993 2994 /* Return if we are already busy processing a work request. */ 2995 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2996 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2997 goto unlock; 2998 2999 sqp->s_flags |= RVT_S_BUSY; 3000 3001 again: 3002 if (sqp->s_last == READ_ONCE(sqp->s_head)) 3003 goto clr_busy; 3004 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 3005 3006 /* Return if it is not OK to start a new work request. */ 3007 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 3008 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 3009 goto clr_busy; 3010 /* We are in the error state, flush the work request. */ 3011 send_status = IB_WC_WR_FLUSH_ERR; 3012 goto flush_send; 3013 } 3014 3015 /* 3016 * We can rely on the entry not changing without the s_lock 3017 * being held until we update s_last. 3018 * We increment s_cur to indicate s_last is in progress. 3019 */ 3020 if (sqp->s_last == sqp->s_cur) { 3021 if (++sqp->s_cur >= sqp->s_size) 3022 sqp->s_cur = 0; 3023 } 3024 spin_unlock_irqrestore(&sqp->s_lock, flags); 3025 3026 if (!qp) { 3027 send_status = loopback_qp_drop(rvp, sqp); 3028 goto serr_no_r_lock; 3029 } 3030 spin_lock_irqsave(&qp->r_lock, flags); 3031 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 3032 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 3033 send_status = loopback_qp_drop(rvp, sqp); 3034 goto serr; 3035 } 3036 3037 memset(&wc, 0, sizeof(wc)); 3038 send_status = IB_WC_SUCCESS; 3039 3040 release = true; 3041 sqp->s_sge.sge = wqe->sg_list[0]; 3042 sqp->s_sge.sg_list = wqe->sg_list + 1; 3043 sqp->s_sge.num_sge = wqe->wr.num_sge; 3044 sqp->s_len = wqe->length; 3045 switch (wqe->wr.opcode) { 3046 case IB_WR_REG_MR: 3047 goto send_comp; 3048 3049 case IB_WR_LOCAL_INV: 3050 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 3051 if (rvt_invalidate_rkey(sqp, 3052 wqe->wr.ex.invalidate_rkey)) 3053 send_status = IB_WC_LOC_PROT_ERR; 3054 local_ops = 1; 3055 } 3056 goto send_comp; 3057 3058 case IB_WR_SEND_WITH_INV: 3059 case IB_WR_SEND_WITH_IMM: 3060 case IB_WR_SEND: 3061 ret = rvt_get_rwqe(qp, false); 3062 if (ret < 0) 3063 goto op_err; 3064 if (!ret) 3065 goto rnr_nak; 3066 if (wqe->length > qp->r_len) 3067 goto inv_err; 3068 switch (wqe->wr.opcode) { 3069 case IB_WR_SEND_WITH_INV: 3070 if (!rvt_invalidate_rkey(qp, 3071 wqe->wr.ex.invalidate_rkey)) { 3072 wc.wc_flags = IB_WC_WITH_INVALIDATE; 3073 wc.ex.invalidate_rkey = 3074 wqe->wr.ex.invalidate_rkey; 3075 } 3076 break; 3077 case IB_WR_SEND_WITH_IMM: 3078 wc.wc_flags = IB_WC_WITH_IMM; 3079 wc.ex.imm_data = wqe->wr.ex.imm_data; 3080 break; 3081 default: 3082 break; 3083 } 3084 break; 3085 3086 case IB_WR_RDMA_WRITE_WITH_IMM: 3087 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3088 goto inv_err; 3089 wc.wc_flags = IB_WC_WITH_IMM; 3090 wc.ex.imm_data = wqe->wr.ex.imm_data; 3091 ret = rvt_get_rwqe(qp, true); 3092 if (ret < 0) 3093 goto op_err; 3094 if (!ret) 3095 goto rnr_nak; 3096 /* skip copy_last set and qp_access_flags recheck */ 3097 goto do_write; 3098 case IB_WR_RDMA_WRITE: 3099 copy_last = rvt_is_user_qp(qp); 3100 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3101 goto inv_err; 3102 do_write: 3103 if (wqe->length == 0) 3104 break; 3105 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 3106 wqe->rdma_wr.remote_addr, 3107 wqe->rdma_wr.rkey, 3108 IB_ACCESS_REMOTE_WRITE))) 3109 goto acc_err; 3110 qp->r_sge.sg_list = NULL; 3111 qp->r_sge.num_sge = 1; 3112 qp->r_sge.total_len = wqe->length; 3113 break; 3114 3115 case IB_WR_RDMA_READ: 3116 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 3117 goto inv_err; 3118 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 3119 wqe->rdma_wr.remote_addr, 3120 wqe->rdma_wr.rkey, 3121 IB_ACCESS_REMOTE_READ))) 3122 goto acc_err; 3123 release = false; 3124 sqp->s_sge.sg_list = NULL; 3125 sqp->s_sge.num_sge = 1; 3126 qp->r_sge.sge = wqe->sg_list[0]; 3127 qp->r_sge.sg_list = wqe->sg_list + 1; 3128 qp->r_sge.num_sge = wqe->wr.num_sge; 3129 qp->r_sge.total_len = wqe->length; 3130 break; 3131 3132 case IB_WR_ATOMIC_CMP_AND_SWP: 3133 case IB_WR_ATOMIC_FETCH_AND_ADD: 3134 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 3135 goto inv_err; 3136 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 3137 wqe->atomic_wr.remote_addr, 3138 wqe->atomic_wr.rkey, 3139 IB_ACCESS_REMOTE_ATOMIC))) 3140 goto acc_err; 3141 /* Perform atomic OP and save result. */ 3142 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 3143 sdata = wqe->atomic_wr.compare_add; 3144 *(u64 *)sqp->s_sge.sge.vaddr = 3145 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 3146 (u64)atomic64_add_return(sdata, maddr) - sdata : 3147 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 3148 sdata, wqe->atomic_wr.swap); 3149 rvt_put_mr(qp->r_sge.sge.mr); 3150 qp->r_sge.num_sge = 0; 3151 goto send_comp; 3152 3153 default: 3154 send_status = IB_WC_LOC_QP_OP_ERR; 3155 goto serr; 3156 } 3157 3158 sge = &sqp->s_sge.sge; 3159 while (sqp->s_len) { 3160 u32 len = rvt_get_sge_length(sge, sqp->s_len); 3161 3162 WARN_ON_ONCE(len == 0); 3163 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3164 len, release, copy_last); 3165 rvt_update_sge(&sqp->s_sge, len, !release); 3166 sqp->s_len -= len; 3167 } 3168 if (release) 3169 rvt_put_ss(&qp->r_sge); 3170 3171 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3172 goto send_comp; 3173 3174 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3175 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3176 else 3177 wc.opcode = IB_WC_RECV; 3178 wc.wr_id = qp->r_wr_id; 3179 wc.status = IB_WC_SUCCESS; 3180 wc.byte_len = wqe->length; 3181 wc.qp = &qp->ibqp; 3182 wc.src_qp = qp->remote_qpn; 3183 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3184 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3185 wc.port_num = 1; 3186 /* Signal completion event if the solicited bit is set. */ 3187 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); 3188 3189 send_comp: 3190 spin_unlock_irqrestore(&qp->r_lock, flags); 3191 spin_lock_irqsave(&sqp->s_lock, flags); 3192 rvp->n_loop_pkts++; 3193 flush_send: 3194 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3195 rvt_send_complete(sqp, wqe, send_status); 3196 if (local_ops) { 3197 atomic_dec(&sqp->local_ops_pending); 3198 local_ops = 0; 3199 } 3200 goto again; 3201 3202 rnr_nak: 3203 /* Handle RNR NAK */ 3204 if (qp->ibqp.qp_type == IB_QPT_UC) 3205 goto send_comp; 3206 rvp->n_rnr_naks++; 3207 /* 3208 * Note: we don't need the s_lock held since the BUSY flag 3209 * makes this single threaded. 3210 */ 3211 if (sqp->s_rnr_retry == 0) { 3212 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3213 goto serr; 3214 } 3215 if (sqp->s_rnr_retry_cnt < 7) 3216 sqp->s_rnr_retry--; 3217 spin_unlock_irqrestore(&qp->r_lock, flags); 3218 spin_lock_irqsave(&sqp->s_lock, flags); 3219 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3220 goto clr_busy; 3221 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3222 IB_AETH_CREDIT_SHIFT); 3223 goto clr_busy; 3224 3225 op_err: 3226 send_status = IB_WC_REM_OP_ERR; 3227 wc.status = IB_WC_LOC_QP_OP_ERR; 3228 goto err; 3229 3230 inv_err: 3231 send_status = 3232 sqp->ibqp.qp_type == IB_QPT_RC ? 3233 IB_WC_REM_INV_REQ_ERR : 3234 IB_WC_SUCCESS; 3235 wc.status = IB_WC_LOC_QP_OP_ERR; 3236 goto err; 3237 3238 acc_err: 3239 send_status = IB_WC_REM_ACCESS_ERR; 3240 wc.status = IB_WC_LOC_PROT_ERR; 3241 err: 3242 /* responder goes to error state */ 3243 rvt_rc_error(qp, wc.status); 3244 3245 serr: 3246 spin_unlock_irqrestore(&qp->r_lock, flags); 3247 serr_no_r_lock: 3248 spin_lock_irqsave(&sqp->s_lock, flags); 3249 rvt_send_complete(sqp, wqe, send_status); 3250 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3251 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3252 3253 sqp->s_flags &= ~RVT_S_BUSY; 3254 spin_unlock_irqrestore(&sqp->s_lock, flags); 3255 if (lastwqe) { 3256 struct ib_event ev; 3257 3258 ev.device = sqp->ibqp.device; 3259 ev.element.qp = &sqp->ibqp; 3260 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3261 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3262 } 3263 goto done; 3264 } 3265 clr_busy: 3266 sqp->s_flags &= ~RVT_S_BUSY; 3267 unlock: 3268 spin_unlock_irqrestore(&sqp->s_lock, flags); 3269 done: 3270 rcu_read_unlock(); 3271 } 3272 EXPORT_SYMBOL(rvt_ruc_loopback); 3273