1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2016 - 2020 Intel Corporation. 4 */ 5 6 #include <linux/hash.h> 7 #include <linux/bitops.h> 8 #include <linux/lockdep.h> 9 #include <linux/vmalloc.h> 10 #include <linux/slab.h> 11 #include <rdma/ib_verbs.h> 12 #include <rdma/ib_hdrs.h> 13 #include <rdma/opa_addr.h> 14 #include <rdma/uverbs_ioctl.h> 15 #include "qp.h" 16 #include "vt.h" 17 #include "trace.h" 18 19 #define RVT_RWQ_COUNT_THRESHOLD 16 20 21 static void rvt_rc_timeout(struct timer_list *t); 22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 23 enum ib_qp_type type); 24 25 /* 26 * Convert the AETH RNR timeout code into the number of microseconds. 27 */ 28 static const u32 ib_rvt_rnr_table[32] = { 29 655360, /* 00: 655.36 */ 30 10, /* 01: .01 */ 31 20, /* 02 .02 */ 32 30, /* 03: .03 */ 33 40, /* 04: .04 */ 34 60, /* 05: .06 */ 35 80, /* 06: .08 */ 36 120, /* 07: .12 */ 37 160, /* 08: .16 */ 38 240, /* 09: .24 */ 39 320, /* 0A: .32 */ 40 480, /* 0B: .48 */ 41 640, /* 0C: .64 */ 42 960, /* 0D: .96 */ 43 1280, /* 0E: 1.28 */ 44 1920, /* 0F: 1.92 */ 45 2560, /* 10: 2.56 */ 46 3840, /* 11: 3.84 */ 47 5120, /* 12: 5.12 */ 48 7680, /* 13: 7.68 */ 49 10240, /* 14: 10.24 */ 50 15360, /* 15: 15.36 */ 51 20480, /* 16: 20.48 */ 52 30720, /* 17: 30.72 */ 53 40960, /* 18: 40.96 */ 54 61440, /* 19: 61.44 */ 55 81920, /* 1A: 81.92 */ 56 122880, /* 1B: 122.88 */ 57 163840, /* 1C: 163.84 */ 58 245760, /* 1D: 245.76 */ 59 327680, /* 1E: 327.68 */ 60 491520 /* 1F: 491.52 */ 61 }; 62 63 /* 64 * Note that it is OK to post send work requests in the SQE and ERR 65 * states; rvt_do_send() will process them and generate error 66 * completions as per IB 1.2 C10-96. 67 */ 68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 69 [IB_QPS_RESET] = 0, 70 [IB_QPS_INIT] = RVT_POST_RECV_OK, 71 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 72 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 73 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 74 RVT_PROCESS_NEXT_SEND_OK, 75 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 76 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 77 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 78 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 79 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 80 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 81 }; 82 EXPORT_SYMBOL(ib_rvt_state_ops); 83 84 /* platform specific: return the last level cache (llc) size, in KiB */ 85 static int rvt_wss_llc_size(void) 86 { 87 /* assume that the boot CPU value is universal for all CPUs */ 88 return boot_cpu_data.x86_cache_size; 89 } 90 91 /* platform specific: cacheless copy */ 92 static void cacheless_memcpy(void *dst, void *src, size_t n) 93 { 94 /* 95 * Use the only available X64 cacheless copy. Add a __user cast 96 * to quiet sparse. The src agument is already in the kernel so 97 * there are no security issues. The extra fault recovery machinery 98 * is not invoked. 99 */ 100 __copy_user_nocache(dst, (void __user *)src, n); 101 } 102 103 void rvt_wss_exit(struct rvt_dev_info *rdi) 104 { 105 struct rvt_wss *wss = rdi->wss; 106 107 if (!wss) 108 return; 109 110 /* coded to handle partially initialized and repeat callers */ 111 kfree(wss->entries); 112 wss->entries = NULL; 113 kfree(rdi->wss); 114 rdi->wss = NULL; 115 } 116 117 /* 118 * rvt_wss_init - Init wss data structures 119 * 120 * Return: 0 on success 121 */ 122 int rvt_wss_init(struct rvt_dev_info *rdi) 123 { 124 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 125 unsigned int wss_threshold = rdi->dparms.wss_threshold; 126 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 127 long llc_size; 128 long llc_bits; 129 long table_size; 130 long table_bits; 131 struct rvt_wss *wss; 132 int node = rdi->dparms.node; 133 134 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 135 rdi->wss = NULL; 136 return 0; 137 } 138 139 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 140 if (!rdi->wss) 141 return -ENOMEM; 142 wss = rdi->wss; 143 144 /* check for a valid percent range - default to 80 if none or invalid */ 145 if (wss_threshold < 1 || wss_threshold > 100) 146 wss_threshold = 80; 147 148 /* reject a wildly large period */ 149 if (wss_clean_period > 1000000) 150 wss_clean_period = 256; 151 152 /* reject a zero period */ 153 if (wss_clean_period == 0) 154 wss_clean_period = 1; 155 156 /* 157 * Calculate the table size - the next power of 2 larger than the 158 * LLC size. LLC size is in KiB. 159 */ 160 llc_size = rvt_wss_llc_size() * 1024; 161 table_size = roundup_pow_of_two(llc_size); 162 163 /* one bit per page in rounded up table */ 164 llc_bits = llc_size / PAGE_SIZE; 165 table_bits = table_size / PAGE_SIZE; 166 wss->pages_mask = table_bits - 1; 167 wss->num_entries = table_bits / BITS_PER_LONG; 168 169 wss->threshold = (llc_bits * wss_threshold) / 100; 170 if (wss->threshold == 0) 171 wss->threshold = 1; 172 173 wss->clean_period = wss_clean_period; 174 atomic_set(&wss->clean_counter, wss_clean_period); 175 176 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 177 GFP_KERNEL, node); 178 if (!wss->entries) { 179 rvt_wss_exit(rdi); 180 return -ENOMEM; 181 } 182 183 return 0; 184 } 185 186 /* 187 * Advance the clean counter. When the clean period has expired, 188 * clean an entry. 189 * 190 * This is implemented in atomics to avoid locking. Because multiple 191 * variables are involved, it can be racy which can lead to slightly 192 * inaccurate information. Since this is only a heuristic, this is 193 * OK. Any innaccuracies will clean themselves out as the counter 194 * advances. That said, it is unlikely the entry clean operation will 195 * race - the next possible racer will not start until the next clean 196 * period. 197 * 198 * The clean counter is implemented as a decrement to zero. When zero 199 * is reached an entry is cleaned. 200 */ 201 static void wss_advance_clean_counter(struct rvt_wss *wss) 202 { 203 int entry; 204 int weight; 205 unsigned long bits; 206 207 /* become the cleaner if we decrement the counter to zero */ 208 if (atomic_dec_and_test(&wss->clean_counter)) { 209 /* 210 * Set, not add, the clean period. This avoids an issue 211 * where the counter could decrement below the clean period. 212 * Doing a set can result in lost decrements, slowing the 213 * clean advance. Since this a heuristic, this possible 214 * slowdown is OK. 215 * 216 * An alternative is to loop, advancing the counter by a 217 * clean period until the result is > 0. However, this could 218 * lead to several threads keeping another in the clean loop. 219 * This could be mitigated by limiting the number of times 220 * we stay in the loop. 221 */ 222 atomic_set(&wss->clean_counter, wss->clean_period); 223 224 /* 225 * Uniquely grab the entry to clean and move to next. 226 * The current entry is always the lower bits of 227 * wss.clean_entry. The table size, wss.num_entries, 228 * is always a power-of-2. 229 */ 230 entry = (atomic_inc_return(&wss->clean_entry) - 1) 231 & (wss->num_entries - 1); 232 233 /* clear the entry and count the bits */ 234 bits = xchg(&wss->entries[entry], 0); 235 weight = hweight64((u64)bits); 236 /* only adjust the contended total count if needed */ 237 if (weight) 238 atomic_sub(weight, &wss->total_count); 239 } 240 } 241 242 /* 243 * Insert the given address into the working set array. 244 */ 245 static void wss_insert(struct rvt_wss *wss, void *address) 246 { 247 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 248 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 249 u32 nr = page & (BITS_PER_LONG - 1); 250 251 if (!test_and_set_bit(nr, &wss->entries[entry])) 252 atomic_inc(&wss->total_count); 253 254 wss_advance_clean_counter(wss); 255 } 256 257 /* 258 * Is the working set larger than the threshold? 259 */ 260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 261 { 262 return atomic_read(&wss->total_count) >= wss->threshold; 263 } 264 265 static void get_map_page(struct rvt_qpn_table *qpt, 266 struct rvt_qpn_map *map) 267 { 268 unsigned long page = get_zeroed_page(GFP_KERNEL); 269 270 /* 271 * Free the page if someone raced with us installing it. 272 */ 273 274 spin_lock(&qpt->lock); 275 if (map->page) 276 free_page(page); 277 else 278 map->page = (void *)page; 279 spin_unlock(&qpt->lock); 280 } 281 282 /** 283 * init_qpn_table - initialize the QP number table for a device 284 * @rdi: rvt dev struct 285 * @qpt: the QPN table 286 */ 287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 288 { 289 u32 offset, i; 290 struct rvt_qpn_map *map; 291 int ret = 0; 292 293 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 294 return -EINVAL; 295 296 spin_lock_init(&qpt->lock); 297 298 qpt->last = rdi->dparms.qpn_start; 299 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 300 301 /* 302 * Drivers may want some QPs beyond what we need for verbs let them use 303 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 304 * for those. The reserved range must be *after* the range which verbs 305 * will pick from. 306 */ 307 308 /* Figure out number of bit maps needed before reserved range */ 309 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 310 311 /* This should always be zero */ 312 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 313 314 /* Starting with the first reserved bit map */ 315 map = &qpt->map[qpt->nmaps]; 316 317 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 318 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 319 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 320 if (!map->page) { 321 get_map_page(qpt, map); 322 if (!map->page) { 323 ret = -ENOMEM; 324 break; 325 } 326 } 327 set_bit(offset, map->page); 328 offset++; 329 if (offset == RVT_BITS_PER_PAGE) { 330 /* next page */ 331 qpt->nmaps++; 332 map++; 333 offset = 0; 334 } 335 } 336 return ret; 337 } 338 339 /** 340 * free_qpn_table - free the QP number table for a device 341 * @qpt: the QPN table 342 */ 343 static void free_qpn_table(struct rvt_qpn_table *qpt) 344 { 345 int i; 346 347 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 348 free_page((unsigned long)qpt->map[i].page); 349 } 350 351 /** 352 * rvt_driver_qp_init - Init driver qp resources 353 * @rdi: rvt dev strucutre 354 * 355 * Return: 0 on success 356 */ 357 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 358 { 359 int i; 360 int ret = -ENOMEM; 361 362 if (!rdi->dparms.qp_table_size) 363 return -EINVAL; 364 365 /* 366 * If driver is not doing any QP allocation then make sure it is 367 * providing the necessary QP functions. 368 */ 369 if (!rdi->driver_f.free_all_qps || 370 !rdi->driver_f.qp_priv_alloc || 371 !rdi->driver_f.qp_priv_free || 372 !rdi->driver_f.notify_qp_reset || 373 !rdi->driver_f.notify_restart_rc) 374 return -EINVAL; 375 376 /* allocate parent object */ 377 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 378 rdi->dparms.node); 379 if (!rdi->qp_dev) 380 return -ENOMEM; 381 382 /* allocate hash table */ 383 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 384 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 385 rdi->qp_dev->qp_table = 386 kmalloc_array_node(rdi->qp_dev->qp_table_size, 387 sizeof(*rdi->qp_dev->qp_table), 388 GFP_KERNEL, rdi->dparms.node); 389 if (!rdi->qp_dev->qp_table) 390 goto no_qp_table; 391 392 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 393 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 394 395 spin_lock_init(&rdi->qp_dev->qpt_lock); 396 397 /* initialize qpn map */ 398 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 399 goto fail_table; 400 401 spin_lock_init(&rdi->n_qps_lock); 402 403 return 0; 404 405 fail_table: 406 kfree(rdi->qp_dev->qp_table); 407 free_qpn_table(&rdi->qp_dev->qpn_table); 408 409 no_qp_table: 410 kfree(rdi->qp_dev); 411 412 return ret; 413 } 414 415 /** 416 * rvt_free_qp_cb - callback function to reset a qp 417 * @qp: the qp to reset 418 * @v: a 64-bit value 419 * 420 * This function resets the qp and removes it from the 421 * qp hash table. 422 */ 423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) 424 { 425 unsigned int *qp_inuse = (unsigned int *)v; 426 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 427 428 /* Reset the qp and remove it from the qp hash list */ 429 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); 430 431 /* Increment the qp_inuse count */ 432 (*qp_inuse)++; 433 } 434 435 /** 436 * rvt_free_all_qps - check for QPs still in use 437 * @rdi: rvt device info structure 438 * 439 * There should not be any QPs still in use. 440 * Free memory for table. 441 * Return the number of QPs still in use. 442 */ 443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 444 { 445 unsigned int qp_inuse = 0; 446 447 qp_inuse += rvt_mcast_tree_empty(rdi); 448 449 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); 450 451 return qp_inuse; 452 } 453 454 /** 455 * rvt_qp_exit - clean up qps on device exit 456 * @rdi: rvt dev structure 457 * 458 * Check for qp leaks and free resources. 459 */ 460 void rvt_qp_exit(struct rvt_dev_info *rdi) 461 { 462 u32 qps_inuse = rvt_free_all_qps(rdi); 463 464 if (qps_inuse) 465 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 466 qps_inuse); 467 468 kfree(rdi->qp_dev->qp_table); 469 free_qpn_table(&rdi->qp_dev->qpn_table); 470 kfree(rdi->qp_dev); 471 } 472 473 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 474 struct rvt_qpn_map *map, unsigned off) 475 { 476 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 477 } 478 479 /** 480 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 481 * IB_QPT_SMI/IB_QPT_GSI 482 * @rdi: rvt device info structure 483 * @qpt: queue pair number table pointer 484 * @type: the QP type 485 * @port_num: IB port number, 1 based, comes from core 486 * @exclude_prefix: prefix of special queue pair number being allocated 487 * 488 * Return: The queue pair number 489 */ 490 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 491 enum ib_qp_type type, u8 port_num, u8 exclude_prefix) 492 { 493 u32 i, offset, max_scan, qpn; 494 struct rvt_qpn_map *map; 495 u32 ret; 496 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ? 497 RVT_AIP_QPN_MAX : RVT_QPN_MAX; 498 499 if (rdi->driver_f.alloc_qpn) 500 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 501 502 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 503 unsigned n; 504 505 ret = type == IB_QPT_GSI; 506 n = 1 << (ret + 2 * (port_num - 1)); 507 spin_lock(&qpt->lock); 508 if (qpt->flags & n) 509 ret = -EINVAL; 510 else 511 qpt->flags |= n; 512 spin_unlock(&qpt->lock); 513 goto bail; 514 } 515 516 qpn = qpt->last + qpt->incr; 517 if (qpn >= max_qpn) 518 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 519 /* offset carries bit 0 */ 520 offset = qpn & RVT_BITS_PER_PAGE_MASK; 521 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 522 max_scan = qpt->nmaps - !offset; 523 for (i = 0;;) { 524 if (unlikely(!map->page)) { 525 get_map_page(qpt, map); 526 if (unlikely(!map->page)) 527 break; 528 } 529 do { 530 if (!test_and_set_bit(offset, map->page)) { 531 qpt->last = qpn; 532 ret = qpn; 533 goto bail; 534 } 535 offset += qpt->incr; 536 /* 537 * This qpn might be bogus if offset >= BITS_PER_PAGE. 538 * That is OK. It gets re-assigned below 539 */ 540 qpn = mk_qpn(qpt, map, offset); 541 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 542 /* 543 * In order to keep the number of pages allocated to a 544 * minimum, we scan the all existing pages before increasing 545 * the size of the bitmap table. 546 */ 547 if (++i > max_scan) { 548 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 549 break; 550 map = &qpt->map[qpt->nmaps++]; 551 /* start at incr with current bit 0 */ 552 offset = qpt->incr | (offset & 1); 553 } else if (map < &qpt->map[qpt->nmaps]) { 554 ++map; 555 /* start at incr with current bit 0 */ 556 offset = qpt->incr | (offset & 1); 557 } else { 558 map = &qpt->map[0]; 559 /* wrap to first map page, invert bit 0 */ 560 offset = qpt->incr | ((offset & 1) ^ 1); 561 } 562 /* there can be no set bits in low-order QoS bits */ 563 WARN_ON(rdi->dparms.qos_shift > 1 && 564 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 565 qpn = mk_qpn(qpt, map, offset); 566 } 567 568 ret = -ENOMEM; 569 570 bail: 571 return ret; 572 } 573 574 /** 575 * rvt_clear_mr_refs - Drop help mr refs 576 * @qp: rvt qp data structure 577 * @clr_sends: If shoudl clear send side or not 578 */ 579 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 580 { 581 unsigned n; 582 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 583 584 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 585 rvt_put_ss(&qp->s_rdma_read_sge); 586 587 rvt_put_ss(&qp->r_sge); 588 589 if (clr_sends) { 590 while (qp->s_last != qp->s_head) { 591 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 592 593 rvt_put_qp_swqe(qp, wqe); 594 if (++qp->s_last >= qp->s_size) 595 qp->s_last = 0; 596 smp_wmb(); /* see qp_set_savail */ 597 } 598 if (qp->s_rdma_mr) { 599 rvt_put_mr(qp->s_rdma_mr); 600 qp->s_rdma_mr = NULL; 601 } 602 } 603 604 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 605 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 606 607 if (e->rdma_sge.mr) { 608 rvt_put_mr(e->rdma_sge.mr); 609 e->rdma_sge.mr = NULL; 610 } 611 } 612 } 613 614 /** 615 * rvt_swqe_has_lkey - return true if lkey is used by swqe 616 * @wqe: the send wqe 617 * @lkey: the lkey 618 * 619 * Test the swqe for using lkey 620 */ 621 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 622 { 623 int i; 624 625 for (i = 0; i < wqe->wr.num_sge; i++) { 626 struct rvt_sge *sge = &wqe->sg_list[i]; 627 628 if (rvt_mr_has_lkey(sge->mr, lkey)) 629 return true; 630 } 631 return false; 632 } 633 634 /** 635 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 636 * @qp: the rvt_qp 637 * @lkey: the lkey 638 */ 639 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 640 { 641 u32 s_last = qp->s_last; 642 643 while (s_last != qp->s_head) { 644 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 645 646 if (rvt_swqe_has_lkey(wqe, lkey)) 647 return true; 648 649 if (++s_last >= qp->s_size) 650 s_last = 0; 651 } 652 if (qp->s_rdma_mr) 653 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 654 return true; 655 return false; 656 } 657 658 /** 659 * rvt_qp_acks_has_lkey - return true if acks have lkey 660 * @qp: the qp 661 * @lkey: the lkey 662 */ 663 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 664 { 665 int i; 666 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 667 668 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 669 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 670 671 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 672 return true; 673 } 674 return false; 675 } 676 677 /** 678 * rvt_qp_mr_clean - clean up remote ops for lkey 679 * @qp: the qp 680 * @lkey: the lkey that is being de-registered 681 * 682 * This routine checks if the lkey is being used by 683 * the qp. 684 * 685 * If so, the qp is put into an error state to elminate 686 * any references from the qp. 687 */ 688 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 689 { 690 bool lastwqe = false; 691 692 if (qp->ibqp.qp_type == IB_QPT_SMI || 693 qp->ibqp.qp_type == IB_QPT_GSI) 694 /* avoid special QPs */ 695 return; 696 spin_lock_irq(&qp->r_lock); 697 spin_lock(&qp->s_hlock); 698 spin_lock(&qp->s_lock); 699 700 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 701 goto check_lwqe; 702 703 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 704 rvt_qp_sends_has_lkey(qp, lkey) || 705 rvt_qp_acks_has_lkey(qp, lkey)) 706 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 707 check_lwqe: 708 spin_unlock(&qp->s_lock); 709 spin_unlock(&qp->s_hlock); 710 spin_unlock_irq(&qp->r_lock); 711 if (lastwqe) { 712 struct ib_event ev; 713 714 ev.device = qp->ibqp.device; 715 ev.element.qp = &qp->ibqp; 716 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 717 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 718 } 719 } 720 721 /** 722 * rvt_remove_qp - remove qp form table 723 * @rdi: rvt dev struct 724 * @qp: qp to remove 725 * 726 * Remove the QP from the table so it can't be found asynchronously by 727 * the receive routine. 728 */ 729 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 730 { 731 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 732 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 733 unsigned long flags; 734 int removed = 1; 735 736 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 737 738 if (rcu_dereference_protected(rvp->qp[0], 739 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 740 RCU_INIT_POINTER(rvp->qp[0], NULL); 741 } else if (rcu_dereference_protected(rvp->qp[1], 742 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 743 RCU_INIT_POINTER(rvp->qp[1], NULL); 744 } else { 745 struct rvt_qp *q; 746 struct rvt_qp __rcu **qpp; 747 748 removed = 0; 749 qpp = &rdi->qp_dev->qp_table[n]; 750 for (; (q = rcu_dereference_protected(*qpp, 751 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 752 qpp = &q->next) { 753 if (q == qp) { 754 RCU_INIT_POINTER(*qpp, 755 rcu_dereference_protected(qp->next, 756 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 757 removed = 1; 758 trace_rvt_qpremove(qp, n); 759 break; 760 } 761 } 762 } 763 764 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 765 if (removed) { 766 synchronize_rcu(); 767 rvt_put_qp(qp); 768 } 769 } 770 771 /** 772 * rvt_alloc_rq - allocate memory for user or kernel buffer 773 * @rq: receive queue data structure 774 * @size: number of request queue entries 775 * @node: The NUMA node 776 * @udata: True if user data is available or not false 777 * 778 * Return: If memory allocation failed, return -ENONEM 779 * This function is used by both shared receive 780 * queues and non-shared receive queues to allocate 781 * memory. 782 */ 783 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, 784 struct ib_udata *udata) 785 { 786 if (udata) { 787 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); 788 if (!rq->wq) 789 goto bail; 790 /* need kwq with no buffers */ 791 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); 792 if (!rq->kwq) 793 goto bail; 794 rq->kwq->curr_wq = rq->wq->wq; 795 } else { 796 /* need kwq with buffers */ 797 rq->kwq = 798 vzalloc_node(sizeof(struct rvt_krwq) + size, node); 799 if (!rq->kwq) 800 goto bail; 801 rq->kwq->curr_wq = rq->kwq->wq; 802 } 803 804 spin_lock_init(&rq->kwq->p_lock); 805 spin_lock_init(&rq->kwq->c_lock); 806 return 0; 807 bail: 808 rvt_free_rq(rq); 809 return -ENOMEM; 810 } 811 812 /** 813 * rvt_init_qp - initialize the QP state to the reset state 814 * @rdi: rvt dev struct 815 * @qp: the QP to init or reinit 816 * @type: the QP type 817 * 818 * This function is called from both rvt_create_qp() and 819 * rvt_reset_qp(). The difference is that the reset 820 * patch the necessary locks to protect against concurent 821 * access. 822 */ 823 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 824 enum ib_qp_type type) 825 { 826 qp->remote_qpn = 0; 827 qp->qkey = 0; 828 qp->qp_access_flags = 0; 829 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 830 qp->s_hdrwords = 0; 831 qp->s_wqe = NULL; 832 qp->s_draining = 0; 833 qp->s_next_psn = 0; 834 qp->s_last_psn = 0; 835 qp->s_sending_psn = 0; 836 qp->s_sending_hpsn = 0; 837 qp->s_psn = 0; 838 qp->r_psn = 0; 839 qp->r_msn = 0; 840 if (type == IB_QPT_RC) { 841 qp->s_state = IB_OPCODE_RC_SEND_LAST; 842 qp->r_state = IB_OPCODE_RC_SEND_LAST; 843 } else { 844 qp->s_state = IB_OPCODE_UC_SEND_LAST; 845 qp->r_state = IB_OPCODE_UC_SEND_LAST; 846 } 847 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 848 qp->r_nak_state = 0; 849 qp->r_aflags = 0; 850 qp->r_flags = 0; 851 qp->s_head = 0; 852 qp->s_tail = 0; 853 qp->s_cur = 0; 854 qp->s_acked = 0; 855 qp->s_last = 0; 856 qp->s_ssn = 1; 857 qp->s_lsn = 0; 858 qp->s_mig_state = IB_MIG_MIGRATED; 859 qp->r_head_ack_queue = 0; 860 qp->s_tail_ack_queue = 0; 861 qp->s_acked_ack_queue = 0; 862 qp->s_num_rd_atomic = 0; 863 qp->r_sge.num_sge = 0; 864 atomic_set(&qp->s_reserved_used, 0); 865 } 866 867 /** 868 * _rvt_reset_qp - initialize the QP state to the reset state 869 * @rdi: rvt dev struct 870 * @qp: the QP to reset 871 * @type: the QP type 872 * 873 * r_lock, s_hlock, and s_lock are required to be held by the caller 874 */ 875 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 876 enum ib_qp_type type) 877 __must_hold(&qp->s_lock) 878 __must_hold(&qp->s_hlock) 879 __must_hold(&qp->r_lock) 880 { 881 lockdep_assert_held(&qp->r_lock); 882 lockdep_assert_held(&qp->s_hlock); 883 lockdep_assert_held(&qp->s_lock); 884 if (qp->state != IB_QPS_RESET) { 885 qp->state = IB_QPS_RESET; 886 887 /* Let drivers flush their waitlist */ 888 rdi->driver_f.flush_qp_waiters(qp); 889 rvt_stop_rc_timers(qp); 890 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 891 spin_unlock(&qp->s_lock); 892 spin_unlock(&qp->s_hlock); 893 spin_unlock_irq(&qp->r_lock); 894 895 /* Stop the send queue and the retry timer */ 896 rdi->driver_f.stop_send_queue(qp); 897 rvt_del_timers_sync(qp); 898 /* Wait for things to stop */ 899 rdi->driver_f.quiesce_qp(qp); 900 901 /* take qp out the hash and wait for it to be unused */ 902 rvt_remove_qp(rdi, qp); 903 904 /* grab the lock b/c it was locked at call time */ 905 spin_lock_irq(&qp->r_lock); 906 spin_lock(&qp->s_hlock); 907 spin_lock(&qp->s_lock); 908 909 rvt_clear_mr_refs(qp, 1); 910 /* 911 * Let the driver do any tear down or re-init it needs to for 912 * a qp that has been reset 913 */ 914 rdi->driver_f.notify_qp_reset(qp); 915 } 916 rvt_init_qp(rdi, qp, type); 917 lockdep_assert_held(&qp->r_lock); 918 lockdep_assert_held(&qp->s_hlock); 919 lockdep_assert_held(&qp->s_lock); 920 } 921 922 /** 923 * rvt_reset_qp - initialize the QP state to the reset state 924 * @rdi: the device info 925 * @qp: the QP to reset 926 * @type: the QP type 927 * 928 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock 929 * before calling _rvt_reset_qp(). 930 */ 931 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 932 enum ib_qp_type type) 933 { 934 spin_lock_irq(&qp->r_lock); 935 spin_lock(&qp->s_hlock); 936 spin_lock(&qp->s_lock); 937 _rvt_reset_qp(rdi, qp, type); 938 spin_unlock(&qp->s_lock); 939 spin_unlock(&qp->s_hlock); 940 spin_unlock_irq(&qp->r_lock); 941 } 942 943 /** 944 * rvt_free_qpn - Free a qpn from the bit map 945 * @qpt: QP table 946 * @qpn: queue pair number to free 947 */ 948 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 949 { 950 struct rvt_qpn_map *map; 951 952 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE) 953 qpn &= RVT_AIP_QP_SUFFIX; 954 955 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 956 if (map->page) 957 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 958 } 959 960 /** 961 * get_allowed_ops - Given a QP type return the appropriate allowed OP 962 * @type: valid, supported, QP type 963 */ 964 static u8 get_allowed_ops(enum ib_qp_type type) 965 { 966 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? 967 IB_OPCODE_UC : IB_OPCODE_UD; 968 } 969 970 /** 971 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs 972 * @qp: Valid QP with allowed_ops set 973 * 974 * The rvt_swqe data structure being used is a union, so this is 975 * only valid for UD QPs. 976 */ 977 static void free_ud_wq_attr(struct rvt_qp *qp) 978 { 979 struct rvt_swqe *wqe; 980 int i; 981 982 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 983 wqe = rvt_get_swqe_ptr(qp, i); 984 kfree(wqe->ud_wr.attr); 985 wqe->ud_wr.attr = NULL; 986 } 987 } 988 989 /** 990 * alloc_ud_wq_attr - AH attribute cache for UD QPs 991 * @qp: Valid QP with allowed_ops set 992 * @node: Numa node for allocation 993 * 994 * The rvt_swqe data structure being used is a union, so this is 995 * only valid for UD QPs. 996 */ 997 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) 998 { 999 struct rvt_swqe *wqe; 1000 int i; 1001 1002 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1003 wqe = rvt_get_swqe_ptr(qp, i); 1004 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), 1005 GFP_KERNEL, node); 1006 if (!wqe->ud_wr.attr) { 1007 free_ud_wq_attr(qp); 1008 return -ENOMEM; 1009 } 1010 } 1011 1012 return 0; 1013 } 1014 1015 /** 1016 * rvt_create_qp - create a queue pair for a device 1017 * @ibqp: the queue pair 1018 * @init_attr: the attributes of the queue pair 1019 * @udata: user data for libibverbs.so 1020 * 1021 * Queue pair creation is mostly an rvt issue. However, drivers have their own 1022 * unique idea of what queue pair numbers mean. For instance there is a reserved 1023 * range for PSM. 1024 * 1025 * Return: 0 on success, otherwise returns an errno. 1026 * 1027 * Called by the ib_create_qp() core verbs function. 1028 */ 1029 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr, 1030 struct ib_udata *udata) 1031 { 1032 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1033 int ret = -ENOMEM; 1034 struct rvt_swqe *swq = NULL; 1035 size_t sz; 1036 size_t sg_list_sz = 0; 1037 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1038 void *priv = NULL; 1039 size_t sqsize; 1040 u8 exclude_prefix = 0; 1041 1042 if (!rdi) 1043 return -EINVAL; 1044 1045 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE) 1046 return -EOPNOTSUPP; 1047 1048 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 1049 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr) 1050 return -EINVAL; 1051 1052 /* Check receive queue parameters if no SRQ is specified. */ 1053 if (!init_attr->srq) { 1054 if (init_attr->cap.max_recv_sge > 1055 rdi->dparms.props.max_recv_sge || 1056 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 1057 return -EINVAL; 1058 1059 if (init_attr->cap.max_send_sge + 1060 init_attr->cap.max_send_wr + 1061 init_attr->cap.max_recv_sge + 1062 init_attr->cap.max_recv_wr == 0) 1063 return -EINVAL; 1064 } 1065 sqsize = 1066 init_attr->cap.max_send_wr + 1 + 1067 rdi->dparms.reserved_operations; 1068 switch (init_attr->qp_type) { 1069 case IB_QPT_SMI: 1070 case IB_QPT_GSI: 1071 if (init_attr->port_num == 0 || 1072 init_attr->port_num > ibqp->device->phys_port_cnt) 1073 return -EINVAL; 1074 fallthrough; 1075 case IB_QPT_UC: 1076 case IB_QPT_RC: 1077 case IB_QPT_UD: 1078 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); 1079 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 1080 if (!swq) 1081 return -ENOMEM; 1082 1083 if (init_attr->srq) { 1084 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1085 1086 if (srq->rq.max_sge > 1) 1087 sg_list_sz = sizeof(*qp->r_sg_list) * 1088 (srq->rq.max_sge - 1); 1089 } else if (init_attr->cap.max_recv_sge > 1) 1090 sg_list_sz = sizeof(*qp->r_sg_list) * 1091 (init_attr->cap.max_recv_sge - 1); 1092 qp->r_sg_list = 1093 kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node); 1094 if (!qp->r_sg_list) 1095 goto bail_qp; 1096 qp->allowed_ops = get_allowed_ops(init_attr->qp_type); 1097 1098 RCU_INIT_POINTER(qp->next, NULL); 1099 if (init_attr->qp_type == IB_QPT_RC) { 1100 qp->s_ack_queue = 1101 kcalloc_node(rvt_max_atomic(rdi), 1102 sizeof(*qp->s_ack_queue), 1103 GFP_KERNEL, 1104 rdi->dparms.node); 1105 if (!qp->s_ack_queue) 1106 goto bail_qp; 1107 } 1108 /* initialize timers needed for rc qp */ 1109 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1110 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1111 HRTIMER_MODE_REL); 1112 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1113 1114 /* 1115 * Driver needs to set up it's private QP structure and do any 1116 * initialization that is needed. 1117 */ 1118 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1119 if (IS_ERR(priv)) { 1120 ret = PTR_ERR(priv); 1121 goto bail_qp; 1122 } 1123 qp->priv = priv; 1124 qp->timeout_jiffies = 1125 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1126 1000UL); 1127 if (init_attr->srq) { 1128 sz = 0; 1129 } else { 1130 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1131 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1132 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1133 sizeof(struct rvt_rwqe); 1134 ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, 1135 rdi->dparms.node, udata); 1136 if (ret) 1137 goto bail_driver_priv; 1138 } 1139 1140 /* 1141 * ib_create_qp() will initialize qp->ibqp 1142 * except for qp->ibqp.qp_num. 1143 */ 1144 spin_lock_init(&qp->r_lock); 1145 spin_lock_init(&qp->s_hlock); 1146 spin_lock_init(&qp->s_lock); 1147 atomic_set(&qp->refcount, 0); 1148 atomic_set(&qp->local_ops_pending, 0); 1149 init_waitqueue_head(&qp->wait); 1150 INIT_LIST_HEAD(&qp->rspwait); 1151 qp->state = IB_QPS_RESET; 1152 qp->s_wq = swq; 1153 qp->s_size = sqsize; 1154 qp->s_avail = init_attr->cap.max_send_wr; 1155 qp->s_max_sge = init_attr->cap.max_send_sge; 1156 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1157 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1158 ret = alloc_ud_wq_attr(qp, rdi->dparms.node); 1159 if (ret) 1160 goto bail_rq_rvt; 1161 1162 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1163 exclude_prefix = RVT_AIP_QP_PREFIX; 1164 1165 ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1166 init_attr->qp_type, 1167 init_attr->port_num, 1168 exclude_prefix); 1169 if (ret < 0) 1170 goto bail_rq_wq; 1171 1172 qp->ibqp.qp_num = ret; 1173 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1174 qp->ibqp.qp_num |= RVT_AIP_QP_BASE; 1175 qp->port_num = init_attr->port_num; 1176 rvt_init_qp(rdi, qp, init_attr->qp_type); 1177 if (rdi->driver_f.qp_priv_init) { 1178 ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1179 if (ret) 1180 goto bail_rq_wq; 1181 } 1182 break; 1183 1184 default: 1185 /* Don't support raw QPs */ 1186 return -EOPNOTSUPP; 1187 } 1188 1189 init_attr->cap.max_inline_data = 0; 1190 1191 /* 1192 * Return the address of the RWQ as the offset to mmap. 1193 * See rvt_mmap() for details. 1194 */ 1195 if (udata && udata->outlen >= sizeof(__u64)) { 1196 if (!qp->r_rq.wq) { 1197 __u64 offset = 0; 1198 1199 ret = ib_copy_to_udata(udata, &offset, 1200 sizeof(offset)); 1201 if (ret) 1202 goto bail_qpn; 1203 } else { 1204 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1205 1206 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1207 qp->r_rq.wq); 1208 if (IS_ERR(qp->ip)) { 1209 ret = PTR_ERR(qp->ip); 1210 goto bail_qpn; 1211 } 1212 1213 ret = ib_copy_to_udata(udata, &qp->ip->offset, 1214 sizeof(qp->ip->offset)); 1215 if (ret) 1216 goto bail_ip; 1217 } 1218 qp->pid = current->pid; 1219 } 1220 1221 spin_lock(&rdi->n_qps_lock); 1222 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1223 spin_unlock(&rdi->n_qps_lock); 1224 ret = -ENOMEM; 1225 goto bail_ip; 1226 } 1227 1228 rdi->n_qps_allocated++; 1229 /* 1230 * Maintain a busy_jiffies variable that will be added to the timeout 1231 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1232 * is scaled by the number of rc qps created for the device to reduce 1233 * the number of timeouts occurring when there is a large number of 1234 * qps. busy_jiffies is incremented every rc qp scaling interval. 1235 * The scaling interval is selected based on extensive performance 1236 * evaluation of targeted workloads. 1237 */ 1238 if (init_attr->qp_type == IB_QPT_RC) { 1239 rdi->n_rc_qps++; 1240 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1241 } 1242 spin_unlock(&rdi->n_qps_lock); 1243 1244 if (qp->ip) { 1245 spin_lock_irq(&rdi->pending_lock); 1246 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1247 spin_unlock_irq(&rdi->pending_lock); 1248 } 1249 1250 return 0; 1251 1252 bail_ip: 1253 if (qp->ip) 1254 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1255 1256 bail_qpn: 1257 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1258 1259 bail_rq_wq: 1260 free_ud_wq_attr(qp); 1261 1262 bail_rq_rvt: 1263 rvt_free_rq(&qp->r_rq); 1264 1265 bail_driver_priv: 1266 rdi->driver_f.qp_priv_free(rdi, qp); 1267 1268 bail_qp: 1269 kfree(qp->s_ack_queue); 1270 kfree(qp->r_sg_list); 1271 vfree(swq); 1272 return ret; 1273 } 1274 1275 /** 1276 * rvt_error_qp - put a QP into the error state 1277 * @qp: the QP to put into the error state 1278 * @err: the receive completion error to signal if a RWQE is active 1279 * 1280 * Flushes both send and receive work queues. 1281 * 1282 * Return: true if last WQE event should be generated. 1283 * The QP r_lock and s_lock should be held and interrupts disabled. 1284 * If we are already in error state, just return. 1285 */ 1286 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1287 { 1288 struct ib_wc wc; 1289 int ret = 0; 1290 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1291 1292 lockdep_assert_held(&qp->r_lock); 1293 lockdep_assert_held(&qp->s_lock); 1294 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1295 goto bail; 1296 1297 qp->state = IB_QPS_ERR; 1298 1299 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1300 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1301 del_timer(&qp->s_timer); 1302 } 1303 1304 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1305 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1306 1307 rdi->driver_f.notify_error_qp(qp); 1308 1309 /* Schedule the sending tasklet to drain the send work queue. */ 1310 if (READ_ONCE(qp->s_last) != qp->s_head) 1311 rdi->driver_f.schedule_send(qp); 1312 1313 rvt_clear_mr_refs(qp, 0); 1314 1315 memset(&wc, 0, sizeof(wc)); 1316 wc.qp = &qp->ibqp; 1317 wc.opcode = IB_WC_RECV; 1318 1319 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1320 wc.wr_id = qp->r_wr_id; 1321 wc.status = err; 1322 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1323 } 1324 wc.status = IB_WC_WR_FLUSH_ERR; 1325 1326 if (qp->r_rq.kwq) { 1327 u32 head; 1328 u32 tail; 1329 struct rvt_rwq *wq = NULL; 1330 struct rvt_krwq *kwq = NULL; 1331 1332 spin_lock(&qp->r_rq.kwq->c_lock); 1333 /* qp->ip used to validate if there is a user buffer mmaped */ 1334 if (qp->ip) { 1335 wq = qp->r_rq.wq; 1336 head = RDMA_READ_UAPI_ATOMIC(wq->head); 1337 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 1338 } else { 1339 kwq = qp->r_rq.kwq; 1340 head = kwq->head; 1341 tail = kwq->tail; 1342 } 1343 /* sanity check pointers before trusting them */ 1344 if (head >= qp->r_rq.size) 1345 head = 0; 1346 if (tail >= qp->r_rq.size) 1347 tail = 0; 1348 while (tail != head) { 1349 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1350 if (++tail >= qp->r_rq.size) 1351 tail = 0; 1352 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1353 } 1354 if (qp->ip) 1355 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 1356 else 1357 kwq->tail = tail; 1358 spin_unlock(&qp->r_rq.kwq->c_lock); 1359 } else if (qp->ibqp.event_handler) { 1360 ret = 1; 1361 } 1362 1363 bail: 1364 return ret; 1365 } 1366 EXPORT_SYMBOL(rvt_error_qp); 1367 1368 /* 1369 * Put the QP into the hash table. 1370 * The hash table holds a reference to the QP. 1371 */ 1372 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1373 { 1374 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1375 unsigned long flags; 1376 1377 rvt_get_qp(qp); 1378 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1379 1380 if (qp->ibqp.qp_num <= 1) { 1381 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1382 } else { 1383 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1384 1385 qp->next = rdi->qp_dev->qp_table[n]; 1386 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1387 trace_rvt_qpinsert(qp, n); 1388 } 1389 1390 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1391 } 1392 1393 /** 1394 * rvt_modify_qp - modify the attributes of a queue pair 1395 * @ibqp: the queue pair who's attributes we're modifying 1396 * @attr: the new attributes 1397 * @attr_mask: the mask of attributes to modify 1398 * @udata: user data for libibverbs.so 1399 * 1400 * Return: 0 on success, otherwise returns an errno. 1401 */ 1402 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1403 int attr_mask, struct ib_udata *udata) 1404 { 1405 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1406 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1407 enum ib_qp_state cur_state, new_state; 1408 struct ib_event ev; 1409 int lastwqe = 0; 1410 int mig = 0; 1411 int pmtu = 0; /* for gcc warning only */ 1412 int opa_ah; 1413 1414 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) 1415 return -EOPNOTSUPP; 1416 1417 spin_lock_irq(&qp->r_lock); 1418 spin_lock(&qp->s_hlock); 1419 spin_lock(&qp->s_lock); 1420 1421 cur_state = attr_mask & IB_QP_CUR_STATE ? 1422 attr->cur_qp_state : qp->state; 1423 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1424 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1425 1426 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1427 attr_mask)) 1428 goto inval; 1429 1430 if (rdi->driver_f.check_modify_qp && 1431 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1432 goto inval; 1433 1434 if (attr_mask & IB_QP_AV) { 1435 if (opa_ah) { 1436 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1437 opa_get_mcast_base(OPA_MCAST_NR)) 1438 goto inval; 1439 } else { 1440 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1441 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1442 goto inval; 1443 } 1444 1445 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1446 goto inval; 1447 } 1448 1449 if (attr_mask & IB_QP_ALT_PATH) { 1450 if (opa_ah) { 1451 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1452 opa_get_mcast_base(OPA_MCAST_NR)) 1453 goto inval; 1454 } else { 1455 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1456 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1457 goto inval; 1458 } 1459 1460 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1461 goto inval; 1462 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1463 goto inval; 1464 } 1465 1466 if (attr_mask & IB_QP_PKEY_INDEX) 1467 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1468 goto inval; 1469 1470 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1471 if (attr->min_rnr_timer > 31) 1472 goto inval; 1473 1474 if (attr_mask & IB_QP_PORT) 1475 if (qp->ibqp.qp_type == IB_QPT_SMI || 1476 qp->ibqp.qp_type == IB_QPT_GSI || 1477 attr->port_num == 0 || 1478 attr->port_num > ibqp->device->phys_port_cnt) 1479 goto inval; 1480 1481 if (attr_mask & IB_QP_DEST_QPN) 1482 if (attr->dest_qp_num > RVT_QPN_MASK) 1483 goto inval; 1484 1485 if (attr_mask & IB_QP_RETRY_CNT) 1486 if (attr->retry_cnt > 7) 1487 goto inval; 1488 1489 if (attr_mask & IB_QP_RNR_RETRY) 1490 if (attr->rnr_retry > 7) 1491 goto inval; 1492 1493 /* 1494 * Don't allow invalid path_mtu values. OK to set greater 1495 * than the active mtu (or even the max_cap, if we have tuned 1496 * that to a small mtu. We'll set qp->path_mtu 1497 * to the lesser of requested attribute mtu and active, 1498 * for packetizing messages. 1499 * Note that the QP port has to be set in INIT and MTU in RTR. 1500 */ 1501 if (attr_mask & IB_QP_PATH_MTU) { 1502 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1503 if (pmtu < 0) 1504 goto inval; 1505 } 1506 1507 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1508 if (attr->path_mig_state == IB_MIG_REARM) { 1509 if (qp->s_mig_state == IB_MIG_ARMED) 1510 goto inval; 1511 if (new_state != IB_QPS_RTS) 1512 goto inval; 1513 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1514 if (qp->s_mig_state == IB_MIG_REARM) 1515 goto inval; 1516 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1517 goto inval; 1518 if (qp->s_mig_state == IB_MIG_ARMED) 1519 mig = 1; 1520 } else { 1521 goto inval; 1522 } 1523 } 1524 1525 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1526 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1527 goto inval; 1528 1529 switch (new_state) { 1530 case IB_QPS_RESET: 1531 if (qp->state != IB_QPS_RESET) 1532 _rvt_reset_qp(rdi, qp, ibqp->qp_type); 1533 break; 1534 1535 case IB_QPS_RTR: 1536 /* Allow event to re-trigger if QP set to RTR more than once */ 1537 qp->r_flags &= ~RVT_R_COMM_EST; 1538 qp->state = new_state; 1539 break; 1540 1541 case IB_QPS_SQD: 1542 qp->s_draining = qp->s_last != qp->s_cur; 1543 qp->state = new_state; 1544 break; 1545 1546 case IB_QPS_SQE: 1547 if (qp->ibqp.qp_type == IB_QPT_RC) 1548 goto inval; 1549 qp->state = new_state; 1550 break; 1551 1552 case IB_QPS_ERR: 1553 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1554 break; 1555 1556 default: 1557 qp->state = new_state; 1558 break; 1559 } 1560 1561 if (attr_mask & IB_QP_PKEY_INDEX) 1562 qp->s_pkey_index = attr->pkey_index; 1563 1564 if (attr_mask & IB_QP_PORT) 1565 qp->port_num = attr->port_num; 1566 1567 if (attr_mask & IB_QP_DEST_QPN) 1568 qp->remote_qpn = attr->dest_qp_num; 1569 1570 if (attr_mask & IB_QP_SQ_PSN) { 1571 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1572 qp->s_psn = qp->s_next_psn; 1573 qp->s_sending_psn = qp->s_next_psn; 1574 qp->s_last_psn = qp->s_next_psn - 1; 1575 qp->s_sending_hpsn = qp->s_last_psn; 1576 } 1577 1578 if (attr_mask & IB_QP_RQ_PSN) 1579 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1580 1581 if (attr_mask & IB_QP_ACCESS_FLAGS) 1582 qp->qp_access_flags = attr->qp_access_flags; 1583 1584 if (attr_mask & IB_QP_AV) { 1585 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1586 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1587 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1588 } 1589 1590 if (attr_mask & IB_QP_ALT_PATH) { 1591 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1592 qp->s_alt_pkey_index = attr->alt_pkey_index; 1593 } 1594 1595 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1596 qp->s_mig_state = attr->path_mig_state; 1597 if (mig) { 1598 qp->remote_ah_attr = qp->alt_ah_attr; 1599 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1600 qp->s_pkey_index = qp->s_alt_pkey_index; 1601 } 1602 } 1603 1604 if (attr_mask & IB_QP_PATH_MTU) { 1605 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1606 qp->log_pmtu = ilog2(qp->pmtu); 1607 } 1608 1609 if (attr_mask & IB_QP_RETRY_CNT) { 1610 qp->s_retry_cnt = attr->retry_cnt; 1611 qp->s_retry = attr->retry_cnt; 1612 } 1613 1614 if (attr_mask & IB_QP_RNR_RETRY) { 1615 qp->s_rnr_retry_cnt = attr->rnr_retry; 1616 qp->s_rnr_retry = attr->rnr_retry; 1617 } 1618 1619 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1620 qp->r_min_rnr_timer = attr->min_rnr_timer; 1621 1622 if (attr_mask & IB_QP_TIMEOUT) { 1623 qp->timeout = attr->timeout; 1624 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1625 } 1626 1627 if (attr_mask & IB_QP_QKEY) 1628 qp->qkey = attr->qkey; 1629 1630 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1631 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1632 1633 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1634 qp->s_max_rd_atomic = attr->max_rd_atomic; 1635 1636 if (rdi->driver_f.modify_qp) 1637 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1638 1639 spin_unlock(&qp->s_lock); 1640 spin_unlock(&qp->s_hlock); 1641 spin_unlock_irq(&qp->r_lock); 1642 1643 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1644 rvt_insert_qp(rdi, qp); 1645 1646 if (lastwqe) { 1647 ev.device = qp->ibqp.device; 1648 ev.element.qp = &qp->ibqp; 1649 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1650 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1651 } 1652 if (mig) { 1653 ev.device = qp->ibqp.device; 1654 ev.element.qp = &qp->ibqp; 1655 ev.event = IB_EVENT_PATH_MIG; 1656 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1657 } 1658 return 0; 1659 1660 inval: 1661 spin_unlock(&qp->s_lock); 1662 spin_unlock(&qp->s_hlock); 1663 spin_unlock_irq(&qp->r_lock); 1664 return -EINVAL; 1665 } 1666 1667 /** 1668 * rvt_destroy_qp - destroy a queue pair 1669 * @ibqp: the queue pair to destroy 1670 * @udata: unused by the driver 1671 * 1672 * Note that this can be called while the QP is actively sending or 1673 * receiving! 1674 * 1675 * Return: 0 on success. 1676 */ 1677 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1678 { 1679 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1680 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1681 1682 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1683 1684 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1685 /* qpn is now available for use again */ 1686 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1687 1688 spin_lock(&rdi->n_qps_lock); 1689 rdi->n_qps_allocated--; 1690 if (qp->ibqp.qp_type == IB_QPT_RC) { 1691 rdi->n_rc_qps--; 1692 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1693 } 1694 spin_unlock(&rdi->n_qps_lock); 1695 1696 if (qp->ip) 1697 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1698 kvfree(qp->r_rq.kwq); 1699 rdi->driver_f.qp_priv_free(rdi, qp); 1700 kfree(qp->s_ack_queue); 1701 kfree(qp->r_sg_list); 1702 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1703 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1704 free_ud_wq_attr(qp); 1705 vfree(qp->s_wq); 1706 return 0; 1707 } 1708 1709 /** 1710 * rvt_query_qp - query an ipbq 1711 * @ibqp: IB qp to query 1712 * @attr: attr struct to fill in 1713 * @attr_mask: attr mask ignored 1714 * @init_attr: struct to fill in 1715 * 1716 * Return: always 0 1717 */ 1718 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1719 int attr_mask, struct ib_qp_init_attr *init_attr) 1720 { 1721 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1722 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1723 1724 attr->qp_state = qp->state; 1725 attr->cur_qp_state = attr->qp_state; 1726 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1727 attr->path_mig_state = qp->s_mig_state; 1728 attr->qkey = qp->qkey; 1729 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1730 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1731 attr->dest_qp_num = qp->remote_qpn; 1732 attr->qp_access_flags = qp->qp_access_flags; 1733 attr->cap.max_send_wr = qp->s_size - 1 - 1734 rdi->dparms.reserved_operations; 1735 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1736 attr->cap.max_send_sge = qp->s_max_sge; 1737 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1738 attr->cap.max_inline_data = 0; 1739 attr->ah_attr = qp->remote_ah_attr; 1740 attr->alt_ah_attr = qp->alt_ah_attr; 1741 attr->pkey_index = qp->s_pkey_index; 1742 attr->alt_pkey_index = qp->s_alt_pkey_index; 1743 attr->en_sqd_async_notify = 0; 1744 attr->sq_draining = qp->s_draining; 1745 attr->max_rd_atomic = qp->s_max_rd_atomic; 1746 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1747 attr->min_rnr_timer = qp->r_min_rnr_timer; 1748 attr->port_num = qp->port_num; 1749 attr->timeout = qp->timeout; 1750 attr->retry_cnt = qp->s_retry_cnt; 1751 attr->rnr_retry = qp->s_rnr_retry_cnt; 1752 attr->alt_port_num = 1753 rdma_ah_get_port_num(&qp->alt_ah_attr); 1754 attr->alt_timeout = qp->alt_timeout; 1755 1756 init_attr->event_handler = qp->ibqp.event_handler; 1757 init_attr->qp_context = qp->ibqp.qp_context; 1758 init_attr->send_cq = qp->ibqp.send_cq; 1759 init_attr->recv_cq = qp->ibqp.recv_cq; 1760 init_attr->srq = qp->ibqp.srq; 1761 init_attr->cap = attr->cap; 1762 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1763 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1764 else 1765 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1766 init_attr->qp_type = qp->ibqp.qp_type; 1767 init_attr->port_num = qp->port_num; 1768 return 0; 1769 } 1770 1771 /** 1772 * rvt_post_recv - post a receive on a QP 1773 * @ibqp: the QP to post the receive on 1774 * @wr: the WR to post 1775 * @bad_wr: the first bad WR is put here 1776 * 1777 * This may be called from interrupt context. 1778 * 1779 * Return: 0 on success otherwise errno 1780 */ 1781 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1782 const struct ib_recv_wr **bad_wr) 1783 { 1784 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1785 struct rvt_krwq *wq = qp->r_rq.kwq; 1786 unsigned long flags; 1787 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1788 !qp->ibqp.srq; 1789 1790 /* Check that state is OK to post receive. */ 1791 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1792 *bad_wr = wr; 1793 return -EINVAL; 1794 } 1795 1796 for (; wr; wr = wr->next) { 1797 struct rvt_rwqe *wqe; 1798 u32 next; 1799 int i; 1800 1801 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1802 *bad_wr = wr; 1803 return -EINVAL; 1804 } 1805 1806 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); 1807 next = wq->head + 1; 1808 if (next >= qp->r_rq.size) 1809 next = 0; 1810 if (next == READ_ONCE(wq->tail)) { 1811 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1812 *bad_wr = wr; 1813 return -ENOMEM; 1814 } 1815 if (unlikely(qp_err_flush)) { 1816 struct ib_wc wc; 1817 1818 memset(&wc, 0, sizeof(wc)); 1819 wc.qp = &qp->ibqp; 1820 wc.opcode = IB_WC_RECV; 1821 wc.wr_id = wr->wr_id; 1822 wc.status = IB_WC_WR_FLUSH_ERR; 1823 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1824 } else { 1825 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1826 wqe->wr_id = wr->wr_id; 1827 wqe->num_sge = wr->num_sge; 1828 for (i = 0; i < wr->num_sge; i++) { 1829 wqe->sg_list[i].addr = wr->sg_list[i].addr; 1830 wqe->sg_list[i].length = wr->sg_list[i].length; 1831 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 1832 } 1833 /* 1834 * Make sure queue entry is written 1835 * before the head index. 1836 */ 1837 smp_store_release(&wq->head, next); 1838 } 1839 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1840 } 1841 return 0; 1842 } 1843 1844 /** 1845 * rvt_qp_valid_operation - validate post send wr request 1846 * @qp: the qp 1847 * @post_parms: the post send table for the driver 1848 * @wr: the work request 1849 * 1850 * The routine validates the operation based on the 1851 * validation table an returns the length of the operation 1852 * which can extend beyond the ib_send_bw. Operation 1853 * dependent flags key atomic operation validation. 1854 * 1855 * There is an exception for UD qps that validates the pd and 1856 * overrides the length to include the additional UD specific 1857 * length. 1858 * 1859 * Returns a negative error or the length of the work request 1860 * for building the swqe. 1861 */ 1862 static inline int rvt_qp_valid_operation( 1863 struct rvt_qp *qp, 1864 const struct rvt_operation_params *post_parms, 1865 const struct ib_send_wr *wr) 1866 { 1867 int len; 1868 1869 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1870 return -EINVAL; 1871 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1872 return -EINVAL; 1873 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1874 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1875 return -EINVAL; 1876 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1877 (wr->num_sge == 0 || 1878 wr->sg_list[0].length < sizeof(u64) || 1879 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1880 return -EINVAL; 1881 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1882 !qp->s_max_rd_atomic) 1883 return -EINVAL; 1884 len = post_parms[wr->opcode].length; 1885 /* UD specific */ 1886 if (qp->ibqp.qp_type != IB_QPT_UC && 1887 qp->ibqp.qp_type != IB_QPT_RC) { 1888 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1889 return -EINVAL; 1890 len = sizeof(struct ib_ud_wr); 1891 } 1892 return len; 1893 } 1894 1895 /** 1896 * rvt_qp_is_avail - determine queue capacity 1897 * @qp: the qp 1898 * @rdi: the rdmavt device 1899 * @reserved_op: is reserved operation 1900 * 1901 * This assumes the s_hlock is held but the s_last 1902 * qp variable is uncontrolled. 1903 * 1904 * For non reserved operations, the qp->s_avail 1905 * may be changed. 1906 * 1907 * The return value is zero or a -ENOMEM. 1908 */ 1909 static inline int rvt_qp_is_avail( 1910 struct rvt_qp *qp, 1911 struct rvt_dev_info *rdi, 1912 bool reserved_op) 1913 { 1914 u32 slast; 1915 u32 avail; 1916 u32 reserved_used; 1917 1918 /* see rvt_qp_wqe_unreserve() */ 1919 smp_mb__before_atomic(); 1920 if (unlikely(reserved_op)) { 1921 /* see rvt_qp_wqe_unreserve() */ 1922 reserved_used = atomic_read(&qp->s_reserved_used); 1923 if (reserved_used >= rdi->dparms.reserved_operations) 1924 return -ENOMEM; 1925 return 0; 1926 } 1927 /* non-reserved operations */ 1928 if (likely(qp->s_avail)) 1929 return 0; 1930 /* See rvt_qp_complete_swqe() */ 1931 slast = smp_load_acquire(&qp->s_last); 1932 if (qp->s_head >= slast) 1933 avail = qp->s_size - (qp->s_head - slast); 1934 else 1935 avail = slast - qp->s_head; 1936 1937 reserved_used = atomic_read(&qp->s_reserved_used); 1938 avail = avail - 1 - 1939 (rdi->dparms.reserved_operations - reserved_used); 1940 /* insure we don't assign a negative s_avail */ 1941 if ((s32)avail <= 0) 1942 return -ENOMEM; 1943 qp->s_avail = avail; 1944 if (WARN_ON(qp->s_avail > 1945 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1946 rvt_pr_err(rdi, 1947 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1948 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1949 qp->s_head, qp->s_tail, qp->s_cur, 1950 qp->s_acked, qp->s_last); 1951 return 0; 1952 } 1953 1954 /** 1955 * rvt_post_one_wr - post one RC, UC, or UD send work request 1956 * @qp: the QP to post on 1957 * @wr: the work request to send 1958 * @call_send: kick the send engine into gear 1959 */ 1960 static int rvt_post_one_wr(struct rvt_qp *qp, 1961 const struct ib_send_wr *wr, 1962 bool *call_send) 1963 { 1964 struct rvt_swqe *wqe; 1965 u32 next; 1966 int i; 1967 int j; 1968 int acc; 1969 struct rvt_lkey_table *rkt; 1970 struct rvt_pd *pd; 1971 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1972 u8 log_pmtu; 1973 int ret; 1974 size_t cplen; 1975 bool reserved_op; 1976 int local_ops_delayed = 0; 1977 1978 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1979 1980 /* IB spec says that num_sge == 0 is OK. */ 1981 if (unlikely(wr->num_sge > qp->s_max_sge)) 1982 return -EINVAL; 1983 1984 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1985 if (ret < 0) 1986 return ret; 1987 cplen = ret; 1988 1989 /* 1990 * Local operations include fast register and local invalidate. 1991 * Fast register needs to be processed immediately because the 1992 * registered lkey may be used by following work requests and the 1993 * lkey needs to be valid at the time those requests are posted. 1994 * Local invalidate can be processed immediately if fencing is 1995 * not required and no previous local invalidate ops are pending. 1996 * Signaled local operations that have been processed immediately 1997 * need to have requests with "completion only" flags set posted 1998 * to the send queue in order to generate completions. 1999 */ 2000 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 2001 switch (wr->opcode) { 2002 case IB_WR_REG_MR: 2003 ret = rvt_fast_reg_mr(qp, 2004 reg_wr(wr)->mr, 2005 reg_wr(wr)->key, 2006 reg_wr(wr)->access); 2007 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2008 return ret; 2009 break; 2010 case IB_WR_LOCAL_INV: 2011 if ((wr->send_flags & IB_SEND_FENCE) || 2012 atomic_read(&qp->local_ops_pending)) { 2013 local_ops_delayed = 1; 2014 } else { 2015 ret = rvt_invalidate_rkey( 2016 qp, wr->ex.invalidate_rkey); 2017 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2018 return ret; 2019 } 2020 break; 2021 default: 2022 return -EINVAL; 2023 } 2024 } 2025 2026 reserved_op = rdi->post_parms[wr->opcode].flags & 2027 RVT_OPERATION_USE_RESERVE; 2028 /* check for avail */ 2029 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 2030 if (ret) 2031 return ret; 2032 next = qp->s_head + 1; 2033 if (next >= qp->s_size) 2034 next = 0; 2035 2036 rkt = &rdi->lkey_table; 2037 pd = ibpd_to_rvtpd(qp->ibqp.pd); 2038 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 2039 2040 /* cplen has length from above */ 2041 memcpy(&wqe->ud_wr, wr, cplen); 2042 2043 wqe->length = 0; 2044 j = 0; 2045 if (wr->num_sge) { 2046 struct rvt_sge *last_sge = NULL; 2047 2048 acc = wr->opcode >= IB_WR_RDMA_READ ? 2049 IB_ACCESS_LOCAL_WRITE : 0; 2050 for (i = 0; i < wr->num_sge; i++) { 2051 u32 length = wr->sg_list[i].length; 2052 2053 if (length == 0) 2054 continue; 2055 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2056 &wr->sg_list[i], acc); 2057 if (unlikely(ret < 0)) 2058 goto bail_inval_free; 2059 wqe->length += length; 2060 if (ret) 2061 last_sge = &wqe->sg_list[j]; 2062 j += ret; 2063 } 2064 wqe->wr.num_sge = j; 2065 } 2066 2067 /* 2068 * Calculate and set SWQE PSN values prior to handing it off 2069 * to the driver's check routine. This give the driver the 2070 * opportunity to adjust PSN values based on internal checks. 2071 */ 2072 log_pmtu = qp->log_pmtu; 2073 if (qp->allowed_ops == IB_OPCODE_UD) { 2074 struct rvt_ah *ah = rvt_get_swqe_ah(wqe); 2075 2076 log_pmtu = ah->log_pmtu; 2077 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); 2078 } 2079 2080 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2081 if (local_ops_delayed) 2082 atomic_inc(&qp->local_ops_pending); 2083 else 2084 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2085 wqe->ssn = 0; 2086 wqe->psn = 0; 2087 wqe->lpsn = 0; 2088 } else { 2089 wqe->ssn = qp->s_ssn++; 2090 wqe->psn = qp->s_next_psn; 2091 wqe->lpsn = wqe->psn + 2092 (wqe->length ? 2093 ((wqe->length - 1) >> log_pmtu) : 2094 0); 2095 } 2096 2097 /* general part of wqe valid - allow for driver checks */ 2098 if (rdi->driver_f.setup_wqe) { 2099 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2100 if (ret < 0) 2101 goto bail_inval_free_ref; 2102 } 2103 2104 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2105 qp->s_next_psn = wqe->lpsn + 1; 2106 2107 if (unlikely(reserved_op)) { 2108 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2109 rvt_qp_wqe_reserve(qp, wqe); 2110 } else { 2111 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2112 qp->s_avail--; 2113 } 2114 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2115 smp_wmb(); /* see request builders */ 2116 qp->s_head = next; 2117 2118 return 0; 2119 2120 bail_inval_free_ref: 2121 if (qp->allowed_ops == IB_OPCODE_UD) 2122 rdma_destroy_ah_attr(wqe->ud_wr.attr); 2123 bail_inval_free: 2124 /* release mr holds */ 2125 while (j) { 2126 struct rvt_sge *sge = &wqe->sg_list[--j]; 2127 2128 rvt_put_mr(sge->mr); 2129 } 2130 return ret; 2131 } 2132 2133 /** 2134 * rvt_post_send - post a send on a QP 2135 * @ibqp: the QP to post the send on 2136 * @wr: the list of work requests to post 2137 * @bad_wr: the first bad WR is put here 2138 * 2139 * This may be called from interrupt context. 2140 * 2141 * Return: 0 on success else errno 2142 */ 2143 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2144 const struct ib_send_wr **bad_wr) 2145 { 2146 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2147 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2148 unsigned long flags = 0; 2149 bool call_send; 2150 unsigned nreq = 0; 2151 int err = 0; 2152 2153 spin_lock_irqsave(&qp->s_hlock, flags); 2154 2155 /* 2156 * Ensure QP state is such that we can send. If not bail out early, 2157 * there is no need to do this every time we post a send. 2158 */ 2159 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2160 spin_unlock_irqrestore(&qp->s_hlock, flags); 2161 return -EINVAL; 2162 } 2163 2164 /* 2165 * If the send queue is empty, and we only have a single WR then just go 2166 * ahead and kick the send engine into gear. Otherwise we will always 2167 * just schedule the send to happen later. 2168 */ 2169 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2170 2171 for (; wr; wr = wr->next) { 2172 err = rvt_post_one_wr(qp, wr, &call_send); 2173 if (unlikely(err)) { 2174 *bad_wr = wr; 2175 goto bail; 2176 } 2177 nreq++; 2178 } 2179 bail: 2180 spin_unlock_irqrestore(&qp->s_hlock, flags); 2181 if (nreq) { 2182 /* 2183 * Only call do_send if there is exactly one packet, and the 2184 * driver said it was ok. 2185 */ 2186 if (nreq == 1 && call_send) 2187 rdi->driver_f.do_send(qp); 2188 else 2189 rdi->driver_f.schedule_send_no_lock(qp); 2190 } 2191 return err; 2192 } 2193 2194 /** 2195 * rvt_post_srq_recv - post a receive on a shared receive queue 2196 * @ibsrq: the SRQ to post the receive on 2197 * @wr: the list of work requests to post 2198 * @bad_wr: A pointer to the first WR to cause a problem is put here 2199 * 2200 * This may be called from interrupt context. 2201 * 2202 * Return: 0 on success else errno 2203 */ 2204 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2205 const struct ib_recv_wr **bad_wr) 2206 { 2207 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2208 struct rvt_krwq *wq; 2209 unsigned long flags; 2210 2211 for (; wr; wr = wr->next) { 2212 struct rvt_rwqe *wqe; 2213 u32 next; 2214 int i; 2215 2216 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2217 *bad_wr = wr; 2218 return -EINVAL; 2219 } 2220 2221 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); 2222 wq = srq->rq.kwq; 2223 next = wq->head + 1; 2224 if (next >= srq->rq.size) 2225 next = 0; 2226 if (next == READ_ONCE(wq->tail)) { 2227 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2228 *bad_wr = wr; 2229 return -ENOMEM; 2230 } 2231 2232 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2233 wqe->wr_id = wr->wr_id; 2234 wqe->num_sge = wr->num_sge; 2235 for (i = 0; i < wr->num_sge; i++) { 2236 wqe->sg_list[i].addr = wr->sg_list[i].addr; 2237 wqe->sg_list[i].length = wr->sg_list[i].length; 2238 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 2239 } 2240 /* Make sure queue entry is written before the head index. */ 2241 smp_store_release(&wq->head, next); 2242 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2243 } 2244 return 0; 2245 } 2246 2247 /* 2248 * rvt used the internal kernel struct as part of its ABI, for now make sure 2249 * the kernel struct does not change layout. FIXME: rvt should never cast the 2250 * user struct to a kernel struct. 2251 */ 2252 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) 2253 { 2254 BUILD_BUG_ON(offsetof(struct ib_sge, addr) != 2255 offsetof(struct rvt_wqe_sge, addr)); 2256 BUILD_BUG_ON(offsetof(struct ib_sge, length) != 2257 offsetof(struct rvt_wqe_sge, length)); 2258 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != 2259 offsetof(struct rvt_wqe_sge, lkey)); 2260 return (struct ib_sge *)sge; 2261 } 2262 2263 /* 2264 * Validate a RWQE and fill in the SGE state. 2265 * Return 1 if OK. 2266 */ 2267 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2268 { 2269 int i, j, ret; 2270 struct ib_wc wc; 2271 struct rvt_lkey_table *rkt; 2272 struct rvt_pd *pd; 2273 struct rvt_sge_state *ss; 2274 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2275 2276 rkt = &rdi->lkey_table; 2277 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2278 ss = &qp->r_sge; 2279 ss->sg_list = qp->r_sg_list; 2280 qp->r_len = 0; 2281 for (i = j = 0; i < wqe->num_sge; i++) { 2282 if (wqe->sg_list[i].length == 0) 2283 continue; 2284 /* Check LKEY */ 2285 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2286 NULL, rvt_cast_sge(&wqe->sg_list[i]), 2287 IB_ACCESS_LOCAL_WRITE); 2288 if (unlikely(ret <= 0)) 2289 goto bad_lkey; 2290 qp->r_len += wqe->sg_list[i].length; 2291 j++; 2292 } 2293 ss->num_sge = j; 2294 ss->total_len = qp->r_len; 2295 return 1; 2296 2297 bad_lkey: 2298 while (j) { 2299 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2300 2301 rvt_put_mr(sge->mr); 2302 } 2303 ss->num_sge = 0; 2304 memset(&wc, 0, sizeof(wc)); 2305 wc.wr_id = wqe->wr_id; 2306 wc.status = IB_WC_LOC_PROT_ERR; 2307 wc.opcode = IB_WC_RECV; 2308 wc.qp = &qp->ibqp; 2309 /* Signal solicited completion event. */ 2310 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2311 return 0; 2312 } 2313 2314 /** 2315 * get_rvt_head - get head indices of the circular buffer 2316 * @rq: data structure for request queue entry 2317 * @ip: the QP 2318 * 2319 * Return - head index value 2320 */ 2321 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) 2322 { 2323 u32 head; 2324 2325 if (ip) 2326 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); 2327 else 2328 head = rq->kwq->head; 2329 2330 return head; 2331 } 2332 2333 /** 2334 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2335 * @qp: the QP 2336 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2337 * 2338 * Return -1 if there is a local error, 0 if no RWQE is available, 2339 * otherwise return 1. 2340 * 2341 * Can be called from interrupt level. 2342 */ 2343 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2344 { 2345 unsigned long flags; 2346 struct rvt_rq *rq; 2347 struct rvt_krwq *kwq = NULL; 2348 struct rvt_rwq *wq; 2349 struct rvt_srq *srq; 2350 struct rvt_rwqe *wqe; 2351 void (*handler)(struct ib_event *, void *); 2352 u32 tail; 2353 u32 head; 2354 int ret; 2355 void *ip = NULL; 2356 2357 if (qp->ibqp.srq) { 2358 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2359 handler = srq->ibsrq.event_handler; 2360 rq = &srq->rq; 2361 ip = srq->ip; 2362 } else { 2363 srq = NULL; 2364 handler = NULL; 2365 rq = &qp->r_rq; 2366 ip = qp->ip; 2367 } 2368 2369 spin_lock_irqsave(&rq->kwq->c_lock, flags); 2370 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2371 ret = 0; 2372 goto unlock; 2373 } 2374 kwq = rq->kwq; 2375 if (ip) { 2376 wq = rq->wq; 2377 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 2378 } else { 2379 tail = kwq->tail; 2380 } 2381 2382 /* Validate tail before using it since it is user writable. */ 2383 if (tail >= rq->size) 2384 tail = 0; 2385 2386 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { 2387 head = get_rvt_head(rq, ip); 2388 kwq->count = rvt_get_rq_count(rq, head, tail); 2389 } 2390 if (unlikely(kwq->count == 0)) { 2391 ret = 0; 2392 goto unlock; 2393 } 2394 /* Make sure entry is read after the count is read. */ 2395 smp_rmb(); 2396 wqe = rvt_get_rwqe_ptr(rq, tail); 2397 /* 2398 * Even though we update the tail index in memory, the verbs 2399 * consumer is not supposed to post more entries until a 2400 * completion is generated. 2401 */ 2402 if (++tail >= rq->size) 2403 tail = 0; 2404 if (ip) 2405 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 2406 else 2407 kwq->tail = tail; 2408 if (!wr_id_only && !init_sge(qp, wqe)) { 2409 ret = -1; 2410 goto unlock; 2411 } 2412 qp->r_wr_id = wqe->wr_id; 2413 2414 kwq->count--; 2415 ret = 1; 2416 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2417 if (handler) { 2418 /* 2419 * Validate head pointer value and compute 2420 * the number of remaining WQEs. 2421 */ 2422 if (kwq->count < srq->limit) { 2423 kwq->count = 2424 rvt_get_rq_count(rq, 2425 get_rvt_head(rq, ip), tail); 2426 if (kwq->count < srq->limit) { 2427 struct ib_event ev; 2428 2429 srq->limit = 0; 2430 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2431 ev.device = qp->ibqp.device; 2432 ev.element.srq = qp->ibqp.srq; 2433 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2434 handler(&ev, srq->ibsrq.srq_context); 2435 goto bail; 2436 } 2437 } 2438 } 2439 unlock: 2440 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2441 bail: 2442 return ret; 2443 } 2444 EXPORT_SYMBOL(rvt_get_rwqe); 2445 2446 /** 2447 * rvt_comm_est - handle trap with QP established 2448 * @qp: the QP 2449 */ 2450 void rvt_comm_est(struct rvt_qp *qp) 2451 { 2452 qp->r_flags |= RVT_R_COMM_EST; 2453 if (qp->ibqp.event_handler) { 2454 struct ib_event ev; 2455 2456 ev.device = qp->ibqp.device; 2457 ev.element.qp = &qp->ibqp; 2458 ev.event = IB_EVENT_COMM_EST; 2459 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2460 } 2461 } 2462 EXPORT_SYMBOL(rvt_comm_est); 2463 2464 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2465 { 2466 unsigned long flags; 2467 int lastwqe; 2468 2469 spin_lock_irqsave(&qp->s_lock, flags); 2470 lastwqe = rvt_error_qp(qp, err); 2471 spin_unlock_irqrestore(&qp->s_lock, flags); 2472 2473 if (lastwqe) { 2474 struct ib_event ev; 2475 2476 ev.device = qp->ibqp.device; 2477 ev.element.qp = &qp->ibqp; 2478 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2479 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2480 } 2481 } 2482 EXPORT_SYMBOL(rvt_rc_error); 2483 2484 /* 2485 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2486 * @index - the index 2487 * return usec from an index into ib_rvt_rnr_table 2488 */ 2489 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2490 { 2491 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2492 } 2493 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2494 2495 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2496 { 2497 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2498 IB_AETH_CREDIT_MASK]; 2499 } 2500 2501 /* 2502 * rvt_add_retry_timer_ext - add/start a retry timer 2503 * @qp - the QP 2504 * @shift - timeout shift to wait for multiple packets 2505 * add a retry timer on the QP 2506 */ 2507 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2508 { 2509 struct ib_qp *ibqp = &qp->ibqp; 2510 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2511 2512 lockdep_assert_held(&qp->s_lock); 2513 qp->s_flags |= RVT_S_TIMER; 2514 /* 4.096 usec. * (1 << qp->timeout) */ 2515 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2516 (qp->timeout_jiffies << shift); 2517 add_timer(&qp->s_timer); 2518 } 2519 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2520 2521 /** 2522 * rvt_add_rnr_timer - add/start an rnr timer on the QP 2523 * @qp: the QP 2524 * @aeth: aeth of RNR timeout, simulated aeth for loopback 2525 */ 2526 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2527 { 2528 u32 to; 2529 2530 lockdep_assert_held(&qp->s_lock); 2531 qp->s_flags |= RVT_S_WAIT_RNR; 2532 to = rvt_aeth_to_usec(aeth); 2533 trace_rvt_rnrnak_add(qp, to); 2534 hrtimer_start(&qp->s_rnr_timer, 2535 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2536 } 2537 EXPORT_SYMBOL(rvt_add_rnr_timer); 2538 2539 /** 2540 * rvt_stop_rc_timers - stop all timers 2541 * @qp: the QP 2542 * stop any pending timers 2543 */ 2544 void rvt_stop_rc_timers(struct rvt_qp *qp) 2545 { 2546 lockdep_assert_held(&qp->s_lock); 2547 /* Remove QP from all timers */ 2548 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2549 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2550 del_timer(&qp->s_timer); 2551 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2552 } 2553 } 2554 EXPORT_SYMBOL(rvt_stop_rc_timers); 2555 2556 /** 2557 * rvt_stop_rnr_timer - stop an rnr timer 2558 * @qp: the QP 2559 * 2560 * stop an rnr timer and return if the timer 2561 * had been pending. 2562 */ 2563 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2564 { 2565 lockdep_assert_held(&qp->s_lock); 2566 /* Remove QP from rnr timer */ 2567 if (qp->s_flags & RVT_S_WAIT_RNR) { 2568 qp->s_flags &= ~RVT_S_WAIT_RNR; 2569 trace_rvt_rnrnak_stop(qp, 0); 2570 } 2571 } 2572 2573 /** 2574 * rvt_del_timers_sync - wait for any timeout routines to exit 2575 * @qp: the QP 2576 */ 2577 void rvt_del_timers_sync(struct rvt_qp *qp) 2578 { 2579 del_timer_sync(&qp->s_timer); 2580 hrtimer_cancel(&qp->s_rnr_timer); 2581 } 2582 EXPORT_SYMBOL(rvt_del_timers_sync); 2583 2584 /* 2585 * This is called from s_timer for missing responses. 2586 */ 2587 static void rvt_rc_timeout(struct timer_list *t) 2588 { 2589 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2590 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2591 unsigned long flags; 2592 2593 spin_lock_irqsave(&qp->r_lock, flags); 2594 spin_lock(&qp->s_lock); 2595 if (qp->s_flags & RVT_S_TIMER) { 2596 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2597 2598 qp->s_flags &= ~RVT_S_TIMER; 2599 rvp->n_rc_timeouts++; 2600 del_timer(&qp->s_timer); 2601 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2602 if (rdi->driver_f.notify_restart_rc) 2603 rdi->driver_f.notify_restart_rc(qp, 2604 qp->s_last_psn + 1, 2605 1); 2606 rdi->driver_f.schedule_send(qp); 2607 } 2608 spin_unlock(&qp->s_lock); 2609 spin_unlock_irqrestore(&qp->r_lock, flags); 2610 } 2611 2612 /* 2613 * This is called from s_timer for RNR timeouts. 2614 */ 2615 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2616 { 2617 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2618 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2619 unsigned long flags; 2620 2621 spin_lock_irqsave(&qp->s_lock, flags); 2622 rvt_stop_rnr_timer(qp); 2623 trace_rvt_rnrnak_timeout(qp, 0); 2624 rdi->driver_f.schedule_send(qp); 2625 spin_unlock_irqrestore(&qp->s_lock, flags); 2626 return HRTIMER_NORESTART; 2627 } 2628 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2629 2630 /** 2631 * rvt_qp_iter_init - initial for QP iteration 2632 * @rdi: rvt devinfo 2633 * @v: u64 value 2634 * @cb: user-defined callback 2635 * 2636 * This returns an iterator suitable for iterating QPs 2637 * in the system. 2638 * 2639 * The @cb is a user-defined callback and @v is a 64-bit 2640 * value passed to and relevant for processing in the 2641 * @cb. An example use case would be to alter QP processing 2642 * based on criteria not part of the rvt_qp. 2643 * 2644 * Use cases that require memory allocation to succeed 2645 * must preallocate appropriately. 2646 * 2647 * Return: a pointer to an rvt_qp_iter or NULL 2648 */ 2649 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2650 u64 v, 2651 void (*cb)(struct rvt_qp *qp, u64 v)) 2652 { 2653 struct rvt_qp_iter *i; 2654 2655 i = kzalloc(sizeof(*i), GFP_KERNEL); 2656 if (!i) 2657 return NULL; 2658 2659 i->rdi = rdi; 2660 /* number of special QPs (SMI/GSI) for device */ 2661 i->specials = rdi->ibdev.phys_port_cnt * 2; 2662 i->v = v; 2663 i->cb = cb; 2664 2665 return i; 2666 } 2667 EXPORT_SYMBOL(rvt_qp_iter_init); 2668 2669 /** 2670 * rvt_qp_iter_next - return the next QP in iter 2671 * @iter: the iterator 2672 * 2673 * Fine grained QP iterator suitable for use 2674 * with debugfs seq_file mechanisms. 2675 * 2676 * Updates iter->qp with the current QP when the return 2677 * value is 0. 2678 * 2679 * Return: 0 - iter->qp is valid 1 - no more QPs 2680 */ 2681 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2682 __must_hold(RCU) 2683 { 2684 int n = iter->n; 2685 int ret = 1; 2686 struct rvt_qp *pqp = iter->qp; 2687 struct rvt_qp *qp; 2688 struct rvt_dev_info *rdi = iter->rdi; 2689 2690 /* 2691 * The approach is to consider the special qps 2692 * as additional table entries before the 2693 * real hash table. Since the qp code sets 2694 * the qp->next hash link to NULL, this works just fine. 2695 * 2696 * iter->specials is 2 * # ports 2697 * 2698 * n = 0..iter->specials is the special qp indices 2699 * 2700 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2701 * the potential hash bucket entries 2702 * 2703 */ 2704 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2705 if (pqp) { 2706 qp = rcu_dereference(pqp->next); 2707 } else { 2708 if (n < iter->specials) { 2709 struct rvt_ibport *rvp; 2710 int pidx; 2711 2712 pidx = n % rdi->ibdev.phys_port_cnt; 2713 rvp = rdi->ports[pidx]; 2714 qp = rcu_dereference(rvp->qp[n & 1]); 2715 } else { 2716 qp = rcu_dereference( 2717 rdi->qp_dev->qp_table[ 2718 (n - iter->specials)]); 2719 } 2720 } 2721 pqp = qp; 2722 if (qp) { 2723 iter->qp = qp; 2724 iter->n = n; 2725 return 0; 2726 } 2727 } 2728 return ret; 2729 } 2730 EXPORT_SYMBOL(rvt_qp_iter_next); 2731 2732 /** 2733 * rvt_qp_iter - iterate all QPs 2734 * @rdi: rvt devinfo 2735 * @v: a 64-bit value 2736 * @cb: a callback 2737 * 2738 * This provides a way for iterating all QPs. 2739 * 2740 * The @cb is a user-defined callback and @v is a 64-bit 2741 * value passed to and relevant for processing in the 2742 * cb. An example use case would be to alter QP processing 2743 * based on criteria not part of the rvt_qp. 2744 * 2745 * The code has an internal iterator to simplify 2746 * non seq_file use cases. 2747 */ 2748 void rvt_qp_iter(struct rvt_dev_info *rdi, 2749 u64 v, 2750 void (*cb)(struct rvt_qp *qp, u64 v)) 2751 { 2752 int ret; 2753 struct rvt_qp_iter i = { 2754 .rdi = rdi, 2755 .specials = rdi->ibdev.phys_port_cnt * 2, 2756 .v = v, 2757 .cb = cb 2758 }; 2759 2760 rcu_read_lock(); 2761 do { 2762 ret = rvt_qp_iter_next(&i); 2763 if (!ret) { 2764 rvt_get_qp(i.qp); 2765 rcu_read_unlock(); 2766 i.cb(i.qp, i.v); 2767 rcu_read_lock(); 2768 rvt_put_qp(i.qp); 2769 } 2770 } while (!ret); 2771 rcu_read_unlock(); 2772 } 2773 EXPORT_SYMBOL(rvt_qp_iter); 2774 2775 /* 2776 * This should be called with s_lock and r_lock held. 2777 */ 2778 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2779 enum ib_wc_status status) 2780 { 2781 u32 old_last, last; 2782 struct rvt_dev_info *rdi; 2783 2784 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2785 return; 2786 rdi = ib_to_rvt(qp->ibqp.device); 2787 2788 old_last = qp->s_last; 2789 trace_rvt_qp_send_completion(qp, wqe, old_last); 2790 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], 2791 status); 2792 if (qp->s_acked == old_last) 2793 qp->s_acked = last; 2794 if (qp->s_cur == old_last) 2795 qp->s_cur = last; 2796 if (qp->s_tail == old_last) 2797 qp->s_tail = last; 2798 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2799 qp->s_draining = 0; 2800 } 2801 EXPORT_SYMBOL(rvt_send_complete); 2802 2803 /** 2804 * rvt_copy_sge - copy data to SGE memory 2805 * @qp: associated QP 2806 * @ss: the SGE state 2807 * @data: the data to copy 2808 * @length: the length of the data 2809 * @release: boolean to release MR 2810 * @copy_last: do a separate copy of the last 8 bytes 2811 */ 2812 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2813 void *data, u32 length, 2814 bool release, bool copy_last) 2815 { 2816 struct rvt_sge *sge = &ss->sge; 2817 int i; 2818 bool in_last = false; 2819 bool cacheless_copy = false; 2820 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2821 struct rvt_wss *wss = rdi->wss; 2822 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2823 2824 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2825 cacheless_copy = length >= PAGE_SIZE; 2826 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2827 if (length >= PAGE_SIZE) { 2828 /* 2829 * NOTE: this *assumes*: 2830 * o The first vaddr is the dest. 2831 * o If multiple pages, then vaddr is sequential. 2832 */ 2833 wss_insert(wss, sge->vaddr); 2834 if (length >= (2 * PAGE_SIZE)) 2835 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2836 2837 cacheless_copy = wss_exceeds_threshold(wss); 2838 } else { 2839 wss_advance_clean_counter(wss); 2840 } 2841 } 2842 2843 if (copy_last) { 2844 if (length > 8) { 2845 length -= 8; 2846 } else { 2847 copy_last = false; 2848 in_last = true; 2849 } 2850 } 2851 2852 again: 2853 while (length) { 2854 u32 len = rvt_get_sge_length(sge, length); 2855 2856 WARN_ON_ONCE(len == 0); 2857 if (unlikely(in_last)) { 2858 /* enforce byte transfer ordering */ 2859 for (i = 0; i < len; i++) 2860 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2861 } else if (cacheless_copy) { 2862 cacheless_memcpy(sge->vaddr, data, len); 2863 } else { 2864 memcpy(sge->vaddr, data, len); 2865 } 2866 rvt_update_sge(ss, len, release); 2867 data += len; 2868 length -= len; 2869 } 2870 2871 if (copy_last) { 2872 copy_last = false; 2873 in_last = true; 2874 length = 8; 2875 goto again; 2876 } 2877 } 2878 EXPORT_SYMBOL(rvt_copy_sge); 2879 2880 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2881 struct rvt_qp *sqp) 2882 { 2883 rvp->n_pkt_drops++; 2884 /* 2885 * For RC, the requester would timeout and retry so 2886 * shortcut the timeouts and just signal too many retries. 2887 */ 2888 return sqp->ibqp.qp_type == IB_QPT_RC ? 2889 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2890 } 2891 2892 /** 2893 * rvt_ruc_loopback - handle UC and RC loopback requests 2894 * @sqp: the sending QP 2895 * 2896 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2897 * Note that although we are single threaded due to the send engine, we still 2898 * have to protect against post_send(). We don't have to worry about 2899 * receive interrupts since this is a connected protocol and all packets 2900 * will pass through here. 2901 */ 2902 void rvt_ruc_loopback(struct rvt_qp *sqp) 2903 { 2904 struct rvt_ibport *rvp = NULL; 2905 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2906 struct rvt_qp *qp; 2907 struct rvt_swqe *wqe; 2908 struct rvt_sge *sge; 2909 unsigned long flags; 2910 struct ib_wc wc; 2911 u64 sdata; 2912 atomic64_t *maddr; 2913 enum ib_wc_status send_status; 2914 bool release; 2915 int ret; 2916 bool copy_last = false; 2917 int local_ops = 0; 2918 2919 rcu_read_lock(); 2920 rvp = rdi->ports[sqp->port_num - 1]; 2921 2922 /* 2923 * Note that we check the responder QP state after 2924 * checking the requester's state. 2925 */ 2926 2927 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2928 sqp->remote_qpn); 2929 2930 spin_lock_irqsave(&sqp->s_lock, flags); 2931 2932 /* Return if we are already busy processing a work request. */ 2933 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2934 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2935 goto unlock; 2936 2937 sqp->s_flags |= RVT_S_BUSY; 2938 2939 again: 2940 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2941 goto clr_busy; 2942 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 2943 2944 /* Return if it is not OK to start a new work request. */ 2945 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 2946 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 2947 goto clr_busy; 2948 /* We are in the error state, flush the work request. */ 2949 send_status = IB_WC_WR_FLUSH_ERR; 2950 goto flush_send; 2951 } 2952 2953 /* 2954 * We can rely on the entry not changing without the s_lock 2955 * being held until we update s_last. 2956 * We increment s_cur to indicate s_last is in progress. 2957 */ 2958 if (sqp->s_last == sqp->s_cur) { 2959 if (++sqp->s_cur >= sqp->s_size) 2960 sqp->s_cur = 0; 2961 } 2962 spin_unlock_irqrestore(&sqp->s_lock, flags); 2963 2964 if (!qp) { 2965 send_status = loopback_qp_drop(rvp, sqp); 2966 goto serr_no_r_lock; 2967 } 2968 spin_lock_irqsave(&qp->r_lock, flags); 2969 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 2970 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 2971 send_status = loopback_qp_drop(rvp, sqp); 2972 goto serr; 2973 } 2974 2975 memset(&wc, 0, sizeof(wc)); 2976 send_status = IB_WC_SUCCESS; 2977 2978 release = true; 2979 sqp->s_sge.sge = wqe->sg_list[0]; 2980 sqp->s_sge.sg_list = wqe->sg_list + 1; 2981 sqp->s_sge.num_sge = wqe->wr.num_sge; 2982 sqp->s_len = wqe->length; 2983 switch (wqe->wr.opcode) { 2984 case IB_WR_REG_MR: 2985 goto send_comp; 2986 2987 case IB_WR_LOCAL_INV: 2988 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 2989 if (rvt_invalidate_rkey(sqp, 2990 wqe->wr.ex.invalidate_rkey)) 2991 send_status = IB_WC_LOC_PROT_ERR; 2992 local_ops = 1; 2993 } 2994 goto send_comp; 2995 2996 case IB_WR_SEND_WITH_INV: 2997 case IB_WR_SEND_WITH_IMM: 2998 case IB_WR_SEND: 2999 ret = rvt_get_rwqe(qp, false); 3000 if (ret < 0) 3001 goto op_err; 3002 if (!ret) 3003 goto rnr_nak; 3004 if (wqe->length > qp->r_len) 3005 goto inv_err; 3006 switch (wqe->wr.opcode) { 3007 case IB_WR_SEND_WITH_INV: 3008 if (!rvt_invalidate_rkey(qp, 3009 wqe->wr.ex.invalidate_rkey)) { 3010 wc.wc_flags = IB_WC_WITH_INVALIDATE; 3011 wc.ex.invalidate_rkey = 3012 wqe->wr.ex.invalidate_rkey; 3013 } 3014 break; 3015 case IB_WR_SEND_WITH_IMM: 3016 wc.wc_flags = IB_WC_WITH_IMM; 3017 wc.ex.imm_data = wqe->wr.ex.imm_data; 3018 break; 3019 default: 3020 break; 3021 } 3022 break; 3023 3024 case IB_WR_RDMA_WRITE_WITH_IMM: 3025 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3026 goto inv_err; 3027 wc.wc_flags = IB_WC_WITH_IMM; 3028 wc.ex.imm_data = wqe->wr.ex.imm_data; 3029 ret = rvt_get_rwqe(qp, true); 3030 if (ret < 0) 3031 goto op_err; 3032 if (!ret) 3033 goto rnr_nak; 3034 /* skip copy_last set and qp_access_flags recheck */ 3035 goto do_write; 3036 case IB_WR_RDMA_WRITE: 3037 copy_last = rvt_is_user_qp(qp); 3038 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3039 goto inv_err; 3040 do_write: 3041 if (wqe->length == 0) 3042 break; 3043 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 3044 wqe->rdma_wr.remote_addr, 3045 wqe->rdma_wr.rkey, 3046 IB_ACCESS_REMOTE_WRITE))) 3047 goto acc_err; 3048 qp->r_sge.sg_list = NULL; 3049 qp->r_sge.num_sge = 1; 3050 qp->r_sge.total_len = wqe->length; 3051 break; 3052 3053 case IB_WR_RDMA_READ: 3054 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 3055 goto inv_err; 3056 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 3057 wqe->rdma_wr.remote_addr, 3058 wqe->rdma_wr.rkey, 3059 IB_ACCESS_REMOTE_READ))) 3060 goto acc_err; 3061 release = false; 3062 sqp->s_sge.sg_list = NULL; 3063 sqp->s_sge.num_sge = 1; 3064 qp->r_sge.sge = wqe->sg_list[0]; 3065 qp->r_sge.sg_list = wqe->sg_list + 1; 3066 qp->r_sge.num_sge = wqe->wr.num_sge; 3067 qp->r_sge.total_len = wqe->length; 3068 break; 3069 3070 case IB_WR_ATOMIC_CMP_AND_SWP: 3071 case IB_WR_ATOMIC_FETCH_AND_ADD: 3072 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 3073 goto inv_err; 3074 if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1))) 3075 goto inv_err; 3076 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 3077 wqe->atomic_wr.remote_addr, 3078 wqe->atomic_wr.rkey, 3079 IB_ACCESS_REMOTE_ATOMIC))) 3080 goto acc_err; 3081 /* Perform atomic OP and save result. */ 3082 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 3083 sdata = wqe->atomic_wr.compare_add; 3084 *(u64 *)sqp->s_sge.sge.vaddr = 3085 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 3086 (u64)atomic64_add_return(sdata, maddr) - sdata : 3087 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 3088 sdata, wqe->atomic_wr.swap); 3089 rvt_put_mr(qp->r_sge.sge.mr); 3090 qp->r_sge.num_sge = 0; 3091 goto send_comp; 3092 3093 default: 3094 send_status = IB_WC_LOC_QP_OP_ERR; 3095 goto serr; 3096 } 3097 3098 sge = &sqp->s_sge.sge; 3099 while (sqp->s_len) { 3100 u32 len = rvt_get_sge_length(sge, sqp->s_len); 3101 3102 WARN_ON_ONCE(len == 0); 3103 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3104 len, release, copy_last); 3105 rvt_update_sge(&sqp->s_sge, len, !release); 3106 sqp->s_len -= len; 3107 } 3108 if (release) 3109 rvt_put_ss(&qp->r_sge); 3110 3111 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3112 goto send_comp; 3113 3114 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3115 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3116 else 3117 wc.opcode = IB_WC_RECV; 3118 wc.wr_id = qp->r_wr_id; 3119 wc.status = IB_WC_SUCCESS; 3120 wc.byte_len = wqe->length; 3121 wc.qp = &qp->ibqp; 3122 wc.src_qp = qp->remote_qpn; 3123 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3124 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3125 wc.port_num = 1; 3126 /* Signal completion event if the solicited bit is set. */ 3127 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); 3128 3129 send_comp: 3130 spin_unlock_irqrestore(&qp->r_lock, flags); 3131 spin_lock_irqsave(&sqp->s_lock, flags); 3132 rvp->n_loop_pkts++; 3133 flush_send: 3134 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3135 spin_lock(&sqp->r_lock); 3136 rvt_send_complete(sqp, wqe, send_status); 3137 spin_unlock(&sqp->r_lock); 3138 if (local_ops) { 3139 atomic_dec(&sqp->local_ops_pending); 3140 local_ops = 0; 3141 } 3142 goto again; 3143 3144 rnr_nak: 3145 /* Handle RNR NAK */ 3146 if (qp->ibqp.qp_type == IB_QPT_UC) 3147 goto send_comp; 3148 rvp->n_rnr_naks++; 3149 /* 3150 * Note: we don't need the s_lock held since the BUSY flag 3151 * makes this single threaded. 3152 */ 3153 if (sqp->s_rnr_retry == 0) { 3154 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3155 goto serr; 3156 } 3157 if (sqp->s_rnr_retry_cnt < 7) 3158 sqp->s_rnr_retry--; 3159 spin_unlock_irqrestore(&qp->r_lock, flags); 3160 spin_lock_irqsave(&sqp->s_lock, flags); 3161 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3162 goto clr_busy; 3163 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3164 IB_AETH_CREDIT_SHIFT); 3165 goto clr_busy; 3166 3167 op_err: 3168 send_status = IB_WC_REM_OP_ERR; 3169 wc.status = IB_WC_LOC_QP_OP_ERR; 3170 goto err; 3171 3172 inv_err: 3173 send_status = 3174 sqp->ibqp.qp_type == IB_QPT_RC ? 3175 IB_WC_REM_INV_REQ_ERR : 3176 IB_WC_SUCCESS; 3177 wc.status = IB_WC_LOC_QP_OP_ERR; 3178 goto err; 3179 3180 acc_err: 3181 send_status = IB_WC_REM_ACCESS_ERR; 3182 wc.status = IB_WC_LOC_PROT_ERR; 3183 err: 3184 /* responder goes to error state */ 3185 rvt_rc_error(qp, wc.status); 3186 3187 serr: 3188 spin_unlock_irqrestore(&qp->r_lock, flags); 3189 serr_no_r_lock: 3190 spin_lock_irqsave(&sqp->s_lock, flags); 3191 spin_lock(&sqp->r_lock); 3192 rvt_send_complete(sqp, wqe, send_status); 3193 spin_unlock(&sqp->r_lock); 3194 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3195 int lastwqe; 3196 3197 spin_lock(&sqp->r_lock); 3198 lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3199 spin_unlock(&sqp->r_lock); 3200 3201 sqp->s_flags &= ~RVT_S_BUSY; 3202 spin_unlock_irqrestore(&sqp->s_lock, flags); 3203 if (lastwqe) { 3204 struct ib_event ev; 3205 3206 ev.device = sqp->ibqp.device; 3207 ev.element.qp = &sqp->ibqp; 3208 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3209 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3210 } 3211 goto done; 3212 } 3213 clr_busy: 3214 sqp->s_flags &= ~RVT_S_BUSY; 3215 unlock: 3216 spin_unlock_irqrestore(&sqp->s_lock, flags); 3217 done: 3218 rcu_read_unlock(); 3219 } 3220 EXPORT_SYMBOL(rvt_ruc_loopback); 3221