xref: /linux/drivers/infiniband/sw/rdmavt/qp.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 /*
2  * Copyright(c) 2016 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60 
61 #define RVT_RWQ_COUNT_THRESHOLD 16
62 
63 static void rvt_rc_timeout(struct timer_list *t);
64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
65 			 enum ib_qp_type type);
66 
67 /*
68  * Convert the AETH RNR timeout code into the number of microseconds.
69  */
70 static const u32 ib_rvt_rnr_table[32] = {
71 	655360, /* 00: 655.36 */
72 	10,     /* 01:    .01 */
73 	20,     /* 02     .02 */
74 	30,     /* 03:    .03 */
75 	40,     /* 04:    .04 */
76 	60,     /* 05:    .06 */
77 	80,     /* 06:    .08 */
78 	120,    /* 07:    .12 */
79 	160,    /* 08:    .16 */
80 	240,    /* 09:    .24 */
81 	320,    /* 0A:    .32 */
82 	480,    /* 0B:    .48 */
83 	640,    /* 0C:    .64 */
84 	960,    /* 0D:    .96 */
85 	1280,   /* 0E:   1.28 */
86 	1920,   /* 0F:   1.92 */
87 	2560,   /* 10:   2.56 */
88 	3840,   /* 11:   3.84 */
89 	5120,   /* 12:   5.12 */
90 	7680,   /* 13:   7.68 */
91 	10240,  /* 14:  10.24 */
92 	15360,  /* 15:  15.36 */
93 	20480,  /* 16:  20.48 */
94 	30720,  /* 17:  30.72 */
95 	40960,  /* 18:  40.96 */
96 	61440,  /* 19:  61.44 */
97 	81920,  /* 1A:  81.92 */
98 	122880, /* 1B: 122.88 */
99 	163840, /* 1C: 163.84 */
100 	245760, /* 1D: 245.76 */
101 	327680, /* 1E: 327.68 */
102 	491520  /* 1F: 491.52 */
103 };
104 
105 /*
106  * Note that it is OK to post send work requests in the SQE and ERR
107  * states; rvt_do_send() will process them and generate error
108  * completions as per IB 1.2 C10-96.
109  */
110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
111 	[IB_QPS_RESET] = 0,
112 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
113 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
114 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
116 	    RVT_PROCESS_NEXT_SEND_OK,
117 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
119 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
120 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
122 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
123 };
124 EXPORT_SYMBOL(ib_rvt_state_ops);
125 
126 /* platform specific: return the last level cache (llc) size, in KiB */
127 static int rvt_wss_llc_size(void)
128 {
129 	/* assume that the boot CPU value is universal for all CPUs */
130 	return boot_cpu_data.x86_cache_size;
131 }
132 
133 /* platform specific: cacheless copy */
134 static void cacheless_memcpy(void *dst, void *src, size_t n)
135 {
136 	/*
137 	 * Use the only available X64 cacheless copy.  Add a __user cast
138 	 * to quiet sparse.  The src agument is already in the kernel so
139 	 * there are no security issues.  The extra fault recovery machinery
140 	 * is not invoked.
141 	 */
142 	__copy_user_nocache(dst, (void __user *)src, n, 0);
143 }
144 
145 void rvt_wss_exit(struct rvt_dev_info *rdi)
146 {
147 	struct rvt_wss *wss = rdi->wss;
148 
149 	if (!wss)
150 		return;
151 
152 	/* coded to handle partially initialized and repeat callers */
153 	kfree(wss->entries);
154 	wss->entries = NULL;
155 	kfree(rdi->wss);
156 	rdi->wss = NULL;
157 }
158 
159 /**
160  * rvt_wss_init - Init wss data structures
161  *
162  * Return: 0 on success
163  */
164 int rvt_wss_init(struct rvt_dev_info *rdi)
165 {
166 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
167 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
168 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
169 	long llc_size;
170 	long llc_bits;
171 	long table_size;
172 	long table_bits;
173 	struct rvt_wss *wss;
174 	int node = rdi->dparms.node;
175 
176 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
177 		rdi->wss = NULL;
178 		return 0;
179 	}
180 
181 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
182 	if (!rdi->wss)
183 		return -ENOMEM;
184 	wss = rdi->wss;
185 
186 	/* check for a valid percent range - default to 80 if none or invalid */
187 	if (wss_threshold < 1 || wss_threshold > 100)
188 		wss_threshold = 80;
189 
190 	/* reject a wildly large period */
191 	if (wss_clean_period > 1000000)
192 		wss_clean_period = 256;
193 
194 	/* reject a zero period */
195 	if (wss_clean_period == 0)
196 		wss_clean_period = 1;
197 
198 	/*
199 	 * Calculate the table size - the next power of 2 larger than the
200 	 * LLC size.  LLC size is in KiB.
201 	 */
202 	llc_size = rvt_wss_llc_size() * 1024;
203 	table_size = roundup_pow_of_two(llc_size);
204 
205 	/* one bit per page in rounded up table */
206 	llc_bits = llc_size / PAGE_SIZE;
207 	table_bits = table_size / PAGE_SIZE;
208 	wss->pages_mask = table_bits - 1;
209 	wss->num_entries = table_bits / BITS_PER_LONG;
210 
211 	wss->threshold = (llc_bits * wss_threshold) / 100;
212 	if (wss->threshold == 0)
213 		wss->threshold = 1;
214 
215 	wss->clean_period = wss_clean_period;
216 	atomic_set(&wss->clean_counter, wss_clean_period);
217 
218 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
219 				    GFP_KERNEL, node);
220 	if (!wss->entries) {
221 		rvt_wss_exit(rdi);
222 		return -ENOMEM;
223 	}
224 
225 	return 0;
226 }
227 
228 /*
229  * Advance the clean counter.  When the clean period has expired,
230  * clean an entry.
231  *
232  * This is implemented in atomics to avoid locking.  Because multiple
233  * variables are involved, it can be racy which can lead to slightly
234  * inaccurate information.  Since this is only a heuristic, this is
235  * OK.  Any innaccuracies will clean themselves out as the counter
236  * advances.  That said, it is unlikely the entry clean operation will
237  * race - the next possible racer will not start until the next clean
238  * period.
239  *
240  * The clean counter is implemented as a decrement to zero.  When zero
241  * is reached an entry is cleaned.
242  */
243 static void wss_advance_clean_counter(struct rvt_wss *wss)
244 {
245 	int entry;
246 	int weight;
247 	unsigned long bits;
248 
249 	/* become the cleaner if we decrement the counter to zero */
250 	if (atomic_dec_and_test(&wss->clean_counter)) {
251 		/*
252 		 * Set, not add, the clean period.  This avoids an issue
253 		 * where the counter could decrement below the clean period.
254 		 * Doing a set can result in lost decrements, slowing the
255 		 * clean advance.  Since this a heuristic, this possible
256 		 * slowdown is OK.
257 		 *
258 		 * An alternative is to loop, advancing the counter by a
259 		 * clean period until the result is > 0. However, this could
260 		 * lead to several threads keeping another in the clean loop.
261 		 * This could be mitigated by limiting the number of times
262 		 * we stay in the loop.
263 		 */
264 		atomic_set(&wss->clean_counter, wss->clean_period);
265 
266 		/*
267 		 * Uniquely grab the entry to clean and move to next.
268 		 * The current entry is always the lower bits of
269 		 * wss.clean_entry.  The table size, wss.num_entries,
270 		 * is always a power-of-2.
271 		 */
272 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
273 			& (wss->num_entries - 1);
274 
275 		/* clear the entry and count the bits */
276 		bits = xchg(&wss->entries[entry], 0);
277 		weight = hweight64((u64)bits);
278 		/* only adjust the contended total count if needed */
279 		if (weight)
280 			atomic_sub(weight, &wss->total_count);
281 	}
282 }
283 
284 /*
285  * Insert the given address into the working set array.
286  */
287 static void wss_insert(struct rvt_wss *wss, void *address)
288 {
289 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
290 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
291 	u32 nr = page & (BITS_PER_LONG - 1);
292 
293 	if (!test_and_set_bit(nr, &wss->entries[entry]))
294 		atomic_inc(&wss->total_count);
295 
296 	wss_advance_clean_counter(wss);
297 }
298 
299 /*
300  * Is the working set larger than the threshold?
301  */
302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
303 {
304 	return atomic_read(&wss->total_count) >= wss->threshold;
305 }
306 
307 static void get_map_page(struct rvt_qpn_table *qpt,
308 			 struct rvt_qpn_map *map)
309 {
310 	unsigned long page = get_zeroed_page(GFP_KERNEL);
311 
312 	/*
313 	 * Free the page if someone raced with us installing it.
314 	 */
315 
316 	spin_lock(&qpt->lock);
317 	if (map->page)
318 		free_page(page);
319 	else
320 		map->page = (void *)page;
321 	spin_unlock(&qpt->lock);
322 }
323 
324 /**
325  * init_qpn_table - initialize the QP number table for a device
326  * @qpt: the QPN table
327  */
328 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
329 {
330 	u32 offset, i;
331 	struct rvt_qpn_map *map;
332 	int ret = 0;
333 
334 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
335 		return -EINVAL;
336 
337 	spin_lock_init(&qpt->lock);
338 
339 	qpt->last = rdi->dparms.qpn_start;
340 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
341 
342 	/*
343 	 * Drivers may want some QPs beyond what we need for verbs let them use
344 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
345 	 * for those. The reserved range must be *after* the range which verbs
346 	 * will pick from.
347 	 */
348 
349 	/* Figure out number of bit maps needed before reserved range */
350 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
351 
352 	/* This should always be zero */
353 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
354 
355 	/* Starting with the first reserved bit map */
356 	map = &qpt->map[qpt->nmaps];
357 
358 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
359 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
360 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
361 		if (!map->page) {
362 			get_map_page(qpt, map);
363 			if (!map->page) {
364 				ret = -ENOMEM;
365 				break;
366 			}
367 		}
368 		set_bit(offset, map->page);
369 		offset++;
370 		if (offset == RVT_BITS_PER_PAGE) {
371 			/* next page */
372 			qpt->nmaps++;
373 			map++;
374 			offset = 0;
375 		}
376 	}
377 	return ret;
378 }
379 
380 /**
381  * free_qpn_table - free the QP number table for a device
382  * @qpt: the QPN table
383  */
384 static void free_qpn_table(struct rvt_qpn_table *qpt)
385 {
386 	int i;
387 
388 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
389 		free_page((unsigned long)qpt->map[i].page);
390 }
391 
392 /**
393  * rvt_driver_qp_init - Init driver qp resources
394  * @rdi: rvt dev strucutre
395  *
396  * Return: 0 on success
397  */
398 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
399 {
400 	int i;
401 	int ret = -ENOMEM;
402 
403 	if (!rdi->dparms.qp_table_size)
404 		return -EINVAL;
405 
406 	/*
407 	 * If driver is not doing any QP allocation then make sure it is
408 	 * providing the necessary QP functions.
409 	 */
410 	if (!rdi->driver_f.free_all_qps ||
411 	    !rdi->driver_f.qp_priv_alloc ||
412 	    !rdi->driver_f.qp_priv_free ||
413 	    !rdi->driver_f.notify_qp_reset ||
414 	    !rdi->driver_f.notify_restart_rc)
415 		return -EINVAL;
416 
417 	/* allocate parent object */
418 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
419 				   rdi->dparms.node);
420 	if (!rdi->qp_dev)
421 		return -ENOMEM;
422 
423 	/* allocate hash table */
424 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
425 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
426 	rdi->qp_dev->qp_table =
427 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
428 			     sizeof(*rdi->qp_dev->qp_table),
429 			     GFP_KERNEL, rdi->dparms.node);
430 	if (!rdi->qp_dev->qp_table)
431 		goto no_qp_table;
432 
433 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
434 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
435 
436 	spin_lock_init(&rdi->qp_dev->qpt_lock);
437 
438 	/* initialize qpn map */
439 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
440 		goto fail_table;
441 
442 	spin_lock_init(&rdi->n_qps_lock);
443 
444 	return 0;
445 
446 fail_table:
447 	kfree(rdi->qp_dev->qp_table);
448 	free_qpn_table(&rdi->qp_dev->qpn_table);
449 
450 no_qp_table:
451 	kfree(rdi->qp_dev);
452 
453 	return ret;
454 }
455 
456 /**
457  * rvt_free_qp_cb - callback function to reset a qp
458  * @qp: the qp to reset
459  * @v: a 64-bit value
460  *
461  * This function resets the qp and removes it from the
462  * qp hash table.
463  */
464 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
465 {
466 	unsigned int *qp_inuse = (unsigned int *)v;
467 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
468 
469 	/* Reset the qp and remove it from the qp hash list */
470 	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
471 
472 	/* Increment the qp_inuse count */
473 	(*qp_inuse)++;
474 }
475 
476 /**
477  * rvt_free_all_qps - check for QPs still in use
478  * @rdi: rvt device info structure
479  *
480  * There should not be any QPs still in use.
481  * Free memory for table.
482  * Return the number of QPs still in use.
483  */
484 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
485 {
486 	unsigned int qp_inuse = 0;
487 
488 	qp_inuse += rvt_mcast_tree_empty(rdi);
489 
490 	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
491 
492 	return qp_inuse;
493 }
494 
495 /**
496  * rvt_qp_exit - clean up qps on device exit
497  * @rdi: rvt dev structure
498  *
499  * Check for qp leaks and free resources.
500  */
501 void rvt_qp_exit(struct rvt_dev_info *rdi)
502 {
503 	u32 qps_inuse = rvt_free_all_qps(rdi);
504 
505 	if (qps_inuse)
506 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
507 			   qps_inuse);
508 	if (!rdi->qp_dev)
509 		return;
510 
511 	kfree(rdi->qp_dev->qp_table);
512 	free_qpn_table(&rdi->qp_dev->qpn_table);
513 	kfree(rdi->qp_dev);
514 }
515 
516 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
517 			      struct rvt_qpn_map *map, unsigned off)
518 {
519 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
520 }
521 
522 /**
523  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
524  *	       IB_QPT_SMI/IB_QPT_GSI
525  * @rdi: rvt device info structure
526  * @qpt: queue pair number table pointer
527  * @port_num: IB port number, 1 based, comes from core
528  * @exclude_prefix: prefix of special queue pair number being allocated
529  *
530  * Return: The queue pair number
531  */
532 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
533 		     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
534 {
535 	u32 i, offset, max_scan, qpn;
536 	struct rvt_qpn_map *map;
537 	u32 ret;
538 	u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
539 		RVT_AIP_QPN_MAX : RVT_QPN_MAX;
540 
541 	if (rdi->driver_f.alloc_qpn)
542 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
543 
544 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
545 		unsigned n;
546 
547 		ret = type == IB_QPT_GSI;
548 		n = 1 << (ret + 2 * (port_num - 1));
549 		spin_lock(&qpt->lock);
550 		if (qpt->flags & n)
551 			ret = -EINVAL;
552 		else
553 			qpt->flags |= n;
554 		spin_unlock(&qpt->lock);
555 		goto bail;
556 	}
557 
558 	qpn = qpt->last + qpt->incr;
559 	if (qpn >= max_qpn)
560 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
561 	/* offset carries bit 0 */
562 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
563 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
564 	max_scan = qpt->nmaps - !offset;
565 	for (i = 0;;) {
566 		if (unlikely(!map->page)) {
567 			get_map_page(qpt, map);
568 			if (unlikely(!map->page))
569 				break;
570 		}
571 		do {
572 			if (!test_and_set_bit(offset, map->page)) {
573 				qpt->last = qpn;
574 				ret = qpn;
575 				goto bail;
576 			}
577 			offset += qpt->incr;
578 			/*
579 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
580 			 * That is OK.   It gets re-assigned below
581 			 */
582 			qpn = mk_qpn(qpt, map, offset);
583 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
584 		/*
585 		 * In order to keep the number of pages allocated to a
586 		 * minimum, we scan the all existing pages before increasing
587 		 * the size of the bitmap table.
588 		 */
589 		if (++i > max_scan) {
590 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
591 				break;
592 			map = &qpt->map[qpt->nmaps++];
593 			/* start at incr with current bit 0 */
594 			offset = qpt->incr | (offset & 1);
595 		} else if (map < &qpt->map[qpt->nmaps]) {
596 			++map;
597 			/* start at incr with current bit 0 */
598 			offset = qpt->incr | (offset & 1);
599 		} else {
600 			map = &qpt->map[0];
601 			/* wrap to first map page, invert bit 0 */
602 			offset = qpt->incr | ((offset & 1) ^ 1);
603 		}
604 		/* there can be no set bits in low-order QoS bits */
605 		WARN_ON(rdi->dparms.qos_shift > 1 &&
606 			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
607 		qpn = mk_qpn(qpt, map, offset);
608 	}
609 
610 	ret = -ENOMEM;
611 
612 bail:
613 	return ret;
614 }
615 
616 /**
617  * rvt_clear_mr_refs - Drop help mr refs
618  * @qp: rvt qp data structure
619  * @clr_sends: If shoudl clear send side or not
620  */
621 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
622 {
623 	unsigned n;
624 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
625 
626 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
627 		rvt_put_ss(&qp->s_rdma_read_sge);
628 
629 	rvt_put_ss(&qp->r_sge);
630 
631 	if (clr_sends) {
632 		while (qp->s_last != qp->s_head) {
633 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
634 
635 			rvt_put_qp_swqe(qp, wqe);
636 			if (++qp->s_last >= qp->s_size)
637 				qp->s_last = 0;
638 			smp_wmb(); /* see qp_set_savail */
639 		}
640 		if (qp->s_rdma_mr) {
641 			rvt_put_mr(qp->s_rdma_mr);
642 			qp->s_rdma_mr = NULL;
643 		}
644 	}
645 
646 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
647 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
648 
649 		if (e->rdma_sge.mr) {
650 			rvt_put_mr(e->rdma_sge.mr);
651 			e->rdma_sge.mr = NULL;
652 		}
653 	}
654 }
655 
656 /**
657  * rvt_swqe_has_lkey - return true if lkey is used by swqe
658  * @wqe - the send wqe
659  * @lkey - the lkey
660  *
661  * Test the swqe for using lkey
662  */
663 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
664 {
665 	int i;
666 
667 	for (i = 0; i < wqe->wr.num_sge; i++) {
668 		struct rvt_sge *sge = &wqe->sg_list[i];
669 
670 		if (rvt_mr_has_lkey(sge->mr, lkey))
671 			return true;
672 	}
673 	return false;
674 }
675 
676 /**
677  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
678  * @qp - the rvt_qp
679  * @lkey - the lkey
680  */
681 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
682 {
683 	u32 s_last = qp->s_last;
684 
685 	while (s_last != qp->s_head) {
686 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
687 
688 		if (rvt_swqe_has_lkey(wqe, lkey))
689 			return true;
690 
691 		if (++s_last >= qp->s_size)
692 			s_last = 0;
693 	}
694 	if (qp->s_rdma_mr)
695 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
696 			return true;
697 	return false;
698 }
699 
700 /**
701  * rvt_qp_acks_has_lkey - return true if acks have lkey
702  * @qp - the qp
703  * @lkey - the lkey
704  */
705 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
706 {
707 	int i;
708 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
709 
710 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
711 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
712 
713 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
714 			return true;
715 	}
716 	return false;
717 }
718 
719 /*
720  * rvt_qp_mr_clean - clean up remote ops for lkey
721  * @qp - the qp
722  * @lkey - the lkey that is being de-registered
723  *
724  * This routine checks if the lkey is being used by
725  * the qp.
726  *
727  * If so, the qp is put into an error state to elminate
728  * any references from the qp.
729  */
730 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
731 {
732 	bool lastwqe = false;
733 
734 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
735 	    qp->ibqp.qp_type == IB_QPT_GSI)
736 		/* avoid special QPs */
737 		return;
738 	spin_lock_irq(&qp->r_lock);
739 	spin_lock(&qp->s_hlock);
740 	spin_lock(&qp->s_lock);
741 
742 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
743 		goto check_lwqe;
744 
745 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
746 	    rvt_qp_sends_has_lkey(qp, lkey) ||
747 	    rvt_qp_acks_has_lkey(qp, lkey))
748 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
749 check_lwqe:
750 	spin_unlock(&qp->s_lock);
751 	spin_unlock(&qp->s_hlock);
752 	spin_unlock_irq(&qp->r_lock);
753 	if (lastwqe) {
754 		struct ib_event ev;
755 
756 		ev.device = qp->ibqp.device;
757 		ev.element.qp = &qp->ibqp;
758 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
759 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
760 	}
761 }
762 
763 /**
764  * rvt_remove_qp - remove qp form table
765  * @rdi: rvt dev struct
766  * @qp: qp to remove
767  *
768  * Remove the QP from the table so it can't be found asynchronously by
769  * the receive routine.
770  */
771 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
772 {
773 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
774 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
775 	unsigned long flags;
776 	int removed = 1;
777 
778 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
779 
780 	if (rcu_dereference_protected(rvp->qp[0],
781 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
782 		RCU_INIT_POINTER(rvp->qp[0], NULL);
783 	} else if (rcu_dereference_protected(rvp->qp[1],
784 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
785 		RCU_INIT_POINTER(rvp->qp[1], NULL);
786 	} else {
787 		struct rvt_qp *q;
788 		struct rvt_qp __rcu **qpp;
789 
790 		removed = 0;
791 		qpp = &rdi->qp_dev->qp_table[n];
792 		for (; (q = rcu_dereference_protected(*qpp,
793 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
794 			qpp = &q->next) {
795 			if (q == qp) {
796 				RCU_INIT_POINTER(*qpp,
797 				     rcu_dereference_protected(qp->next,
798 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
799 				removed = 1;
800 				trace_rvt_qpremove(qp, n);
801 				break;
802 			}
803 		}
804 	}
805 
806 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
807 	if (removed) {
808 		synchronize_rcu();
809 		rvt_put_qp(qp);
810 	}
811 }
812 
813 /**
814  * rvt_alloc_rq - allocate memory for user or kernel buffer
815  * @rq: receive queue data structure
816  * @size: number of request queue entries
817  * @node: The NUMA node
818  * @udata: True if user data is available or not false
819  *
820  * Return: If memory allocation failed, return -ENONEM
821  * This function is used by both shared receive
822  * queues and non-shared receive queues to allocate
823  * memory.
824  */
825 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
826 		 struct ib_udata *udata)
827 {
828 	if (udata) {
829 		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
830 		if (!rq->wq)
831 			goto bail;
832 		/* need kwq with no buffers */
833 		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
834 		if (!rq->kwq)
835 			goto bail;
836 		rq->kwq->curr_wq = rq->wq->wq;
837 	} else {
838 		/* need kwq with buffers */
839 		rq->kwq =
840 			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
841 		if (!rq->kwq)
842 			goto bail;
843 		rq->kwq->curr_wq = rq->kwq->wq;
844 	}
845 
846 	spin_lock_init(&rq->kwq->p_lock);
847 	spin_lock_init(&rq->kwq->c_lock);
848 	return 0;
849 bail:
850 	rvt_free_rq(rq);
851 	return -ENOMEM;
852 }
853 
854 /**
855  * rvt_init_qp - initialize the QP state to the reset state
856  * @qp: the QP to init or reinit
857  * @type: the QP type
858  *
859  * This function is called from both rvt_create_qp() and
860  * rvt_reset_qp().   The difference is that the reset
861  * patch the necessary locks to protect against concurent
862  * access.
863  */
864 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
865 			enum ib_qp_type type)
866 {
867 	qp->remote_qpn = 0;
868 	qp->qkey = 0;
869 	qp->qp_access_flags = 0;
870 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
871 	qp->s_hdrwords = 0;
872 	qp->s_wqe = NULL;
873 	qp->s_draining = 0;
874 	qp->s_next_psn = 0;
875 	qp->s_last_psn = 0;
876 	qp->s_sending_psn = 0;
877 	qp->s_sending_hpsn = 0;
878 	qp->s_psn = 0;
879 	qp->r_psn = 0;
880 	qp->r_msn = 0;
881 	if (type == IB_QPT_RC) {
882 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
883 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
884 	} else {
885 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
886 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
887 	}
888 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
889 	qp->r_nak_state = 0;
890 	qp->r_aflags = 0;
891 	qp->r_flags = 0;
892 	qp->s_head = 0;
893 	qp->s_tail = 0;
894 	qp->s_cur = 0;
895 	qp->s_acked = 0;
896 	qp->s_last = 0;
897 	qp->s_ssn = 1;
898 	qp->s_lsn = 0;
899 	qp->s_mig_state = IB_MIG_MIGRATED;
900 	qp->r_head_ack_queue = 0;
901 	qp->s_tail_ack_queue = 0;
902 	qp->s_acked_ack_queue = 0;
903 	qp->s_num_rd_atomic = 0;
904 	qp->r_sge.num_sge = 0;
905 	atomic_set(&qp->s_reserved_used, 0);
906 }
907 
908 /**
909  * _rvt_reset_qp - initialize the QP state to the reset state
910  * @qp: the QP to reset
911  * @type: the QP type
912  *
913  * r_lock, s_hlock, and s_lock are required to be held by the caller
914  */
915 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
916 			  enum ib_qp_type type)
917 	__must_hold(&qp->s_lock)
918 	__must_hold(&qp->s_hlock)
919 	__must_hold(&qp->r_lock)
920 {
921 	lockdep_assert_held(&qp->r_lock);
922 	lockdep_assert_held(&qp->s_hlock);
923 	lockdep_assert_held(&qp->s_lock);
924 	if (qp->state != IB_QPS_RESET) {
925 		qp->state = IB_QPS_RESET;
926 
927 		/* Let drivers flush their waitlist */
928 		rdi->driver_f.flush_qp_waiters(qp);
929 		rvt_stop_rc_timers(qp);
930 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
931 		spin_unlock(&qp->s_lock);
932 		spin_unlock(&qp->s_hlock);
933 		spin_unlock_irq(&qp->r_lock);
934 
935 		/* Stop the send queue and the retry timer */
936 		rdi->driver_f.stop_send_queue(qp);
937 		rvt_del_timers_sync(qp);
938 		/* Wait for things to stop */
939 		rdi->driver_f.quiesce_qp(qp);
940 
941 		/* take qp out the hash and wait for it to be unused */
942 		rvt_remove_qp(rdi, qp);
943 
944 		/* grab the lock b/c it was locked at call time */
945 		spin_lock_irq(&qp->r_lock);
946 		spin_lock(&qp->s_hlock);
947 		spin_lock(&qp->s_lock);
948 
949 		rvt_clear_mr_refs(qp, 1);
950 		/*
951 		 * Let the driver do any tear down or re-init it needs to for
952 		 * a qp that has been reset
953 		 */
954 		rdi->driver_f.notify_qp_reset(qp);
955 	}
956 	rvt_init_qp(rdi, qp, type);
957 	lockdep_assert_held(&qp->r_lock);
958 	lockdep_assert_held(&qp->s_hlock);
959 	lockdep_assert_held(&qp->s_lock);
960 }
961 
962 /**
963  * rvt_reset_qp - initialize the QP state to the reset state
964  * @rdi: the device info
965  * @qp: the QP to reset
966  * @type: the QP type
967  *
968  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
969  * before calling _rvt_reset_qp().
970  */
971 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
972 			 enum ib_qp_type type)
973 {
974 	spin_lock_irq(&qp->r_lock);
975 	spin_lock(&qp->s_hlock);
976 	spin_lock(&qp->s_lock);
977 	_rvt_reset_qp(rdi, qp, type);
978 	spin_unlock(&qp->s_lock);
979 	spin_unlock(&qp->s_hlock);
980 	spin_unlock_irq(&qp->r_lock);
981 }
982 
983 /** rvt_free_qpn - Free a qpn from the bit map
984  * @qpt: QP table
985  * @qpn: queue pair number to free
986  */
987 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
988 {
989 	struct rvt_qpn_map *map;
990 
991 	if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
992 		qpn &= RVT_AIP_QP_SUFFIX;
993 
994 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
995 	if (map->page)
996 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
997 }
998 
999 /**
1000  * get_allowed_ops - Given a QP type return the appropriate allowed OP
1001  * @type: valid, supported, QP type
1002  */
1003 static u8 get_allowed_ops(enum ib_qp_type type)
1004 {
1005 	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1006 		IB_OPCODE_UC : IB_OPCODE_UD;
1007 }
1008 
1009 /**
1010  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1011  * @qp: Valid QP with allowed_ops set
1012  *
1013  * The rvt_swqe data structure being used is a union, so this is
1014  * only valid for UD QPs.
1015  */
1016 static void free_ud_wq_attr(struct rvt_qp *qp)
1017 {
1018 	struct rvt_swqe *wqe;
1019 	int i;
1020 
1021 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1022 		wqe = rvt_get_swqe_ptr(qp, i);
1023 		kfree(wqe->ud_wr.attr);
1024 		wqe->ud_wr.attr = NULL;
1025 	}
1026 }
1027 
1028 /**
1029  * alloc_ud_wq_attr - AH attribute cache for UD QPs
1030  * @qp: Valid QP with allowed_ops set
1031  * @node: Numa node for allocation
1032  *
1033  * The rvt_swqe data structure being used is a union, so this is
1034  * only valid for UD QPs.
1035  */
1036 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1037 {
1038 	struct rvt_swqe *wqe;
1039 	int i;
1040 
1041 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1042 		wqe = rvt_get_swqe_ptr(qp, i);
1043 		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1044 					       GFP_KERNEL, node);
1045 		if (!wqe->ud_wr.attr) {
1046 			free_ud_wq_attr(qp);
1047 			return -ENOMEM;
1048 		}
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /**
1055  * rvt_create_qp - create a queue pair for a device
1056  * @ibpd: the protection domain who's device we create the queue pair for
1057  * @init_attr: the attributes of the queue pair
1058  * @udata: user data for libibverbs.so
1059  *
1060  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1061  * unique idea of what queue pair numbers mean. For instance there is a reserved
1062  * range for PSM.
1063  *
1064  * Return: the queue pair on success, otherwise returns an errno.
1065  *
1066  * Called by the ib_create_qp() core verbs function.
1067  */
1068 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1069 			    struct ib_qp_init_attr *init_attr,
1070 			    struct ib_udata *udata)
1071 {
1072 	struct rvt_qp *qp;
1073 	int err;
1074 	struct rvt_swqe *swq = NULL;
1075 	size_t sz;
1076 	size_t sg_list_sz;
1077 	struct ib_qp *ret = ERR_PTR(-ENOMEM);
1078 	struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1079 	void *priv = NULL;
1080 	size_t sqsize;
1081 	u8 exclude_prefix = 0;
1082 
1083 	if (!rdi)
1084 		return ERR_PTR(-EINVAL);
1085 
1086 	if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1087 		return ERR_PTR(-EOPNOTSUPP);
1088 
1089 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1090 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1091 		return ERR_PTR(-EINVAL);
1092 
1093 	/* Check receive queue parameters if no SRQ is specified. */
1094 	if (!init_attr->srq) {
1095 		if (init_attr->cap.max_recv_sge >
1096 		    rdi->dparms.props.max_recv_sge ||
1097 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1098 			return ERR_PTR(-EINVAL);
1099 
1100 		if (init_attr->cap.max_send_sge +
1101 		    init_attr->cap.max_send_wr +
1102 		    init_attr->cap.max_recv_sge +
1103 		    init_attr->cap.max_recv_wr == 0)
1104 			return ERR_PTR(-EINVAL);
1105 	}
1106 	sqsize =
1107 		init_attr->cap.max_send_wr + 1 +
1108 		rdi->dparms.reserved_operations;
1109 	switch (init_attr->qp_type) {
1110 	case IB_QPT_SMI:
1111 	case IB_QPT_GSI:
1112 		if (init_attr->port_num == 0 ||
1113 		    init_attr->port_num > ibpd->device->phys_port_cnt)
1114 			return ERR_PTR(-EINVAL);
1115 		fallthrough;
1116 	case IB_QPT_UC:
1117 	case IB_QPT_RC:
1118 	case IB_QPT_UD:
1119 		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1120 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1121 		if (!swq)
1122 			return ERR_PTR(-ENOMEM);
1123 
1124 		sz = sizeof(*qp);
1125 		sg_list_sz = 0;
1126 		if (init_attr->srq) {
1127 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1128 
1129 			if (srq->rq.max_sge > 1)
1130 				sg_list_sz = sizeof(*qp->r_sg_list) *
1131 					(srq->rq.max_sge - 1);
1132 		} else if (init_attr->cap.max_recv_sge > 1)
1133 			sg_list_sz = sizeof(*qp->r_sg_list) *
1134 				(init_attr->cap.max_recv_sge - 1);
1135 		qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1136 				  rdi->dparms.node);
1137 		if (!qp)
1138 			goto bail_swq;
1139 		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1140 
1141 		RCU_INIT_POINTER(qp->next, NULL);
1142 		if (init_attr->qp_type == IB_QPT_RC) {
1143 			qp->s_ack_queue =
1144 				kcalloc_node(rvt_max_atomic(rdi),
1145 					     sizeof(*qp->s_ack_queue),
1146 					     GFP_KERNEL,
1147 					     rdi->dparms.node);
1148 			if (!qp->s_ack_queue)
1149 				goto bail_qp;
1150 		}
1151 		/* initialize timers needed for rc qp */
1152 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1153 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1154 			     HRTIMER_MODE_REL);
1155 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1156 
1157 		/*
1158 		 * Driver needs to set up it's private QP structure and do any
1159 		 * initialization that is needed.
1160 		 */
1161 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1162 		if (IS_ERR(priv)) {
1163 			ret = priv;
1164 			goto bail_qp;
1165 		}
1166 		qp->priv = priv;
1167 		qp->timeout_jiffies =
1168 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1169 				1000UL);
1170 		if (init_attr->srq) {
1171 			sz = 0;
1172 		} else {
1173 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1174 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1175 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1176 				sizeof(struct rvt_rwqe);
1177 			err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1178 					   rdi->dparms.node, udata);
1179 			if (err) {
1180 				ret = ERR_PTR(err);
1181 				goto bail_driver_priv;
1182 			}
1183 		}
1184 
1185 		/*
1186 		 * ib_create_qp() will initialize qp->ibqp
1187 		 * except for qp->ibqp.qp_num.
1188 		 */
1189 		spin_lock_init(&qp->r_lock);
1190 		spin_lock_init(&qp->s_hlock);
1191 		spin_lock_init(&qp->s_lock);
1192 		atomic_set(&qp->refcount, 0);
1193 		atomic_set(&qp->local_ops_pending, 0);
1194 		init_waitqueue_head(&qp->wait);
1195 		INIT_LIST_HEAD(&qp->rspwait);
1196 		qp->state = IB_QPS_RESET;
1197 		qp->s_wq = swq;
1198 		qp->s_size = sqsize;
1199 		qp->s_avail = init_attr->cap.max_send_wr;
1200 		qp->s_max_sge = init_attr->cap.max_send_sge;
1201 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1202 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1203 		err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1204 		if (err) {
1205 			ret = (ERR_PTR(err));
1206 			goto bail_rq_rvt;
1207 		}
1208 
1209 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1210 			exclude_prefix = RVT_AIP_QP_PREFIX;
1211 
1212 		err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1213 				init_attr->qp_type,
1214 				init_attr->port_num,
1215 				exclude_prefix);
1216 		if (err < 0) {
1217 			ret = ERR_PTR(err);
1218 			goto bail_rq_wq;
1219 		}
1220 		qp->ibqp.qp_num = err;
1221 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1222 			qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1223 		qp->port_num = init_attr->port_num;
1224 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1225 		if (rdi->driver_f.qp_priv_init) {
1226 			err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1227 			if (err) {
1228 				ret = ERR_PTR(err);
1229 				goto bail_rq_wq;
1230 			}
1231 		}
1232 		break;
1233 
1234 	default:
1235 		/* Don't support raw QPs */
1236 		return ERR_PTR(-EOPNOTSUPP);
1237 	}
1238 
1239 	init_attr->cap.max_inline_data = 0;
1240 
1241 	/*
1242 	 * Return the address of the RWQ as the offset to mmap.
1243 	 * See rvt_mmap() for details.
1244 	 */
1245 	if (udata && udata->outlen >= sizeof(__u64)) {
1246 		if (!qp->r_rq.wq) {
1247 			__u64 offset = 0;
1248 
1249 			err = ib_copy_to_udata(udata, &offset,
1250 					       sizeof(offset));
1251 			if (err) {
1252 				ret = ERR_PTR(err);
1253 				goto bail_qpn;
1254 			}
1255 		} else {
1256 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1257 
1258 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1259 						      qp->r_rq.wq);
1260 			if (IS_ERR(qp->ip)) {
1261 				ret = ERR_CAST(qp->ip);
1262 				goto bail_qpn;
1263 			}
1264 
1265 			err = ib_copy_to_udata(udata, &qp->ip->offset,
1266 					       sizeof(qp->ip->offset));
1267 			if (err) {
1268 				ret = ERR_PTR(err);
1269 				goto bail_ip;
1270 			}
1271 		}
1272 		qp->pid = current->pid;
1273 	}
1274 
1275 	spin_lock(&rdi->n_qps_lock);
1276 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1277 		spin_unlock(&rdi->n_qps_lock);
1278 		ret = ERR_PTR(-ENOMEM);
1279 		goto bail_ip;
1280 	}
1281 
1282 	rdi->n_qps_allocated++;
1283 	/*
1284 	 * Maintain a busy_jiffies variable that will be added to the timeout
1285 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1286 	 * is scaled by the number of rc qps created for the device to reduce
1287 	 * the number of timeouts occurring when there is a large number of
1288 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1289 	 * The scaling interval is selected based on extensive performance
1290 	 * evaluation of targeted workloads.
1291 	 */
1292 	if (init_attr->qp_type == IB_QPT_RC) {
1293 		rdi->n_rc_qps++;
1294 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1295 	}
1296 	spin_unlock(&rdi->n_qps_lock);
1297 
1298 	if (qp->ip) {
1299 		spin_lock_irq(&rdi->pending_lock);
1300 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1301 		spin_unlock_irq(&rdi->pending_lock);
1302 	}
1303 
1304 	ret = &qp->ibqp;
1305 
1306 	return ret;
1307 
1308 bail_ip:
1309 	if (qp->ip)
1310 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1311 
1312 bail_qpn:
1313 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1314 
1315 bail_rq_wq:
1316 	free_ud_wq_attr(qp);
1317 
1318 bail_rq_rvt:
1319 	rvt_free_rq(&qp->r_rq);
1320 
1321 bail_driver_priv:
1322 	rdi->driver_f.qp_priv_free(rdi, qp);
1323 
1324 bail_qp:
1325 	kfree(qp->s_ack_queue);
1326 	kfree(qp);
1327 
1328 bail_swq:
1329 	vfree(swq);
1330 
1331 	return ret;
1332 }
1333 
1334 /**
1335  * rvt_error_qp - put a QP into the error state
1336  * @qp: the QP to put into the error state
1337  * @err: the receive completion error to signal if a RWQE is active
1338  *
1339  * Flushes both send and receive work queues.
1340  *
1341  * Return: true if last WQE event should be generated.
1342  * The QP r_lock and s_lock should be held and interrupts disabled.
1343  * If we are already in error state, just return.
1344  */
1345 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1346 {
1347 	struct ib_wc wc;
1348 	int ret = 0;
1349 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1350 
1351 	lockdep_assert_held(&qp->r_lock);
1352 	lockdep_assert_held(&qp->s_lock);
1353 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1354 		goto bail;
1355 
1356 	qp->state = IB_QPS_ERR;
1357 
1358 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1359 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1360 		del_timer(&qp->s_timer);
1361 	}
1362 
1363 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1364 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1365 
1366 	rdi->driver_f.notify_error_qp(qp);
1367 
1368 	/* Schedule the sending tasklet to drain the send work queue. */
1369 	if (READ_ONCE(qp->s_last) != qp->s_head)
1370 		rdi->driver_f.schedule_send(qp);
1371 
1372 	rvt_clear_mr_refs(qp, 0);
1373 
1374 	memset(&wc, 0, sizeof(wc));
1375 	wc.qp = &qp->ibqp;
1376 	wc.opcode = IB_WC_RECV;
1377 
1378 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1379 		wc.wr_id = qp->r_wr_id;
1380 		wc.status = err;
1381 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1382 	}
1383 	wc.status = IB_WC_WR_FLUSH_ERR;
1384 
1385 	if (qp->r_rq.kwq) {
1386 		u32 head;
1387 		u32 tail;
1388 		struct rvt_rwq *wq = NULL;
1389 		struct rvt_krwq *kwq = NULL;
1390 
1391 		spin_lock(&qp->r_rq.kwq->c_lock);
1392 		/* qp->ip used to validate if there is a  user buffer mmaped */
1393 		if (qp->ip) {
1394 			wq = qp->r_rq.wq;
1395 			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1396 			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1397 		} else {
1398 			kwq = qp->r_rq.kwq;
1399 			head = kwq->head;
1400 			tail = kwq->tail;
1401 		}
1402 		/* sanity check pointers before trusting them */
1403 		if (head >= qp->r_rq.size)
1404 			head = 0;
1405 		if (tail >= qp->r_rq.size)
1406 			tail = 0;
1407 		while (tail != head) {
1408 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1409 			if (++tail >= qp->r_rq.size)
1410 				tail = 0;
1411 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1412 		}
1413 		if (qp->ip)
1414 			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1415 		else
1416 			kwq->tail = tail;
1417 		spin_unlock(&qp->r_rq.kwq->c_lock);
1418 	} else if (qp->ibqp.event_handler) {
1419 		ret = 1;
1420 	}
1421 
1422 bail:
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL(rvt_error_qp);
1426 
1427 /*
1428  * Put the QP into the hash table.
1429  * The hash table holds a reference to the QP.
1430  */
1431 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1432 {
1433 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1434 	unsigned long flags;
1435 
1436 	rvt_get_qp(qp);
1437 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1438 
1439 	if (qp->ibqp.qp_num <= 1) {
1440 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1441 	} else {
1442 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1443 
1444 		qp->next = rdi->qp_dev->qp_table[n];
1445 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1446 		trace_rvt_qpinsert(qp, n);
1447 	}
1448 
1449 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1450 }
1451 
1452 /**
1453  * rvt_modify_qp - modify the attributes of a queue pair
1454  * @ibqp: the queue pair who's attributes we're modifying
1455  * @attr: the new attributes
1456  * @attr_mask: the mask of attributes to modify
1457  * @udata: user data for libibverbs.so
1458  *
1459  * Return: 0 on success, otherwise returns an errno.
1460  */
1461 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1462 		  int attr_mask, struct ib_udata *udata)
1463 {
1464 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1465 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1466 	enum ib_qp_state cur_state, new_state;
1467 	struct ib_event ev;
1468 	int lastwqe = 0;
1469 	int mig = 0;
1470 	int pmtu = 0; /* for gcc warning only */
1471 	int opa_ah;
1472 
1473 	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1474 		return -EOPNOTSUPP;
1475 
1476 	spin_lock_irq(&qp->r_lock);
1477 	spin_lock(&qp->s_hlock);
1478 	spin_lock(&qp->s_lock);
1479 
1480 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1481 		attr->cur_qp_state : qp->state;
1482 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1483 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1484 
1485 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1486 				attr_mask))
1487 		goto inval;
1488 
1489 	if (rdi->driver_f.check_modify_qp &&
1490 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1491 		goto inval;
1492 
1493 	if (attr_mask & IB_QP_AV) {
1494 		if (opa_ah) {
1495 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1496 				opa_get_mcast_base(OPA_MCAST_NR))
1497 				goto inval;
1498 		} else {
1499 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1500 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1501 				goto inval;
1502 		}
1503 
1504 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1505 			goto inval;
1506 	}
1507 
1508 	if (attr_mask & IB_QP_ALT_PATH) {
1509 		if (opa_ah) {
1510 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1511 				opa_get_mcast_base(OPA_MCAST_NR))
1512 				goto inval;
1513 		} else {
1514 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1515 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1516 				goto inval;
1517 		}
1518 
1519 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1520 			goto inval;
1521 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1522 			goto inval;
1523 	}
1524 
1525 	if (attr_mask & IB_QP_PKEY_INDEX)
1526 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1527 			goto inval;
1528 
1529 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1530 		if (attr->min_rnr_timer > 31)
1531 			goto inval;
1532 
1533 	if (attr_mask & IB_QP_PORT)
1534 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1535 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1536 		    attr->port_num == 0 ||
1537 		    attr->port_num > ibqp->device->phys_port_cnt)
1538 			goto inval;
1539 
1540 	if (attr_mask & IB_QP_DEST_QPN)
1541 		if (attr->dest_qp_num > RVT_QPN_MASK)
1542 			goto inval;
1543 
1544 	if (attr_mask & IB_QP_RETRY_CNT)
1545 		if (attr->retry_cnt > 7)
1546 			goto inval;
1547 
1548 	if (attr_mask & IB_QP_RNR_RETRY)
1549 		if (attr->rnr_retry > 7)
1550 			goto inval;
1551 
1552 	/*
1553 	 * Don't allow invalid path_mtu values.  OK to set greater
1554 	 * than the active mtu (or even the max_cap, if we have tuned
1555 	 * that to a small mtu.  We'll set qp->path_mtu
1556 	 * to the lesser of requested attribute mtu and active,
1557 	 * for packetizing messages.
1558 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1559 	 */
1560 	if (attr_mask & IB_QP_PATH_MTU) {
1561 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1562 		if (pmtu < 0)
1563 			goto inval;
1564 	}
1565 
1566 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1567 		if (attr->path_mig_state == IB_MIG_REARM) {
1568 			if (qp->s_mig_state == IB_MIG_ARMED)
1569 				goto inval;
1570 			if (new_state != IB_QPS_RTS)
1571 				goto inval;
1572 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1573 			if (qp->s_mig_state == IB_MIG_REARM)
1574 				goto inval;
1575 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1576 				goto inval;
1577 			if (qp->s_mig_state == IB_MIG_ARMED)
1578 				mig = 1;
1579 		} else {
1580 			goto inval;
1581 		}
1582 	}
1583 
1584 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1585 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1586 			goto inval;
1587 
1588 	switch (new_state) {
1589 	case IB_QPS_RESET:
1590 		if (qp->state != IB_QPS_RESET)
1591 			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1592 		break;
1593 
1594 	case IB_QPS_RTR:
1595 		/* Allow event to re-trigger if QP set to RTR more than once */
1596 		qp->r_flags &= ~RVT_R_COMM_EST;
1597 		qp->state = new_state;
1598 		break;
1599 
1600 	case IB_QPS_SQD:
1601 		qp->s_draining = qp->s_last != qp->s_cur;
1602 		qp->state = new_state;
1603 		break;
1604 
1605 	case IB_QPS_SQE:
1606 		if (qp->ibqp.qp_type == IB_QPT_RC)
1607 			goto inval;
1608 		qp->state = new_state;
1609 		break;
1610 
1611 	case IB_QPS_ERR:
1612 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1613 		break;
1614 
1615 	default:
1616 		qp->state = new_state;
1617 		break;
1618 	}
1619 
1620 	if (attr_mask & IB_QP_PKEY_INDEX)
1621 		qp->s_pkey_index = attr->pkey_index;
1622 
1623 	if (attr_mask & IB_QP_PORT)
1624 		qp->port_num = attr->port_num;
1625 
1626 	if (attr_mask & IB_QP_DEST_QPN)
1627 		qp->remote_qpn = attr->dest_qp_num;
1628 
1629 	if (attr_mask & IB_QP_SQ_PSN) {
1630 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1631 		qp->s_psn = qp->s_next_psn;
1632 		qp->s_sending_psn = qp->s_next_psn;
1633 		qp->s_last_psn = qp->s_next_psn - 1;
1634 		qp->s_sending_hpsn = qp->s_last_psn;
1635 	}
1636 
1637 	if (attr_mask & IB_QP_RQ_PSN)
1638 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1639 
1640 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1641 		qp->qp_access_flags = attr->qp_access_flags;
1642 
1643 	if (attr_mask & IB_QP_AV) {
1644 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1645 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1646 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1647 	}
1648 
1649 	if (attr_mask & IB_QP_ALT_PATH) {
1650 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1651 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1652 	}
1653 
1654 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1655 		qp->s_mig_state = attr->path_mig_state;
1656 		if (mig) {
1657 			qp->remote_ah_attr = qp->alt_ah_attr;
1658 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1659 			qp->s_pkey_index = qp->s_alt_pkey_index;
1660 		}
1661 	}
1662 
1663 	if (attr_mask & IB_QP_PATH_MTU) {
1664 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1665 		qp->log_pmtu = ilog2(qp->pmtu);
1666 	}
1667 
1668 	if (attr_mask & IB_QP_RETRY_CNT) {
1669 		qp->s_retry_cnt = attr->retry_cnt;
1670 		qp->s_retry = attr->retry_cnt;
1671 	}
1672 
1673 	if (attr_mask & IB_QP_RNR_RETRY) {
1674 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1675 		qp->s_rnr_retry = attr->rnr_retry;
1676 	}
1677 
1678 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1679 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1680 
1681 	if (attr_mask & IB_QP_TIMEOUT) {
1682 		qp->timeout = attr->timeout;
1683 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1684 	}
1685 
1686 	if (attr_mask & IB_QP_QKEY)
1687 		qp->qkey = attr->qkey;
1688 
1689 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1690 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1691 
1692 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1693 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1694 
1695 	if (rdi->driver_f.modify_qp)
1696 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1697 
1698 	spin_unlock(&qp->s_lock);
1699 	spin_unlock(&qp->s_hlock);
1700 	spin_unlock_irq(&qp->r_lock);
1701 
1702 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1703 		rvt_insert_qp(rdi, qp);
1704 
1705 	if (lastwqe) {
1706 		ev.device = qp->ibqp.device;
1707 		ev.element.qp = &qp->ibqp;
1708 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1709 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1710 	}
1711 	if (mig) {
1712 		ev.device = qp->ibqp.device;
1713 		ev.element.qp = &qp->ibqp;
1714 		ev.event = IB_EVENT_PATH_MIG;
1715 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1716 	}
1717 	return 0;
1718 
1719 inval:
1720 	spin_unlock(&qp->s_lock);
1721 	spin_unlock(&qp->s_hlock);
1722 	spin_unlock_irq(&qp->r_lock);
1723 	return -EINVAL;
1724 }
1725 
1726 /**
1727  * rvt_destroy_qp - destroy a queue pair
1728  * @ibqp: the queue pair to destroy
1729  *
1730  * Note that this can be called while the QP is actively sending or
1731  * receiving!
1732  *
1733  * Return: 0 on success.
1734  */
1735 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1736 {
1737 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1738 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1739 
1740 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1741 
1742 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1743 	/* qpn is now available for use again */
1744 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1745 
1746 	spin_lock(&rdi->n_qps_lock);
1747 	rdi->n_qps_allocated--;
1748 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1749 		rdi->n_rc_qps--;
1750 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1751 	}
1752 	spin_unlock(&rdi->n_qps_lock);
1753 
1754 	if (qp->ip)
1755 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1756 	kvfree(qp->r_rq.kwq);
1757 	rdi->driver_f.qp_priv_free(rdi, qp);
1758 	kfree(qp->s_ack_queue);
1759 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1760 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1761 	free_ud_wq_attr(qp);
1762 	vfree(qp->s_wq);
1763 	kfree(qp);
1764 	return 0;
1765 }
1766 
1767 /**
1768  * rvt_query_qp - query an ipbq
1769  * @ibqp: IB qp to query
1770  * @attr: attr struct to fill in
1771  * @attr_mask: attr mask ignored
1772  * @init_attr: struct to fill in
1773  *
1774  * Return: always 0
1775  */
1776 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1777 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1778 {
1779 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1780 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1781 
1782 	attr->qp_state = qp->state;
1783 	attr->cur_qp_state = attr->qp_state;
1784 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1785 	attr->path_mig_state = qp->s_mig_state;
1786 	attr->qkey = qp->qkey;
1787 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1788 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1789 	attr->dest_qp_num = qp->remote_qpn;
1790 	attr->qp_access_flags = qp->qp_access_flags;
1791 	attr->cap.max_send_wr = qp->s_size - 1 -
1792 		rdi->dparms.reserved_operations;
1793 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1794 	attr->cap.max_send_sge = qp->s_max_sge;
1795 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1796 	attr->cap.max_inline_data = 0;
1797 	attr->ah_attr = qp->remote_ah_attr;
1798 	attr->alt_ah_attr = qp->alt_ah_attr;
1799 	attr->pkey_index = qp->s_pkey_index;
1800 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1801 	attr->en_sqd_async_notify = 0;
1802 	attr->sq_draining = qp->s_draining;
1803 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1804 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1805 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1806 	attr->port_num = qp->port_num;
1807 	attr->timeout = qp->timeout;
1808 	attr->retry_cnt = qp->s_retry_cnt;
1809 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1810 	attr->alt_port_num =
1811 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1812 	attr->alt_timeout = qp->alt_timeout;
1813 
1814 	init_attr->event_handler = qp->ibqp.event_handler;
1815 	init_attr->qp_context = qp->ibqp.qp_context;
1816 	init_attr->send_cq = qp->ibqp.send_cq;
1817 	init_attr->recv_cq = qp->ibqp.recv_cq;
1818 	init_attr->srq = qp->ibqp.srq;
1819 	init_attr->cap = attr->cap;
1820 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1821 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1822 	else
1823 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1824 	init_attr->qp_type = qp->ibqp.qp_type;
1825 	init_attr->port_num = qp->port_num;
1826 	return 0;
1827 }
1828 
1829 /**
1830  * rvt_post_recv - post a receive on a QP
1831  * @ibqp: the QP to post the receive on
1832  * @wr: the WR to post
1833  * @bad_wr: the first bad WR is put here
1834  *
1835  * This may be called from interrupt context.
1836  *
1837  * Return: 0 on success otherwise errno
1838  */
1839 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1840 		  const struct ib_recv_wr **bad_wr)
1841 {
1842 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1843 	struct rvt_krwq *wq = qp->r_rq.kwq;
1844 	unsigned long flags;
1845 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1846 				!qp->ibqp.srq;
1847 
1848 	/* Check that state is OK to post receive. */
1849 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1850 		*bad_wr = wr;
1851 		return -EINVAL;
1852 	}
1853 
1854 	for (; wr; wr = wr->next) {
1855 		struct rvt_rwqe *wqe;
1856 		u32 next;
1857 		int i;
1858 
1859 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1860 			*bad_wr = wr;
1861 			return -EINVAL;
1862 		}
1863 
1864 		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1865 		next = wq->head + 1;
1866 		if (next >= qp->r_rq.size)
1867 			next = 0;
1868 		if (next == READ_ONCE(wq->tail)) {
1869 			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1870 			*bad_wr = wr;
1871 			return -ENOMEM;
1872 		}
1873 		if (unlikely(qp_err_flush)) {
1874 			struct ib_wc wc;
1875 
1876 			memset(&wc, 0, sizeof(wc));
1877 			wc.qp = &qp->ibqp;
1878 			wc.opcode = IB_WC_RECV;
1879 			wc.wr_id = wr->wr_id;
1880 			wc.status = IB_WC_WR_FLUSH_ERR;
1881 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1882 		} else {
1883 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1884 			wqe->wr_id = wr->wr_id;
1885 			wqe->num_sge = wr->num_sge;
1886 			for (i = 0; i < wr->num_sge; i++) {
1887 				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1888 				wqe->sg_list[i].length = wr->sg_list[i].length;
1889 				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1890 			}
1891 			/*
1892 			 * Make sure queue entry is written
1893 			 * before the head index.
1894 			 */
1895 			smp_store_release(&wq->head, next);
1896 		}
1897 		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1898 	}
1899 	return 0;
1900 }
1901 
1902 /**
1903  * rvt_qp_valid_operation - validate post send wr request
1904  * @qp - the qp
1905  * @post-parms - the post send table for the driver
1906  * @wr - the work request
1907  *
1908  * The routine validates the operation based on the
1909  * validation table an returns the length of the operation
1910  * which can extend beyond the ib_send_bw.  Operation
1911  * dependent flags key atomic operation validation.
1912  *
1913  * There is an exception for UD qps that validates the pd and
1914  * overrides the length to include the additional UD specific
1915  * length.
1916  *
1917  * Returns a negative error or the length of the work request
1918  * for building the swqe.
1919  */
1920 static inline int rvt_qp_valid_operation(
1921 	struct rvt_qp *qp,
1922 	const struct rvt_operation_params *post_parms,
1923 	const struct ib_send_wr *wr)
1924 {
1925 	int len;
1926 
1927 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1928 		return -EINVAL;
1929 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1930 		return -EINVAL;
1931 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1932 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1933 		return -EINVAL;
1934 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1935 	    (wr->num_sge == 0 ||
1936 	     wr->sg_list[0].length < sizeof(u64) ||
1937 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1938 		return -EINVAL;
1939 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1940 	    !qp->s_max_rd_atomic)
1941 		return -EINVAL;
1942 	len = post_parms[wr->opcode].length;
1943 	/* UD specific */
1944 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1945 	    qp->ibqp.qp_type != IB_QPT_RC) {
1946 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1947 			return -EINVAL;
1948 		len = sizeof(struct ib_ud_wr);
1949 	}
1950 	return len;
1951 }
1952 
1953 /**
1954  * rvt_qp_is_avail - determine queue capacity
1955  * @qp: the qp
1956  * @rdi: the rdmavt device
1957  * @reserved_op: is reserved operation
1958  *
1959  * This assumes the s_hlock is held but the s_last
1960  * qp variable is uncontrolled.
1961  *
1962  * For non reserved operations, the qp->s_avail
1963  * may be changed.
1964  *
1965  * The return value is zero or a -ENOMEM.
1966  */
1967 static inline int rvt_qp_is_avail(
1968 	struct rvt_qp *qp,
1969 	struct rvt_dev_info *rdi,
1970 	bool reserved_op)
1971 {
1972 	u32 slast;
1973 	u32 avail;
1974 	u32 reserved_used;
1975 
1976 	/* see rvt_qp_wqe_unreserve() */
1977 	smp_mb__before_atomic();
1978 	if (unlikely(reserved_op)) {
1979 		/* see rvt_qp_wqe_unreserve() */
1980 		reserved_used = atomic_read(&qp->s_reserved_used);
1981 		if (reserved_used >= rdi->dparms.reserved_operations)
1982 			return -ENOMEM;
1983 		return 0;
1984 	}
1985 	/* non-reserved operations */
1986 	if (likely(qp->s_avail))
1987 		return 0;
1988 	/* See rvt_qp_complete_swqe() */
1989 	slast = smp_load_acquire(&qp->s_last);
1990 	if (qp->s_head >= slast)
1991 		avail = qp->s_size - (qp->s_head - slast);
1992 	else
1993 		avail = slast - qp->s_head;
1994 
1995 	reserved_used = atomic_read(&qp->s_reserved_used);
1996 	avail =  avail - 1 -
1997 		(rdi->dparms.reserved_operations - reserved_used);
1998 	/* insure we don't assign a negative s_avail */
1999 	if ((s32)avail <= 0)
2000 		return -ENOMEM;
2001 	qp->s_avail = avail;
2002 	if (WARN_ON(qp->s_avail >
2003 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
2004 		rvt_pr_err(rdi,
2005 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
2006 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
2007 			   qp->s_head, qp->s_tail, qp->s_cur,
2008 			   qp->s_acked, qp->s_last);
2009 	return 0;
2010 }
2011 
2012 /**
2013  * rvt_post_one_wr - post one RC, UC, or UD send work request
2014  * @qp: the QP to post on
2015  * @wr: the work request to send
2016  */
2017 static int rvt_post_one_wr(struct rvt_qp *qp,
2018 			   const struct ib_send_wr *wr,
2019 			   bool *call_send)
2020 {
2021 	struct rvt_swqe *wqe;
2022 	u32 next;
2023 	int i;
2024 	int j;
2025 	int acc;
2026 	struct rvt_lkey_table *rkt;
2027 	struct rvt_pd *pd;
2028 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2029 	u8 log_pmtu;
2030 	int ret;
2031 	size_t cplen;
2032 	bool reserved_op;
2033 	int local_ops_delayed = 0;
2034 
2035 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2036 
2037 	/* IB spec says that num_sge == 0 is OK. */
2038 	if (unlikely(wr->num_sge > qp->s_max_sge))
2039 		return -EINVAL;
2040 
2041 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2042 	if (ret < 0)
2043 		return ret;
2044 	cplen = ret;
2045 
2046 	/*
2047 	 * Local operations include fast register and local invalidate.
2048 	 * Fast register needs to be processed immediately because the
2049 	 * registered lkey may be used by following work requests and the
2050 	 * lkey needs to be valid at the time those requests are posted.
2051 	 * Local invalidate can be processed immediately if fencing is
2052 	 * not required and no previous local invalidate ops are pending.
2053 	 * Signaled local operations that have been processed immediately
2054 	 * need to have requests with "completion only" flags set posted
2055 	 * to the send queue in order to generate completions.
2056 	 */
2057 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2058 		switch (wr->opcode) {
2059 		case IB_WR_REG_MR:
2060 			ret = rvt_fast_reg_mr(qp,
2061 					      reg_wr(wr)->mr,
2062 					      reg_wr(wr)->key,
2063 					      reg_wr(wr)->access);
2064 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2065 				return ret;
2066 			break;
2067 		case IB_WR_LOCAL_INV:
2068 			if ((wr->send_flags & IB_SEND_FENCE) ||
2069 			    atomic_read(&qp->local_ops_pending)) {
2070 				local_ops_delayed = 1;
2071 			} else {
2072 				ret = rvt_invalidate_rkey(
2073 					qp, wr->ex.invalidate_rkey);
2074 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2075 					return ret;
2076 			}
2077 			break;
2078 		default:
2079 			return -EINVAL;
2080 		}
2081 	}
2082 
2083 	reserved_op = rdi->post_parms[wr->opcode].flags &
2084 			RVT_OPERATION_USE_RESERVE;
2085 	/* check for avail */
2086 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2087 	if (ret)
2088 		return ret;
2089 	next = qp->s_head + 1;
2090 	if (next >= qp->s_size)
2091 		next = 0;
2092 
2093 	rkt = &rdi->lkey_table;
2094 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2095 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2096 
2097 	/* cplen has length from above */
2098 	memcpy(&wqe->wr, wr, cplen);
2099 
2100 	wqe->length = 0;
2101 	j = 0;
2102 	if (wr->num_sge) {
2103 		struct rvt_sge *last_sge = NULL;
2104 
2105 		acc = wr->opcode >= IB_WR_RDMA_READ ?
2106 			IB_ACCESS_LOCAL_WRITE : 0;
2107 		for (i = 0; i < wr->num_sge; i++) {
2108 			u32 length = wr->sg_list[i].length;
2109 
2110 			if (length == 0)
2111 				continue;
2112 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2113 					  &wr->sg_list[i], acc);
2114 			if (unlikely(ret < 0))
2115 				goto bail_inval_free;
2116 			wqe->length += length;
2117 			if (ret)
2118 				last_sge = &wqe->sg_list[j];
2119 			j += ret;
2120 		}
2121 		wqe->wr.num_sge = j;
2122 	}
2123 
2124 	/*
2125 	 * Calculate and set SWQE PSN values prior to handing it off
2126 	 * to the driver's check routine. This give the driver the
2127 	 * opportunity to adjust PSN values based on internal checks.
2128 	 */
2129 	log_pmtu = qp->log_pmtu;
2130 	if (qp->allowed_ops == IB_OPCODE_UD) {
2131 		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2132 
2133 		log_pmtu = ah->log_pmtu;
2134 		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2135 	}
2136 
2137 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2138 		if (local_ops_delayed)
2139 			atomic_inc(&qp->local_ops_pending);
2140 		else
2141 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2142 		wqe->ssn = 0;
2143 		wqe->psn = 0;
2144 		wqe->lpsn = 0;
2145 	} else {
2146 		wqe->ssn = qp->s_ssn++;
2147 		wqe->psn = qp->s_next_psn;
2148 		wqe->lpsn = wqe->psn +
2149 				(wqe->length ?
2150 					((wqe->length - 1) >> log_pmtu) :
2151 					0);
2152 	}
2153 
2154 	/* general part of wqe valid - allow for driver checks */
2155 	if (rdi->driver_f.setup_wqe) {
2156 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2157 		if (ret < 0)
2158 			goto bail_inval_free_ref;
2159 	}
2160 
2161 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2162 		qp->s_next_psn = wqe->lpsn + 1;
2163 
2164 	if (unlikely(reserved_op)) {
2165 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2166 		rvt_qp_wqe_reserve(qp, wqe);
2167 	} else {
2168 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2169 		qp->s_avail--;
2170 	}
2171 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2172 	smp_wmb(); /* see request builders */
2173 	qp->s_head = next;
2174 
2175 	return 0;
2176 
2177 bail_inval_free_ref:
2178 	if (qp->allowed_ops == IB_OPCODE_UD)
2179 		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2180 bail_inval_free:
2181 	/* release mr holds */
2182 	while (j) {
2183 		struct rvt_sge *sge = &wqe->sg_list[--j];
2184 
2185 		rvt_put_mr(sge->mr);
2186 	}
2187 	return ret;
2188 }
2189 
2190 /**
2191  * rvt_post_send - post a send on a QP
2192  * @ibqp: the QP to post the send on
2193  * @wr: the list of work requests to post
2194  * @bad_wr: the first bad WR is put here
2195  *
2196  * This may be called from interrupt context.
2197  *
2198  * Return: 0 on success else errno
2199  */
2200 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2201 		  const struct ib_send_wr **bad_wr)
2202 {
2203 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2204 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2205 	unsigned long flags = 0;
2206 	bool call_send;
2207 	unsigned nreq = 0;
2208 	int err = 0;
2209 
2210 	spin_lock_irqsave(&qp->s_hlock, flags);
2211 
2212 	/*
2213 	 * Ensure QP state is such that we can send. If not bail out early,
2214 	 * there is no need to do this every time we post a send.
2215 	 */
2216 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2217 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2218 		return -EINVAL;
2219 	}
2220 
2221 	/*
2222 	 * If the send queue is empty, and we only have a single WR then just go
2223 	 * ahead and kick the send engine into gear. Otherwise we will always
2224 	 * just schedule the send to happen later.
2225 	 */
2226 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2227 
2228 	for (; wr; wr = wr->next) {
2229 		err = rvt_post_one_wr(qp, wr, &call_send);
2230 		if (unlikely(err)) {
2231 			*bad_wr = wr;
2232 			goto bail;
2233 		}
2234 		nreq++;
2235 	}
2236 bail:
2237 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2238 	if (nreq) {
2239 		/*
2240 		 * Only call do_send if there is exactly one packet, and the
2241 		 * driver said it was ok.
2242 		 */
2243 		if (nreq == 1 && call_send)
2244 			rdi->driver_f.do_send(qp);
2245 		else
2246 			rdi->driver_f.schedule_send_no_lock(qp);
2247 	}
2248 	return err;
2249 }
2250 
2251 /**
2252  * rvt_post_srq_recv - post a receive on a shared receive queue
2253  * @ibsrq: the SRQ to post the receive on
2254  * @wr: the list of work requests to post
2255  * @bad_wr: A pointer to the first WR to cause a problem is put here
2256  *
2257  * This may be called from interrupt context.
2258  *
2259  * Return: 0 on success else errno
2260  */
2261 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2262 		      const struct ib_recv_wr **bad_wr)
2263 {
2264 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2265 	struct rvt_krwq *wq;
2266 	unsigned long flags;
2267 
2268 	for (; wr; wr = wr->next) {
2269 		struct rvt_rwqe *wqe;
2270 		u32 next;
2271 		int i;
2272 
2273 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2274 			*bad_wr = wr;
2275 			return -EINVAL;
2276 		}
2277 
2278 		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2279 		wq = srq->rq.kwq;
2280 		next = wq->head + 1;
2281 		if (next >= srq->rq.size)
2282 			next = 0;
2283 		if (next == READ_ONCE(wq->tail)) {
2284 			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2285 			*bad_wr = wr;
2286 			return -ENOMEM;
2287 		}
2288 
2289 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2290 		wqe->wr_id = wr->wr_id;
2291 		wqe->num_sge = wr->num_sge;
2292 		for (i = 0; i < wr->num_sge; i++) {
2293 			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2294 			wqe->sg_list[i].length = wr->sg_list[i].length;
2295 			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2296 		}
2297 		/* Make sure queue entry is written before the head index. */
2298 		smp_store_release(&wq->head, next);
2299 		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2300 	}
2301 	return 0;
2302 }
2303 
2304 /*
2305  * rvt used the internal kernel struct as part of its ABI, for now make sure
2306  * the kernel struct does not change layout. FIXME: rvt should never cast the
2307  * user struct to a kernel struct.
2308  */
2309 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2310 {
2311 	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2312 		     offsetof(struct rvt_wqe_sge, addr));
2313 	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2314 		     offsetof(struct rvt_wqe_sge, length));
2315 	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2316 		     offsetof(struct rvt_wqe_sge, lkey));
2317 	return (struct ib_sge *)sge;
2318 }
2319 
2320 /*
2321  * Validate a RWQE and fill in the SGE state.
2322  * Return 1 if OK.
2323  */
2324 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2325 {
2326 	int i, j, ret;
2327 	struct ib_wc wc;
2328 	struct rvt_lkey_table *rkt;
2329 	struct rvt_pd *pd;
2330 	struct rvt_sge_state *ss;
2331 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2332 
2333 	rkt = &rdi->lkey_table;
2334 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2335 	ss = &qp->r_sge;
2336 	ss->sg_list = qp->r_sg_list;
2337 	qp->r_len = 0;
2338 	for (i = j = 0; i < wqe->num_sge; i++) {
2339 		if (wqe->sg_list[i].length == 0)
2340 			continue;
2341 		/* Check LKEY */
2342 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2343 				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2344 				  IB_ACCESS_LOCAL_WRITE);
2345 		if (unlikely(ret <= 0))
2346 			goto bad_lkey;
2347 		qp->r_len += wqe->sg_list[i].length;
2348 		j++;
2349 	}
2350 	ss->num_sge = j;
2351 	ss->total_len = qp->r_len;
2352 	return 1;
2353 
2354 bad_lkey:
2355 	while (j) {
2356 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2357 
2358 		rvt_put_mr(sge->mr);
2359 	}
2360 	ss->num_sge = 0;
2361 	memset(&wc, 0, sizeof(wc));
2362 	wc.wr_id = wqe->wr_id;
2363 	wc.status = IB_WC_LOC_PROT_ERR;
2364 	wc.opcode = IB_WC_RECV;
2365 	wc.qp = &qp->ibqp;
2366 	/* Signal solicited completion event. */
2367 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2368 	return 0;
2369 }
2370 
2371 /**
2372  * get_rvt_head - get head indices of the circular buffer
2373  * @rq: data structure for request queue entry
2374  * @ip: the QP
2375  *
2376  * Return - head index value
2377  */
2378 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2379 {
2380 	u32 head;
2381 
2382 	if (ip)
2383 		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2384 	else
2385 		head = rq->kwq->head;
2386 
2387 	return head;
2388 }
2389 
2390 /**
2391  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2392  * @qp: the QP
2393  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2394  *
2395  * Return -1 if there is a local error, 0 if no RWQE is available,
2396  * otherwise return 1.
2397  *
2398  * Can be called from interrupt level.
2399  */
2400 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2401 {
2402 	unsigned long flags;
2403 	struct rvt_rq *rq;
2404 	struct rvt_krwq *kwq = NULL;
2405 	struct rvt_rwq *wq;
2406 	struct rvt_srq *srq;
2407 	struct rvt_rwqe *wqe;
2408 	void (*handler)(struct ib_event *, void *);
2409 	u32 tail;
2410 	u32 head;
2411 	int ret;
2412 	void *ip = NULL;
2413 
2414 	if (qp->ibqp.srq) {
2415 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2416 		handler = srq->ibsrq.event_handler;
2417 		rq = &srq->rq;
2418 		ip = srq->ip;
2419 	} else {
2420 		srq = NULL;
2421 		handler = NULL;
2422 		rq = &qp->r_rq;
2423 		ip = qp->ip;
2424 	}
2425 
2426 	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2427 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2428 		ret = 0;
2429 		goto unlock;
2430 	}
2431 	kwq = rq->kwq;
2432 	if (ip) {
2433 		wq = rq->wq;
2434 		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2435 	} else {
2436 		tail = kwq->tail;
2437 	}
2438 
2439 	/* Validate tail before using it since it is user writable. */
2440 	if (tail >= rq->size)
2441 		tail = 0;
2442 
2443 	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2444 		head = get_rvt_head(rq, ip);
2445 		kwq->count = rvt_get_rq_count(rq, head, tail);
2446 	}
2447 	if (unlikely(kwq->count == 0)) {
2448 		ret = 0;
2449 		goto unlock;
2450 	}
2451 	/* Make sure entry is read after the count is read. */
2452 	smp_rmb();
2453 	wqe = rvt_get_rwqe_ptr(rq, tail);
2454 	/*
2455 	 * Even though we update the tail index in memory, the verbs
2456 	 * consumer is not supposed to post more entries until a
2457 	 * completion is generated.
2458 	 */
2459 	if (++tail >= rq->size)
2460 		tail = 0;
2461 	if (ip)
2462 		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2463 	else
2464 		kwq->tail = tail;
2465 	if (!wr_id_only && !init_sge(qp, wqe)) {
2466 		ret = -1;
2467 		goto unlock;
2468 	}
2469 	qp->r_wr_id = wqe->wr_id;
2470 
2471 	kwq->count--;
2472 	ret = 1;
2473 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2474 	if (handler) {
2475 		/*
2476 		 * Validate head pointer value and compute
2477 		 * the number of remaining WQEs.
2478 		 */
2479 		if (kwq->count < srq->limit) {
2480 			kwq->count =
2481 				rvt_get_rq_count(rq,
2482 						 get_rvt_head(rq, ip), tail);
2483 			if (kwq->count < srq->limit) {
2484 				struct ib_event ev;
2485 
2486 				srq->limit = 0;
2487 				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2488 				ev.device = qp->ibqp.device;
2489 				ev.element.srq = qp->ibqp.srq;
2490 				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2491 				handler(&ev, srq->ibsrq.srq_context);
2492 				goto bail;
2493 			}
2494 		}
2495 	}
2496 unlock:
2497 	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2498 bail:
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL(rvt_get_rwqe);
2502 
2503 /**
2504  * rvt_comm_est - handle trap with QP established
2505  * @qp: the QP
2506  */
2507 void rvt_comm_est(struct rvt_qp *qp)
2508 {
2509 	qp->r_flags |= RVT_R_COMM_EST;
2510 	if (qp->ibqp.event_handler) {
2511 		struct ib_event ev;
2512 
2513 		ev.device = qp->ibqp.device;
2514 		ev.element.qp = &qp->ibqp;
2515 		ev.event = IB_EVENT_COMM_EST;
2516 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2517 	}
2518 }
2519 EXPORT_SYMBOL(rvt_comm_est);
2520 
2521 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2522 {
2523 	unsigned long flags;
2524 	int lastwqe;
2525 
2526 	spin_lock_irqsave(&qp->s_lock, flags);
2527 	lastwqe = rvt_error_qp(qp, err);
2528 	spin_unlock_irqrestore(&qp->s_lock, flags);
2529 
2530 	if (lastwqe) {
2531 		struct ib_event ev;
2532 
2533 		ev.device = qp->ibqp.device;
2534 		ev.element.qp = &qp->ibqp;
2535 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2536 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2537 	}
2538 }
2539 EXPORT_SYMBOL(rvt_rc_error);
2540 
2541 /*
2542  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2543  *  @index - the index
2544  *  return usec from an index into ib_rvt_rnr_table
2545  */
2546 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2547 {
2548 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2549 }
2550 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2551 
2552 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2553 {
2554 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2555 				  IB_AETH_CREDIT_MASK];
2556 }
2557 
2558 /*
2559  *  rvt_add_retry_timer_ext - add/start a retry timer
2560  *  @qp - the QP
2561  *  @shift - timeout shift to wait for multiple packets
2562  *  add a retry timer on the QP
2563  */
2564 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2565 {
2566 	struct ib_qp *ibqp = &qp->ibqp;
2567 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2568 
2569 	lockdep_assert_held(&qp->s_lock);
2570 	qp->s_flags |= RVT_S_TIMER;
2571        /* 4.096 usec. * (1 << qp->timeout) */
2572 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2573 			      (qp->timeout_jiffies << shift);
2574 	add_timer(&qp->s_timer);
2575 }
2576 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2577 
2578 /**
2579  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2580  * @qp: the QP
2581  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2582  */
2583 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2584 {
2585 	u32 to;
2586 
2587 	lockdep_assert_held(&qp->s_lock);
2588 	qp->s_flags |= RVT_S_WAIT_RNR;
2589 	to = rvt_aeth_to_usec(aeth);
2590 	trace_rvt_rnrnak_add(qp, to);
2591 	hrtimer_start(&qp->s_rnr_timer,
2592 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2593 }
2594 EXPORT_SYMBOL(rvt_add_rnr_timer);
2595 
2596 /**
2597  * rvt_stop_rc_timers - stop all timers
2598  * @qp: the QP
2599  * stop any pending timers
2600  */
2601 void rvt_stop_rc_timers(struct rvt_qp *qp)
2602 {
2603 	lockdep_assert_held(&qp->s_lock);
2604 	/* Remove QP from all timers */
2605 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2606 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2607 		del_timer(&qp->s_timer);
2608 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2609 	}
2610 }
2611 EXPORT_SYMBOL(rvt_stop_rc_timers);
2612 
2613 /**
2614  * rvt_stop_rnr_timer - stop an rnr timer
2615  * @qp - the QP
2616  *
2617  * stop an rnr timer and return if the timer
2618  * had been pending.
2619  */
2620 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2621 {
2622 	lockdep_assert_held(&qp->s_lock);
2623 	/* Remove QP from rnr timer */
2624 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2625 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2626 		trace_rvt_rnrnak_stop(qp, 0);
2627 	}
2628 }
2629 
2630 /**
2631  * rvt_del_timers_sync - wait for any timeout routines to exit
2632  * @qp: the QP
2633  */
2634 void rvt_del_timers_sync(struct rvt_qp *qp)
2635 {
2636 	del_timer_sync(&qp->s_timer);
2637 	hrtimer_cancel(&qp->s_rnr_timer);
2638 }
2639 EXPORT_SYMBOL(rvt_del_timers_sync);
2640 
2641 /*
2642  * This is called from s_timer for missing responses.
2643  */
2644 static void rvt_rc_timeout(struct timer_list *t)
2645 {
2646 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2647 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2648 	unsigned long flags;
2649 
2650 	spin_lock_irqsave(&qp->r_lock, flags);
2651 	spin_lock(&qp->s_lock);
2652 	if (qp->s_flags & RVT_S_TIMER) {
2653 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2654 
2655 		qp->s_flags &= ~RVT_S_TIMER;
2656 		rvp->n_rc_timeouts++;
2657 		del_timer(&qp->s_timer);
2658 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2659 		if (rdi->driver_f.notify_restart_rc)
2660 			rdi->driver_f.notify_restart_rc(qp,
2661 							qp->s_last_psn + 1,
2662 							1);
2663 		rdi->driver_f.schedule_send(qp);
2664 	}
2665 	spin_unlock(&qp->s_lock);
2666 	spin_unlock_irqrestore(&qp->r_lock, flags);
2667 }
2668 
2669 /*
2670  * This is called from s_timer for RNR timeouts.
2671  */
2672 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2673 {
2674 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2675 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2676 	unsigned long flags;
2677 
2678 	spin_lock_irqsave(&qp->s_lock, flags);
2679 	rvt_stop_rnr_timer(qp);
2680 	trace_rvt_rnrnak_timeout(qp, 0);
2681 	rdi->driver_f.schedule_send(qp);
2682 	spin_unlock_irqrestore(&qp->s_lock, flags);
2683 	return HRTIMER_NORESTART;
2684 }
2685 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2686 
2687 /**
2688  * rvt_qp_iter_init - initial for QP iteration
2689  * @rdi: rvt devinfo
2690  * @v: u64 value
2691  * @cb: user-defined callback
2692  *
2693  * This returns an iterator suitable for iterating QPs
2694  * in the system.
2695  *
2696  * The @cb is a user-defined callback and @v is a 64-bit
2697  * value passed to and relevant for processing in the
2698  * @cb.  An example use case would be to alter QP processing
2699  * based on criteria not part of the rvt_qp.
2700  *
2701  * Use cases that require memory allocation to succeed
2702  * must preallocate appropriately.
2703  *
2704  * Return: a pointer to an rvt_qp_iter or NULL
2705  */
2706 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2707 				     u64 v,
2708 				     void (*cb)(struct rvt_qp *qp, u64 v))
2709 {
2710 	struct rvt_qp_iter *i;
2711 
2712 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2713 	if (!i)
2714 		return NULL;
2715 
2716 	i->rdi = rdi;
2717 	/* number of special QPs (SMI/GSI) for device */
2718 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2719 	i->v = v;
2720 	i->cb = cb;
2721 
2722 	return i;
2723 }
2724 EXPORT_SYMBOL(rvt_qp_iter_init);
2725 
2726 /**
2727  * rvt_qp_iter_next - return the next QP in iter
2728  * @iter: the iterator
2729  *
2730  * Fine grained QP iterator suitable for use
2731  * with debugfs seq_file mechanisms.
2732  *
2733  * Updates iter->qp with the current QP when the return
2734  * value is 0.
2735  *
2736  * Return: 0 - iter->qp is valid 1 - no more QPs
2737  */
2738 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2739 	__must_hold(RCU)
2740 {
2741 	int n = iter->n;
2742 	int ret = 1;
2743 	struct rvt_qp *pqp = iter->qp;
2744 	struct rvt_qp *qp;
2745 	struct rvt_dev_info *rdi = iter->rdi;
2746 
2747 	/*
2748 	 * The approach is to consider the special qps
2749 	 * as additional table entries before the
2750 	 * real hash table.  Since the qp code sets
2751 	 * the qp->next hash link to NULL, this works just fine.
2752 	 *
2753 	 * iter->specials is 2 * # ports
2754 	 *
2755 	 * n = 0..iter->specials is the special qp indices
2756 	 *
2757 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2758 	 * the potential hash bucket entries
2759 	 *
2760 	 */
2761 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2762 		if (pqp) {
2763 			qp = rcu_dereference(pqp->next);
2764 		} else {
2765 			if (n < iter->specials) {
2766 				struct rvt_ibport *rvp;
2767 				int pidx;
2768 
2769 				pidx = n % rdi->ibdev.phys_port_cnt;
2770 				rvp = rdi->ports[pidx];
2771 				qp = rcu_dereference(rvp->qp[n & 1]);
2772 			} else {
2773 				qp = rcu_dereference(
2774 					rdi->qp_dev->qp_table[
2775 						(n - iter->specials)]);
2776 			}
2777 		}
2778 		pqp = qp;
2779 		if (qp) {
2780 			iter->qp = qp;
2781 			iter->n = n;
2782 			return 0;
2783 		}
2784 	}
2785 	return ret;
2786 }
2787 EXPORT_SYMBOL(rvt_qp_iter_next);
2788 
2789 /**
2790  * rvt_qp_iter - iterate all QPs
2791  * @rdi: rvt devinfo
2792  * @v: a 64-bit value
2793  * @cb: a callback
2794  *
2795  * This provides a way for iterating all QPs.
2796  *
2797  * The @cb is a user-defined callback and @v is a 64-bit
2798  * value passed to and relevant for processing in the
2799  * cb.  An example use case would be to alter QP processing
2800  * based on criteria not part of the rvt_qp.
2801  *
2802  * The code has an internal iterator to simplify
2803  * non seq_file use cases.
2804  */
2805 void rvt_qp_iter(struct rvt_dev_info *rdi,
2806 		 u64 v,
2807 		 void (*cb)(struct rvt_qp *qp, u64 v))
2808 {
2809 	int ret;
2810 	struct rvt_qp_iter i = {
2811 		.rdi = rdi,
2812 		.specials = rdi->ibdev.phys_port_cnt * 2,
2813 		.v = v,
2814 		.cb = cb
2815 	};
2816 
2817 	rcu_read_lock();
2818 	do {
2819 		ret = rvt_qp_iter_next(&i);
2820 		if (!ret) {
2821 			rvt_get_qp(i.qp);
2822 			rcu_read_unlock();
2823 			i.cb(i.qp, i.v);
2824 			rcu_read_lock();
2825 			rvt_put_qp(i.qp);
2826 		}
2827 	} while (!ret);
2828 	rcu_read_unlock();
2829 }
2830 EXPORT_SYMBOL(rvt_qp_iter);
2831 
2832 /*
2833  * This should be called with s_lock held.
2834  */
2835 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2836 		       enum ib_wc_status status)
2837 {
2838 	u32 old_last, last;
2839 	struct rvt_dev_info *rdi;
2840 
2841 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2842 		return;
2843 	rdi = ib_to_rvt(qp->ibqp.device);
2844 
2845 	old_last = qp->s_last;
2846 	trace_rvt_qp_send_completion(qp, wqe, old_last);
2847 	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2848 				    status);
2849 	if (qp->s_acked == old_last)
2850 		qp->s_acked = last;
2851 	if (qp->s_cur == old_last)
2852 		qp->s_cur = last;
2853 	if (qp->s_tail == old_last)
2854 		qp->s_tail = last;
2855 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2856 		qp->s_draining = 0;
2857 }
2858 EXPORT_SYMBOL(rvt_send_complete);
2859 
2860 /**
2861  * rvt_copy_sge - copy data to SGE memory
2862  * @qp: associated QP
2863  * @ss: the SGE state
2864  * @data: the data to copy
2865  * @length: the length of the data
2866  * @release: boolean to release MR
2867  * @copy_last: do a separate copy of the last 8 bytes
2868  */
2869 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2870 		  void *data, u32 length,
2871 		  bool release, bool copy_last)
2872 {
2873 	struct rvt_sge *sge = &ss->sge;
2874 	int i;
2875 	bool in_last = false;
2876 	bool cacheless_copy = false;
2877 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2878 	struct rvt_wss *wss = rdi->wss;
2879 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2880 
2881 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2882 		cacheless_copy = length >= PAGE_SIZE;
2883 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2884 		if (length >= PAGE_SIZE) {
2885 			/*
2886 			 * NOTE: this *assumes*:
2887 			 * o The first vaddr is the dest.
2888 			 * o If multiple pages, then vaddr is sequential.
2889 			 */
2890 			wss_insert(wss, sge->vaddr);
2891 			if (length >= (2 * PAGE_SIZE))
2892 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2893 
2894 			cacheless_copy = wss_exceeds_threshold(wss);
2895 		} else {
2896 			wss_advance_clean_counter(wss);
2897 		}
2898 	}
2899 
2900 	if (copy_last) {
2901 		if (length > 8) {
2902 			length -= 8;
2903 		} else {
2904 			copy_last = false;
2905 			in_last = true;
2906 		}
2907 	}
2908 
2909 again:
2910 	while (length) {
2911 		u32 len = rvt_get_sge_length(sge, length);
2912 
2913 		WARN_ON_ONCE(len == 0);
2914 		if (unlikely(in_last)) {
2915 			/* enforce byte transfer ordering */
2916 			for (i = 0; i < len; i++)
2917 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2918 		} else if (cacheless_copy) {
2919 			cacheless_memcpy(sge->vaddr, data, len);
2920 		} else {
2921 			memcpy(sge->vaddr, data, len);
2922 		}
2923 		rvt_update_sge(ss, len, release);
2924 		data += len;
2925 		length -= len;
2926 	}
2927 
2928 	if (copy_last) {
2929 		copy_last = false;
2930 		in_last = true;
2931 		length = 8;
2932 		goto again;
2933 	}
2934 }
2935 EXPORT_SYMBOL(rvt_copy_sge);
2936 
2937 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2938 					  struct rvt_qp *sqp)
2939 {
2940 	rvp->n_pkt_drops++;
2941 	/*
2942 	 * For RC, the requester would timeout and retry so
2943 	 * shortcut the timeouts and just signal too many retries.
2944 	 */
2945 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2946 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2947 }
2948 
2949 /**
2950  * rvt_ruc_loopback - handle UC and RC loopback requests
2951  * @sqp: the sending QP
2952  *
2953  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2954  * Note that although we are single threaded due to the send engine, we still
2955  * have to protect against post_send().  We don't have to worry about
2956  * receive interrupts since this is a connected protocol and all packets
2957  * will pass through here.
2958  */
2959 void rvt_ruc_loopback(struct rvt_qp *sqp)
2960 {
2961 	struct rvt_ibport *rvp =  NULL;
2962 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2963 	struct rvt_qp *qp;
2964 	struct rvt_swqe *wqe;
2965 	struct rvt_sge *sge;
2966 	unsigned long flags;
2967 	struct ib_wc wc;
2968 	u64 sdata;
2969 	atomic64_t *maddr;
2970 	enum ib_wc_status send_status;
2971 	bool release;
2972 	int ret;
2973 	bool copy_last = false;
2974 	int local_ops = 0;
2975 
2976 	rcu_read_lock();
2977 	rvp = rdi->ports[sqp->port_num - 1];
2978 
2979 	/*
2980 	 * Note that we check the responder QP state after
2981 	 * checking the requester's state.
2982 	 */
2983 
2984 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2985 			    sqp->remote_qpn);
2986 
2987 	spin_lock_irqsave(&sqp->s_lock, flags);
2988 
2989 	/* Return if we are already busy processing a work request. */
2990 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2991 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2992 		goto unlock;
2993 
2994 	sqp->s_flags |= RVT_S_BUSY;
2995 
2996 again:
2997 	if (sqp->s_last == READ_ONCE(sqp->s_head))
2998 		goto clr_busy;
2999 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
3000 
3001 	/* Return if it is not OK to start a new work request. */
3002 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
3003 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
3004 			goto clr_busy;
3005 		/* We are in the error state, flush the work request. */
3006 		send_status = IB_WC_WR_FLUSH_ERR;
3007 		goto flush_send;
3008 	}
3009 
3010 	/*
3011 	 * We can rely on the entry not changing without the s_lock
3012 	 * being held until we update s_last.
3013 	 * We increment s_cur to indicate s_last is in progress.
3014 	 */
3015 	if (sqp->s_last == sqp->s_cur) {
3016 		if (++sqp->s_cur >= sqp->s_size)
3017 			sqp->s_cur = 0;
3018 	}
3019 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3020 
3021 	if (!qp) {
3022 		send_status = loopback_qp_drop(rvp, sqp);
3023 		goto serr_no_r_lock;
3024 	}
3025 	spin_lock_irqsave(&qp->r_lock, flags);
3026 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3027 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3028 		send_status = loopback_qp_drop(rvp, sqp);
3029 		goto serr;
3030 	}
3031 
3032 	memset(&wc, 0, sizeof(wc));
3033 	send_status = IB_WC_SUCCESS;
3034 
3035 	release = true;
3036 	sqp->s_sge.sge = wqe->sg_list[0];
3037 	sqp->s_sge.sg_list = wqe->sg_list + 1;
3038 	sqp->s_sge.num_sge = wqe->wr.num_sge;
3039 	sqp->s_len = wqe->length;
3040 	switch (wqe->wr.opcode) {
3041 	case IB_WR_REG_MR:
3042 		goto send_comp;
3043 
3044 	case IB_WR_LOCAL_INV:
3045 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3046 			if (rvt_invalidate_rkey(sqp,
3047 						wqe->wr.ex.invalidate_rkey))
3048 				send_status = IB_WC_LOC_PROT_ERR;
3049 			local_ops = 1;
3050 		}
3051 		goto send_comp;
3052 
3053 	case IB_WR_SEND_WITH_INV:
3054 	case IB_WR_SEND_WITH_IMM:
3055 	case IB_WR_SEND:
3056 		ret = rvt_get_rwqe(qp, false);
3057 		if (ret < 0)
3058 			goto op_err;
3059 		if (!ret)
3060 			goto rnr_nak;
3061 		if (wqe->length > qp->r_len)
3062 			goto inv_err;
3063 		switch (wqe->wr.opcode) {
3064 		case IB_WR_SEND_WITH_INV:
3065 			if (!rvt_invalidate_rkey(qp,
3066 						 wqe->wr.ex.invalidate_rkey)) {
3067 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3068 				wc.ex.invalidate_rkey =
3069 					wqe->wr.ex.invalidate_rkey;
3070 			}
3071 			break;
3072 		case IB_WR_SEND_WITH_IMM:
3073 			wc.wc_flags = IB_WC_WITH_IMM;
3074 			wc.ex.imm_data = wqe->wr.ex.imm_data;
3075 			break;
3076 		default:
3077 			break;
3078 		}
3079 		break;
3080 
3081 	case IB_WR_RDMA_WRITE_WITH_IMM:
3082 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3083 			goto inv_err;
3084 		wc.wc_flags = IB_WC_WITH_IMM;
3085 		wc.ex.imm_data = wqe->wr.ex.imm_data;
3086 		ret = rvt_get_rwqe(qp, true);
3087 		if (ret < 0)
3088 			goto op_err;
3089 		if (!ret)
3090 			goto rnr_nak;
3091 		/* skip copy_last set and qp_access_flags recheck */
3092 		goto do_write;
3093 	case IB_WR_RDMA_WRITE:
3094 		copy_last = rvt_is_user_qp(qp);
3095 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3096 			goto inv_err;
3097 do_write:
3098 		if (wqe->length == 0)
3099 			break;
3100 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3101 					  wqe->rdma_wr.remote_addr,
3102 					  wqe->rdma_wr.rkey,
3103 					  IB_ACCESS_REMOTE_WRITE)))
3104 			goto acc_err;
3105 		qp->r_sge.sg_list = NULL;
3106 		qp->r_sge.num_sge = 1;
3107 		qp->r_sge.total_len = wqe->length;
3108 		break;
3109 
3110 	case IB_WR_RDMA_READ:
3111 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3112 			goto inv_err;
3113 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3114 					  wqe->rdma_wr.remote_addr,
3115 					  wqe->rdma_wr.rkey,
3116 					  IB_ACCESS_REMOTE_READ)))
3117 			goto acc_err;
3118 		release = false;
3119 		sqp->s_sge.sg_list = NULL;
3120 		sqp->s_sge.num_sge = 1;
3121 		qp->r_sge.sge = wqe->sg_list[0];
3122 		qp->r_sge.sg_list = wqe->sg_list + 1;
3123 		qp->r_sge.num_sge = wqe->wr.num_sge;
3124 		qp->r_sge.total_len = wqe->length;
3125 		break;
3126 
3127 	case IB_WR_ATOMIC_CMP_AND_SWP:
3128 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3129 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3130 			goto inv_err;
3131 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3132 					  wqe->atomic_wr.remote_addr,
3133 					  wqe->atomic_wr.rkey,
3134 					  IB_ACCESS_REMOTE_ATOMIC)))
3135 			goto acc_err;
3136 		/* Perform atomic OP and save result. */
3137 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3138 		sdata = wqe->atomic_wr.compare_add;
3139 		*(u64 *)sqp->s_sge.sge.vaddr =
3140 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3141 			(u64)atomic64_add_return(sdata, maddr) - sdata :
3142 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3143 				      sdata, wqe->atomic_wr.swap);
3144 		rvt_put_mr(qp->r_sge.sge.mr);
3145 		qp->r_sge.num_sge = 0;
3146 		goto send_comp;
3147 
3148 	default:
3149 		send_status = IB_WC_LOC_QP_OP_ERR;
3150 		goto serr;
3151 	}
3152 
3153 	sge = &sqp->s_sge.sge;
3154 	while (sqp->s_len) {
3155 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3156 
3157 		WARN_ON_ONCE(len == 0);
3158 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3159 			     len, release, copy_last);
3160 		rvt_update_sge(&sqp->s_sge, len, !release);
3161 		sqp->s_len -= len;
3162 	}
3163 	if (release)
3164 		rvt_put_ss(&qp->r_sge);
3165 
3166 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3167 		goto send_comp;
3168 
3169 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3170 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3171 	else
3172 		wc.opcode = IB_WC_RECV;
3173 	wc.wr_id = qp->r_wr_id;
3174 	wc.status = IB_WC_SUCCESS;
3175 	wc.byte_len = wqe->length;
3176 	wc.qp = &qp->ibqp;
3177 	wc.src_qp = qp->remote_qpn;
3178 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3179 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3180 	wc.port_num = 1;
3181 	/* Signal completion event if the solicited bit is set. */
3182 	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3183 
3184 send_comp:
3185 	spin_unlock_irqrestore(&qp->r_lock, flags);
3186 	spin_lock_irqsave(&sqp->s_lock, flags);
3187 	rvp->n_loop_pkts++;
3188 flush_send:
3189 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3190 	rvt_send_complete(sqp, wqe, send_status);
3191 	if (local_ops) {
3192 		atomic_dec(&sqp->local_ops_pending);
3193 		local_ops = 0;
3194 	}
3195 	goto again;
3196 
3197 rnr_nak:
3198 	/* Handle RNR NAK */
3199 	if (qp->ibqp.qp_type == IB_QPT_UC)
3200 		goto send_comp;
3201 	rvp->n_rnr_naks++;
3202 	/*
3203 	 * Note: we don't need the s_lock held since the BUSY flag
3204 	 * makes this single threaded.
3205 	 */
3206 	if (sqp->s_rnr_retry == 0) {
3207 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3208 		goto serr;
3209 	}
3210 	if (sqp->s_rnr_retry_cnt < 7)
3211 		sqp->s_rnr_retry--;
3212 	spin_unlock_irqrestore(&qp->r_lock, flags);
3213 	spin_lock_irqsave(&sqp->s_lock, flags);
3214 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3215 		goto clr_busy;
3216 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3217 				IB_AETH_CREDIT_SHIFT);
3218 	goto clr_busy;
3219 
3220 op_err:
3221 	send_status = IB_WC_REM_OP_ERR;
3222 	wc.status = IB_WC_LOC_QP_OP_ERR;
3223 	goto err;
3224 
3225 inv_err:
3226 	send_status =
3227 		sqp->ibqp.qp_type == IB_QPT_RC ?
3228 			IB_WC_REM_INV_REQ_ERR :
3229 			IB_WC_SUCCESS;
3230 	wc.status = IB_WC_LOC_QP_OP_ERR;
3231 	goto err;
3232 
3233 acc_err:
3234 	send_status = IB_WC_REM_ACCESS_ERR;
3235 	wc.status = IB_WC_LOC_PROT_ERR;
3236 err:
3237 	/* responder goes to error state */
3238 	rvt_rc_error(qp, wc.status);
3239 
3240 serr:
3241 	spin_unlock_irqrestore(&qp->r_lock, flags);
3242 serr_no_r_lock:
3243 	spin_lock_irqsave(&sqp->s_lock, flags);
3244 	rvt_send_complete(sqp, wqe, send_status);
3245 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3246 		int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3247 
3248 		sqp->s_flags &= ~RVT_S_BUSY;
3249 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3250 		if (lastwqe) {
3251 			struct ib_event ev;
3252 
3253 			ev.device = sqp->ibqp.device;
3254 			ev.element.qp = &sqp->ibqp;
3255 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3256 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3257 		}
3258 		goto done;
3259 	}
3260 clr_busy:
3261 	sqp->s_flags &= ~RVT_S_BUSY;
3262 unlock:
3263 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3264 done:
3265 	rcu_read_unlock();
3266 }
3267 EXPORT_SYMBOL(rvt_ruc_loopback);
3268