1 /* 2 * Copyright(c) 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include "qp.h" 55 #include "vt.h" 56 #include "trace.h" 57 58 /* 59 * Note that it is OK to post send work requests in the SQE and ERR 60 * states; rvt_do_send() will process them and generate error 61 * completions as per IB 1.2 C10-96. 62 */ 63 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 64 [IB_QPS_RESET] = 0, 65 [IB_QPS_INIT] = RVT_POST_RECV_OK, 66 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 67 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 68 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 69 RVT_PROCESS_NEXT_SEND_OK, 70 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 71 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 72 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 73 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 74 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 75 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 76 }; 77 EXPORT_SYMBOL(ib_rvt_state_ops); 78 79 /* 80 * Translate ib_wr_opcode into ib_wc_opcode. 81 */ 82 const enum ib_wc_opcode ib_rvt_wc_opcode[] = { 83 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, 84 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, 85 [IB_WR_SEND] = IB_WC_SEND, 86 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, 87 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, 88 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, 89 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, 90 [IB_WR_SEND_WITH_INV] = IB_WC_SEND, 91 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, 92 [IB_WR_REG_MR] = IB_WC_REG_MR 93 }; 94 EXPORT_SYMBOL(ib_rvt_wc_opcode); 95 96 static void get_map_page(struct rvt_qpn_table *qpt, 97 struct rvt_qpn_map *map, 98 gfp_t gfp) 99 { 100 unsigned long page = get_zeroed_page(gfp); 101 102 /* 103 * Free the page if someone raced with us installing it. 104 */ 105 106 spin_lock(&qpt->lock); 107 if (map->page) 108 free_page(page); 109 else 110 map->page = (void *)page; 111 spin_unlock(&qpt->lock); 112 } 113 114 /** 115 * init_qpn_table - initialize the QP number table for a device 116 * @qpt: the QPN table 117 */ 118 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 119 { 120 u32 offset, i; 121 struct rvt_qpn_map *map; 122 int ret = 0; 123 124 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 125 return -EINVAL; 126 127 spin_lock_init(&qpt->lock); 128 129 qpt->last = rdi->dparms.qpn_start; 130 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 131 132 /* 133 * Drivers may want some QPs beyond what we need for verbs let them use 134 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 135 * for those. The reserved range must be *after* the range which verbs 136 * will pick from. 137 */ 138 139 /* Figure out number of bit maps needed before reserved range */ 140 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 141 142 /* This should always be zero */ 143 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 144 145 /* Starting with the first reserved bit map */ 146 map = &qpt->map[qpt->nmaps]; 147 148 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 149 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 150 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 151 if (!map->page) { 152 get_map_page(qpt, map, GFP_KERNEL); 153 if (!map->page) { 154 ret = -ENOMEM; 155 break; 156 } 157 } 158 set_bit(offset, map->page); 159 offset++; 160 if (offset == RVT_BITS_PER_PAGE) { 161 /* next page */ 162 qpt->nmaps++; 163 map++; 164 offset = 0; 165 } 166 } 167 return ret; 168 } 169 170 /** 171 * free_qpn_table - free the QP number table for a device 172 * @qpt: the QPN table 173 */ 174 static void free_qpn_table(struct rvt_qpn_table *qpt) 175 { 176 int i; 177 178 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 179 free_page((unsigned long)qpt->map[i].page); 180 } 181 182 /** 183 * rvt_driver_qp_init - Init driver qp resources 184 * @rdi: rvt dev strucutre 185 * 186 * Return: 0 on success 187 */ 188 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 189 { 190 int i; 191 int ret = -ENOMEM; 192 193 if (!rdi->dparms.qp_table_size) 194 return -EINVAL; 195 196 /* 197 * If driver is not doing any QP allocation then make sure it is 198 * providing the necessary QP functions. 199 */ 200 if (!rdi->driver_f.free_all_qps || 201 !rdi->driver_f.qp_priv_alloc || 202 !rdi->driver_f.qp_priv_free || 203 !rdi->driver_f.notify_qp_reset) 204 return -EINVAL; 205 206 /* allocate parent object */ 207 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 208 rdi->dparms.node); 209 if (!rdi->qp_dev) 210 return -ENOMEM; 211 212 /* allocate hash table */ 213 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 214 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 215 rdi->qp_dev->qp_table = 216 kmalloc_node(rdi->qp_dev->qp_table_size * 217 sizeof(*rdi->qp_dev->qp_table), 218 GFP_KERNEL, rdi->dparms.node); 219 if (!rdi->qp_dev->qp_table) 220 goto no_qp_table; 221 222 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 223 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 224 225 spin_lock_init(&rdi->qp_dev->qpt_lock); 226 227 /* initialize qpn map */ 228 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 229 goto fail_table; 230 231 spin_lock_init(&rdi->n_qps_lock); 232 233 return 0; 234 235 fail_table: 236 kfree(rdi->qp_dev->qp_table); 237 free_qpn_table(&rdi->qp_dev->qpn_table); 238 239 no_qp_table: 240 kfree(rdi->qp_dev); 241 242 return ret; 243 } 244 245 /** 246 * free_all_qps - check for QPs still in use 247 * @qpt: the QP table to empty 248 * 249 * There should not be any QPs still in use. 250 * Free memory for table. 251 */ 252 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 253 { 254 unsigned long flags; 255 struct rvt_qp *qp; 256 unsigned n, qp_inuse = 0; 257 spinlock_t *ql; /* work around too long line below */ 258 259 if (rdi->driver_f.free_all_qps) 260 qp_inuse = rdi->driver_f.free_all_qps(rdi); 261 262 qp_inuse += rvt_mcast_tree_empty(rdi); 263 264 if (!rdi->qp_dev) 265 return qp_inuse; 266 267 ql = &rdi->qp_dev->qpt_lock; 268 spin_lock_irqsave(ql, flags); 269 for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { 270 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], 271 lockdep_is_held(ql)); 272 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); 273 274 for (; qp; qp = rcu_dereference_protected(qp->next, 275 lockdep_is_held(ql))) 276 qp_inuse++; 277 } 278 spin_unlock_irqrestore(ql, flags); 279 synchronize_rcu(); 280 return qp_inuse; 281 } 282 283 /** 284 * rvt_qp_exit - clean up qps on device exit 285 * @rdi: rvt dev structure 286 * 287 * Check for qp leaks and free resources. 288 */ 289 void rvt_qp_exit(struct rvt_dev_info *rdi) 290 { 291 u32 qps_inuse = rvt_free_all_qps(rdi); 292 293 if (qps_inuse) 294 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 295 qps_inuse); 296 if (!rdi->qp_dev) 297 return; 298 299 kfree(rdi->qp_dev->qp_table); 300 free_qpn_table(&rdi->qp_dev->qpn_table); 301 kfree(rdi->qp_dev); 302 } 303 304 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 305 struct rvt_qpn_map *map, unsigned off) 306 { 307 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 308 } 309 310 /** 311 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 312 * IB_QPT_SMI/IB_QPT_GSI 313 *@rdi: rvt device info structure 314 *@qpt: queue pair number table pointer 315 *@port_num: IB port number, 1 based, comes from core 316 * 317 * Return: The queue pair number 318 */ 319 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 320 enum ib_qp_type type, u8 port_num, gfp_t gfp) 321 { 322 u32 i, offset, max_scan, qpn; 323 struct rvt_qpn_map *map; 324 u32 ret; 325 326 if (rdi->driver_f.alloc_qpn) 327 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num, gfp); 328 329 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 330 unsigned n; 331 332 ret = type == IB_QPT_GSI; 333 n = 1 << (ret + 2 * (port_num - 1)); 334 spin_lock(&qpt->lock); 335 if (qpt->flags & n) 336 ret = -EINVAL; 337 else 338 qpt->flags |= n; 339 spin_unlock(&qpt->lock); 340 goto bail; 341 } 342 343 qpn = qpt->last + qpt->incr; 344 if (qpn >= RVT_QPN_MAX) 345 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 346 /* offset carries bit 0 */ 347 offset = qpn & RVT_BITS_PER_PAGE_MASK; 348 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 349 max_scan = qpt->nmaps - !offset; 350 for (i = 0;;) { 351 if (unlikely(!map->page)) { 352 get_map_page(qpt, map, gfp); 353 if (unlikely(!map->page)) 354 break; 355 } 356 do { 357 if (!test_and_set_bit(offset, map->page)) { 358 qpt->last = qpn; 359 ret = qpn; 360 goto bail; 361 } 362 offset += qpt->incr; 363 /* 364 * This qpn might be bogus if offset >= BITS_PER_PAGE. 365 * That is OK. It gets re-assigned below 366 */ 367 qpn = mk_qpn(qpt, map, offset); 368 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 369 /* 370 * In order to keep the number of pages allocated to a 371 * minimum, we scan the all existing pages before increasing 372 * the size of the bitmap table. 373 */ 374 if (++i > max_scan) { 375 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 376 break; 377 map = &qpt->map[qpt->nmaps++]; 378 /* start at incr with current bit 0 */ 379 offset = qpt->incr | (offset & 1); 380 } else if (map < &qpt->map[qpt->nmaps]) { 381 ++map; 382 /* start at incr with current bit 0 */ 383 offset = qpt->incr | (offset & 1); 384 } else { 385 map = &qpt->map[0]; 386 /* wrap to first map page, invert bit 0 */ 387 offset = qpt->incr | ((offset & 1) ^ 1); 388 } 389 /* there can be no set bits in low-order QoS bits */ 390 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1)); 391 qpn = mk_qpn(qpt, map, offset); 392 } 393 394 ret = -ENOMEM; 395 396 bail: 397 return ret; 398 } 399 400 static void free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 401 { 402 struct rvt_qpn_map *map; 403 404 map = qpt->map + qpn / RVT_BITS_PER_PAGE; 405 if (map->page) 406 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 407 } 408 409 /** 410 * rvt_clear_mr_refs - Drop help mr refs 411 * @qp: rvt qp data structure 412 * @clr_sends: If shoudl clear send side or not 413 */ 414 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 415 { 416 unsigned n; 417 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 418 419 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 420 rvt_put_ss(&qp->s_rdma_read_sge); 421 422 rvt_put_ss(&qp->r_sge); 423 424 if (clr_sends) { 425 while (qp->s_last != qp->s_head) { 426 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 427 unsigned i; 428 429 for (i = 0; i < wqe->wr.num_sge; i++) { 430 struct rvt_sge *sge = &wqe->sg_list[i]; 431 432 rvt_put_mr(sge->mr); 433 } 434 if (qp->ibqp.qp_type == IB_QPT_UD || 435 qp->ibqp.qp_type == IB_QPT_SMI || 436 qp->ibqp.qp_type == IB_QPT_GSI) 437 atomic_dec(&ibah_to_rvtah( 438 wqe->ud_wr.ah)->refcount); 439 if (++qp->s_last >= qp->s_size) 440 qp->s_last = 0; 441 smp_wmb(); /* see qp_set_savail */ 442 } 443 if (qp->s_rdma_mr) { 444 rvt_put_mr(qp->s_rdma_mr); 445 qp->s_rdma_mr = NULL; 446 } 447 } 448 449 if (qp->ibqp.qp_type != IB_QPT_RC) 450 return; 451 452 for (n = 0; n < rvt_max_atomic(rdi); n++) { 453 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 454 455 if (e->rdma_sge.mr) { 456 rvt_put_mr(e->rdma_sge.mr); 457 e->rdma_sge.mr = NULL; 458 } 459 } 460 } 461 462 /** 463 * rvt_remove_qp - remove qp form table 464 * @rdi: rvt dev struct 465 * @qp: qp to remove 466 * 467 * Remove the QP from the table so it can't be found asynchronously by 468 * the receive routine. 469 */ 470 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 471 { 472 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 473 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 474 unsigned long flags; 475 int removed = 1; 476 477 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 478 479 if (rcu_dereference_protected(rvp->qp[0], 480 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 481 RCU_INIT_POINTER(rvp->qp[0], NULL); 482 } else if (rcu_dereference_protected(rvp->qp[1], 483 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 484 RCU_INIT_POINTER(rvp->qp[1], NULL); 485 } else { 486 struct rvt_qp *q; 487 struct rvt_qp __rcu **qpp; 488 489 removed = 0; 490 qpp = &rdi->qp_dev->qp_table[n]; 491 for (; (q = rcu_dereference_protected(*qpp, 492 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 493 qpp = &q->next) { 494 if (q == qp) { 495 RCU_INIT_POINTER(*qpp, 496 rcu_dereference_protected(qp->next, 497 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 498 removed = 1; 499 trace_rvt_qpremove(qp, n); 500 break; 501 } 502 } 503 } 504 505 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 506 if (removed) { 507 synchronize_rcu(); 508 rvt_put_qp(qp); 509 } 510 } 511 512 /** 513 * rvt_init_qp - initialize the QP state to the reset state 514 * @qp: the QP to init or reinit 515 * @type: the QP type 516 * 517 * This function is called from both rvt_create_qp() and 518 * rvt_reset_qp(). The difference is that the reset 519 * patch the necessary locks to protect against concurent 520 * access. 521 */ 522 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 523 enum ib_qp_type type) 524 { 525 qp->remote_qpn = 0; 526 qp->qkey = 0; 527 qp->qp_access_flags = 0; 528 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 529 qp->s_hdrwords = 0; 530 qp->s_wqe = NULL; 531 qp->s_draining = 0; 532 qp->s_next_psn = 0; 533 qp->s_last_psn = 0; 534 qp->s_sending_psn = 0; 535 qp->s_sending_hpsn = 0; 536 qp->s_psn = 0; 537 qp->r_psn = 0; 538 qp->r_msn = 0; 539 if (type == IB_QPT_RC) { 540 qp->s_state = IB_OPCODE_RC_SEND_LAST; 541 qp->r_state = IB_OPCODE_RC_SEND_LAST; 542 } else { 543 qp->s_state = IB_OPCODE_UC_SEND_LAST; 544 qp->r_state = IB_OPCODE_UC_SEND_LAST; 545 } 546 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 547 qp->r_nak_state = 0; 548 qp->r_aflags = 0; 549 qp->r_flags = 0; 550 qp->s_head = 0; 551 qp->s_tail = 0; 552 qp->s_cur = 0; 553 qp->s_acked = 0; 554 qp->s_last = 0; 555 qp->s_ssn = 1; 556 qp->s_lsn = 0; 557 qp->s_mig_state = IB_MIG_MIGRATED; 558 qp->r_head_ack_queue = 0; 559 qp->s_tail_ack_queue = 0; 560 qp->s_num_rd_atomic = 0; 561 if (qp->r_rq.wq) { 562 qp->r_rq.wq->head = 0; 563 qp->r_rq.wq->tail = 0; 564 } 565 qp->r_sge.num_sge = 0; 566 atomic_set(&qp->s_reserved_used, 0); 567 } 568 569 /** 570 * rvt_reset_qp - initialize the QP state to the reset state 571 * @qp: the QP to reset 572 * @type: the QP type 573 * 574 * r_lock, s_hlock, and s_lock are required to be held by the caller 575 */ 576 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 577 enum ib_qp_type type) 578 __must_hold(&qp->s_lock) 579 __must_hold(&qp->s_hlock) 580 __must_hold(&qp->r_lock) 581 { 582 lockdep_assert_held(&qp->r_lock); 583 lockdep_assert_held(&qp->s_hlock); 584 lockdep_assert_held(&qp->s_lock); 585 if (qp->state != IB_QPS_RESET) { 586 qp->state = IB_QPS_RESET; 587 588 /* Let drivers flush their waitlist */ 589 rdi->driver_f.flush_qp_waiters(qp); 590 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 591 spin_unlock(&qp->s_lock); 592 spin_unlock(&qp->s_hlock); 593 spin_unlock_irq(&qp->r_lock); 594 595 /* Stop the send queue and the retry timer */ 596 rdi->driver_f.stop_send_queue(qp); 597 598 /* Wait for things to stop */ 599 rdi->driver_f.quiesce_qp(qp); 600 601 /* take qp out the hash and wait for it to be unused */ 602 rvt_remove_qp(rdi, qp); 603 wait_event(qp->wait, !atomic_read(&qp->refcount)); 604 605 /* grab the lock b/c it was locked at call time */ 606 spin_lock_irq(&qp->r_lock); 607 spin_lock(&qp->s_hlock); 608 spin_lock(&qp->s_lock); 609 610 rvt_clear_mr_refs(qp, 1); 611 /* 612 * Let the driver do any tear down or re-init it needs to for 613 * a qp that has been reset 614 */ 615 rdi->driver_f.notify_qp_reset(qp); 616 } 617 rvt_init_qp(rdi, qp, type); 618 lockdep_assert_held(&qp->r_lock); 619 lockdep_assert_held(&qp->s_hlock); 620 lockdep_assert_held(&qp->s_lock); 621 } 622 623 /** 624 * rvt_create_qp - create a queue pair for a device 625 * @ibpd: the protection domain who's device we create the queue pair for 626 * @init_attr: the attributes of the queue pair 627 * @udata: user data for libibverbs.so 628 * 629 * Queue pair creation is mostly an rvt issue. However, drivers have their own 630 * unique idea of what queue pair numbers mean. For instance there is a reserved 631 * range for PSM. 632 * 633 * Return: the queue pair on success, otherwise returns an errno. 634 * 635 * Called by the ib_create_qp() core verbs function. 636 */ 637 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 638 struct ib_qp_init_attr *init_attr, 639 struct ib_udata *udata) 640 { 641 struct rvt_qp *qp; 642 int err; 643 struct rvt_swqe *swq = NULL; 644 size_t sz; 645 size_t sg_list_sz; 646 struct ib_qp *ret = ERR_PTR(-ENOMEM); 647 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 648 void *priv = NULL; 649 gfp_t gfp; 650 size_t sqsize; 651 652 if (!rdi) 653 return ERR_PTR(-EINVAL); 654 655 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_sge || 656 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || 657 init_attr->create_flags & ~(IB_QP_CREATE_USE_GFP_NOIO)) 658 return ERR_PTR(-EINVAL); 659 660 /* GFP_NOIO is applicable to RC QP's only */ 661 662 if (init_attr->create_flags & IB_QP_CREATE_USE_GFP_NOIO && 663 init_attr->qp_type != IB_QPT_RC) 664 return ERR_PTR(-EINVAL); 665 666 gfp = init_attr->create_flags & IB_QP_CREATE_USE_GFP_NOIO ? 667 GFP_NOIO : GFP_KERNEL; 668 669 /* Check receive queue parameters if no SRQ is specified. */ 670 if (!init_attr->srq) { 671 if (init_attr->cap.max_recv_sge > rdi->dparms.props.max_sge || 672 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 673 return ERR_PTR(-EINVAL); 674 675 if (init_attr->cap.max_send_sge + 676 init_attr->cap.max_send_wr + 677 init_attr->cap.max_recv_sge + 678 init_attr->cap.max_recv_wr == 0) 679 return ERR_PTR(-EINVAL); 680 } 681 sqsize = 682 init_attr->cap.max_send_wr + 1 + 683 rdi->dparms.reserved_operations; 684 switch (init_attr->qp_type) { 685 case IB_QPT_SMI: 686 case IB_QPT_GSI: 687 if (init_attr->port_num == 0 || 688 init_attr->port_num > ibpd->device->phys_port_cnt) 689 return ERR_PTR(-EINVAL); 690 case IB_QPT_UC: 691 case IB_QPT_RC: 692 case IB_QPT_UD: 693 sz = sizeof(struct rvt_sge) * 694 init_attr->cap.max_send_sge + 695 sizeof(struct rvt_swqe); 696 if (gfp == GFP_NOIO) 697 swq = __vmalloc( 698 sqsize * sz, 699 gfp | __GFP_ZERO, PAGE_KERNEL); 700 else 701 swq = vzalloc_node( 702 sqsize * sz, 703 rdi->dparms.node); 704 if (!swq) 705 return ERR_PTR(-ENOMEM); 706 707 sz = sizeof(*qp); 708 sg_list_sz = 0; 709 if (init_attr->srq) { 710 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 711 712 if (srq->rq.max_sge > 1) 713 sg_list_sz = sizeof(*qp->r_sg_list) * 714 (srq->rq.max_sge - 1); 715 } else if (init_attr->cap.max_recv_sge > 1) 716 sg_list_sz = sizeof(*qp->r_sg_list) * 717 (init_attr->cap.max_recv_sge - 1); 718 qp = kzalloc_node(sz + sg_list_sz, gfp, rdi->dparms.node); 719 if (!qp) 720 goto bail_swq; 721 722 RCU_INIT_POINTER(qp->next, NULL); 723 if (init_attr->qp_type == IB_QPT_RC) { 724 qp->s_ack_queue = 725 kzalloc_node( 726 sizeof(*qp->s_ack_queue) * 727 rvt_max_atomic(rdi), 728 gfp, 729 rdi->dparms.node); 730 if (!qp->s_ack_queue) 731 goto bail_qp; 732 } 733 734 /* 735 * Driver needs to set up it's private QP structure and do any 736 * initialization that is needed. 737 */ 738 priv = rdi->driver_f.qp_priv_alloc(rdi, qp, gfp); 739 if (IS_ERR(priv)) { 740 ret = priv; 741 goto bail_qp; 742 } 743 qp->priv = priv; 744 qp->timeout_jiffies = 745 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 746 1000UL); 747 if (init_attr->srq) { 748 sz = 0; 749 } else { 750 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 751 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 752 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 753 sizeof(struct rvt_rwqe); 754 if (udata) 755 qp->r_rq.wq = vmalloc_user( 756 sizeof(struct rvt_rwq) + 757 qp->r_rq.size * sz); 758 else if (gfp == GFP_NOIO) 759 qp->r_rq.wq = __vmalloc( 760 sizeof(struct rvt_rwq) + 761 qp->r_rq.size * sz, 762 gfp | __GFP_ZERO, PAGE_KERNEL); 763 else 764 qp->r_rq.wq = vzalloc_node( 765 sizeof(struct rvt_rwq) + 766 qp->r_rq.size * sz, 767 rdi->dparms.node); 768 if (!qp->r_rq.wq) 769 goto bail_driver_priv; 770 } 771 772 /* 773 * ib_create_qp() will initialize qp->ibqp 774 * except for qp->ibqp.qp_num. 775 */ 776 spin_lock_init(&qp->r_lock); 777 spin_lock_init(&qp->s_hlock); 778 spin_lock_init(&qp->s_lock); 779 spin_lock_init(&qp->r_rq.lock); 780 atomic_set(&qp->refcount, 0); 781 atomic_set(&qp->local_ops_pending, 0); 782 init_waitqueue_head(&qp->wait); 783 init_timer(&qp->s_timer); 784 qp->s_timer.data = (unsigned long)qp; 785 INIT_LIST_HEAD(&qp->rspwait); 786 qp->state = IB_QPS_RESET; 787 qp->s_wq = swq; 788 qp->s_size = sqsize; 789 qp->s_avail = init_attr->cap.max_send_wr; 790 qp->s_max_sge = init_attr->cap.max_send_sge; 791 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 792 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 793 794 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 795 init_attr->qp_type, 796 init_attr->port_num, gfp); 797 if (err < 0) { 798 ret = ERR_PTR(err); 799 goto bail_rq_wq; 800 } 801 qp->ibqp.qp_num = err; 802 qp->port_num = init_attr->port_num; 803 rvt_init_qp(rdi, qp, init_attr->qp_type); 804 break; 805 806 default: 807 /* Don't support raw QPs */ 808 return ERR_PTR(-EINVAL); 809 } 810 811 init_attr->cap.max_inline_data = 0; 812 813 /* 814 * Return the address of the RWQ as the offset to mmap. 815 * See rvt_mmap() for details. 816 */ 817 if (udata && udata->outlen >= sizeof(__u64)) { 818 if (!qp->r_rq.wq) { 819 __u64 offset = 0; 820 821 err = ib_copy_to_udata(udata, &offset, 822 sizeof(offset)); 823 if (err) { 824 ret = ERR_PTR(err); 825 goto bail_qpn; 826 } 827 } else { 828 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 829 830 qp->ip = rvt_create_mmap_info(rdi, s, 831 ibpd->uobject->context, 832 qp->r_rq.wq); 833 if (!qp->ip) { 834 ret = ERR_PTR(-ENOMEM); 835 goto bail_qpn; 836 } 837 838 err = ib_copy_to_udata(udata, &qp->ip->offset, 839 sizeof(qp->ip->offset)); 840 if (err) { 841 ret = ERR_PTR(err); 842 goto bail_ip; 843 } 844 } 845 qp->pid = current->pid; 846 } 847 848 spin_lock(&rdi->n_qps_lock); 849 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 850 spin_unlock(&rdi->n_qps_lock); 851 ret = ERR_PTR(-ENOMEM); 852 goto bail_ip; 853 } 854 855 rdi->n_qps_allocated++; 856 /* 857 * Maintain a busy_jiffies variable that will be added to the timeout 858 * period in mod_retry_timer and add_retry_timer. This busy jiffies 859 * is scaled by the number of rc qps created for the device to reduce 860 * the number of timeouts occurring when there is a large number of 861 * qps. busy_jiffies is incremented every rc qp scaling interval. 862 * The scaling interval is selected based on extensive performance 863 * evaluation of targeted workloads. 864 */ 865 if (init_attr->qp_type == IB_QPT_RC) { 866 rdi->n_rc_qps++; 867 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 868 } 869 spin_unlock(&rdi->n_qps_lock); 870 871 if (qp->ip) { 872 spin_lock_irq(&rdi->pending_lock); 873 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 874 spin_unlock_irq(&rdi->pending_lock); 875 } 876 877 ret = &qp->ibqp; 878 879 /* 880 * We have our QP and its good, now keep track of what types of opcodes 881 * can be processed on this QP. We do this by keeping track of what the 882 * 3 high order bits of the opcode are. 883 */ 884 switch (init_attr->qp_type) { 885 case IB_QPT_SMI: 886 case IB_QPT_GSI: 887 case IB_QPT_UD: 888 qp->allowed_ops = IB_OPCODE_UD; 889 break; 890 case IB_QPT_RC: 891 qp->allowed_ops = IB_OPCODE_RC; 892 break; 893 case IB_QPT_UC: 894 qp->allowed_ops = IB_OPCODE_UC; 895 break; 896 default: 897 ret = ERR_PTR(-EINVAL); 898 goto bail_ip; 899 } 900 901 return ret; 902 903 bail_ip: 904 if (qp->ip) 905 kref_put(&qp->ip->ref, rvt_release_mmap_info); 906 907 bail_qpn: 908 free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 909 910 bail_rq_wq: 911 if (!qp->ip) 912 vfree(qp->r_rq.wq); 913 914 bail_driver_priv: 915 rdi->driver_f.qp_priv_free(rdi, qp); 916 917 bail_qp: 918 kfree(qp->s_ack_queue); 919 kfree(qp); 920 921 bail_swq: 922 vfree(swq); 923 924 return ret; 925 } 926 927 /** 928 * rvt_error_qp - put a QP into the error state 929 * @qp: the QP to put into the error state 930 * @err: the receive completion error to signal if a RWQE is active 931 * 932 * Flushes both send and receive work queues. 933 * 934 * Return: true if last WQE event should be generated. 935 * The QP r_lock and s_lock should be held and interrupts disabled. 936 * If we are already in error state, just return. 937 */ 938 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 939 { 940 struct ib_wc wc; 941 int ret = 0; 942 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 943 944 lockdep_assert_held(&qp->r_lock); 945 lockdep_assert_held(&qp->s_lock); 946 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 947 goto bail; 948 949 qp->state = IB_QPS_ERR; 950 951 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 952 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 953 del_timer(&qp->s_timer); 954 } 955 956 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 957 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 958 959 rdi->driver_f.notify_error_qp(qp); 960 961 /* Schedule the sending tasklet to drain the send work queue. */ 962 if (ACCESS_ONCE(qp->s_last) != qp->s_head) 963 rdi->driver_f.schedule_send(qp); 964 965 rvt_clear_mr_refs(qp, 0); 966 967 memset(&wc, 0, sizeof(wc)); 968 wc.qp = &qp->ibqp; 969 wc.opcode = IB_WC_RECV; 970 971 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 972 wc.wr_id = qp->r_wr_id; 973 wc.status = err; 974 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 975 } 976 wc.status = IB_WC_WR_FLUSH_ERR; 977 978 if (qp->r_rq.wq) { 979 struct rvt_rwq *wq; 980 u32 head; 981 u32 tail; 982 983 spin_lock(&qp->r_rq.lock); 984 985 /* sanity check pointers before trusting them */ 986 wq = qp->r_rq.wq; 987 head = wq->head; 988 if (head >= qp->r_rq.size) 989 head = 0; 990 tail = wq->tail; 991 if (tail >= qp->r_rq.size) 992 tail = 0; 993 while (tail != head) { 994 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 995 if (++tail >= qp->r_rq.size) 996 tail = 0; 997 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 998 } 999 wq->tail = tail; 1000 1001 spin_unlock(&qp->r_rq.lock); 1002 } else if (qp->ibqp.event_handler) { 1003 ret = 1; 1004 } 1005 1006 bail: 1007 return ret; 1008 } 1009 EXPORT_SYMBOL(rvt_error_qp); 1010 1011 /* 1012 * Put the QP into the hash table. 1013 * The hash table holds a reference to the QP. 1014 */ 1015 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1016 { 1017 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1018 unsigned long flags; 1019 1020 rvt_get_qp(qp); 1021 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1022 1023 if (qp->ibqp.qp_num <= 1) { 1024 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1025 } else { 1026 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1027 1028 qp->next = rdi->qp_dev->qp_table[n]; 1029 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1030 trace_rvt_qpinsert(qp, n); 1031 } 1032 1033 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1034 } 1035 1036 /** 1037 * rvt_modify_qp - modify the attributes of a queue pair 1038 * @ibqp: the queue pair who's attributes we're modifying 1039 * @attr: the new attributes 1040 * @attr_mask: the mask of attributes to modify 1041 * @udata: user data for libibverbs.so 1042 * 1043 * Return: 0 on success, otherwise returns an errno. 1044 */ 1045 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1046 int attr_mask, struct ib_udata *udata) 1047 { 1048 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1049 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1050 enum ib_qp_state cur_state, new_state; 1051 struct ib_event ev; 1052 int lastwqe = 0; 1053 int mig = 0; 1054 int pmtu = 0; /* for gcc warning only */ 1055 enum rdma_link_layer link; 1056 1057 link = rdma_port_get_link_layer(ibqp->device, qp->port_num); 1058 1059 spin_lock_irq(&qp->r_lock); 1060 spin_lock(&qp->s_hlock); 1061 spin_lock(&qp->s_lock); 1062 1063 cur_state = attr_mask & IB_QP_CUR_STATE ? 1064 attr->cur_qp_state : qp->state; 1065 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1066 1067 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1068 attr_mask, link)) 1069 goto inval; 1070 1071 if (rdi->driver_f.check_modify_qp && 1072 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1073 goto inval; 1074 1075 if (attr_mask & IB_QP_AV) { 1076 if (attr->ah_attr.dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) 1077 goto inval; 1078 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1079 goto inval; 1080 } 1081 1082 if (attr_mask & IB_QP_ALT_PATH) { 1083 if (attr->alt_ah_attr.dlid >= 1084 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1085 goto inval; 1086 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1087 goto inval; 1088 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1089 goto inval; 1090 } 1091 1092 if (attr_mask & IB_QP_PKEY_INDEX) 1093 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1094 goto inval; 1095 1096 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1097 if (attr->min_rnr_timer > 31) 1098 goto inval; 1099 1100 if (attr_mask & IB_QP_PORT) 1101 if (qp->ibqp.qp_type == IB_QPT_SMI || 1102 qp->ibqp.qp_type == IB_QPT_GSI || 1103 attr->port_num == 0 || 1104 attr->port_num > ibqp->device->phys_port_cnt) 1105 goto inval; 1106 1107 if (attr_mask & IB_QP_DEST_QPN) 1108 if (attr->dest_qp_num > RVT_QPN_MASK) 1109 goto inval; 1110 1111 if (attr_mask & IB_QP_RETRY_CNT) 1112 if (attr->retry_cnt > 7) 1113 goto inval; 1114 1115 if (attr_mask & IB_QP_RNR_RETRY) 1116 if (attr->rnr_retry > 7) 1117 goto inval; 1118 1119 /* 1120 * Don't allow invalid path_mtu values. OK to set greater 1121 * than the active mtu (or even the max_cap, if we have tuned 1122 * that to a small mtu. We'll set qp->path_mtu 1123 * to the lesser of requested attribute mtu and active, 1124 * for packetizing messages. 1125 * Note that the QP port has to be set in INIT and MTU in RTR. 1126 */ 1127 if (attr_mask & IB_QP_PATH_MTU) { 1128 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1129 if (pmtu < 0) 1130 goto inval; 1131 } 1132 1133 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1134 if (attr->path_mig_state == IB_MIG_REARM) { 1135 if (qp->s_mig_state == IB_MIG_ARMED) 1136 goto inval; 1137 if (new_state != IB_QPS_RTS) 1138 goto inval; 1139 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1140 if (qp->s_mig_state == IB_MIG_REARM) 1141 goto inval; 1142 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1143 goto inval; 1144 if (qp->s_mig_state == IB_MIG_ARMED) 1145 mig = 1; 1146 } else { 1147 goto inval; 1148 } 1149 } 1150 1151 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1152 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1153 goto inval; 1154 1155 switch (new_state) { 1156 case IB_QPS_RESET: 1157 if (qp->state != IB_QPS_RESET) 1158 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1159 break; 1160 1161 case IB_QPS_RTR: 1162 /* Allow event to re-trigger if QP set to RTR more than once */ 1163 qp->r_flags &= ~RVT_R_COMM_EST; 1164 qp->state = new_state; 1165 break; 1166 1167 case IB_QPS_SQD: 1168 qp->s_draining = qp->s_last != qp->s_cur; 1169 qp->state = new_state; 1170 break; 1171 1172 case IB_QPS_SQE: 1173 if (qp->ibqp.qp_type == IB_QPT_RC) 1174 goto inval; 1175 qp->state = new_state; 1176 break; 1177 1178 case IB_QPS_ERR: 1179 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1180 break; 1181 1182 default: 1183 qp->state = new_state; 1184 break; 1185 } 1186 1187 if (attr_mask & IB_QP_PKEY_INDEX) 1188 qp->s_pkey_index = attr->pkey_index; 1189 1190 if (attr_mask & IB_QP_PORT) 1191 qp->port_num = attr->port_num; 1192 1193 if (attr_mask & IB_QP_DEST_QPN) 1194 qp->remote_qpn = attr->dest_qp_num; 1195 1196 if (attr_mask & IB_QP_SQ_PSN) { 1197 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1198 qp->s_psn = qp->s_next_psn; 1199 qp->s_sending_psn = qp->s_next_psn; 1200 qp->s_last_psn = qp->s_next_psn - 1; 1201 qp->s_sending_hpsn = qp->s_last_psn; 1202 } 1203 1204 if (attr_mask & IB_QP_RQ_PSN) 1205 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1206 1207 if (attr_mask & IB_QP_ACCESS_FLAGS) 1208 qp->qp_access_flags = attr->qp_access_flags; 1209 1210 if (attr_mask & IB_QP_AV) { 1211 qp->remote_ah_attr = attr->ah_attr; 1212 qp->s_srate = attr->ah_attr.static_rate; 1213 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1214 } 1215 1216 if (attr_mask & IB_QP_ALT_PATH) { 1217 qp->alt_ah_attr = attr->alt_ah_attr; 1218 qp->s_alt_pkey_index = attr->alt_pkey_index; 1219 } 1220 1221 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1222 qp->s_mig_state = attr->path_mig_state; 1223 if (mig) { 1224 qp->remote_ah_attr = qp->alt_ah_attr; 1225 qp->port_num = qp->alt_ah_attr.port_num; 1226 qp->s_pkey_index = qp->s_alt_pkey_index; 1227 } 1228 } 1229 1230 if (attr_mask & IB_QP_PATH_MTU) { 1231 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1232 qp->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1233 qp->log_pmtu = ilog2(qp->pmtu); 1234 } 1235 1236 if (attr_mask & IB_QP_RETRY_CNT) { 1237 qp->s_retry_cnt = attr->retry_cnt; 1238 qp->s_retry = attr->retry_cnt; 1239 } 1240 1241 if (attr_mask & IB_QP_RNR_RETRY) { 1242 qp->s_rnr_retry_cnt = attr->rnr_retry; 1243 qp->s_rnr_retry = attr->rnr_retry; 1244 } 1245 1246 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1247 qp->r_min_rnr_timer = attr->min_rnr_timer; 1248 1249 if (attr_mask & IB_QP_TIMEOUT) { 1250 qp->timeout = attr->timeout; 1251 qp->timeout_jiffies = 1252 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1253 1000UL); 1254 } 1255 1256 if (attr_mask & IB_QP_QKEY) 1257 qp->qkey = attr->qkey; 1258 1259 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1260 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1261 1262 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1263 qp->s_max_rd_atomic = attr->max_rd_atomic; 1264 1265 if (rdi->driver_f.modify_qp) 1266 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1267 1268 spin_unlock(&qp->s_lock); 1269 spin_unlock(&qp->s_hlock); 1270 spin_unlock_irq(&qp->r_lock); 1271 1272 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1273 rvt_insert_qp(rdi, qp); 1274 1275 if (lastwqe) { 1276 ev.device = qp->ibqp.device; 1277 ev.element.qp = &qp->ibqp; 1278 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1279 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1280 } 1281 if (mig) { 1282 ev.device = qp->ibqp.device; 1283 ev.element.qp = &qp->ibqp; 1284 ev.event = IB_EVENT_PATH_MIG; 1285 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1286 } 1287 return 0; 1288 1289 inval: 1290 spin_unlock(&qp->s_lock); 1291 spin_unlock(&qp->s_hlock); 1292 spin_unlock_irq(&qp->r_lock); 1293 return -EINVAL; 1294 } 1295 1296 /** rvt_free_qpn - Free a qpn from the bit map 1297 * @qpt: QP table 1298 * @qpn: queue pair number to free 1299 */ 1300 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 1301 { 1302 struct rvt_qpn_map *map; 1303 1304 map = qpt->map + qpn / RVT_BITS_PER_PAGE; 1305 if (map->page) 1306 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 1307 } 1308 1309 /** 1310 * rvt_destroy_qp - destroy a queue pair 1311 * @ibqp: the queue pair to destroy 1312 * 1313 * Note that this can be called while the QP is actively sending or 1314 * receiving! 1315 * 1316 * Return: 0 on success. 1317 */ 1318 int rvt_destroy_qp(struct ib_qp *ibqp) 1319 { 1320 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1321 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1322 1323 spin_lock_irq(&qp->r_lock); 1324 spin_lock(&qp->s_hlock); 1325 spin_lock(&qp->s_lock); 1326 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1327 spin_unlock(&qp->s_lock); 1328 spin_unlock(&qp->s_hlock); 1329 spin_unlock_irq(&qp->r_lock); 1330 1331 /* qpn is now available for use again */ 1332 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1333 1334 spin_lock(&rdi->n_qps_lock); 1335 rdi->n_qps_allocated--; 1336 if (qp->ibqp.qp_type == IB_QPT_RC) { 1337 rdi->n_rc_qps--; 1338 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1339 } 1340 spin_unlock(&rdi->n_qps_lock); 1341 1342 if (qp->ip) 1343 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1344 else 1345 vfree(qp->r_rq.wq); 1346 vfree(qp->s_wq); 1347 rdi->driver_f.qp_priv_free(rdi, qp); 1348 kfree(qp->s_ack_queue); 1349 kfree(qp); 1350 return 0; 1351 } 1352 1353 /** 1354 * rvt_query_qp - query an ipbq 1355 * @ibqp: IB qp to query 1356 * @attr: attr struct to fill in 1357 * @attr_mask: attr mask ignored 1358 * @init_attr: struct to fill in 1359 * 1360 * Return: always 0 1361 */ 1362 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1363 int attr_mask, struct ib_qp_init_attr *init_attr) 1364 { 1365 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1366 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1367 1368 attr->qp_state = qp->state; 1369 attr->cur_qp_state = attr->qp_state; 1370 attr->path_mtu = qp->path_mtu; 1371 attr->path_mig_state = qp->s_mig_state; 1372 attr->qkey = qp->qkey; 1373 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1374 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1375 attr->dest_qp_num = qp->remote_qpn; 1376 attr->qp_access_flags = qp->qp_access_flags; 1377 attr->cap.max_send_wr = qp->s_size - 1 - 1378 rdi->dparms.reserved_operations; 1379 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1380 attr->cap.max_send_sge = qp->s_max_sge; 1381 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1382 attr->cap.max_inline_data = 0; 1383 attr->ah_attr = qp->remote_ah_attr; 1384 attr->alt_ah_attr = qp->alt_ah_attr; 1385 attr->pkey_index = qp->s_pkey_index; 1386 attr->alt_pkey_index = qp->s_alt_pkey_index; 1387 attr->en_sqd_async_notify = 0; 1388 attr->sq_draining = qp->s_draining; 1389 attr->max_rd_atomic = qp->s_max_rd_atomic; 1390 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1391 attr->min_rnr_timer = qp->r_min_rnr_timer; 1392 attr->port_num = qp->port_num; 1393 attr->timeout = qp->timeout; 1394 attr->retry_cnt = qp->s_retry_cnt; 1395 attr->rnr_retry = qp->s_rnr_retry_cnt; 1396 attr->alt_port_num = qp->alt_ah_attr.port_num; 1397 attr->alt_timeout = qp->alt_timeout; 1398 1399 init_attr->event_handler = qp->ibqp.event_handler; 1400 init_attr->qp_context = qp->ibqp.qp_context; 1401 init_attr->send_cq = qp->ibqp.send_cq; 1402 init_attr->recv_cq = qp->ibqp.recv_cq; 1403 init_attr->srq = qp->ibqp.srq; 1404 init_attr->cap = attr->cap; 1405 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1406 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1407 else 1408 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1409 init_attr->qp_type = qp->ibqp.qp_type; 1410 init_attr->port_num = qp->port_num; 1411 return 0; 1412 } 1413 1414 /** 1415 * rvt_post_receive - post a receive on a QP 1416 * @ibqp: the QP to post the receive on 1417 * @wr: the WR to post 1418 * @bad_wr: the first bad WR is put here 1419 * 1420 * This may be called from interrupt context. 1421 * 1422 * Return: 0 on success otherwise errno 1423 */ 1424 int rvt_post_recv(struct ib_qp *ibqp, struct ib_recv_wr *wr, 1425 struct ib_recv_wr **bad_wr) 1426 { 1427 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1428 struct rvt_rwq *wq = qp->r_rq.wq; 1429 unsigned long flags; 1430 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1431 !qp->ibqp.srq; 1432 1433 /* Check that state is OK to post receive. */ 1434 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1435 *bad_wr = wr; 1436 return -EINVAL; 1437 } 1438 1439 for (; wr; wr = wr->next) { 1440 struct rvt_rwqe *wqe; 1441 u32 next; 1442 int i; 1443 1444 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1445 *bad_wr = wr; 1446 return -EINVAL; 1447 } 1448 1449 spin_lock_irqsave(&qp->r_rq.lock, flags); 1450 next = wq->head + 1; 1451 if (next >= qp->r_rq.size) 1452 next = 0; 1453 if (next == wq->tail) { 1454 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1455 *bad_wr = wr; 1456 return -ENOMEM; 1457 } 1458 if (unlikely(qp_err_flush)) { 1459 struct ib_wc wc; 1460 1461 memset(&wc, 0, sizeof(wc)); 1462 wc.qp = &qp->ibqp; 1463 wc.opcode = IB_WC_RECV; 1464 wc.wr_id = wr->wr_id; 1465 wc.status = IB_WC_WR_FLUSH_ERR; 1466 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1467 } else { 1468 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1469 wqe->wr_id = wr->wr_id; 1470 wqe->num_sge = wr->num_sge; 1471 for (i = 0; i < wr->num_sge; i++) 1472 wqe->sg_list[i] = wr->sg_list[i]; 1473 /* 1474 * Make sure queue entry is written 1475 * before the head index. 1476 */ 1477 smp_wmb(); 1478 wq->head = next; 1479 } 1480 spin_unlock_irqrestore(&qp->r_rq.lock, flags); 1481 } 1482 return 0; 1483 } 1484 1485 /** 1486 * rvt_qp_valid_operation - validate post send wr request 1487 * @qp - the qp 1488 * @post-parms - the post send table for the driver 1489 * @wr - the work request 1490 * 1491 * The routine validates the operation based on the 1492 * validation table an returns the length of the operation 1493 * which can extend beyond the ib_send_bw. Operation 1494 * dependent flags key atomic operation validation. 1495 * 1496 * There is an exception for UD qps that validates the pd and 1497 * overrides the length to include the additional UD specific 1498 * length. 1499 * 1500 * Returns a negative error or the length of the work request 1501 * for building the swqe. 1502 */ 1503 static inline int rvt_qp_valid_operation( 1504 struct rvt_qp *qp, 1505 const struct rvt_operation_params *post_parms, 1506 struct ib_send_wr *wr) 1507 { 1508 int len; 1509 1510 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1511 return -EINVAL; 1512 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1513 return -EINVAL; 1514 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1515 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1516 return -EINVAL; 1517 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1518 (wr->num_sge == 0 || 1519 wr->sg_list[0].length < sizeof(u64) || 1520 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1521 return -EINVAL; 1522 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1523 !qp->s_max_rd_atomic) 1524 return -EINVAL; 1525 len = post_parms[wr->opcode].length; 1526 /* UD specific */ 1527 if (qp->ibqp.qp_type != IB_QPT_UC && 1528 qp->ibqp.qp_type != IB_QPT_RC) { 1529 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1530 return -EINVAL; 1531 len = sizeof(struct ib_ud_wr); 1532 } 1533 return len; 1534 } 1535 1536 /** 1537 * rvt_qp_is_avail - determine queue capacity 1538 * @qp - the qp 1539 * @rdi - the rdmavt device 1540 * @reserved_op - is reserved operation 1541 * 1542 * This assumes the s_hlock is held but the s_last 1543 * qp variable is uncontrolled. 1544 * 1545 * For non reserved operations, the qp->s_avail 1546 * may be changed. 1547 * 1548 * The return value is zero or a -ENOMEM. 1549 */ 1550 static inline int rvt_qp_is_avail( 1551 struct rvt_qp *qp, 1552 struct rvt_dev_info *rdi, 1553 bool reserved_op) 1554 { 1555 u32 slast; 1556 u32 avail; 1557 u32 reserved_used; 1558 1559 /* see rvt_qp_wqe_unreserve() */ 1560 smp_mb__before_atomic(); 1561 reserved_used = atomic_read(&qp->s_reserved_used); 1562 if (unlikely(reserved_op)) { 1563 /* see rvt_qp_wqe_unreserve() */ 1564 smp_mb__before_atomic(); 1565 if (reserved_used >= rdi->dparms.reserved_operations) 1566 return -ENOMEM; 1567 return 0; 1568 } 1569 /* non-reserved operations */ 1570 if (likely(qp->s_avail)) 1571 return 0; 1572 smp_read_barrier_depends(); /* see rc.c */ 1573 slast = ACCESS_ONCE(qp->s_last); 1574 if (qp->s_head >= slast) 1575 avail = qp->s_size - (qp->s_head - slast); 1576 else 1577 avail = slast - qp->s_head; 1578 1579 /* see rvt_qp_wqe_unreserve() */ 1580 smp_mb__before_atomic(); 1581 reserved_used = atomic_read(&qp->s_reserved_used); 1582 avail = avail - 1 - 1583 (rdi->dparms.reserved_operations - reserved_used); 1584 /* insure we don't assign a negative s_avail */ 1585 if ((s32)avail <= 0) 1586 return -ENOMEM; 1587 qp->s_avail = avail; 1588 if (WARN_ON(qp->s_avail > 1589 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1590 rvt_pr_err(rdi, 1591 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1592 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1593 qp->s_head, qp->s_tail, qp->s_cur, 1594 qp->s_acked, qp->s_last); 1595 return 0; 1596 } 1597 1598 /** 1599 * rvt_post_one_wr - post one RC, UC, or UD send work request 1600 * @qp: the QP to post on 1601 * @wr: the work request to send 1602 */ 1603 static int rvt_post_one_wr(struct rvt_qp *qp, 1604 struct ib_send_wr *wr, 1605 int *call_send) 1606 { 1607 struct rvt_swqe *wqe; 1608 u32 next; 1609 int i; 1610 int j; 1611 int acc; 1612 struct rvt_lkey_table *rkt; 1613 struct rvt_pd *pd; 1614 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1615 u8 log_pmtu; 1616 int ret; 1617 size_t cplen; 1618 bool reserved_op; 1619 int local_ops_delayed = 0; 1620 1621 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1622 1623 /* IB spec says that num_sge == 0 is OK. */ 1624 if (unlikely(wr->num_sge > qp->s_max_sge)) 1625 return -EINVAL; 1626 1627 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1628 if (ret < 0) 1629 return ret; 1630 cplen = ret; 1631 1632 /* 1633 * Local operations include fast register and local invalidate. 1634 * Fast register needs to be processed immediately because the 1635 * registered lkey may be used by following work requests and the 1636 * lkey needs to be valid at the time those requests are posted. 1637 * Local invalidate can be processed immediately if fencing is 1638 * not required and no previous local invalidate ops are pending. 1639 * Signaled local operations that have been processed immediately 1640 * need to have requests with "completion only" flags set posted 1641 * to the send queue in order to generate completions. 1642 */ 1643 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 1644 switch (wr->opcode) { 1645 case IB_WR_REG_MR: 1646 ret = rvt_fast_reg_mr(qp, 1647 reg_wr(wr)->mr, 1648 reg_wr(wr)->key, 1649 reg_wr(wr)->access); 1650 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1651 return ret; 1652 break; 1653 case IB_WR_LOCAL_INV: 1654 if ((wr->send_flags & IB_SEND_FENCE) || 1655 atomic_read(&qp->local_ops_pending)) { 1656 local_ops_delayed = 1; 1657 } else { 1658 ret = rvt_invalidate_rkey( 1659 qp, wr->ex.invalidate_rkey); 1660 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 1661 return ret; 1662 } 1663 break; 1664 default: 1665 return -EINVAL; 1666 } 1667 } 1668 1669 reserved_op = rdi->post_parms[wr->opcode].flags & 1670 RVT_OPERATION_USE_RESERVE; 1671 /* check for avail */ 1672 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 1673 if (ret) 1674 return ret; 1675 next = qp->s_head + 1; 1676 if (next >= qp->s_size) 1677 next = 0; 1678 1679 rkt = &rdi->lkey_table; 1680 pd = ibpd_to_rvtpd(qp->ibqp.pd); 1681 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 1682 1683 /* cplen has length from above */ 1684 memcpy(&wqe->wr, wr, cplen); 1685 1686 wqe->length = 0; 1687 j = 0; 1688 if (wr->num_sge) { 1689 acc = wr->opcode >= IB_WR_RDMA_READ ? 1690 IB_ACCESS_LOCAL_WRITE : 0; 1691 for (i = 0; i < wr->num_sge; i++) { 1692 u32 length = wr->sg_list[i].length; 1693 int ok; 1694 1695 if (length == 0) 1696 continue; 1697 ok = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], 1698 &wr->sg_list[i], acc); 1699 if (!ok) { 1700 ret = -EINVAL; 1701 goto bail_inval_free; 1702 } 1703 wqe->length += length; 1704 j++; 1705 } 1706 wqe->wr.num_sge = j; 1707 } 1708 1709 /* general part of wqe valid - allow for driver checks */ 1710 if (rdi->driver_f.check_send_wqe) { 1711 ret = rdi->driver_f.check_send_wqe(qp, wqe); 1712 if (ret < 0) 1713 goto bail_inval_free; 1714 if (ret) 1715 *call_send = ret; 1716 } 1717 1718 log_pmtu = qp->log_pmtu; 1719 if (qp->ibqp.qp_type != IB_QPT_UC && 1720 qp->ibqp.qp_type != IB_QPT_RC) { 1721 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah); 1722 1723 log_pmtu = ah->log_pmtu; 1724 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount); 1725 } 1726 1727 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 1728 if (local_ops_delayed) 1729 atomic_inc(&qp->local_ops_pending); 1730 else 1731 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 1732 wqe->ssn = 0; 1733 wqe->psn = 0; 1734 wqe->lpsn = 0; 1735 } else { 1736 wqe->ssn = qp->s_ssn++; 1737 wqe->psn = qp->s_next_psn; 1738 wqe->lpsn = wqe->psn + 1739 (wqe->length ? 1740 ((wqe->length - 1) >> log_pmtu) : 1741 0); 1742 qp->s_next_psn = wqe->lpsn + 1; 1743 } 1744 trace_rvt_post_one_wr(qp, wqe); 1745 if (unlikely(reserved_op)) 1746 rvt_qp_wqe_reserve(qp, wqe); 1747 else 1748 qp->s_avail--; 1749 smp_wmb(); /* see request builders */ 1750 qp->s_head = next; 1751 1752 return 0; 1753 1754 bail_inval_free: 1755 /* release mr holds */ 1756 while (j) { 1757 struct rvt_sge *sge = &wqe->sg_list[--j]; 1758 1759 rvt_put_mr(sge->mr); 1760 } 1761 return ret; 1762 } 1763 1764 /** 1765 * rvt_post_send - post a send on a QP 1766 * @ibqp: the QP to post the send on 1767 * @wr: the list of work requests to post 1768 * @bad_wr: the first bad WR is put here 1769 * 1770 * This may be called from interrupt context. 1771 * 1772 * Return: 0 on success else errno 1773 */ 1774 int rvt_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr, 1775 struct ib_send_wr **bad_wr) 1776 { 1777 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1778 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1779 unsigned long flags = 0; 1780 int call_send; 1781 unsigned nreq = 0; 1782 int err = 0; 1783 1784 spin_lock_irqsave(&qp->s_hlock, flags); 1785 1786 /* 1787 * Ensure QP state is such that we can send. If not bail out early, 1788 * there is no need to do this every time we post a send. 1789 */ 1790 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 1791 spin_unlock_irqrestore(&qp->s_hlock, flags); 1792 return -EINVAL; 1793 } 1794 1795 /* 1796 * If the send queue is empty, and we only have a single WR then just go 1797 * ahead and kick the send engine into gear. Otherwise we will always 1798 * just schedule the send to happen later. 1799 */ 1800 call_send = qp->s_head == ACCESS_ONCE(qp->s_last) && !wr->next; 1801 1802 for (; wr; wr = wr->next) { 1803 err = rvt_post_one_wr(qp, wr, &call_send); 1804 if (unlikely(err)) { 1805 *bad_wr = wr; 1806 goto bail; 1807 } 1808 nreq++; 1809 } 1810 bail: 1811 spin_unlock_irqrestore(&qp->s_hlock, flags); 1812 if (nreq) { 1813 if (call_send) 1814 rdi->driver_f.do_send(qp); 1815 else 1816 rdi->driver_f.schedule_send_no_lock(qp); 1817 } 1818 return err; 1819 } 1820 1821 /** 1822 * rvt_post_srq_receive - post a receive on a shared receive queue 1823 * @ibsrq: the SRQ to post the receive on 1824 * @wr: the list of work requests to post 1825 * @bad_wr: A pointer to the first WR to cause a problem is put here 1826 * 1827 * This may be called from interrupt context. 1828 * 1829 * Return: 0 on success else errno 1830 */ 1831 int rvt_post_srq_recv(struct ib_srq *ibsrq, struct ib_recv_wr *wr, 1832 struct ib_recv_wr **bad_wr) 1833 { 1834 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 1835 struct rvt_rwq *wq; 1836 unsigned long flags; 1837 1838 for (; wr; wr = wr->next) { 1839 struct rvt_rwqe *wqe; 1840 u32 next; 1841 int i; 1842 1843 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 1844 *bad_wr = wr; 1845 return -EINVAL; 1846 } 1847 1848 spin_lock_irqsave(&srq->rq.lock, flags); 1849 wq = srq->rq.wq; 1850 next = wq->head + 1; 1851 if (next >= srq->rq.size) 1852 next = 0; 1853 if (next == wq->tail) { 1854 spin_unlock_irqrestore(&srq->rq.lock, flags); 1855 *bad_wr = wr; 1856 return -ENOMEM; 1857 } 1858 1859 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 1860 wqe->wr_id = wr->wr_id; 1861 wqe->num_sge = wr->num_sge; 1862 for (i = 0; i < wr->num_sge; i++) 1863 wqe->sg_list[i] = wr->sg_list[i]; 1864 /* Make sure queue entry is written before the head index. */ 1865 smp_wmb(); 1866 wq->head = next; 1867 spin_unlock_irqrestore(&srq->rq.lock, flags); 1868 } 1869 return 0; 1870 } 1871