1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright(c) 2016 - 2020 Intel Corporation. 4 */ 5 6 #include <linux/hash.h> 7 #include <linux/bitops.h> 8 #include <linux/lockdep.h> 9 #include <linux/vmalloc.h> 10 #include <linux/slab.h> 11 #include <rdma/ib_verbs.h> 12 #include <rdma/ib_hdrs.h> 13 #include <rdma/opa_addr.h> 14 #include <rdma/uverbs_ioctl.h> 15 #include "qp.h" 16 #include "vt.h" 17 #include "trace.h" 18 19 #define RVT_RWQ_COUNT_THRESHOLD 16 20 21 static void rvt_rc_timeout(struct timer_list *t); 22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 23 enum ib_qp_type type); 24 25 /* 26 * Convert the AETH RNR timeout code into the number of microseconds. 27 */ 28 static const u32 ib_rvt_rnr_table[32] = { 29 655360, /* 00: 655.36 */ 30 10, /* 01: .01 */ 31 20, /* 02 .02 */ 32 30, /* 03: .03 */ 33 40, /* 04: .04 */ 34 60, /* 05: .06 */ 35 80, /* 06: .08 */ 36 120, /* 07: .12 */ 37 160, /* 08: .16 */ 38 240, /* 09: .24 */ 39 320, /* 0A: .32 */ 40 480, /* 0B: .48 */ 41 640, /* 0C: .64 */ 42 960, /* 0D: .96 */ 43 1280, /* 0E: 1.28 */ 44 1920, /* 0F: 1.92 */ 45 2560, /* 10: 2.56 */ 46 3840, /* 11: 3.84 */ 47 5120, /* 12: 5.12 */ 48 7680, /* 13: 7.68 */ 49 10240, /* 14: 10.24 */ 50 15360, /* 15: 15.36 */ 51 20480, /* 16: 20.48 */ 52 30720, /* 17: 30.72 */ 53 40960, /* 18: 40.96 */ 54 61440, /* 19: 61.44 */ 55 81920, /* 1A: 81.92 */ 56 122880, /* 1B: 122.88 */ 57 163840, /* 1C: 163.84 */ 58 245760, /* 1D: 245.76 */ 59 327680, /* 1E: 327.68 */ 60 491520 /* 1F: 491.52 */ 61 }; 62 63 /* 64 * Note that it is OK to post send work requests in the SQE and ERR 65 * states; rvt_do_send() will process them and generate error 66 * completions as per IB 1.2 C10-96. 67 */ 68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 69 [IB_QPS_RESET] = 0, 70 [IB_QPS_INIT] = RVT_POST_RECV_OK, 71 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 72 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 73 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 74 RVT_PROCESS_NEXT_SEND_OK, 75 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 76 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 77 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 78 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 79 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 80 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 81 }; 82 EXPORT_SYMBOL(ib_rvt_state_ops); 83 84 /* platform specific: return the last level cache (llc) size, in KiB */ 85 static int rvt_wss_llc_size(void) 86 { 87 /* assume that the boot CPU value is universal for all CPUs */ 88 return boot_cpu_data.x86_cache_size; 89 } 90 91 /* platform specific: cacheless copy */ 92 static void cacheless_memcpy(void *dst, void *src, size_t n) 93 { 94 /* 95 * Use the only available X64 cacheless copy. Add a __user cast 96 * to quiet sparse. The src agument is already in the kernel so 97 * there are no security issues. The extra fault recovery machinery 98 * is not invoked. 99 */ 100 __copy_user_nocache(dst, (void __user *)src, n); 101 } 102 103 void rvt_wss_exit(struct rvt_dev_info *rdi) 104 { 105 struct rvt_wss *wss = rdi->wss; 106 107 if (!wss) 108 return; 109 110 /* coded to handle partially initialized and repeat callers */ 111 kfree(wss->entries); 112 wss->entries = NULL; 113 kfree(rdi->wss); 114 rdi->wss = NULL; 115 } 116 117 /* 118 * rvt_wss_init - Init wss data structures 119 * 120 * Return: 0 on success 121 */ 122 int rvt_wss_init(struct rvt_dev_info *rdi) 123 { 124 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 125 unsigned int wss_threshold = rdi->dparms.wss_threshold; 126 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 127 long llc_size; 128 long llc_bits; 129 long table_size; 130 long table_bits; 131 struct rvt_wss *wss; 132 int node = rdi->dparms.node; 133 134 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 135 rdi->wss = NULL; 136 return 0; 137 } 138 139 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 140 if (!rdi->wss) 141 return -ENOMEM; 142 wss = rdi->wss; 143 144 /* check for a valid percent range - default to 80 if none or invalid */ 145 if (wss_threshold < 1 || wss_threshold > 100) 146 wss_threshold = 80; 147 148 /* reject a wildly large period */ 149 if (wss_clean_period > 1000000) 150 wss_clean_period = 256; 151 152 /* reject a zero period */ 153 if (wss_clean_period == 0) 154 wss_clean_period = 1; 155 156 /* 157 * Calculate the table size - the next power of 2 larger than the 158 * LLC size. LLC size is in KiB. 159 */ 160 llc_size = rvt_wss_llc_size() * 1024; 161 table_size = roundup_pow_of_two(llc_size); 162 163 /* one bit per page in rounded up table */ 164 llc_bits = llc_size / PAGE_SIZE; 165 table_bits = table_size / PAGE_SIZE; 166 wss->pages_mask = table_bits - 1; 167 wss->num_entries = table_bits / BITS_PER_LONG; 168 169 wss->threshold = (llc_bits * wss_threshold) / 100; 170 if (wss->threshold == 0) 171 wss->threshold = 1; 172 173 wss->clean_period = wss_clean_period; 174 atomic_set(&wss->clean_counter, wss_clean_period); 175 176 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 177 GFP_KERNEL, node); 178 if (!wss->entries) { 179 rvt_wss_exit(rdi); 180 return -ENOMEM; 181 } 182 183 return 0; 184 } 185 186 /* 187 * Advance the clean counter. When the clean period has expired, 188 * clean an entry. 189 * 190 * This is implemented in atomics to avoid locking. Because multiple 191 * variables are involved, it can be racy which can lead to slightly 192 * inaccurate information. Since this is only a heuristic, this is 193 * OK. Any innaccuracies will clean themselves out as the counter 194 * advances. That said, it is unlikely the entry clean operation will 195 * race - the next possible racer will not start until the next clean 196 * period. 197 * 198 * The clean counter is implemented as a decrement to zero. When zero 199 * is reached an entry is cleaned. 200 */ 201 static void wss_advance_clean_counter(struct rvt_wss *wss) 202 { 203 int entry; 204 int weight; 205 unsigned long bits; 206 207 /* become the cleaner if we decrement the counter to zero */ 208 if (atomic_dec_and_test(&wss->clean_counter)) { 209 /* 210 * Set, not add, the clean period. This avoids an issue 211 * where the counter could decrement below the clean period. 212 * Doing a set can result in lost decrements, slowing the 213 * clean advance. Since this a heuristic, this possible 214 * slowdown is OK. 215 * 216 * An alternative is to loop, advancing the counter by a 217 * clean period until the result is > 0. However, this could 218 * lead to several threads keeping another in the clean loop. 219 * This could be mitigated by limiting the number of times 220 * we stay in the loop. 221 */ 222 atomic_set(&wss->clean_counter, wss->clean_period); 223 224 /* 225 * Uniquely grab the entry to clean and move to next. 226 * The current entry is always the lower bits of 227 * wss.clean_entry. The table size, wss.num_entries, 228 * is always a power-of-2. 229 */ 230 entry = (atomic_inc_return(&wss->clean_entry) - 1) 231 & (wss->num_entries - 1); 232 233 /* clear the entry and count the bits */ 234 bits = xchg(&wss->entries[entry], 0); 235 weight = hweight64((u64)bits); 236 /* only adjust the contended total count if needed */ 237 if (weight) 238 atomic_sub(weight, &wss->total_count); 239 } 240 } 241 242 /* 243 * Insert the given address into the working set array. 244 */ 245 static void wss_insert(struct rvt_wss *wss, void *address) 246 { 247 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 248 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 249 u32 nr = page & (BITS_PER_LONG - 1); 250 251 if (!test_and_set_bit(nr, &wss->entries[entry])) 252 atomic_inc(&wss->total_count); 253 254 wss_advance_clean_counter(wss); 255 } 256 257 /* 258 * Is the working set larger than the threshold? 259 */ 260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 261 { 262 return atomic_read(&wss->total_count) >= wss->threshold; 263 } 264 265 static void get_map_page(struct rvt_qpn_table *qpt, 266 struct rvt_qpn_map *map) 267 { 268 unsigned long page = get_zeroed_page(GFP_KERNEL); 269 270 /* 271 * Free the page if someone raced with us installing it. 272 */ 273 274 spin_lock(&qpt->lock); 275 if (map->page) 276 free_page(page); 277 else 278 map->page = (void *)page; 279 spin_unlock(&qpt->lock); 280 } 281 282 /** 283 * init_qpn_table - initialize the QP number table for a device 284 * @rdi: rvt dev struct 285 * @qpt: the QPN table 286 */ 287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 288 { 289 u32 offset, i; 290 struct rvt_qpn_map *map; 291 int ret = 0; 292 293 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 294 return -EINVAL; 295 296 spin_lock_init(&qpt->lock); 297 298 qpt->last = rdi->dparms.qpn_start; 299 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 300 301 /* 302 * Drivers may want some QPs beyond what we need for verbs let them use 303 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 304 * for those. The reserved range must be *after* the range which verbs 305 * will pick from. 306 */ 307 308 /* Figure out number of bit maps needed before reserved range */ 309 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 310 311 /* This should always be zero */ 312 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 313 314 /* Starting with the first reserved bit map */ 315 map = &qpt->map[qpt->nmaps]; 316 317 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 318 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 319 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 320 if (!map->page) { 321 get_map_page(qpt, map); 322 if (!map->page) { 323 ret = -ENOMEM; 324 break; 325 } 326 } 327 set_bit(offset, map->page); 328 offset++; 329 if (offset == RVT_BITS_PER_PAGE) { 330 /* next page */ 331 qpt->nmaps++; 332 map++; 333 offset = 0; 334 } 335 } 336 return ret; 337 } 338 339 /** 340 * free_qpn_table - free the QP number table for a device 341 * @qpt: the QPN table 342 */ 343 static void free_qpn_table(struct rvt_qpn_table *qpt) 344 { 345 int i; 346 347 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 348 free_page((unsigned long)qpt->map[i].page); 349 } 350 351 /** 352 * rvt_driver_qp_init - Init driver qp resources 353 * @rdi: rvt dev strucutre 354 * 355 * Return: 0 on success 356 */ 357 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 358 { 359 int i; 360 int ret = -ENOMEM; 361 362 if (!rdi->dparms.qp_table_size) 363 return -EINVAL; 364 365 /* 366 * If driver is not doing any QP allocation then make sure it is 367 * providing the necessary QP functions. 368 */ 369 if (!rdi->driver_f.free_all_qps || 370 !rdi->driver_f.qp_priv_alloc || 371 !rdi->driver_f.qp_priv_free || 372 !rdi->driver_f.notify_qp_reset || 373 !rdi->driver_f.notify_restart_rc) 374 return -EINVAL; 375 376 /* allocate parent object */ 377 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 378 rdi->dparms.node); 379 if (!rdi->qp_dev) 380 return -ENOMEM; 381 382 /* allocate hash table */ 383 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 384 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 385 rdi->qp_dev->qp_table = 386 kmalloc_array_node(rdi->qp_dev->qp_table_size, 387 sizeof(*rdi->qp_dev->qp_table), 388 GFP_KERNEL, rdi->dparms.node); 389 if (!rdi->qp_dev->qp_table) 390 goto no_qp_table; 391 392 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 393 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 394 395 spin_lock_init(&rdi->qp_dev->qpt_lock); 396 397 /* initialize qpn map */ 398 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 399 goto fail_table; 400 401 spin_lock_init(&rdi->n_qps_lock); 402 403 return 0; 404 405 fail_table: 406 kfree(rdi->qp_dev->qp_table); 407 free_qpn_table(&rdi->qp_dev->qpn_table); 408 409 no_qp_table: 410 kfree(rdi->qp_dev); 411 412 return ret; 413 } 414 415 /** 416 * rvt_free_qp_cb - callback function to reset a qp 417 * @qp: the qp to reset 418 * @v: a 64-bit value 419 * 420 * This function resets the qp and removes it from the 421 * qp hash table. 422 */ 423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) 424 { 425 unsigned int *qp_inuse = (unsigned int *)v; 426 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 427 428 /* Reset the qp and remove it from the qp hash list */ 429 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); 430 431 /* Increment the qp_inuse count */ 432 (*qp_inuse)++; 433 } 434 435 /** 436 * rvt_free_all_qps - check for QPs still in use 437 * @rdi: rvt device info structure 438 * 439 * There should not be any QPs still in use. 440 * Free memory for table. 441 * Return the number of QPs still in use. 442 */ 443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 444 { 445 unsigned int qp_inuse = 0; 446 447 qp_inuse += rvt_mcast_tree_empty(rdi); 448 449 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); 450 451 return qp_inuse; 452 } 453 454 /** 455 * rvt_qp_exit - clean up qps on device exit 456 * @rdi: rvt dev structure 457 * 458 * Check for qp leaks and free resources. 459 */ 460 void rvt_qp_exit(struct rvt_dev_info *rdi) 461 { 462 u32 qps_inuse = rvt_free_all_qps(rdi); 463 464 if (qps_inuse) 465 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 466 qps_inuse); 467 468 kfree(rdi->qp_dev->qp_table); 469 free_qpn_table(&rdi->qp_dev->qpn_table); 470 kfree(rdi->qp_dev); 471 } 472 473 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 474 struct rvt_qpn_map *map, unsigned off) 475 { 476 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 477 } 478 479 /** 480 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 481 * IB_QPT_SMI/IB_QPT_GSI 482 * @rdi: rvt device info structure 483 * @qpt: queue pair number table pointer 484 * @type: the QP type 485 * @port_num: IB port number, 1 based, comes from core 486 * @exclude_prefix: prefix of special queue pair number being allocated 487 * 488 * Return: The queue pair number 489 */ 490 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 491 enum ib_qp_type type, u8 port_num, u8 exclude_prefix) 492 { 493 u32 i, offset, max_scan, qpn; 494 struct rvt_qpn_map *map; 495 u32 ret; 496 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ? 497 RVT_AIP_QPN_MAX : RVT_QPN_MAX; 498 499 if (rdi->driver_f.alloc_qpn) 500 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 501 502 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 503 unsigned n; 504 505 ret = type == IB_QPT_GSI; 506 n = 1 << (ret + 2 * (port_num - 1)); 507 spin_lock(&qpt->lock); 508 if (qpt->flags & n) 509 ret = -EINVAL; 510 else 511 qpt->flags |= n; 512 spin_unlock(&qpt->lock); 513 goto bail; 514 } 515 516 qpn = qpt->last + qpt->incr; 517 if (qpn >= max_qpn) 518 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 519 /* offset carries bit 0 */ 520 offset = qpn & RVT_BITS_PER_PAGE_MASK; 521 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 522 max_scan = qpt->nmaps - !offset; 523 for (i = 0;;) { 524 if (unlikely(!map->page)) { 525 get_map_page(qpt, map); 526 if (unlikely(!map->page)) 527 break; 528 } 529 do { 530 if (!test_and_set_bit(offset, map->page)) { 531 qpt->last = qpn; 532 ret = qpn; 533 goto bail; 534 } 535 offset += qpt->incr; 536 /* 537 * This qpn might be bogus if offset >= BITS_PER_PAGE. 538 * That is OK. It gets re-assigned below 539 */ 540 qpn = mk_qpn(qpt, map, offset); 541 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 542 /* 543 * In order to keep the number of pages allocated to a 544 * minimum, we scan the all existing pages before increasing 545 * the size of the bitmap table. 546 */ 547 if (++i > max_scan) { 548 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 549 break; 550 map = &qpt->map[qpt->nmaps++]; 551 /* start at incr with current bit 0 */ 552 offset = qpt->incr | (offset & 1); 553 } else if (map < &qpt->map[qpt->nmaps]) { 554 ++map; 555 /* start at incr with current bit 0 */ 556 offset = qpt->incr | (offset & 1); 557 } else { 558 map = &qpt->map[0]; 559 /* wrap to first map page, invert bit 0 */ 560 offset = qpt->incr | ((offset & 1) ^ 1); 561 } 562 /* there can be no set bits in low-order QoS bits */ 563 WARN_ON(rdi->dparms.qos_shift > 1 && 564 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 565 qpn = mk_qpn(qpt, map, offset); 566 } 567 568 ret = -ENOMEM; 569 570 bail: 571 return ret; 572 } 573 574 /** 575 * rvt_clear_mr_refs - Drop help mr refs 576 * @qp: rvt qp data structure 577 * @clr_sends: If shoudl clear send side or not 578 */ 579 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 580 { 581 unsigned n; 582 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 583 584 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 585 rvt_put_ss(&qp->s_rdma_read_sge); 586 587 rvt_put_ss(&qp->r_sge); 588 589 if (clr_sends) { 590 while (qp->s_last != qp->s_head) { 591 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 592 593 rvt_put_qp_swqe(qp, wqe); 594 if (++qp->s_last >= qp->s_size) 595 qp->s_last = 0; 596 smp_wmb(); /* see qp_set_savail */ 597 } 598 if (qp->s_rdma_mr) { 599 rvt_put_mr(qp->s_rdma_mr); 600 qp->s_rdma_mr = NULL; 601 } 602 } 603 604 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 605 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 606 607 if (e->rdma_sge.mr) { 608 rvt_put_mr(e->rdma_sge.mr); 609 e->rdma_sge.mr = NULL; 610 } 611 } 612 } 613 614 /** 615 * rvt_swqe_has_lkey - return true if lkey is used by swqe 616 * @wqe: the send wqe 617 * @lkey: the lkey 618 * 619 * Test the swqe for using lkey 620 */ 621 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 622 { 623 int i; 624 625 for (i = 0; i < wqe->wr.num_sge; i++) { 626 struct rvt_sge *sge = &wqe->sg_list[i]; 627 628 if (rvt_mr_has_lkey(sge->mr, lkey)) 629 return true; 630 } 631 return false; 632 } 633 634 /** 635 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 636 * @qp: the rvt_qp 637 * @lkey: the lkey 638 */ 639 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 640 { 641 u32 s_last = qp->s_last; 642 643 while (s_last != qp->s_head) { 644 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 645 646 if (rvt_swqe_has_lkey(wqe, lkey)) 647 return true; 648 649 if (++s_last >= qp->s_size) 650 s_last = 0; 651 } 652 if (qp->s_rdma_mr) 653 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 654 return true; 655 return false; 656 } 657 658 /** 659 * rvt_qp_acks_has_lkey - return true if acks have lkey 660 * @qp: the qp 661 * @lkey: the lkey 662 */ 663 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 664 { 665 int i; 666 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 667 668 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 669 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 670 671 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 672 return true; 673 } 674 return false; 675 } 676 677 /** 678 * rvt_qp_mr_clean - clean up remote ops for lkey 679 * @qp: the qp 680 * @lkey: the lkey that is being de-registered 681 * 682 * This routine checks if the lkey is being used by 683 * the qp. 684 * 685 * If so, the qp is put into an error state to elminate 686 * any references from the qp. 687 */ 688 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 689 { 690 bool lastwqe = false; 691 692 if (qp->ibqp.qp_type == IB_QPT_SMI || 693 qp->ibqp.qp_type == IB_QPT_GSI) 694 /* avoid special QPs */ 695 return; 696 spin_lock_irq(&qp->r_lock); 697 spin_lock(&qp->s_hlock); 698 spin_lock(&qp->s_lock); 699 700 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 701 goto check_lwqe; 702 703 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 704 rvt_qp_sends_has_lkey(qp, lkey) || 705 rvt_qp_acks_has_lkey(qp, lkey)) 706 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 707 check_lwqe: 708 spin_unlock(&qp->s_lock); 709 spin_unlock(&qp->s_hlock); 710 spin_unlock_irq(&qp->r_lock); 711 if (lastwqe) { 712 struct ib_event ev; 713 714 ev.device = qp->ibqp.device; 715 ev.element.qp = &qp->ibqp; 716 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 717 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 718 } 719 } 720 721 /** 722 * rvt_remove_qp - remove qp form table 723 * @rdi: rvt dev struct 724 * @qp: qp to remove 725 * 726 * Remove the QP from the table so it can't be found asynchronously by 727 * the receive routine. 728 */ 729 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 730 { 731 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 732 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 733 unsigned long flags; 734 int removed = 1; 735 736 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 737 738 if (rcu_dereference_protected(rvp->qp[0], 739 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 740 RCU_INIT_POINTER(rvp->qp[0], NULL); 741 } else if (rcu_dereference_protected(rvp->qp[1], 742 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 743 RCU_INIT_POINTER(rvp->qp[1], NULL); 744 } else { 745 struct rvt_qp *q; 746 struct rvt_qp __rcu **qpp; 747 748 removed = 0; 749 qpp = &rdi->qp_dev->qp_table[n]; 750 for (; (q = rcu_dereference_protected(*qpp, 751 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 752 qpp = &q->next) { 753 if (q == qp) { 754 RCU_INIT_POINTER(*qpp, 755 rcu_dereference_protected(qp->next, 756 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 757 removed = 1; 758 trace_rvt_qpremove(qp, n); 759 break; 760 } 761 } 762 } 763 764 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 765 if (removed) { 766 synchronize_rcu(); 767 rvt_put_qp(qp); 768 } 769 } 770 771 /** 772 * rvt_alloc_rq - allocate memory for user or kernel buffer 773 * @rq: receive queue data structure 774 * @size: number of request queue entries 775 * @node: The NUMA node 776 * @udata: True if user data is available or not false 777 * 778 * Return: If memory allocation failed, return -ENONEM 779 * This function is used by both shared receive 780 * queues and non-shared receive queues to allocate 781 * memory. 782 */ 783 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, 784 struct ib_udata *udata) 785 { 786 if (udata) { 787 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); 788 if (!rq->wq) 789 goto bail; 790 /* need kwq with no buffers */ 791 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); 792 if (!rq->kwq) 793 goto bail; 794 rq->kwq->curr_wq = rq->wq->wq; 795 } else { 796 /* need kwq with buffers */ 797 rq->kwq = 798 vzalloc_node(sizeof(struct rvt_krwq) + size, node); 799 if (!rq->kwq) 800 goto bail; 801 rq->kwq->curr_wq = rq->kwq->wq; 802 } 803 804 spin_lock_init(&rq->kwq->p_lock); 805 spin_lock_init(&rq->kwq->c_lock); 806 return 0; 807 bail: 808 rvt_free_rq(rq); 809 return -ENOMEM; 810 } 811 812 /** 813 * rvt_init_qp - initialize the QP state to the reset state 814 * @rdi: rvt dev struct 815 * @qp: the QP to init or reinit 816 * @type: the QP type 817 * 818 * This function is called from both rvt_create_qp() and 819 * rvt_reset_qp(). The difference is that the reset 820 * patch the necessary locks to protect against concurent 821 * access. 822 */ 823 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 824 enum ib_qp_type type) 825 { 826 qp->remote_qpn = 0; 827 qp->qkey = 0; 828 qp->qp_access_flags = 0; 829 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 830 qp->s_hdrwords = 0; 831 qp->s_wqe = NULL; 832 qp->s_draining = 0; 833 qp->s_next_psn = 0; 834 qp->s_last_psn = 0; 835 qp->s_sending_psn = 0; 836 qp->s_sending_hpsn = 0; 837 qp->s_psn = 0; 838 qp->r_psn = 0; 839 qp->r_msn = 0; 840 if (type == IB_QPT_RC) { 841 qp->s_state = IB_OPCODE_RC_SEND_LAST; 842 qp->r_state = IB_OPCODE_RC_SEND_LAST; 843 } else { 844 qp->s_state = IB_OPCODE_UC_SEND_LAST; 845 qp->r_state = IB_OPCODE_UC_SEND_LAST; 846 } 847 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 848 qp->r_nak_state = 0; 849 qp->r_aflags = 0; 850 qp->r_flags = 0; 851 qp->s_head = 0; 852 qp->s_tail = 0; 853 qp->s_cur = 0; 854 qp->s_acked = 0; 855 qp->s_last = 0; 856 qp->s_ssn = 1; 857 qp->s_lsn = 0; 858 qp->s_mig_state = IB_MIG_MIGRATED; 859 qp->r_head_ack_queue = 0; 860 qp->s_tail_ack_queue = 0; 861 qp->s_acked_ack_queue = 0; 862 qp->s_num_rd_atomic = 0; 863 qp->r_sge.num_sge = 0; 864 atomic_set(&qp->s_reserved_used, 0); 865 } 866 867 /** 868 * _rvt_reset_qp - initialize the QP state to the reset state 869 * @rdi: rvt dev struct 870 * @qp: the QP to reset 871 * @type: the QP type 872 * 873 * r_lock, s_hlock, and s_lock are required to be held by the caller 874 */ 875 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 876 enum ib_qp_type type) 877 __must_hold(&qp->s_lock) 878 __must_hold(&qp->s_hlock) 879 __must_hold(&qp->r_lock) 880 { 881 lockdep_assert_held(&qp->r_lock); 882 lockdep_assert_held(&qp->s_hlock); 883 lockdep_assert_held(&qp->s_lock); 884 if (qp->state != IB_QPS_RESET) { 885 qp->state = IB_QPS_RESET; 886 887 /* Let drivers flush their waitlist */ 888 rdi->driver_f.flush_qp_waiters(qp); 889 rvt_stop_rc_timers(qp); 890 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 891 spin_unlock(&qp->s_lock); 892 spin_unlock(&qp->s_hlock); 893 spin_unlock_irq(&qp->r_lock); 894 895 /* Stop the send queue and the retry timer */ 896 rdi->driver_f.stop_send_queue(qp); 897 rvt_del_timers_sync(qp); 898 /* Wait for things to stop */ 899 rdi->driver_f.quiesce_qp(qp); 900 901 /* take qp out the hash and wait for it to be unused */ 902 rvt_remove_qp(rdi, qp); 903 904 /* grab the lock b/c it was locked at call time */ 905 spin_lock_irq(&qp->r_lock); 906 spin_lock(&qp->s_hlock); 907 spin_lock(&qp->s_lock); 908 909 rvt_clear_mr_refs(qp, 1); 910 /* 911 * Let the driver do any tear down or re-init it needs to for 912 * a qp that has been reset 913 */ 914 rdi->driver_f.notify_qp_reset(qp); 915 } 916 rvt_init_qp(rdi, qp, type); 917 lockdep_assert_held(&qp->r_lock); 918 lockdep_assert_held(&qp->s_hlock); 919 lockdep_assert_held(&qp->s_lock); 920 } 921 922 /** 923 * rvt_reset_qp - initialize the QP state to the reset state 924 * @rdi: the device info 925 * @qp: the QP to reset 926 * @type: the QP type 927 * 928 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock 929 * before calling _rvt_reset_qp(). 930 */ 931 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 932 enum ib_qp_type type) 933 { 934 spin_lock_irq(&qp->r_lock); 935 spin_lock(&qp->s_hlock); 936 spin_lock(&qp->s_lock); 937 _rvt_reset_qp(rdi, qp, type); 938 spin_unlock(&qp->s_lock); 939 spin_unlock(&qp->s_hlock); 940 spin_unlock_irq(&qp->r_lock); 941 } 942 943 /** 944 * rvt_free_qpn - Free a qpn from the bit map 945 * @qpt: QP table 946 * @qpn: queue pair number to free 947 */ 948 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 949 { 950 struct rvt_qpn_map *map; 951 952 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE) 953 qpn &= RVT_AIP_QP_SUFFIX; 954 955 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 956 if (map->page) 957 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 958 } 959 960 /** 961 * get_allowed_ops - Given a QP type return the appropriate allowed OP 962 * @type: valid, supported, QP type 963 */ 964 static u8 get_allowed_ops(enum ib_qp_type type) 965 { 966 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? 967 IB_OPCODE_UC : IB_OPCODE_UD; 968 } 969 970 /** 971 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs 972 * @qp: Valid QP with allowed_ops set 973 * 974 * The rvt_swqe data structure being used is a union, so this is 975 * only valid for UD QPs. 976 */ 977 static void free_ud_wq_attr(struct rvt_qp *qp) 978 { 979 struct rvt_swqe *wqe; 980 int i; 981 982 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 983 wqe = rvt_get_swqe_ptr(qp, i); 984 kfree(wqe->ud_wr.attr); 985 wqe->ud_wr.attr = NULL; 986 } 987 } 988 989 /** 990 * alloc_ud_wq_attr - AH attribute cache for UD QPs 991 * @qp: Valid QP with allowed_ops set 992 * @node: Numa node for allocation 993 * 994 * The rvt_swqe data structure being used is a union, so this is 995 * only valid for UD QPs. 996 */ 997 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) 998 { 999 struct rvt_swqe *wqe; 1000 int i; 1001 1002 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1003 wqe = rvt_get_swqe_ptr(qp, i); 1004 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), 1005 GFP_KERNEL, node); 1006 if (!wqe->ud_wr.attr) { 1007 free_ud_wq_attr(qp); 1008 return -ENOMEM; 1009 } 1010 } 1011 1012 return 0; 1013 } 1014 1015 /** 1016 * rvt_create_qp - create a queue pair for a device 1017 * @ibqp: the queue pair 1018 * @init_attr: the attributes of the queue pair 1019 * @udata: user data for libibverbs.so 1020 * 1021 * Queue pair creation is mostly an rvt issue. However, drivers have their own 1022 * unique idea of what queue pair numbers mean. For instance there is a reserved 1023 * range for PSM. 1024 * 1025 * Return: 0 on success, otherwise returns an errno. 1026 * 1027 * Called by the ib_create_qp() core verbs function. 1028 */ 1029 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr, 1030 struct ib_udata *udata) 1031 { 1032 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1033 int ret = -ENOMEM; 1034 struct rvt_swqe *swq = NULL; 1035 size_t sz; 1036 size_t sg_list_sz = 0; 1037 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1038 void *priv = NULL; 1039 size_t sqsize; 1040 u8 exclude_prefix = 0; 1041 1042 if (!rdi) 1043 return -EINVAL; 1044 1045 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE) 1046 return -EOPNOTSUPP; 1047 1048 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 1049 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr) 1050 return -EINVAL; 1051 1052 /* Check receive queue parameters if no SRQ is specified. */ 1053 if (!init_attr->srq) { 1054 if (init_attr->cap.max_recv_sge > 1055 rdi->dparms.props.max_recv_sge || 1056 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 1057 return -EINVAL; 1058 1059 if (init_attr->cap.max_send_sge + 1060 init_attr->cap.max_send_wr + 1061 init_attr->cap.max_recv_sge + 1062 init_attr->cap.max_recv_wr == 0) 1063 return -EINVAL; 1064 } 1065 sqsize = 1066 init_attr->cap.max_send_wr + 1 + 1067 rdi->dparms.reserved_operations; 1068 switch (init_attr->qp_type) { 1069 case IB_QPT_SMI: 1070 case IB_QPT_GSI: 1071 if (init_attr->port_num == 0 || 1072 init_attr->port_num > ibqp->device->phys_port_cnt) 1073 return -EINVAL; 1074 fallthrough; 1075 case IB_QPT_UC: 1076 case IB_QPT_RC: 1077 case IB_QPT_UD: 1078 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); 1079 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 1080 if (!swq) 1081 return -ENOMEM; 1082 1083 if (init_attr->srq) { 1084 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1085 1086 if (srq->rq.max_sge > 1) 1087 sg_list_sz = sizeof(*qp->r_sg_list) * 1088 (srq->rq.max_sge - 1); 1089 } else if (init_attr->cap.max_recv_sge > 1) 1090 sg_list_sz = sizeof(*qp->r_sg_list) * 1091 (init_attr->cap.max_recv_sge - 1); 1092 qp->r_sg_list = 1093 kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node); 1094 if (!qp->r_sg_list) 1095 goto bail_qp; 1096 qp->allowed_ops = get_allowed_ops(init_attr->qp_type); 1097 1098 RCU_INIT_POINTER(qp->next, NULL); 1099 if (init_attr->qp_type == IB_QPT_RC) { 1100 qp->s_ack_queue = 1101 kcalloc_node(rvt_max_atomic(rdi), 1102 sizeof(*qp->s_ack_queue), 1103 GFP_KERNEL, 1104 rdi->dparms.node); 1105 if (!qp->s_ack_queue) 1106 goto bail_qp; 1107 } 1108 /* initialize timers needed for rc qp */ 1109 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1110 hrtimer_setup(&qp->s_rnr_timer, rvt_rc_rnr_retry, CLOCK_MONOTONIC, 1111 HRTIMER_MODE_REL); 1112 1113 /* 1114 * Driver needs to set up it's private QP structure and do any 1115 * initialization that is needed. 1116 */ 1117 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1118 if (IS_ERR(priv)) { 1119 ret = PTR_ERR(priv); 1120 goto bail_qp; 1121 } 1122 qp->priv = priv; 1123 qp->timeout_jiffies = 1124 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1125 1000UL); 1126 if (init_attr->srq) { 1127 sz = 0; 1128 } else { 1129 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1130 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1131 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1132 sizeof(struct rvt_rwqe); 1133 ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, 1134 rdi->dparms.node, udata); 1135 if (ret) 1136 goto bail_driver_priv; 1137 } 1138 1139 /* 1140 * ib_create_qp() will initialize qp->ibqp 1141 * except for qp->ibqp.qp_num. 1142 */ 1143 spin_lock_init(&qp->r_lock); 1144 spin_lock_init(&qp->s_hlock); 1145 spin_lock_init(&qp->s_lock); 1146 atomic_set(&qp->refcount, 0); 1147 atomic_set(&qp->local_ops_pending, 0); 1148 init_waitqueue_head(&qp->wait); 1149 INIT_LIST_HEAD(&qp->rspwait); 1150 qp->state = IB_QPS_RESET; 1151 qp->s_wq = swq; 1152 qp->s_size = sqsize; 1153 qp->s_avail = init_attr->cap.max_send_wr; 1154 qp->s_max_sge = init_attr->cap.max_send_sge; 1155 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1156 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1157 ret = alloc_ud_wq_attr(qp, rdi->dparms.node); 1158 if (ret) 1159 goto bail_rq_rvt; 1160 1161 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1162 exclude_prefix = RVT_AIP_QP_PREFIX; 1163 1164 ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1165 init_attr->qp_type, 1166 init_attr->port_num, 1167 exclude_prefix); 1168 if (ret < 0) 1169 goto bail_rq_wq; 1170 1171 qp->ibqp.qp_num = ret; 1172 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1173 qp->ibqp.qp_num |= RVT_AIP_QP_BASE; 1174 qp->port_num = init_attr->port_num; 1175 rvt_init_qp(rdi, qp, init_attr->qp_type); 1176 if (rdi->driver_f.qp_priv_init) { 1177 ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1178 if (ret) 1179 goto bail_rq_wq; 1180 } 1181 break; 1182 1183 default: 1184 /* Don't support raw QPs */ 1185 return -EOPNOTSUPP; 1186 } 1187 1188 init_attr->cap.max_inline_data = 0; 1189 1190 /* 1191 * Return the address of the RWQ as the offset to mmap. 1192 * See rvt_mmap() for details. 1193 */ 1194 if (udata && udata->outlen >= sizeof(__u64)) { 1195 if (!qp->r_rq.wq) { 1196 __u64 offset = 0; 1197 1198 ret = ib_copy_to_udata(udata, &offset, 1199 sizeof(offset)); 1200 if (ret) 1201 goto bail_qpn; 1202 } else { 1203 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1204 1205 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1206 qp->r_rq.wq); 1207 if (IS_ERR(qp->ip)) { 1208 ret = PTR_ERR(qp->ip); 1209 goto bail_qpn; 1210 } 1211 1212 ret = ib_copy_to_udata(udata, &qp->ip->offset, 1213 sizeof(qp->ip->offset)); 1214 if (ret) 1215 goto bail_ip; 1216 } 1217 qp->pid = current->pid; 1218 } 1219 1220 spin_lock(&rdi->n_qps_lock); 1221 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1222 spin_unlock(&rdi->n_qps_lock); 1223 ret = -ENOMEM; 1224 goto bail_ip; 1225 } 1226 1227 rdi->n_qps_allocated++; 1228 /* 1229 * Maintain a busy_jiffies variable that will be added to the timeout 1230 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1231 * is scaled by the number of rc qps created for the device to reduce 1232 * the number of timeouts occurring when there is a large number of 1233 * qps. busy_jiffies is incremented every rc qp scaling interval. 1234 * The scaling interval is selected based on extensive performance 1235 * evaluation of targeted workloads. 1236 */ 1237 if (init_attr->qp_type == IB_QPT_RC) { 1238 rdi->n_rc_qps++; 1239 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1240 } 1241 spin_unlock(&rdi->n_qps_lock); 1242 1243 if (qp->ip) { 1244 spin_lock_irq(&rdi->pending_lock); 1245 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1246 spin_unlock_irq(&rdi->pending_lock); 1247 } 1248 1249 return 0; 1250 1251 bail_ip: 1252 if (qp->ip) 1253 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1254 1255 bail_qpn: 1256 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1257 1258 bail_rq_wq: 1259 free_ud_wq_attr(qp); 1260 1261 bail_rq_rvt: 1262 rvt_free_rq(&qp->r_rq); 1263 1264 bail_driver_priv: 1265 rdi->driver_f.qp_priv_free(rdi, qp); 1266 1267 bail_qp: 1268 kfree(qp->s_ack_queue); 1269 kfree(qp->r_sg_list); 1270 vfree(swq); 1271 return ret; 1272 } 1273 1274 /** 1275 * rvt_error_qp - put a QP into the error state 1276 * @qp: the QP to put into the error state 1277 * @err: the receive completion error to signal if a RWQE is active 1278 * 1279 * Flushes both send and receive work queues. 1280 * 1281 * Return: true if last WQE event should be generated. 1282 * The QP r_lock and s_lock should be held and interrupts disabled. 1283 * If we are already in error state, just return. 1284 */ 1285 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1286 { 1287 struct ib_wc wc; 1288 int ret = 0; 1289 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1290 1291 lockdep_assert_held(&qp->r_lock); 1292 lockdep_assert_held(&qp->s_lock); 1293 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1294 goto bail; 1295 1296 qp->state = IB_QPS_ERR; 1297 1298 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1299 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1300 timer_delete(&qp->s_timer); 1301 } 1302 1303 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1304 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1305 1306 rdi->driver_f.notify_error_qp(qp); 1307 1308 /* Schedule the sending tasklet to drain the send work queue. */ 1309 if (READ_ONCE(qp->s_last) != qp->s_head) 1310 rdi->driver_f.schedule_send(qp); 1311 1312 rvt_clear_mr_refs(qp, 0); 1313 1314 memset(&wc, 0, sizeof(wc)); 1315 wc.qp = &qp->ibqp; 1316 wc.opcode = IB_WC_RECV; 1317 1318 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1319 wc.wr_id = qp->r_wr_id; 1320 wc.status = err; 1321 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1322 } 1323 wc.status = IB_WC_WR_FLUSH_ERR; 1324 1325 if (qp->r_rq.kwq) { 1326 u32 head; 1327 u32 tail; 1328 struct rvt_rwq *wq = NULL; 1329 struct rvt_krwq *kwq = NULL; 1330 1331 spin_lock(&qp->r_rq.kwq->c_lock); 1332 /* qp->ip used to validate if there is a user buffer mmaped */ 1333 if (qp->ip) { 1334 wq = qp->r_rq.wq; 1335 head = RDMA_READ_UAPI_ATOMIC(wq->head); 1336 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 1337 } else { 1338 kwq = qp->r_rq.kwq; 1339 head = kwq->head; 1340 tail = kwq->tail; 1341 } 1342 /* sanity check pointers before trusting them */ 1343 if (head >= qp->r_rq.size) 1344 head = 0; 1345 if (tail >= qp->r_rq.size) 1346 tail = 0; 1347 while (tail != head) { 1348 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1349 if (++tail >= qp->r_rq.size) 1350 tail = 0; 1351 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1352 } 1353 if (qp->ip) 1354 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 1355 else 1356 kwq->tail = tail; 1357 spin_unlock(&qp->r_rq.kwq->c_lock); 1358 } else if (qp->ibqp.event_handler) { 1359 ret = 1; 1360 } 1361 1362 bail: 1363 return ret; 1364 } 1365 EXPORT_SYMBOL(rvt_error_qp); 1366 1367 /* 1368 * Put the QP into the hash table. 1369 * The hash table holds a reference to the QP. 1370 */ 1371 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1372 { 1373 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1374 unsigned long flags; 1375 1376 rvt_get_qp(qp); 1377 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1378 1379 if (qp->ibqp.qp_num <= 1) { 1380 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1381 } else { 1382 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1383 1384 qp->next = rdi->qp_dev->qp_table[n]; 1385 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1386 trace_rvt_qpinsert(qp, n); 1387 } 1388 1389 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1390 } 1391 1392 /** 1393 * rvt_modify_qp - modify the attributes of a queue pair 1394 * @ibqp: the queue pair who's attributes we're modifying 1395 * @attr: the new attributes 1396 * @attr_mask: the mask of attributes to modify 1397 * @udata: user data for libibverbs.so 1398 * 1399 * Return: 0 on success, otherwise returns an errno. 1400 */ 1401 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1402 int attr_mask, struct ib_udata *udata) 1403 { 1404 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1405 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1406 enum ib_qp_state cur_state, new_state; 1407 struct ib_event ev; 1408 int lastwqe = 0; 1409 int mig = 0; 1410 int pmtu = 0; /* for gcc warning only */ 1411 int opa_ah; 1412 1413 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) 1414 return -EOPNOTSUPP; 1415 1416 spin_lock_irq(&qp->r_lock); 1417 spin_lock(&qp->s_hlock); 1418 spin_lock(&qp->s_lock); 1419 1420 cur_state = attr_mask & IB_QP_CUR_STATE ? 1421 attr->cur_qp_state : qp->state; 1422 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1423 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1424 1425 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1426 attr_mask)) 1427 goto inval; 1428 1429 if (rdi->driver_f.check_modify_qp && 1430 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1431 goto inval; 1432 1433 if (attr_mask & IB_QP_AV) { 1434 if (opa_ah) { 1435 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1436 opa_get_mcast_base(OPA_MCAST_NR)) 1437 goto inval; 1438 } else { 1439 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1440 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1441 goto inval; 1442 } 1443 1444 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1445 goto inval; 1446 } 1447 1448 if (attr_mask & IB_QP_ALT_PATH) { 1449 if (opa_ah) { 1450 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1451 opa_get_mcast_base(OPA_MCAST_NR)) 1452 goto inval; 1453 } else { 1454 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1455 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1456 goto inval; 1457 } 1458 1459 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1460 goto inval; 1461 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1462 goto inval; 1463 } 1464 1465 if (attr_mask & IB_QP_PKEY_INDEX) 1466 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1467 goto inval; 1468 1469 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1470 if (attr->min_rnr_timer > 31) 1471 goto inval; 1472 1473 if (attr_mask & IB_QP_PORT) 1474 if (qp->ibqp.qp_type == IB_QPT_SMI || 1475 qp->ibqp.qp_type == IB_QPT_GSI || 1476 attr->port_num == 0 || 1477 attr->port_num > ibqp->device->phys_port_cnt) 1478 goto inval; 1479 1480 if (attr_mask & IB_QP_DEST_QPN) 1481 if (attr->dest_qp_num > RVT_QPN_MASK) 1482 goto inval; 1483 1484 if (attr_mask & IB_QP_RETRY_CNT) 1485 if (attr->retry_cnt > 7) 1486 goto inval; 1487 1488 if (attr_mask & IB_QP_RNR_RETRY) 1489 if (attr->rnr_retry > 7) 1490 goto inval; 1491 1492 /* 1493 * Don't allow invalid path_mtu values. OK to set greater 1494 * than the active mtu (or even the max_cap, if we have tuned 1495 * that to a small mtu. We'll set qp->path_mtu 1496 * to the lesser of requested attribute mtu and active, 1497 * for packetizing messages. 1498 * Note that the QP port has to be set in INIT and MTU in RTR. 1499 */ 1500 if (attr_mask & IB_QP_PATH_MTU) { 1501 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1502 if (pmtu < 0) 1503 goto inval; 1504 } 1505 1506 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1507 if (attr->path_mig_state == IB_MIG_REARM) { 1508 if (qp->s_mig_state == IB_MIG_ARMED) 1509 goto inval; 1510 if (new_state != IB_QPS_RTS) 1511 goto inval; 1512 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1513 if (qp->s_mig_state == IB_MIG_REARM) 1514 goto inval; 1515 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1516 goto inval; 1517 if (qp->s_mig_state == IB_MIG_ARMED) 1518 mig = 1; 1519 } else { 1520 goto inval; 1521 } 1522 } 1523 1524 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1525 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1526 goto inval; 1527 1528 switch (new_state) { 1529 case IB_QPS_RESET: 1530 if (qp->state != IB_QPS_RESET) 1531 _rvt_reset_qp(rdi, qp, ibqp->qp_type); 1532 break; 1533 1534 case IB_QPS_RTR: 1535 /* Allow event to re-trigger if QP set to RTR more than once */ 1536 qp->r_flags &= ~RVT_R_COMM_EST; 1537 qp->state = new_state; 1538 break; 1539 1540 case IB_QPS_SQD: 1541 qp->s_draining = qp->s_last != qp->s_cur; 1542 qp->state = new_state; 1543 break; 1544 1545 case IB_QPS_SQE: 1546 if (qp->ibqp.qp_type == IB_QPT_RC) 1547 goto inval; 1548 qp->state = new_state; 1549 break; 1550 1551 case IB_QPS_ERR: 1552 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1553 break; 1554 1555 default: 1556 qp->state = new_state; 1557 break; 1558 } 1559 1560 if (attr_mask & IB_QP_PKEY_INDEX) 1561 qp->s_pkey_index = attr->pkey_index; 1562 1563 if (attr_mask & IB_QP_PORT) 1564 qp->port_num = attr->port_num; 1565 1566 if (attr_mask & IB_QP_DEST_QPN) 1567 qp->remote_qpn = attr->dest_qp_num; 1568 1569 if (attr_mask & IB_QP_SQ_PSN) { 1570 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1571 qp->s_psn = qp->s_next_psn; 1572 qp->s_sending_psn = qp->s_next_psn; 1573 qp->s_last_psn = qp->s_next_psn - 1; 1574 qp->s_sending_hpsn = qp->s_last_psn; 1575 } 1576 1577 if (attr_mask & IB_QP_RQ_PSN) 1578 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1579 1580 if (attr_mask & IB_QP_ACCESS_FLAGS) 1581 qp->qp_access_flags = attr->qp_access_flags; 1582 1583 if (attr_mask & IB_QP_AV) { 1584 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1585 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1586 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1587 } 1588 1589 if (attr_mask & IB_QP_ALT_PATH) { 1590 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1591 qp->s_alt_pkey_index = attr->alt_pkey_index; 1592 } 1593 1594 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1595 qp->s_mig_state = attr->path_mig_state; 1596 if (mig) { 1597 qp->remote_ah_attr = qp->alt_ah_attr; 1598 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1599 qp->s_pkey_index = qp->s_alt_pkey_index; 1600 } 1601 } 1602 1603 if (attr_mask & IB_QP_PATH_MTU) { 1604 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1605 qp->log_pmtu = ilog2(qp->pmtu); 1606 } 1607 1608 if (attr_mask & IB_QP_RETRY_CNT) { 1609 qp->s_retry_cnt = attr->retry_cnt; 1610 qp->s_retry = attr->retry_cnt; 1611 } 1612 1613 if (attr_mask & IB_QP_RNR_RETRY) { 1614 qp->s_rnr_retry_cnt = attr->rnr_retry; 1615 qp->s_rnr_retry = attr->rnr_retry; 1616 } 1617 1618 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1619 qp->r_min_rnr_timer = attr->min_rnr_timer; 1620 1621 if (attr_mask & IB_QP_TIMEOUT) { 1622 qp->timeout = attr->timeout; 1623 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1624 } 1625 1626 if (attr_mask & IB_QP_QKEY) 1627 qp->qkey = attr->qkey; 1628 1629 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1630 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1631 1632 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1633 qp->s_max_rd_atomic = attr->max_rd_atomic; 1634 1635 if (rdi->driver_f.modify_qp) 1636 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1637 1638 spin_unlock(&qp->s_lock); 1639 spin_unlock(&qp->s_hlock); 1640 spin_unlock_irq(&qp->r_lock); 1641 1642 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1643 rvt_insert_qp(rdi, qp); 1644 1645 if (lastwqe) { 1646 ev.device = qp->ibqp.device; 1647 ev.element.qp = &qp->ibqp; 1648 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1649 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1650 } 1651 if (mig) { 1652 ev.device = qp->ibqp.device; 1653 ev.element.qp = &qp->ibqp; 1654 ev.event = IB_EVENT_PATH_MIG; 1655 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1656 } 1657 return 0; 1658 1659 inval: 1660 spin_unlock(&qp->s_lock); 1661 spin_unlock(&qp->s_hlock); 1662 spin_unlock_irq(&qp->r_lock); 1663 return -EINVAL; 1664 } 1665 1666 /** 1667 * rvt_destroy_qp - destroy a queue pair 1668 * @ibqp: the queue pair to destroy 1669 * @udata: unused by the driver 1670 * 1671 * Note that this can be called while the QP is actively sending or 1672 * receiving! 1673 * 1674 * Return: 0 on success. 1675 */ 1676 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1677 { 1678 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1679 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1680 1681 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1682 1683 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1684 /* qpn is now available for use again */ 1685 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1686 1687 spin_lock(&rdi->n_qps_lock); 1688 rdi->n_qps_allocated--; 1689 if (qp->ibqp.qp_type == IB_QPT_RC) { 1690 rdi->n_rc_qps--; 1691 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1692 } 1693 spin_unlock(&rdi->n_qps_lock); 1694 1695 if (qp->ip) 1696 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1697 kvfree(qp->r_rq.kwq); 1698 rdi->driver_f.qp_priv_free(rdi, qp); 1699 kfree(qp->s_ack_queue); 1700 kfree(qp->r_sg_list); 1701 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1702 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1703 free_ud_wq_attr(qp); 1704 vfree(qp->s_wq); 1705 return 0; 1706 } 1707 1708 /** 1709 * rvt_query_qp - query an ipbq 1710 * @ibqp: IB qp to query 1711 * @attr: attr struct to fill in 1712 * @attr_mask: attr mask ignored 1713 * @init_attr: struct to fill in 1714 * 1715 * Return: always 0 1716 */ 1717 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1718 int attr_mask, struct ib_qp_init_attr *init_attr) 1719 { 1720 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1721 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1722 1723 attr->qp_state = qp->state; 1724 attr->cur_qp_state = attr->qp_state; 1725 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1726 attr->path_mig_state = qp->s_mig_state; 1727 attr->qkey = qp->qkey; 1728 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1729 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1730 attr->dest_qp_num = qp->remote_qpn; 1731 attr->qp_access_flags = qp->qp_access_flags; 1732 attr->cap.max_send_wr = qp->s_size - 1 - 1733 rdi->dparms.reserved_operations; 1734 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1735 attr->cap.max_send_sge = qp->s_max_sge; 1736 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1737 attr->cap.max_inline_data = 0; 1738 attr->ah_attr = qp->remote_ah_attr; 1739 attr->alt_ah_attr = qp->alt_ah_attr; 1740 attr->pkey_index = qp->s_pkey_index; 1741 attr->alt_pkey_index = qp->s_alt_pkey_index; 1742 attr->en_sqd_async_notify = 0; 1743 attr->sq_draining = qp->s_draining; 1744 attr->max_rd_atomic = qp->s_max_rd_atomic; 1745 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1746 attr->min_rnr_timer = qp->r_min_rnr_timer; 1747 attr->port_num = qp->port_num; 1748 attr->timeout = qp->timeout; 1749 attr->retry_cnt = qp->s_retry_cnt; 1750 attr->rnr_retry = qp->s_rnr_retry_cnt; 1751 attr->alt_port_num = 1752 rdma_ah_get_port_num(&qp->alt_ah_attr); 1753 attr->alt_timeout = qp->alt_timeout; 1754 1755 init_attr->event_handler = qp->ibqp.event_handler; 1756 init_attr->qp_context = qp->ibqp.qp_context; 1757 init_attr->send_cq = qp->ibqp.send_cq; 1758 init_attr->recv_cq = qp->ibqp.recv_cq; 1759 init_attr->srq = qp->ibqp.srq; 1760 init_attr->cap = attr->cap; 1761 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1762 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1763 else 1764 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1765 init_attr->qp_type = qp->ibqp.qp_type; 1766 init_attr->port_num = qp->port_num; 1767 return 0; 1768 } 1769 1770 /** 1771 * rvt_post_recv - post a receive on a QP 1772 * @ibqp: the QP to post the receive on 1773 * @wr: the WR to post 1774 * @bad_wr: the first bad WR is put here 1775 * 1776 * This may be called from interrupt context. 1777 * 1778 * Return: 0 on success otherwise errno 1779 */ 1780 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1781 const struct ib_recv_wr **bad_wr) 1782 { 1783 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1784 struct rvt_krwq *wq = qp->r_rq.kwq; 1785 unsigned long flags; 1786 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1787 !qp->ibqp.srq; 1788 1789 /* Check that state is OK to post receive. */ 1790 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1791 *bad_wr = wr; 1792 return -EINVAL; 1793 } 1794 1795 for (; wr; wr = wr->next) { 1796 struct rvt_rwqe *wqe; 1797 u32 next; 1798 int i; 1799 1800 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1801 *bad_wr = wr; 1802 return -EINVAL; 1803 } 1804 1805 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); 1806 next = wq->head + 1; 1807 if (next >= qp->r_rq.size) 1808 next = 0; 1809 if (next == READ_ONCE(wq->tail)) { 1810 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1811 *bad_wr = wr; 1812 return -ENOMEM; 1813 } 1814 if (unlikely(qp_err_flush)) { 1815 struct ib_wc wc; 1816 1817 memset(&wc, 0, sizeof(wc)); 1818 wc.qp = &qp->ibqp; 1819 wc.opcode = IB_WC_RECV; 1820 wc.wr_id = wr->wr_id; 1821 wc.status = IB_WC_WR_FLUSH_ERR; 1822 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1823 } else { 1824 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1825 wqe->wr_id = wr->wr_id; 1826 wqe->num_sge = wr->num_sge; 1827 for (i = 0; i < wr->num_sge; i++) { 1828 wqe->sg_list[i].addr = wr->sg_list[i].addr; 1829 wqe->sg_list[i].length = wr->sg_list[i].length; 1830 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 1831 } 1832 /* 1833 * Make sure queue entry is written 1834 * before the head index. 1835 */ 1836 smp_store_release(&wq->head, next); 1837 } 1838 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1839 } 1840 return 0; 1841 } 1842 1843 /** 1844 * rvt_qp_valid_operation - validate post send wr request 1845 * @qp: the qp 1846 * @post_parms: the post send table for the driver 1847 * @wr: the work request 1848 * 1849 * The routine validates the operation based on the 1850 * validation table an returns the length of the operation 1851 * which can extend beyond the ib_send_bw. Operation 1852 * dependent flags key atomic operation validation. 1853 * 1854 * There is an exception for UD qps that validates the pd and 1855 * overrides the length to include the additional UD specific 1856 * length. 1857 * 1858 * Returns a negative error or the length of the work request 1859 * for building the swqe. 1860 */ 1861 static inline int rvt_qp_valid_operation( 1862 struct rvt_qp *qp, 1863 const struct rvt_operation_params *post_parms, 1864 const struct ib_send_wr *wr) 1865 { 1866 int len; 1867 1868 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1869 return -EINVAL; 1870 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1871 return -EINVAL; 1872 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1873 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1874 return -EINVAL; 1875 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1876 (wr->num_sge == 0 || 1877 wr->sg_list[0].length < sizeof(u64) || 1878 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1879 return -EINVAL; 1880 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1881 !qp->s_max_rd_atomic) 1882 return -EINVAL; 1883 len = post_parms[wr->opcode].length; 1884 /* UD specific */ 1885 if (qp->ibqp.qp_type != IB_QPT_UC && 1886 qp->ibqp.qp_type != IB_QPT_RC) { 1887 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1888 return -EINVAL; 1889 len = sizeof(struct ib_ud_wr); 1890 } 1891 return len; 1892 } 1893 1894 /** 1895 * rvt_qp_is_avail - determine queue capacity 1896 * @qp: the qp 1897 * @rdi: the rdmavt device 1898 * @reserved_op: is reserved operation 1899 * 1900 * This assumes the s_hlock is held but the s_last 1901 * qp variable is uncontrolled. 1902 * 1903 * For non reserved operations, the qp->s_avail 1904 * may be changed. 1905 * 1906 * The return value is zero or a -ENOMEM. 1907 */ 1908 static inline int rvt_qp_is_avail( 1909 struct rvt_qp *qp, 1910 struct rvt_dev_info *rdi, 1911 bool reserved_op) 1912 { 1913 u32 slast; 1914 u32 avail; 1915 u32 reserved_used; 1916 1917 /* see rvt_qp_wqe_unreserve() */ 1918 smp_mb__before_atomic(); 1919 if (unlikely(reserved_op)) { 1920 /* see rvt_qp_wqe_unreserve() */ 1921 reserved_used = atomic_read(&qp->s_reserved_used); 1922 if (reserved_used >= rdi->dparms.reserved_operations) 1923 return -ENOMEM; 1924 return 0; 1925 } 1926 /* non-reserved operations */ 1927 if (likely(qp->s_avail)) 1928 return 0; 1929 /* See rvt_qp_complete_swqe() */ 1930 slast = smp_load_acquire(&qp->s_last); 1931 if (qp->s_head >= slast) 1932 avail = qp->s_size - (qp->s_head - slast); 1933 else 1934 avail = slast - qp->s_head; 1935 1936 reserved_used = atomic_read(&qp->s_reserved_used); 1937 avail = avail - 1 - 1938 (rdi->dparms.reserved_operations - reserved_used); 1939 /* insure we don't assign a negative s_avail */ 1940 if ((s32)avail <= 0) 1941 return -ENOMEM; 1942 qp->s_avail = avail; 1943 if (WARN_ON(qp->s_avail > 1944 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 1945 rvt_pr_err(rdi, 1946 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 1947 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 1948 qp->s_head, qp->s_tail, qp->s_cur, 1949 qp->s_acked, qp->s_last); 1950 return 0; 1951 } 1952 1953 /** 1954 * rvt_post_one_wr - post one RC, UC, or UD send work request 1955 * @qp: the QP to post on 1956 * @wr: the work request to send 1957 * @call_send: kick the send engine into gear 1958 */ 1959 static int rvt_post_one_wr(struct rvt_qp *qp, 1960 const struct ib_send_wr *wr, 1961 bool *call_send) 1962 { 1963 struct rvt_swqe *wqe; 1964 u32 next; 1965 int i; 1966 int j; 1967 int acc; 1968 struct rvt_lkey_table *rkt; 1969 struct rvt_pd *pd; 1970 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1971 u8 log_pmtu; 1972 int ret; 1973 size_t cplen; 1974 bool reserved_op; 1975 int local_ops_delayed = 0; 1976 1977 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 1978 1979 /* IB spec says that num_sge == 0 is OK. */ 1980 if (unlikely(wr->num_sge > qp->s_max_sge)) 1981 return -EINVAL; 1982 1983 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 1984 if (ret < 0) 1985 return ret; 1986 cplen = ret; 1987 1988 /* 1989 * Local operations include fast register and local invalidate. 1990 * Fast register needs to be processed immediately because the 1991 * registered lkey may be used by following work requests and the 1992 * lkey needs to be valid at the time those requests are posted. 1993 * Local invalidate can be processed immediately if fencing is 1994 * not required and no previous local invalidate ops are pending. 1995 * Signaled local operations that have been processed immediately 1996 * need to have requests with "completion only" flags set posted 1997 * to the send queue in order to generate completions. 1998 */ 1999 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 2000 switch (wr->opcode) { 2001 case IB_WR_REG_MR: 2002 ret = rvt_fast_reg_mr(qp, 2003 reg_wr(wr)->mr, 2004 reg_wr(wr)->key, 2005 reg_wr(wr)->access); 2006 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2007 return ret; 2008 break; 2009 case IB_WR_LOCAL_INV: 2010 if ((wr->send_flags & IB_SEND_FENCE) || 2011 atomic_read(&qp->local_ops_pending)) { 2012 local_ops_delayed = 1; 2013 } else { 2014 ret = rvt_invalidate_rkey( 2015 qp, wr->ex.invalidate_rkey); 2016 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2017 return ret; 2018 } 2019 break; 2020 default: 2021 return -EINVAL; 2022 } 2023 } 2024 2025 reserved_op = rdi->post_parms[wr->opcode].flags & 2026 RVT_OPERATION_USE_RESERVE; 2027 /* check for avail */ 2028 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 2029 if (ret) 2030 return ret; 2031 next = qp->s_head + 1; 2032 if (next >= qp->s_size) 2033 next = 0; 2034 2035 rkt = &rdi->lkey_table; 2036 pd = ibpd_to_rvtpd(qp->ibqp.pd); 2037 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 2038 2039 /* cplen has length from above */ 2040 memcpy(&wqe->ud_wr, wr, cplen); 2041 2042 wqe->length = 0; 2043 j = 0; 2044 if (wr->num_sge) { 2045 struct rvt_sge *last_sge = NULL; 2046 2047 acc = wr->opcode >= IB_WR_RDMA_READ ? 2048 IB_ACCESS_LOCAL_WRITE : 0; 2049 for (i = 0; i < wr->num_sge; i++) { 2050 u32 length = wr->sg_list[i].length; 2051 2052 if (length == 0) 2053 continue; 2054 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2055 &wr->sg_list[i], acc); 2056 if (unlikely(ret < 0)) 2057 goto bail_inval_free; 2058 wqe->length += length; 2059 if (ret) 2060 last_sge = &wqe->sg_list[j]; 2061 j += ret; 2062 } 2063 wqe->wr.num_sge = j; 2064 } 2065 2066 /* 2067 * Calculate and set SWQE PSN values prior to handing it off 2068 * to the driver's check routine. This give the driver the 2069 * opportunity to adjust PSN values based on internal checks. 2070 */ 2071 log_pmtu = qp->log_pmtu; 2072 if (qp->allowed_ops == IB_OPCODE_UD) { 2073 struct rvt_ah *ah = rvt_get_swqe_ah(wqe); 2074 2075 log_pmtu = ah->log_pmtu; 2076 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); 2077 } 2078 2079 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2080 if (local_ops_delayed) 2081 atomic_inc(&qp->local_ops_pending); 2082 else 2083 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2084 wqe->ssn = 0; 2085 wqe->psn = 0; 2086 wqe->lpsn = 0; 2087 } else { 2088 wqe->ssn = qp->s_ssn++; 2089 wqe->psn = qp->s_next_psn; 2090 wqe->lpsn = wqe->psn + 2091 (wqe->length ? 2092 ((wqe->length - 1) >> log_pmtu) : 2093 0); 2094 } 2095 2096 /* general part of wqe valid - allow for driver checks */ 2097 if (rdi->driver_f.setup_wqe) { 2098 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2099 if (ret < 0) 2100 goto bail_inval_free_ref; 2101 } 2102 2103 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2104 qp->s_next_psn = wqe->lpsn + 1; 2105 2106 if (unlikely(reserved_op)) { 2107 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2108 rvt_qp_wqe_reserve(qp, wqe); 2109 } else { 2110 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2111 qp->s_avail--; 2112 } 2113 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2114 smp_wmb(); /* see request builders */ 2115 qp->s_head = next; 2116 2117 return 0; 2118 2119 bail_inval_free_ref: 2120 if (qp->allowed_ops == IB_OPCODE_UD) 2121 rdma_destroy_ah_attr(wqe->ud_wr.attr); 2122 bail_inval_free: 2123 /* release mr holds */ 2124 while (j) { 2125 struct rvt_sge *sge = &wqe->sg_list[--j]; 2126 2127 rvt_put_mr(sge->mr); 2128 } 2129 return ret; 2130 } 2131 2132 /** 2133 * rvt_post_send - post a send on a QP 2134 * @ibqp: the QP to post the send on 2135 * @wr: the list of work requests to post 2136 * @bad_wr: the first bad WR is put here 2137 * 2138 * This may be called from interrupt context. 2139 * 2140 * Return: 0 on success else errno 2141 */ 2142 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2143 const struct ib_send_wr **bad_wr) 2144 { 2145 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2146 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2147 unsigned long flags = 0; 2148 bool call_send; 2149 unsigned nreq = 0; 2150 int err = 0; 2151 2152 spin_lock_irqsave(&qp->s_hlock, flags); 2153 2154 /* 2155 * Ensure QP state is such that we can send. If not bail out early, 2156 * there is no need to do this every time we post a send. 2157 */ 2158 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2159 spin_unlock_irqrestore(&qp->s_hlock, flags); 2160 return -EINVAL; 2161 } 2162 2163 /* 2164 * If the send queue is empty, and we only have a single WR then just go 2165 * ahead and kick the send engine into gear. Otherwise we will always 2166 * just schedule the send to happen later. 2167 */ 2168 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2169 2170 for (; wr; wr = wr->next) { 2171 err = rvt_post_one_wr(qp, wr, &call_send); 2172 if (unlikely(err)) { 2173 *bad_wr = wr; 2174 goto bail; 2175 } 2176 nreq++; 2177 } 2178 bail: 2179 spin_unlock_irqrestore(&qp->s_hlock, flags); 2180 if (nreq) { 2181 /* 2182 * Only call do_send if there is exactly one packet, and the 2183 * driver said it was ok. 2184 */ 2185 if (nreq == 1 && call_send) 2186 rdi->driver_f.do_send(qp); 2187 else 2188 rdi->driver_f.schedule_send_no_lock(qp); 2189 } 2190 return err; 2191 } 2192 2193 /** 2194 * rvt_post_srq_recv - post a receive on a shared receive queue 2195 * @ibsrq: the SRQ to post the receive on 2196 * @wr: the list of work requests to post 2197 * @bad_wr: A pointer to the first WR to cause a problem is put here 2198 * 2199 * This may be called from interrupt context. 2200 * 2201 * Return: 0 on success else errno 2202 */ 2203 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2204 const struct ib_recv_wr **bad_wr) 2205 { 2206 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2207 struct rvt_krwq *wq; 2208 unsigned long flags; 2209 2210 for (; wr; wr = wr->next) { 2211 struct rvt_rwqe *wqe; 2212 u32 next; 2213 int i; 2214 2215 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2216 *bad_wr = wr; 2217 return -EINVAL; 2218 } 2219 2220 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); 2221 wq = srq->rq.kwq; 2222 next = wq->head + 1; 2223 if (next >= srq->rq.size) 2224 next = 0; 2225 if (next == READ_ONCE(wq->tail)) { 2226 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2227 *bad_wr = wr; 2228 return -ENOMEM; 2229 } 2230 2231 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2232 wqe->wr_id = wr->wr_id; 2233 wqe->num_sge = wr->num_sge; 2234 for (i = 0; i < wr->num_sge; i++) { 2235 wqe->sg_list[i].addr = wr->sg_list[i].addr; 2236 wqe->sg_list[i].length = wr->sg_list[i].length; 2237 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 2238 } 2239 /* Make sure queue entry is written before the head index. */ 2240 smp_store_release(&wq->head, next); 2241 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2242 } 2243 return 0; 2244 } 2245 2246 /* 2247 * rvt used the internal kernel struct as part of its ABI, for now make sure 2248 * the kernel struct does not change layout. FIXME: rvt should never cast the 2249 * user struct to a kernel struct. 2250 */ 2251 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) 2252 { 2253 BUILD_BUG_ON(offsetof(struct ib_sge, addr) != 2254 offsetof(struct rvt_wqe_sge, addr)); 2255 BUILD_BUG_ON(offsetof(struct ib_sge, length) != 2256 offsetof(struct rvt_wqe_sge, length)); 2257 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != 2258 offsetof(struct rvt_wqe_sge, lkey)); 2259 return (struct ib_sge *)sge; 2260 } 2261 2262 /* 2263 * Validate a RWQE and fill in the SGE state. 2264 * Return 1 if OK. 2265 */ 2266 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2267 { 2268 int i, j, ret; 2269 struct ib_wc wc; 2270 struct rvt_lkey_table *rkt; 2271 struct rvt_pd *pd; 2272 struct rvt_sge_state *ss; 2273 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2274 2275 rkt = &rdi->lkey_table; 2276 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2277 ss = &qp->r_sge; 2278 ss->sg_list = qp->r_sg_list; 2279 qp->r_len = 0; 2280 for (i = j = 0; i < wqe->num_sge; i++) { 2281 if (wqe->sg_list[i].length == 0) 2282 continue; 2283 /* Check LKEY */ 2284 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2285 NULL, rvt_cast_sge(&wqe->sg_list[i]), 2286 IB_ACCESS_LOCAL_WRITE); 2287 if (unlikely(ret <= 0)) 2288 goto bad_lkey; 2289 qp->r_len += wqe->sg_list[i].length; 2290 j++; 2291 } 2292 ss->num_sge = j; 2293 ss->total_len = qp->r_len; 2294 return 1; 2295 2296 bad_lkey: 2297 while (j) { 2298 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2299 2300 rvt_put_mr(sge->mr); 2301 } 2302 ss->num_sge = 0; 2303 memset(&wc, 0, sizeof(wc)); 2304 wc.wr_id = wqe->wr_id; 2305 wc.status = IB_WC_LOC_PROT_ERR; 2306 wc.opcode = IB_WC_RECV; 2307 wc.qp = &qp->ibqp; 2308 /* Signal solicited completion event. */ 2309 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2310 return 0; 2311 } 2312 2313 /** 2314 * get_rvt_head - get head indices of the circular buffer 2315 * @rq: data structure for request queue entry 2316 * @ip: the QP 2317 * 2318 * Return - head index value 2319 */ 2320 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) 2321 { 2322 u32 head; 2323 2324 if (ip) 2325 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); 2326 else 2327 head = rq->kwq->head; 2328 2329 return head; 2330 } 2331 2332 /** 2333 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2334 * @qp: the QP 2335 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2336 * 2337 * Return -1 if there is a local error, 0 if no RWQE is available, 2338 * otherwise return 1. 2339 * 2340 * Can be called from interrupt level. 2341 */ 2342 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2343 { 2344 unsigned long flags; 2345 struct rvt_rq *rq; 2346 struct rvt_krwq *kwq = NULL; 2347 struct rvt_rwq *wq; 2348 struct rvt_srq *srq; 2349 struct rvt_rwqe *wqe; 2350 void (*handler)(struct ib_event *, void *); 2351 u32 tail; 2352 u32 head; 2353 int ret; 2354 void *ip = NULL; 2355 2356 if (qp->ibqp.srq) { 2357 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2358 handler = srq->ibsrq.event_handler; 2359 rq = &srq->rq; 2360 ip = srq->ip; 2361 } else { 2362 srq = NULL; 2363 handler = NULL; 2364 rq = &qp->r_rq; 2365 ip = qp->ip; 2366 } 2367 2368 spin_lock_irqsave(&rq->kwq->c_lock, flags); 2369 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2370 ret = 0; 2371 goto unlock; 2372 } 2373 kwq = rq->kwq; 2374 if (ip) { 2375 wq = rq->wq; 2376 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 2377 } else { 2378 tail = kwq->tail; 2379 } 2380 2381 /* Validate tail before using it since it is user writable. */ 2382 if (tail >= rq->size) 2383 tail = 0; 2384 2385 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { 2386 head = get_rvt_head(rq, ip); 2387 kwq->count = rvt_get_rq_count(rq, head, tail); 2388 } 2389 if (unlikely(kwq->count == 0)) { 2390 ret = 0; 2391 goto unlock; 2392 } 2393 /* Make sure entry is read after the count is read. */ 2394 smp_rmb(); 2395 wqe = rvt_get_rwqe_ptr(rq, tail); 2396 /* 2397 * Even though we update the tail index in memory, the verbs 2398 * consumer is not supposed to post more entries until a 2399 * completion is generated. 2400 */ 2401 if (++tail >= rq->size) 2402 tail = 0; 2403 if (ip) 2404 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 2405 else 2406 kwq->tail = tail; 2407 if (!wr_id_only && !init_sge(qp, wqe)) { 2408 ret = -1; 2409 goto unlock; 2410 } 2411 qp->r_wr_id = wqe->wr_id; 2412 2413 kwq->count--; 2414 ret = 1; 2415 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2416 if (handler) { 2417 /* 2418 * Validate head pointer value and compute 2419 * the number of remaining WQEs. 2420 */ 2421 if (kwq->count < srq->limit) { 2422 kwq->count = 2423 rvt_get_rq_count(rq, 2424 get_rvt_head(rq, ip), tail); 2425 if (kwq->count < srq->limit) { 2426 struct ib_event ev; 2427 2428 srq->limit = 0; 2429 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2430 ev.device = qp->ibqp.device; 2431 ev.element.srq = qp->ibqp.srq; 2432 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2433 handler(&ev, srq->ibsrq.srq_context); 2434 goto bail; 2435 } 2436 } 2437 } 2438 unlock: 2439 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2440 bail: 2441 return ret; 2442 } 2443 EXPORT_SYMBOL(rvt_get_rwqe); 2444 2445 /** 2446 * rvt_comm_est - handle trap with QP established 2447 * @qp: the QP 2448 */ 2449 void rvt_comm_est(struct rvt_qp *qp) 2450 { 2451 qp->r_flags |= RVT_R_COMM_EST; 2452 if (qp->ibqp.event_handler) { 2453 struct ib_event ev; 2454 2455 ev.device = qp->ibqp.device; 2456 ev.element.qp = &qp->ibqp; 2457 ev.event = IB_EVENT_COMM_EST; 2458 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2459 } 2460 } 2461 EXPORT_SYMBOL(rvt_comm_est); 2462 2463 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2464 { 2465 unsigned long flags; 2466 int lastwqe; 2467 2468 spin_lock_irqsave(&qp->s_lock, flags); 2469 lastwqe = rvt_error_qp(qp, err); 2470 spin_unlock_irqrestore(&qp->s_lock, flags); 2471 2472 if (lastwqe) { 2473 struct ib_event ev; 2474 2475 ev.device = qp->ibqp.device; 2476 ev.element.qp = &qp->ibqp; 2477 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2478 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2479 } 2480 } 2481 EXPORT_SYMBOL(rvt_rc_error); 2482 2483 /* 2484 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2485 * @index - the index 2486 * return usec from an index into ib_rvt_rnr_table 2487 */ 2488 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2489 { 2490 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2491 } 2492 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2493 2494 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2495 { 2496 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2497 IB_AETH_CREDIT_MASK]; 2498 } 2499 2500 /* 2501 * rvt_add_retry_timer_ext - add/start a retry timer 2502 * @qp - the QP 2503 * @shift - timeout shift to wait for multiple packets 2504 * add a retry timer on the QP 2505 */ 2506 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2507 { 2508 struct ib_qp *ibqp = &qp->ibqp; 2509 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2510 2511 lockdep_assert_held(&qp->s_lock); 2512 qp->s_flags |= RVT_S_TIMER; 2513 /* 4.096 usec. * (1 << qp->timeout) */ 2514 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2515 (qp->timeout_jiffies << shift); 2516 add_timer(&qp->s_timer); 2517 } 2518 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2519 2520 /** 2521 * rvt_add_rnr_timer - add/start an rnr timer on the QP 2522 * @qp: the QP 2523 * @aeth: aeth of RNR timeout, simulated aeth for loopback 2524 */ 2525 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2526 { 2527 u32 to; 2528 2529 lockdep_assert_held(&qp->s_lock); 2530 qp->s_flags |= RVT_S_WAIT_RNR; 2531 to = rvt_aeth_to_usec(aeth); 2532 trace_rvt_rnrnak_add(qp, to); 2533 hrtimer_start(&qp->s_rnr_timer, 2534 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2535 } 2536 EXPORT_SYMBOL(rvt_add_rnr_timer); 2537 2538 /** 2539 * rvt_stop_rc_timers - stop all timers 2540 * @qp: the QP 2541 * stop any pending timers 2542 */ 2543 void rvt_stop_rc_timers(struct rvt_qp *qp) 2544 { 2545 lockdep_assert_held(&qp->s_lock); 2546 /* Remove QP from all timers */ 2547 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2548 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2549 timer_delete(&qp->s_timer); 2550 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2551 } 2552 } 2553 EXPORT_SYMBOL(rvt_stop_rc_timers); 2554 2555 /** 2556 * rvt_stop_rnr_timer - stop an rnr timer 2557 * @qp: the QP 2558 * 2559 * stop an rnr timer and return if the timer 2560 * had been pending. 2561 */ 2562 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2563 { 2564 lockdep_assert_held(&qp->s_lock); 2565 /* Remove QP from rnr timer */ 2566 if (qp->s_flags & RVT_S_WAIT_RNR) { 2567 qp->s_flags &= ~RVT_S_WAIT_RNR; 2568 trace_rvt_rnrnak_stop(qp, 0); 2569 } 2570 } 2571 2572 /** 2573 * rvt_del_timers_sync - wait for any timeout routines to exit 2574 * @qp: the QP 2575 */ 2576 void rvt_del_timers_sync(struct rvt_qp *qp) 2577 { 2578 timer_delete_sync(&qp->s_timer); 2579 hrtimer_cancel(&qp->s_rnr_timer); 2580 } 2581 EXPORT_SYMBOL(rvt_del_timers_sync); 2582 2583 /* 2584 * This is called from s_timer for missing responses. 2585 */ 2586 static void rvt_rc_timeout(struct timer_list *t) 2587 { 2588 struct rvt_qp *qp = timer_container_of(qp, t, s_timer); 2589 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2590 unsigned long flags; 2591 2592 spin_lock_irqsave(&qp->r_lock, flags); 2593 spin_lock(&qp->s_lock); 2594 if (qp->s_flags & RVT_S_TIMER) { 2595 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2596 2597 qp->s_flags &= ~RVT_S_TIMER; 2598 rvp->n_rc_timeouts++; 2599 timer_delete(&qp->s_timer); 2600 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2601 if (rdi->driver_f.notify_restart_rc) 2602 rdi->driver_f.notify_restart_rc(qp, 2603 qp->s_last_psn + 1, 2604 1); 2605 rdi->driver_f.schedule_send(qp); 2606 } 2607 spin_unlock(&qp->s_lock); 2608 spin_unlock_irqrestore(&qp->r_lock, flags); 2609 } 2610 2611 /* 2612 * This is called from s_timer for RNR timeouts. 2613 */ 2614 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2615 { 2616 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2617 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2618 unsigned long flags; 2619 2620 spin_lock_irqsave(&qp->s_lock, flags); 2621 rvt_stop_rnr_timer(qp); 2622 trace_rvt_rnrnak_timeout(qp, 0); 2623 rdi->driver_f.schedule_send(qp); 2624 spin_unlock_irqrestore(&qp->s_lock, flags); 2625 return HRTIMER_NORESTART; 2626 } 2627 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2628 2629 /** 2630 * rvt_qp_iter_init - initial for QP iteration 2631 * @rdi: rvt devinfo 2632 * @v: u64 value 2633 * @cb: user-defined callback 2634 * 2635 * This returns an iterator suitable for iterating QPs 2636 * in the system. 2637 * 2638 * The @cb is a user-defined callback and @v is a 64-bit 2639 * value passed to and relevant for processing in the 2640 * @cb. An example use case would be to alter QP processing 2641 * based on criteria not part of the rvt_qp. 2642 * 2643 * Use cases that require memory allocation to succeed 2644 * must preallocate appropriately. 2645 * 2646 * Return: a pointer to an rvt_qp_iter or NULL 2647 */ 2648 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2649 u64 v, 2650 void (*cb)(struct rvt_qp *qp, u64 v)) 2651 { 2652 struct rvt_qp_iter *i; 2653 2654 i = kzalloc(sizeof(*i), GFP_KERNEL); 2655 if (!i) 2656 return NULL; 2657 2658 i->rdi = rdi; 2659 /* number of special QPs (SMI/GSI) for device */ 2660 i->specials = rdi->ibdev.phys_port_cnt * 2; 2661 i->v = v; 2662 i->cb = cb; 2663 2664 return i; 2665 } 2666 EXPORT_SYMBOL(rvt_qp_iter_init); 2667 2668 /** 2669 * rvt_qp_iter_next - return the next QP in iter 2670 * @iter: the iterator 2671 * 2672 * Fine grained QP iterator suitable for use 2673 * with debugfs seq_file mechanisms. 2674 * 2675 * Updates iter->qp with the current QP when the return 2676 * value is 0. 2677 * 2678 * Return: 0 - iter->qp is valid 1 - no more QPs 2679 */ 2680 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2681 __must_hold(RCU) 2682 { 2683 int n = iter->n; 2684 int ret = 1; 2685 struct rvt_qp *pqp = iter->qp; 2686 struct rvt_qp *qp; 2687 struct rvt_dev_info *rdi = iter->rdi; 2688 2689 /* 2690 * The approach is to consider the special qps 2691 * as additional table entries before the 2692 * real hash table. Since the qp code sets 2693 * the qp->next hash link to NULL, this works just fine. 2694 * 2695 * iter->specials is 2 * # ports 2696 * 2697 * n = 0..iter->specials is the special qp indices 2698 * 2699 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2700 * the potential hash bucket entries 2701 * 2702 */ 2703 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2704 if (pqp) { 2705 qp = rcu_dereference(pqp->next); 2706 } else { 2707 if (n < iter->specials) { 2708 struct rvt_ibport *rvp; 2709 int pidx; 2710 2711 pidx = n % rdi->ibdev.phys_port_cnt; 2712 rvp = rdi->ports[pidx]; 2713 qp = rcu_dereference(rvp->qp[n & 1]); 2714 } else { 2715 qp = rcu_dereference( 2716 rdi->qp_dev->qp_table[ 2717 (n - iter->specials)]); 2718 } 2719 } 2720 pqp = qp; 2721 if (qp) { 2722 iter->qp = qp; 2723 iter->n = n; 2724 return 0; 2725 } 2726 } 2727 return ret; 2728 } 2729 EXPORT_SYMBOL(rvt_qp_iter_next); 2730 2731 /** 2732 * rvt_qp_iter - iterate all QPs 2733 * @rdi: rvt devinfo 2734 * @v: a 64-bit value 2735 * @cb: a callback 2736 * 2737 * This provides a way for iterating all QPs. 2738 * 2739 * The @cb is a user-defined callback and @v is a 64-bit 2740 * value passed to and relevant for processing in the 2741 * cb. An example use case would be to alter QP processing 2742 * based on criteria not part of the rvt_qp. 2743 * 2744 * The code has an internal iterator to simplify 2745 * non seq_file use cases. 2746 */ 2747 void rvt_qp_iter(struct rvt_dev_info *rdi, 2748 u64 v, 2749 void (*cb)(struct rvt_qp *qp, u64 v)) 2750 { 2751 int ret; 2752 struct rvt_qp_iter i = { 2753 .rdi = rdi, 2754 .specials = rdi->ibdev.phys_port_cnt * 2, 2755 .v = v, 2756 .cb = cb 2757 }; 2758 2759 rcu_read_lock(); 2760 do { 2761 ret = rvt_qp_iter_next(&i); 2762 if (!ret) { 2763 rvt_get_qp(i.qp); 2764 rcu_read_unlock(); 2765 i.cb(i.qp, i.v); 2766 rcu_read_lock(); 2767 rvt_put_qp(i.qp); 2768 } 2769 } while (!ret); 2770 rcu_read_unlock(); 2771 } 2772 EXPORT_SYMBOL(rvt_qp_iter); 2773 2774 /* 2775 * This should be called with s_lock and r_lock held. 2776 */ 2777 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2778 enum ib_wc_status status) 2779 { 2780 u32 old_last, last; 2781 struct rvt_dev_info *rdi; 2782 2783 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2784 return; 2785 rdi = ib_to_rvt(qp->ibqp.device); 2786 2787 old_last = qp->s_last; 2788 trace_rvt_qp_send_completion(qp, wqe, old_last); 2789 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], 2790 status); 2791 if (qp->s_acked == old_last) 2792 qp->s_acked = last; 2793 if (qp->s_cur == old_last) 2794 qp->s_cur = last; 2795 if (qp->s_tail == old_last) 2796 qp->s_tail = last; 2797 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2798 qp->s_draining = 0; 2799 } 2800 EXPORT_SYMBOL(rvt_send_complete); 2801 2802 /** 2803 * rvt_copy_sge - copy data to SGE memory 2804 * @qp: associated QP 2805 * @ss: the SGE state 2806 * @data: the data to copy 2807 * @length: the length of the data 2808 * @release: boolean to release MR 2809 * @copy_last: do a separate copy of the last 8 bytes 2810 */ 2811 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2812 void *data, u32 length, 2813 bool release, bool copy_last) 2814 { 2815 struct rvt_sge *sge = &ss->sge; 2816 int i; 2817 bool in_last = false; 2818 bool cacheless_copy = false; 2819 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2820 struct rvt_wss *wss = rdi->wss; 2821 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2822 2823 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2824 cacheless_copy = length >= PAGE_SIZE; 2825 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2826 if (length >= PAGE_SIZE) { 2827 /* 2828 * NOTE: this *assumes*: 2829 * o The first vaddr is the dest. 2830 * o If multiple pages, then vaddr is sequential. 2831 */ 2832 wss_insert(wss, sge->vaddr); 2833 if (length >= (2 * PAGE_SIZE)) 2834 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2835 2836 cacheless_copy = wss_exceeds_threshold(wss); 2837 } else { 2838 wss_advance_clean_counter(wss); 2839 } 2840 } 2841 2842 if (copy_last) { 2843 if (length > 8) { 2844 length -= 8; 2845 } else { 2846 copy_last = false; 2847 in_last = true; 2848 } 2849 } 2850 2851 again: 2852 while (length) { 2853 u32 len = rvt_get_sge_length(sge, length); 2854 2855 WARN_ON_ONCE(len == 0); 2856 if (unlikely(in_last)) { 2857 /* enforce byte transfer ordering */ 2858 for (i = 0; i < len; i++) 2859 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2860 } else if (cacheless_copy) { 2861 cacheless_memcpy(sge->vaddr, data, len); 2862 } else { 2863 memcpy(sge->vaddr, data, len); 2864 } 2865 rvt_update_sge(ss, len, release); 2866 data += len; 2867 length -= len; 2868 } 2869 2870 if (copy_last) { 2871 copy_last = false; 2872 in_last = true; 2873 length = 8; 2874 goto again; 2875 } 2876 } 2877 EXPORT_SYMBOL(rvt_copy_sge); 2878 2879 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2880 struct rvt_qp *sqp) 2881 { 2882 rvp->n_pkt_drops++; 2883 /* 2884 * For RC, the requester would timeout and retry so 2885 * shortcut the timeouts and just signal too many retries. 2886 */ 2887 return sqp->ibqp.qp_type == IB_QPT_RC ? 2888 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2889 } 2890 2891 /** 2892 * rvt_ruc_loopback - handle UC and RC loopback requests 2893 * @sqp: the sending QP 2894 * 2895 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2896 * Note that although we are single threaded due to the send engine, we still 2897 * have to protect against post_send(). We don't have to worry about 2898 * receive interrupts since this is a connected protocol and all packets 2899 * will pass through here. 2900 */ 2901 void rvt_ruc_loopback(struct rvt_qp *sqp) 2902 { 2903 struct rvt_ibport *rvp = NULL; 2904 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2905 struct rvt_qp *qp; 2906 struct rvt_swqe *wqe; 2907 struct rvt_sge *sge; 2908 unsigned long flags; 2909 struct ib_wc wc; 2910 u64 sdata; 2911 atomic64_t *maddr; 2912 enum ib_wc_status send_status; 2913 bool release; 2914 int ret; 2915 bool copy_last = false; 2916 int local_ops = 0; 2917 2918 rcu_read_lock(); 2919 rvp = rdi->ports[sqp->port_num - 1]; 2920 2921 /* 2922 * Note that we check the responder QP state after 2923 * checking the requester's state. 2924 */ 2925 2926 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2927 sqp->remote_qpn); 2928 2929 spin_lock_irqsave(&sqp->s_lock, flags); 2930 2931 /* Return if we are already busy processing a work request. */ 2932 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2933 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2934 goto unlock; 2935 2936 sqp->s_flags |= RVT_S_BUSY; 2937 2938 again: 2939 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2940 goto clr_busy; 2941 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 2942 2943 /* Return if it is not OK to start a new work request. */ 2944 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 2945 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 2946 goto clr_busy; 2947 /* We are in the error state, flush the work request. */ 2948 send_status = IB_WC_WR_FLUSH_ERR; 2949 goto flush_send; 2950 } 2951 2952 /* 2953 * We can rely on the entry not changing without the s_lock 2954 * being held until we update s_last. 2955 * We increment s_cur to indicate s_last is in progress. 2956 */ 2957 if (sqp->s_last == sqp->s_cur) { 2958 if (++sqp->s_cur >= sqp->s_size) 2959 sqp->s_cur = 0; 2960 } 2961 spin_unlock_irqrestore(&sqp->s_lock, flags); 2962 2963 if (!qp) { 2964 send_status = loopback_qp_drop(rvp, sqp); 2965 goto serr_no_r_lock; 2966 } 2967 spin_lock_irqsave(&qp->r_lock, flags); 2968 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 2969 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 2970 send_status = loopback_qp_drop(rvp, sqp); 2971 goto serr; 2972 } 2973 2974 memset(&wc, 0, sizeof(wc)); 2975 send_status = IB_WC_SUCCESS; 2976 2977 release = true; 2978 sqp->s_sge.sge = wqe->sg_list[0]; 2979 sqp->s_sge.sg_list = wqe->sg_list + 1; 2980 sqp->s_sge.num_sge = wqe->wr.num_sge; 2981 sqp->s_len = wqe->length; 2982 switch (wqe->wr.opcode) { 2983 case IB_WR_REG_MR: 2984 goto send_comp; 2985 2986 case IB_WR_LOCAL_INV: 2987 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 2988 if (rvt_invalidate_rkey(sqp, 2989 wqe->wr.ex.invalidate_rkey)) 2990 send_status = IB_WC_LOC_PROT_ERR; 2991 local_ops = 1; 2992 } 2993 goto send_comp; 2994 2995 case IB_WR_SEND_WITH_INV: 2996 case IB_WR_SEND_WITH_IMM: 2997 case IB_WR_SEND: 2998 ret = rvt_get_rwqe(qp, false); 2999 if (ret < 0) 3000 goto op_err; 3001 if (!ret) 3002 goto rnr_nak; 3003 if (wqe->length > qp->r_len) 3004 goto inv_err; 3005 switch (wqe->wr.opcode) { 3006 case IB_WR_SEND_WITH_INV: 3007 if (!rvt_invalidate_rkey(qp, 3008 wqe->wr.ex.invalidate_rkey)) { 3009 wc.wc_flags = IB_WC_WITH_INVALIDATE; 3010 wc.ex.invalidate_rkey = 3011 wqe->wr.ex.invalidate_rkey; 3012 } 3013 break; 3014 case IB_WR_SEND_WITH_IMM: 3015 wc.wc_flags = IB_WC_WITH_IMM; 3016 wc.ex.imm_data = wqe->wr.ex.imm_data; 3017 break; 3018 default: 3019 break; 3020 } 3021 break; 3022 3023 case IB_WR_RDMA_WRITE_WITH_IMM: 3024 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3025 goto inv_err; 3026 wc.wc_flags = IB_WC_WITH_IMM; 3027 wc.ex.imm_data = wqe->wr.ex.imm_data; 3028 ret = rvt_get_rwqe(qp, true); 3029 if (ret < 0) 3030 goto op_err; 3031 if (!ret) 3032 goto rnr_nak; 3033 /* skip copy_last set and qp_access_flags recheck */ 3034 goto do_write; 3035 case IB_WR_RDMA_WRITE: 3036 copy_last = rvt_is_user_qp(qp); 3037 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3038 goto inv_err; 3039 do_write: 3040 if (wqe->length == 0) 3041 break; 3042 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 3043 wqe->rdma_wr.remote_addr, 3044 wqe->rdma_wr.rkey, 3045 IB_ACCESS_REMOTE_WRITE))) 3046 goto acc_err; 3047 qp->r_sge.sg_list = NULL; 3048 qp->r_sge.num_sge = 1; 3049 qp->r_sge.total_len = wqe->length; 3050 break; 3051 3052 case IB_WR_RDMA_READ: 3053 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 3054 goto inv_err; 3055 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 3056 wqe->rdma_wr.remote_addr, 3057 wqe->rdma_wr.rkey, 3058 IB_ACCESS_REMOTE_READ))) 3059 goto acc_err; 3060 release = false; 3061 sqp->s_sge.sg_list = NULL; 3062 sqp->s_sge.num_sge = 1; 3063 qp->r_sge.sge = wqe->sg_list[0]; 3064 qp->r_sge.sg_list = wqe->sg_list + 1; 3065 qp->r_sge.num_sge = wqe->wr.num_sge; 3066 qp->r_sge.total_len = wqe->length; 3067 break; 3068 3069 case IB_WR_ATOMIC_CMP_AND_SWP: 3070 case IB_WR_ATOMIC_FETCH_AND_ADD: 3071 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 3072 goto inv_err; 3073 if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1))) 3074 goto inv_err; 3075 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 3076 wqe->atomic_wr.remote_addr, 3077 wqe->atomic_wr.rkey, 3078 IB_ACCESS_REMOTE_ATOMIC))) 3079 goto acc_err; 3080 /* Perform atomic OP and save result. */ 3081 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 3082 sdata = wqe->atomic_wr.compare_add; 3083 *(u64 *)sqp->s_sge.sge.vaddr = 3084 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 3085 (u64)atomic64_add_return(sdata, maddr) - sdata : 3086 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 3087 sdata, wqe->atomic_wr.swap); 3088 rvt_put_mr(qp->r_sge.sge.mr); 3089 qp->r_sge.num_sge = 0; 3090 goto send_comp; 3091 3092 default: 3093 send_status = IB_WC_LOC_QP_OP_ERR; 3094 goto serr; 3095 } 3096 3097 sge = &sqp->s_sge.sge; 3098 while (sqp->s_len) { 3099 u32 len = rvt_get_sge_length(sge, sqp->s_len); 3100 3101 WARN_ON_ONCE(len == 0); 3102 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3103 len, release, copy_last); 3104 rvt_update_sge(&sqp->s_sge, len, !release); 3105 sqp->s_len -= len; 3106 } 3107 if (release) 3108 rvt_put_ss(&qp->r_sge); 3109 3110 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3111 goto send_comp; 3112 3113 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3114 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3115 else 3116 wc.opcode = IB_WC_RECV; 3117 wc.wr_id = qp->r_wr_id; 3118 wc.status = IB_WC_SUCCESS; 3119 wc.byte_len = wqe->length; 3120 wc.qp = &qp->ibqp; 3121 wc.src_qp = qp->remote_qpn; 3122 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3123 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3124 wc.port_num = 1; 3125 /* Signal completion event if the solicited bit is set. */ 3126 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); 3127 3128 send_comp: 3129 spin_unlock_irqrestore(&qp->r_lock, flags); 3130 spin_lock_irqsave(&sqp->s_lock, flags); 3131 rvp->n_loop_pkts++; 3132 flush_send: 3133 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3134 spin_lock(&sqp->r_lock); 3135 rvt_send_complete(sqp, wqe, send_status); 3136 spin_unlock(&sqp->r_lock); 3137 if (local_ops) { 3138 atomic_dec(&sqp->local_ops_pending); 3139 local_ops = 0; 3140 } 3141 goto again; 3142 3143 rnr_nak: 3144 /* Handle RNR NAK */ 3145 if (qp->ibqp.qp_type == IB_QPT_UC) 3146 goto send_comp; 3147 rvp->n_rnr_naks++; 3148 /* 3149 * Note: we don't need the s_lock held since the BUSY flag 3150 * makes this single threaded. 3151 */ 3152 if (sqp->s_rnr_retry == 0) { 3153 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3154 goto serr; 3155 } 3156 if (sqp->s_rnr_retry_cnt < 7) 3157 sqp->s_rnr_retry--; 3158 spin_unlock_irqrestore(&qp->r_lock, flags); 3159 spin_lock_irqsave(&sqp->s_lock, flags); 3160 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3161 goto clr_busy; 3162 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3163 IB_AETH_CREDIT_SHIFT); 3164 goto clr_busy; 3165 3166 op_err: 3167 send_status = IB_WC_REM_OP_ERR; 3168 wc.status = IB_WC_LOC_QP_OP_ERR; 3169 goto err; 3170 3171 inv_err: 3172 send_status = 3173 sqp->ibqp.qp_type == IB_QPT_RC ? 3174 IB_WC_REM_INV_REQ_ERR : 3175 IB_WC_SUCCESS; 3176 wc.status = IB_WC_LOC_QP_OP_ERR; 3177 goto err; 3178 3179 acc_err: 3180 send_status = IB_WC_REM_ACCESS_ERR; 3181 wc.status = IB_WC_LOC_PROT_ERR; 3182 err: 3183 /* responder goes to error state */ 3184 rvt_rc_error(qp, wc.status); 3185 3186 serr: 3187 spin_unlock_irqrestore(&qp->r_lock, flags); 3188 serr_no_r_lock: 3189 spin_lock_irqsave(&sqp->s_lock, flags); 3190 spin_lock(&sqp->r_lock); 3191 rvt_send_complete(sqp, wqe, send_status); 3192 spin_unlock(&sqp->r_lock); 3193 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3194 int lastwqe; 3195 3196 spin_lock(&sqp->r_lock); 3197 lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3198 spin_unlock(&sqp->r_lock); 3199 3200 sqp->s_flags &= ~RVT_S_BUSY; 3201 spin_unlock_irqrestore(&sqp->s_lock, flags); 3202 if (lastwqe) { 3203 struct ib_event ev; 3204 3205 ev.device = sqp->ibqp.device; 3206 ev.element.qp = &sqp->ibqp; 3207 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3208 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3209 } 3210 goto done; 3211 } 3212 clr_busy: 3213 sqp->s_flags &= ~RVT_S_BUSY; 3214 unlock: 3215 spin_unlock_irqrestore(&sqp->s_lock, flags); 3216 done: 3217 rcu_read_unlock(); 3218 } 3219 EXPORT_SYMBOL(rvt_ruc_loopback); 3220