1 /* 2 * Copyright(c) 2016 - 2020 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/hash.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/vmalloc.h> 52 #include <linux/slab.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_hdrs.h> 55 #include <rdma/opa_addr.h> 56 #include <rdma/uverbs_ioctl.h> 57 #include "qp.h" 58 #include "vt.h" 59 #include "trace.h" 60 61 #define RVT_RWQ_COUNT_THRESHOLD 16 62 63 static void rvt_rc_timeout(struct timer_list *t); 64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 65 enum ib_qp_type type); 66 67 /* 68 * Convert the AETH RNR timeout code into the number of microseconds. 69 */ 70 static const u32 ib_rvt_rnr_table[32] = { 71 655360, /* 00: 655.36 */ 72 10, /* 01: .01 */ 73 20, /* 02 .02 */ 74 30, /* 03: .03 */ 75 40, /* 04: .04 */ 76 60, /* 05: .06 */ 77 80, /* 06: .08 */ 78 120, /* 07: .12 */ 79 160, /* 08: .16 */ 80 240, /* 09: .24 */ 81 320, /* 0A: .32 */ 82 480, /* 0B: .48 */ 83 640, /* 0C: .64 */ 84 960, /* 0D: .96 */ 85 1280, /* 0E: 1.28 */ 86 1920, /* 0F: 1.92 */ 87 2560, /* 10: 2.56 */ 88 3840, /* 11: 3.84 */ 89 5120, /* 12: 5.12 */ 90 7680, /* 13: 7.68 */ 91 10240, /* 14: 10.24 */ 92 15360, /* 15: 15.36 */ 93 20480, /* 16: 20.48 */ 94 30720, /* 17: 30.72 */ 95 40960, /* 18: 40.96 */ 96 61440, /* 19: 61.44 */ 97 81920, /* 1A: 81.92 */ 98 122880, /* 1B: 122.88 */ 99 163840, /* 1C: 163.84 */ 100 245760, /* 1D: 245.76 */ 101 327680, /* 1E: 327.68 */ 102 491520 /* 1F: 491.52 */ 103 }; 104 105 /* 106 * Note that it is OK to post send work requests in the SQE and ERR 107 * states; rvt_do_send() will process them and generate error 108 * completions as per IB 1.2 C10-96. 109 */ 110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { 111 [IB_QPS_RESET] = 0, 112 [IB_QPS_INIT] = RVT_POST_RECV_OK, 113 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, 114 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 115 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | 116 RVT_PROCESS_NEXT_SEND_OK, 117 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 118 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, 119 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | 120 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 121 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | 122 RVT_POST_SEND_OK | RVT_FLUSH_SEND, 123 }; 124 EXPORT_SYMBOL(ib_rvt_state_ops); 125 126 /* platform specific: return the last level cache (llc) size, in KiB */ 127 static int rvt_wss_llc_size(void) 128 { 129 /* assume that the boot CPU value is universal for all CPUs */ 130 return boot_cpu_data.x86_cache_size; 131 } 132 133 /* platform specific: cacheless copy */ 134 static void cacheless_memcpy(void *dst, void *src, size_t n) 135 { 136 /* 137 * Use the only available X64 cacheless copy. Add a __user cast 138 * to quiet sparse. The src agument is already in the kernel so 139 * there are no security issues. The extra fault recovery machinery 140 * is not invoked. 141 */ 142 __copy_user_nocache(dst, (void __user *)src, n, 0); 143 } 144 145 void rvt_wss_exit(struct rvt_dev_info *rdi) 146 { 147 struct rvt_wss *wss = rdi->wss; 148 149 if (!wss) 150 return; 151 152 /* coded to handle partially initialized and repeat callers */ 153 kfree(wss->entries); 154 wss->entries = NULL; 155 kfree(rdi->wss); 156 rdi->wss = NULL; 157 } 158 159 /** 160 * rvt_wss_init - Init wss data structures 161 * 162 * Return: 0 on success 163 */ 164 int rvt_wss_init(struct rvt_dev_info *rdi) 165 { 166 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 167 unsigned int wss_threshold = rdi->dparms.wss_threshold; 168 unsigned int wss_clean_period = rdi->dparms.wss_clean_period; 169 long llc_size; 170 long llc_bits; 171 long table_size; 172 long table_bits; 173 struct rvt_wss *wss; 174 int node = rdi->dparms.node; 175 176 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { 177 rdi->wss = NULL; 178 return 0; 179 } 180 181 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); 182 if (!rdi->wss) 183 return -ENOMEM; 184 wss = rdi->wss; 185 186 /* check for a valid percent range - default to 80 if none or invalid */ 187 if (wss_threshold < 1 || wss_threshold > 100) 188 wss_threshold = 80; 189 190 /* reject a wildly large period */ 191 if (wss_clean_period > 1000000) 192 wss_clean_period = 256; 193 194 /* reject a zero period */ 195 if (wss_clean_period == 0) 196 wss_clean_period = 1; 197 198 /* 199 * Calculate the table size - the next power of 2 larger than the 200 * LLC size. LLC size is in KiB. 201 */ 202 llc_size = rvt_wss_llc_size() * 1024; 203 table_size = roundup_pow_of_two(llc_size); 204 205 /* one bit per page in rounded up table */ 206 llc_bits = llc_size / PAGE_SIZE; 207 table_bits = table_size / PAGE_SIZE; 208 wss->pages_mask = table_bits - 1; 209 wss->num_entries = table_bits / BITS_PER_LONG; 210 211 wss->threshold = (llc_bits * wss_threshold) / 100; 212 if (wss->threshold == 0) 213 wss->threshold = 1; 214 215 wss->clean_period = wss_clean_period; 216 atomic_set(&wss->clean_counter, wss_clean_period); 217 218 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), 219 GFP_KERNEL, node); 220 if (!wss->entries) { 221 rvt_wss_exit(rdi); 222 return -ENOMEM; 223 } 224 225 return 0; 226 } 227 228 /* 229 * Advance the clean counter. When the clean period has expired, 230 * clean an entry. 231 * 232 * This is implemented in atomics to avoid locking. Because multiple 233 * variables are involved, it can be racy which can lead to slightly 234 * inaccurate information. Since this is only a heuristic, this is 235 * OK. Any innaccuracies will clean themselves out as the counter 236 * advances. That said, it is unlikely the entry clean operation will 237 * race - the next possible racer will not start until the next clean 238 * period. 239 * 240 * The clean counter is implemented as a decrement to zero. When zero 241 * is reached an entry is cleaned. 242 */ 243 static void wss_advance_clean_counter(struct rvt_wss *wss) 244 { 245 int entry; 246 int weight; 247 unsigned long bits; 248 249 /* become the cleaner if we decrement the counter to zero */ 250 if (atomic_dec_and_test(&wss->clean_counter)) { 251 /* 252 * Set, not add, the clean period. This avoids an issue 253 * where the counter could decrement below the clean period. 254 * Doing a set can result in lost decrements, slowing the 255 * clean advance. Since this a heuristic, this possible 256 * slowdown is OK. 257 * 258 * An alternative is to loop, advancing the counter by a 259 * clean period until the result is > 0. However, this could 260 * lead to several threads keeping another in the clean loop. 261 * This could be mitigated by limiting the number of times 262 * we stay in the loop. 263 */ 264 atomic_set(&wss->clean_counter, wss->clean_period); 265 266 /* 267 * Uniquely grab the entry to clean and move to next. 268 * The current entry is always the lower bits of 269 * wss.clean_entry. The table size, wss.num_entries, 270 * is always a power-of-2. 271 */ 272 entry = (atomic_inc_return(&wss->clean_entry) - 1) 273 & (wss->num_entries - 1); 274 275 /* clear the entry and count the bits */ 276 bits = xchg(&wss->entries[entry], 0); 277 weight = hweight64((u64)bits); 278 /* only adjust the contended total count if needed */ 279 if (weight) 280 atomic_sub(weight, &wss->total_count); 281 } 282 } 283 284 /* 285 * Insert the given address into the working set array. 286 */ 287 static void wss_insert(struct rvt_wss *wss, void *address) 288 { 289 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; 290 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ 291 u32 nr = page & (BITS_PER_LONG - 1); 292 293 if (!test_and_set_bit(nr, &wss->entries[entry])) 294 atomic_inc(&wss->total_count); 295 296 wss_advance_clean_counter(wss); 297 } 298 299 /* 300 * Is the working set larger than the threshold? 301 */ 302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss) 303 { 304 return atomic_read(&wss->total_count) >= wss->threshold; 305 } 306 307 static void get_map_page(struct rvt_qpn_table *qpt, 308 struct rvt_qpn_map *map) 309 { 310 unsigned long page = get_zeroed_page(GFP_KERNEL); 311 312 /* 313 * Free the page if someone raced with us installing it. 314 */ 315 316 spin_lock(&qpt->lock); 317 if (map->page) 318 free_page(page); 319 else 320 map->page = (void *)page; 321 spin_unlock(&qpt->lock); 322 } 323 324 /** 325 * init_qpn_table - initialize the QP number table for a device 326 * @qpt: the QPN table 327 */ 328 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) 329 { 330 u32 offset, i; 331 struct rvt_qpn_map *map; 332 int ret = 0; 333 334 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) 335 return -EINVAL; 336 337 spin_lock_init(&qpt->lock); 338 339 qpt->last = rdi->dparms.qpn_start; 340 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; 341 342 /* 343 * Drivers may want some QPs beyond what we need for verbs let them use 344 * our qpn table. No need for two. Lets go ahead and mark the bitmaps 345 * for those. The reserved range must be *after* the range which verbs 346 * will pick from. 347 */ 348 349 /* Figure out number of bit maps needed before reserved range */ 350 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; 351 352 /* This should always be zero */ 353 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; 354 355 /* Starting with the first reserved bit map */ 356 map = &qpt->map[qpt->nmaps]; 357 358 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", 359 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); 360 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { 361 if (!map->page) { 362 get_map_page(qpt, map); 363 if (!map->page) { 364 ret = -ENOMEM; 365 break; 366 } 367 } 368 set_bit(offset, map->page); 369 offset++; 370 if (offset == RVT_BITS_PER_PAGE) { 371 /* next page */ 372 qpt->nmaps++; 373 map++; 374 offset = 0; 375 } 376 } 377 return ret; 378 } 379 380 /** 381 * free_qpn_table - free the QP number table for a device 382 * @qpt: the QPN table 383 */ 384 static void free_qpn_table(struct rvt_qpn_table *qpt) 385 { 386 int i; 387 388 for (i = 0; i < ARRAY_SIZE(qpt->map); i++) 389 free_page((unsigned long)qpt->map[i].page); 390 } 391 392 /** 393 * rvt_driver_qp_init - Init driver qp resources 394 * @rdi: rvt dev strucutre 395 * 396 * Return: 0 on success 397 */ 398 int rvt_driver_qp_init(struct rvt_dev_info *rdi) 399 { 400 int i; 401 int ret = -ENOMEM; 402 403 if (!rdi->dparms.qp_table_size) 404 return -EINVAL; 405 406 /* 407 * If driver is not doing any QP allocation then make sure it is 408 * providing the necessary QP functions. 409 */ 410 if (!rdi->driver_f.free_all_qps || 411 !rdi->driver_f.qp_priv_alloc || 412 !rdi->driver_f.qp_priv_free || 413 !rdi->driver_f.notify_qp_reset || 414 !rdi->driver_f.notify_restart_rc) 415 return -EINVAL; 416 417 /* allocate parent object */ 418 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, 419 rdi->dparms.node); 420 if (!rdi->qp_dev) 421 return -ENOMEM; 422 423 /* allocate hash table */ 424 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; 425 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); 426 rdi->qp_dev->qp_table = 427 kmalloc_array_node(rdi->qp_dev->qp_table_size, 428 sizeof(*rdi->qp_dev->qp_table), 429 GFP_KERNEL, rdi->dparms.node); 430 if (!rdi->qp_dev->qp_table) 431 goto no_qp_table; 432 433 for (i = 0; i < rdi->qp_dev->qp_table_size; i++) 434 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); 435 436 spin_lock_init(&rdi->qp_dev->qpt_lock); 437 438 /* initialize qpn map */ 439 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) 440 goto fail_table; 441 442 spin_lock_init(&rdi->n_qps_lock); 443 444 return 0; 445 446 fail_table: 447 kfree(rdi->qp_dev->qp_table); 448 free_qpn_table(&rdi->qp_dev->qpn_table); 449 450 no_qp_table: 451 kfree(rdi->qp_dev); 452 453 return ret; 454 } 455 456 /** 457 * rvt_free_qp_cb - callback function to reset a qp 458 * @qp: the qp to reset 459 * @v: a 64-bit value 460 * 461 * This function resets the qp and removes it from the 462 * qp hash table. 463 */ 464 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v) 465 { 466 unsigned int *qp_inuse = (unsigned int *)v; 467 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 468 469 /* Reset the qp and remove it from the qp hash list */ 470 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type); 471 472 /* Increment the qp_inuse count */ 473 (*qp_inuse)++; 474 } 475 476 /** 477 * rvt_free_all_qps - check for QPs still in use 478 * @rdi: rvt device info structure 479 * 480 * There should not be any QPs still in use. 481 * Free memory for table. 482 * Return the number of QPs still in use. 483 */ 484 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) 485 { 486 unsigned int qp_inuse = 0; 487 488 qp_inuse += rvt_mcast_tree_empty(rdi); 489 490 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb); 491 492 return qp_inuse; 493 } 494 495 /** 496 * rvt_qp_exit - clean up qps on device exit 497 * @rdi: rvt dev structure 498 * 499 * Check for qp leaks and free resources. 500 */ 501 void rvt_qp_exit(struct rvt_dev_info *rdi) 502 { 503 u32 qps_inuse = rvt_free_all_qps(rdi); 504 505 if (qps_inuse) 506 rvt_pr_err(rdi, "QP memory leak! %u still in use\n", 507 qps_inuse); 508 if (!rdi->qp_dev) 509 return; 510 511 kfree(rdi->qp_dev->qp_table); 512 free_qpn_table(&rdi->qp_dev->qpn_table); 513 kfree(rdi->qp_dev); 514 } 515 516 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, 517 struct rvt_qpn_map *map, unsigned off) 518 { 519 return (map - qpt->map) * RVT_BITS_PER_PAGE + off; 520 } 521 522 /** 523 * alloc_qpn - Allocate the next available qpn or zero/one for QP type 524 * IB_QPT_SMI/IB_QPT_GSI 525 * @rdi: rvt device info structure 526 * @qpt: queue pair number table pointer 527 * @port_num: IB port number, 1 based, comes from core 528 * @exclude_prefix: prefix of special queue pair number being allocated 529 * 530 * Return: The queue pair number 531 */ 532 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, 533 enum ib_qp_type type, u8 port_num, u8 exclude_prefix) 534 { 535 u32 i, offset, max_scan, qpn; 536 struct rvt_qpn_map *map; 537 u32 ret; 538 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ? 539 RVT_AIP_QPN_MAX : RVT_QPN_MAX; 540 541 if (rdi->driver_f.alloc_qpn) 542 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); 543 544 if (type == IB_QPT_SMI || type == IB_QPT_GSI) { 545 unsigned n; 546 547 ret = type == IB_QPT_GSI; 548 n = 1 << (ret + 2 * (port_num - 1)); 549 spin_lock(&qpt->lock); 550 if (qpt->flags & n) 551 ret = -EINVAL; 552 else 553 qpt->flags |= n; 554 spin_unlock(&qpt->lock); 555 goto bail; 556 } 557 558 qpn = qpt->last + qpt->incr; 559 if (qpn >= max_qpn) 560 qpn = qpt->incr | ((qpt->last & 1) ^ 1); 561 /* offset carries bit 0 */ 562 offset = qpn & RVT_BITS_PER_PAGE_MASK; 563 map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; 564 max_scan = qpt->nmaps - !offset; 565 for (i = 0;;) { 566 if (unlikely(!map->page)) { 567 get_map_page(qpt, map); 568 if (unlikely(!map->page)) 569 break; 570 } 571 do { 572 if (!test_and_set_bit(offset, map->page)) { 573 qpt->last = qpn; 574 ret = qpn; 575 goto bail; 576 } 577 offset += qpt->incr; 578 /* 579 * This qpn might be bogus if offset >= BITS_PER_PAGE. 580 * That is OK. It gets re-assigned below 581 */ 582 qpn = mk_qpn(qpt, map, offset); 583 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); 584 /* 585 * In order to keep the number of pages allocated to a 586 * minimum, we scan the all existing pages before increasing 587 * the size of the bitmap table. 588 */ 589 if (++i > max_scan) { 590 if (qpt->nmaps == RVT_QPNMAP_ENTRIES) 591 break; 592 map = &qpt->map[qpt->nmaps++]; 593 /* start at incr with current bit 0 */ 594 offset = qpt->incr | (offset & 1); 595 } else if (map < &qpt->map[qpt->nmaps]) { 596 ++map; 597 /* start at incr with current bit 0 */ 598 offset = qpt->incr | (offset & 1); 599 } else { 600 map = &qpt->map[0]; 601 /* wrap to first map page, invert bit 0 */ 602 offset = qpt->incr | ((offset & 1) ^ 1); 603 } 604 /* there can be no set bits in low-order QoS bits */ 605 WARN_ON(rdi->dparms.qos_shift > 1 && 606 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); 607 qpn = mk_qpn(qpt, map, offset); 608 } 609 610 ret = -ENOMEM; 611 612 bail: 613 return ret; 614 } 615 616 /** 617 * rvt_clear_mr_refs - Drop help mr refs 618 * @qp: rvt qp data structure 619 * @clr_sends: If shoudl clear send side or not 620 */ 621 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) 622 { 623 unsigned n; 624 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 625 626 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) 627 rvt_put_ss(&qp->s_rdma_read_sge); 628 629 rvt_put_ss(&qp->r_sge); 630 631 if (clr_sends) { 632 while (qp->s_last != qp->s_head) { 633 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); 634 635 rvt_put_qp_swqe(qp, wqe); 636 if (++qp->s_last >= qp->s_size) 637 qp->s_last = 0; 638 smp_wmb(); /* see qp_set_savail */ 639 } 640 if (qp->s_rdma_mr) { 641 rvt_put_mr(qp->s_rdma_mr); 642 qp->s_rdma_mr = NULL; 643 } 644 } 645 646 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { 647 struct rvt_ack_entry *e = &qp->s_ack_queue[n]; 648 649 if (e->rdma_sge.mr) { 650 rvt_put_mr(e->rdma_sge.mr); 651 e->rdma_sge.mr = NULL; 652 } 653 } 654 } 655 656 /** 657 * rvt_swqe_has_lkey - return true if lkey is used by swqe 658 * @wqe - the send wqe 659 * @lkey - the lkey 660 * 661 * Test the swqe for using lkey 662 */ 663 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) 664 { 665 int i; 666 667 for (i = 0; i < wqe->wr.num_sge; i++) { 668 struct rvt_sge *sge = &wqe->sg_list[i]; 669 670 if (rvt_mr_has_lkey(sge->mr, lkey)) 671 return true; 672 } 673 return false; 674 } 675 676 /** 677 * rvt_qp_sends_has_lkey - return true is qp sends use lkey 678 * @qp - the rvt_qp 679 * @lkey - the lkey 680 */ 681 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) 682 { 683 u32 s_last = qp->s_last; 684 685 while (s_last != qp->s_head) { 686 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); 687 688 if (rvt_swqe_has_lkey(wqe, lkey)) 689 return true; 690 691 if (++s_last >= qp->s_size) 692 s_last = 0; 693 } 694 if (qp->s_rdma_mr) 695 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) 696 return true; 697 return false; 698 } 699 700 /** 701 * rvt_qp_acks_has_lkey - return true if acks have lkey 702 * @qp - the qp 703 * @lkey - the lkey 704 */ 705 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) 706 { 707 int i; 708 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 709 710 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { 711 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 712 713 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) 714 return true; 715 } 716 return false; 717 } 718 719 /* 720 * rvt_qp_mr_clean - clean up remote ops for lkey 721 * @qp - the qp 722 * @lkey - the lkey that is being de-registered 723 * 724 * This routine checks if the lkey is being used by 725 * the qp. 726 * 727 * If so, the qp is put into an error state to elminate 728 * any references from the qp. 729 */ 730 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) 731 { 732 bool lastwqe = false; 733 734 if (qp->ibqp.qp_type == IB_QPT_SMI || 735 qp->ibqp.qp_type == IB_QPT_GSI) 736 /* avoid special QPs */ 737 return; 738 spin_lock_irq(&qp->r_lock); 739 spin_lock(&qp->s_hlock); 740 spin_lock(&qp->s_lock); 741 742 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 743 goto check_lwqe; 744 745 if (rvt_ss_has_lkey(&qp->r_sge, lkey) || 746 rvt_qp_sends_has_lkey(qp, lkey) || 747 rvt_qp_acks_has_lkey(qp, lkey)) 748 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); 749 check_lwqe: 750 spin_unlock(&qp->s_lock); 751 spin_unlock(&qp->s_hlock); 752 spin_unlock_irq(&qp->r_lock); 753 if (lastwqe) { 754 struct ib_event ev; 755 756 ev.device = qp->ibqp.device; 757 ev.element.qp = &qp->ibqp; 758 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 759 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 760 } 761 } 762 763 /** 764 * rvt_remove_qp - remove qp form table 765 * @rdi: rvt dev struct 766 * @qp: qp to remove 767 * 768 * Remove the QP from the table so it can't be found asynchronously by 769 * the receive routine. 770 */ 771 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 772 { 773 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 774 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 775 unsigned long flags; 776 int removed = 1; 777 778 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 779 780 if (rcu_dereference_protected(rvp->qp[0], 781 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 782 RCU_INIT_POINTER(rvp->qp[0], NULL); 783 } else if (rcu_dereference_protected(rvp->qp[1], 784 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { 785 RCU_INIT_POINTER(rvp->qp[1], NULL); 786 } else { 787 struct rvt_qp *q; 788 struct rvt_qp __rcu **qpp; 789 790 removed = 0; 791 qpp = &rdi->qp_dev->qp_table[n]; 792 for (; (q = rcu_dereference_protected(*qpp, 793 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; 794 qpp = &q->next) { 795 if (q == qp) { 796 RCU_INIT_POINTER(*qpp, 797 rcu_dereference_protected(qp->next, 798 lockdep_is_held(&rdi->qp_dev->qpt_lock))); 799 removed = 1; 800 trace_rvt_qpremove(qp, n); 801 break; 802 } 803 } 804 } 805 806 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 807 if (removed) { 808 synchronize_rcu(); 809 rvt_put_qp(qp); 810 } 811 } 812 813 /** 814 * rvt_alloc_rq - allocate memory for user or kernel buffer 815 * @rq: receive queue data structure 816 * @size: number of request queue entries 817 * @node: The NUMA node 818 * @udata: True if user data is available or not false 819 * 820 * Return: If memory allocation failed, return -ENONEM 821 * This function is used by both shared receive 822 * queues and non-shared receive queues to allocate 823 * memory. 824 */ 825 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, 826 struct ib_udata *udata) 827 { 828 if (udata) { 829 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); 830 if (!rq->wq) 831 goto bail; 832 /* need kwq with no buffers */ 833 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); 834 if (!rq->kwq) 835 goto bail; 836 rq->kwq->curr_wq = rq->wq->wq; 837 } else { 838 /* need kwq with buffers */ 839 rq->kwq = 840 vzalloc_node(sizeof(struct rvt_krwq) + size, node); 841 if (!rq->kwq) 842 goto bail; 843 rq->kwq->curr_wq = rq->kwq->wq; 844 } 845 846 spin_lock_init(&rq->kwq->p_lock); 847 spin_lock_init(&rq->kwq->c_lock); 848 return 0; 849 bail: 850 rvt_free_rq(rq); 851 return -ENOMEM; 852 } 853 854 /** 855 * rvt_init_qp - initialize the QP state to the reset state 856 * @qp: the QP to init or reinit 857 * @type: the QP type 858 * 859 * This function is called from both rvt_create_qp() and 860 * rvt_reset_qp(). The difference is that the reset 861 * patch the necessary locks to protect against concurent 862 * access. 863 */ 864 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 865 enum ib_qp_type type) 866 { 867 qp->remote_qpn = 0; 868 qp->qkey = 0; 869 qp->qp_access_flags = 0; 870 qp->s_flags &= RVT_S_SIGNAL_REQ_WR; 871 qp->s_hdrwords = 0; 872 qp->s_wqe = NULL; 873 qp->s_draining = 0; 874 qp->s_next_psn = 0; 875 qp->s_last_psn = 0; 876 qp->s_sending_psn = 0; 877 qp->s_sending_hpsn = 0; 878 qp->s_psn = 0; 879 qp->r_psn = 0; 880 qp->r_msn = 0; 881 if (type == IB_QPT_RC) { 882 qp->s_state = IB_OPCODE_RC_SEND_LAST; 883 qp->r_state = IB_OPCODE_RC_SEND_LAST; 884 } else { 885 qp->s_state = IB_OPCODE_UC_SEND_LAST; 886 qp->r_state = IB_OPCODE_UC_SEND_LAST; 887 } 888 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; 889 qp->r_nak_state = 0; 890 qp->r_aflags = 0; 891 qp->r_flags = 0; 892 qp->s_head = 0; 893 qp->s_tail = 0; 894 qp->s_cur = 0; 895 qp->s_acked = 0; 896 qp->s_last = 0; 897 qp->s_ssn = 1; 898 qp->s_lsn = 0; 899 qp->s_mig_state = IB_MIG_MIGRATED; 900 qp->r_head_ack_queue = 0; 901 qp->s_tail_ack_queue = 0; 902 qp->s_acked_ack_queue = 0; 903 qp->s_num_rd_atomic = 0; 904 qp->r_sge.num_sge = 0; 905 atomic_set(&qp->s_reserved_used, 0); 906 } 907 908 /** 909 * _rvt_reset_qp - initialize the QP state to the reset state 910 * @qp: the QP to reset 911 * @type: the QP type 912 * 913 * r_lock, s_hlock, and s_lock are required to be held by the caller 914 */ 915 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 916 enum ib_qp_type type) 917 __must_hold(&qp->s_lock) 918 __must_hold(&qp->s_hlock) 919 __must_hold(&qp->r_lock) 920 { 921 lockdep_assert_held(&qp->r_lock); 922 lockdep_assert_held(&qp->s_hlock); 923 lockdep_assert_held(&qp->s_lock); 924 if (qp->state != IB_QPS_RESET) { 925 qp->state = IB_QPS_RESET; 926 927 /* Let drivers flush their waitlist */ 928 rdi->driver_f.flush_qp_waiters(qp); 929 rvt_stop_rc_timers(qp); 930 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); 931 spin_unlock(&qp->s_lock); 932 spin_unlock(&qp->s_hlock); 933 spin_unlock_irq(&qp->r_lock); 934 935 /* Stop the send queue and the retry timer */ 936 rdi->driver_f.stop_send_queue(qp); 937 rvt_del_timers_sync(qp); 938 /* Wait for things to stop */ 939 rdi->driver_f.quiesce_qp(qp); 940 941 /* take qp out the hash and wait for it to be unused */ 942 rvt_remove_qp(rdi, qp); 943 944 /* grab the lock b/c it was locked at call time */ 945 spin_lock_irq(&qp->r_lock); 946 spin_lock(&qp->s_hlock); 947 spin_lock(&qp->s_lock); 948 949 rvt_clear_mr_refs(qp, 1); 950 /* 951 * Let the driver do any tear down or re-init it needs to for 952 * a qp that has been reset 953 */ 954 rdi->driver_f.notify_qp_reset(qp); 955 } 956 rvt_init_qp(rdi, qp, type); 957 lockdep_assert_held(&qp->r_lock); 958 lockdep_assert_held(&qp->s_hlock); 959 lockdep_assert_held(&qp->s_lock); 960 } 961 962 /** 963 * rvt_reset_qp - initialize the QP state to the reset state 964 * @rdi: the device info 965 * @qp: the QP to reset 966 * @type: the QP type 967 * 968 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock 969 * before calling _rvt_reset_qp(). 970 */ 971 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, 972 enum ib_qp_type type) 973 { 974 spin_lock_irq(&qp->r_lock); 975 spin_lock(&qp->s_hlock); 976 spin_lock(&qp->s_lock); 977 _rvt_reset_qp(rdi, qp, type); 978 spin_unlock(&qp->s_lock); 979 spin_unlock(&qp->s_hlock); 980 spin_unlock_irq(&qp->r_lock); 981 } 982 983 /** rvt_free_qpn - Free a qpn from the bit map 984 * @qpt: QP table 985 * @qpn: queue pair number to free 986 */ 987 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) 988 { 989 struct rvt_qpn_map *map; 990 991 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE) 992 qpn &= RVT_AIP_QP_SUFFIX; 993 994 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; 995 if (map->page) 996 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); 997 } 998 999 /** 1000 * get_allowed_ops - Given a QP type return the appropriate allowed OP 1001 * @type: valid, supported, QP type 1002 */ 1003 static u8 get_allowed_ops(enum ib_qp_type type) 1004 { 1005 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? 1006 IB_OPCODE_UC : IB_OPCODE_UD; 1007 } 1008 1009 /** 1010 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs 1011 * @qp: Valid QP with allowed_ops set 1012 * 1013 * The rvt_swqe data structure being used is a union, so this is 1014 * only valid for UD QPs. 1015 */ 1016 static void free_ud_wq_attr(struct rvt_qp *qp) 1017 { 1018 struct rvt_swqe *wqe; 1019 int i; 1020 1021 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1022 wqe = rvt_get_swqe_ptr(qp, i); 1023 kfree(wqe->ud_wr.attr); 1024 wqe->ud_wr.attr = NULL; 1025 } 1026 } 1027 1028 /** 1029 * alloc_ud_wq_attr - AH attribute cache for UD QPs 1030 * @qp: Valid QP with allowed_ops set 1031 * @node: Numa node for allocation 1032 * 1033 * The rvt_swqe data structure being used is a union, so this is 1034 * only valid for UD QPs. 1035 */ 1036 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) 1037 { 1038 struct rvt_swqe *wqe; 1039 int i; 1040 1041 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { 1042 wqe = rvt_get_swqe_ptr(qp, i); 1043 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), 1044 GFP_KERNEL, node); 1045 if (!wqe->ud_wr.attr) { 1046 free_ud_wq_attr(qp); 1047 return -ENOMEM; 1048 } 1049 } 1050 1051 return 0; 1052 } 1053 1054 /** 1055 * rvt_create_qp - create a queue pair for a device 1056 * @ibpd: the protection domain who's device we create the queue pair for 1057 * @init_attr: the attributes of the queue pair 1058 * @udata: user data for libibverbs.so 1059 * 1060 * Queue pair creation is mostly an rvt issue. However, drivers have their own 1061 * unique idea of what queue pair numbers mean. For instance there is a reserved 1062 * range for PSM. 1063 * 1064 * Return: the queue pair on success, otherwise returns an errno. 1065 * 1066 * Called by the ib_create_qp() core verbs function. 1067 */ 1068 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, 1069 struct ib_qp_init_attr *init_attr, 1070 struct ib_udata *udata) 1071 { 1072 struct rvt_qp *qp; 1073 int err; 1074 struct rvt_swqe *swq = NULL; 1075 size_t sz; 1076 size_t sg_list_sz; 1077 struct ib_qp *ret = ERR_PTR(-ENOMEM); 1078 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); 1079 void *priv = NULL; 1080 size_t sqsize; 1081 u8 exclude_prefix = 0; 1082 1083 if (!rdi) 1084 return ERR_PTR(-EINVAL); 1085 1086 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE) 1087 return ERR_PTR(-EOPNOTSUPP); 1088 1089 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || 1090 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr) 1091 return ERR_PTR(-EINVAL); 1092 1093 /* Check receive queue parameters if no SRQ is specified. */ 1094 if (!init_attr->srq) { 1095 if (init_attr->cap.max_recv_sge > 1096 rdi->dparms.props.max_recv_sge || 1097 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) 1098 return ERR_PTR(-EINVAL); 1099 1100 if (init_attr->cap.max_send_sge + 1101 init_attr->cap.max_send_wr + 1102 init_attr->cap.max_recv_sge + 1103 init_attr->cap.max_recv_wr == 0) 1104 return ERR_PTR(-EINVAL); 1105 } 1106 sqsize = 1107 init_attr->cap.max_send_wr + 1 + 1108 rdi->dparms.reserved_operations; 1109 switch (init_attr->qp_type) { 1110 case IB_QPT_SMI: 1111 case IB_QPT_GSI: 1112 if (init_attr->port_num == 0 || 1113 init_attr->port_num > ibpd->device->phys_port_cnt) 1114 return ERR_PTR(-EINVAL); 1115 fallthrough; 1116 case IB_QPT_UC: 1117 case IB_QPT_RC: 1118 case IB_QPT_UD: 1119 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); 1120 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); 1121 if (!swq) 1122 return ERR_PTR(-ENOMEM); 1123 1124 sz = sizeof(*qp); 1125 sg_list_sz = 0; 1126 if (init_attr->srq) { 1127 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); 1128 1129 if (srq->rq.max_sge > 1) 1130 sg_list_sz = sizeof(*qp->r_sg_list) * 1131 (srq->rq.max_sge - 1); 1132 } else if (init_attr->cap.max_recv_sge > 1) 1133 sg_list_sz = sizeof(*qp->r_sg_list) * 1134 (init_attr->cap.max_recv_sge - 1); 1135 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, 1136 rdi->dparms.node); 1137 if (!qp) 1138 goto bail_swq; 1139 qp->allowed_ops = get_allowed_ops(init_attr->qp_type); 1140 1141 RCU_INIT_POINTER(qp->next, NULL); 1142 if (init_attr->qp_type == IB_QPT_RC) { 1143 qp->s_ack_queue = 1144 kcalloc_node(rvt_max_atomic(rdi), 1145 sizeof(*qp->s_ack_queue), 1146 GFP_KERNEL, 1147 rdi->dparms.node); 1148 if (!qp->s_ack_queue) 1149 goto bail_qp; 1150 } 1151 /* initialize timers needed for rc qp */ 1152 timer_setup(&qp->s_timer, rvt_rc_timeout, 0); 1153 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, 1154 HRTIMER_MODE_REL); 1155 qp->s_rnr_timer.function = rvt_rc_rnr_retry; 1156 1157 /* 1158 * Driver needs to set up it's private QP structure and do any 1159 * initialization that is needed. 1160 */ 1161 priv = rdi->driver_f.qp_priv_alloc(rdi, qp); 1162 if (IS_ERR(priv)) { 1163 ret = priv; 1164 goto bail_qp; 1165 } 1166 qp->priv = priv; 1167 qp->timeout_jiffies = 1168 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / 1169 1000UL); 1170 if (init_attr->srq) { 1171 sz = 0; 1172 } else { 1173 qp->r_rq.size = init_attr->cap.max_recv_wr + 1; 1174 qp->r_rq.max_sge = init_attr->cap.max_recv_sge; 1175 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + 1176 sizeof(struct rvt_rwqe); 1177 err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, 1178 rdi->dparms.node, udata); 1179 if (err) { 1180 ret = ERR_PTR(err); 1181 goto bail_driver_priv; 1182 } 1183 } 1184 1185 /* 1186 * ib_create_qp() will initialize qp->ibqp 1187 * except for qp->ibqp.qp_num. 1188 */ 1189 spin_lock_init(&qp->r_lock); 1190 spin_lock_init(&qp->s_hlock); 1191 spin_lock_init(&qp->s_lock); 1192 atomic_set(&qp->refcount, 0); 1193 atomic_set(&qp->local_ops_pending, 0); 1194 init_waitqueue_head(&qp->wait); 1195 INIT_LIST_HEAD(&qp->rspwait); 1196 qp->state = IB_QPS_RESET; 1197 qp->s_wq = swq; 1198 qp->s_size = sqsize; 1199 qp->s_avail = init_attr->cap.max_send_wr; 1200 qp->s_max_sge = init_attr->cap.max_send_sge; 1201 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) 1202 qp->s_flags = RVT_S_SIGNAL_REQ_WR; 1203 err = alloc_ud_wq_attr(qp, rdi->dparms.node); 1204 if (err) { 1205 ret = (ERR_PTR(err)); 1206 goto bail_rq_rvt; 1207 } 1208 1209 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1210 exclude_prefix = RVT_AIP_QP_PREFIX; 1211 1212 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, 1213 init_attr->qp_type, 1214 init_attr->port_num, 1215 exclude_prefix); 1216 if (err < 0) { 1217 ret = ERR_PTR(err); 1218 goto bail_rq_wq; 1219 } 1220 qp->ibqp.qp_num = err; 1221 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE) 1222 qp->ibqp.qp_num |= RVT_AIP_QP_BASE; 1223 qp->port_num = init_attr->port_num; 1224 rvt_init_qp(rdi, qp, init_attr->qp_type); 1225 if (rdi->driver_f.qp_priv_init) { 1226 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); 1227 if (err) { 1228 ret = ERR_PTR(err); 1229 goto bail_rq_wq; 1230 } 1231 } 1232 break; 1233 1234 default: 1235 /* Don't support raw QPs */ 1236 return ERR_PTR(-EOPNOTSUPP); 1237 } 1238 1239 init_attr->cap.max_inline_data = 0; 1240 1241 /* 1242 * Return the address of the RWQ as the offset to mmap. 1243 * See rvt_mmap() for details. 1244 */ 1245 if (udata && udata->outlen >= sizeof(__u64)) { 1246 if (!qp->r_rq.wq) { 1247 __u64 offset = 0; 1248 1249 err = ib_copy_to_udata(udata, &offset, 1250 sizeof(offset)); 1251 if (err) { 1252 ret = ERR_PTR(err); 1253 goto bail_qpn; 1254 } 1255 } else { 1256 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; 1257 1258 qp->ip = rvt_create_mmap_info(rdi, s, udata, 1259 qp->r_rq.wq); 1260 if (IS_ERR(qp->ip)) { 1261 ret = ERR_CAST(qp->ip); 1262 goto bail_qpn; 1263 } 1264 1265 err = ib_copy_to_udata(udata, &qp->ip->offset, 1266 sizeof(qp->ip->offset)); 1267 if (err) { 1268 ret = ERR_PTR(err); 1269 goto bail_ip; 1270 } 1271 } 1272 qp->pid = current->pid; 1273 } 1274 1275 spin_lock(&rdi->n_qps_lock); 1276 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { 1277 spin_unlock(&rdi->n_qps_lock); 1278 ret = ERR_PTR(-ENOMEM); 1279 goto bail_ip; 1280 } 1281 1282 rdi->n_qps_allocated++; 1283 /* 1284 * Maintain a busy_jiffies variable that will be added to the timeout 1285 * period in mod_retry_timer and add_retry_timer. This busy jiffies 1286 * is scaled by the number of rc qps created for the device to reduce 1287 * the number of timeouts occurring when there is a large number of 1288 * qps. busy_jiffies is incremented every rc qp scaling interval. 1289 * The scaling interval is selected based on extensive performance 1290 * evaluation of targeted workloads. 1291 */ 1292 if (init_attr->qp_type == IB_QPT_RC) { 1293 rdi->n_rc_qps++; 1294 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1295 } 1296 spin_unlock(&rdi->n_qps_lock); 1297 1298 if (qp->ip) { 1299 spin_lock_irq(&rdi->pending_lock); 1300 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); 1301 spin_unlock_irq(&rdi->pending_lock); 1302 } 1303 1304 ret = &qp->ibqp; 1305 1306 return ret; 1307 1308 bail_ip: 1309 if (qp->ip) 1310 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1311 1312 bail_qpn: 1313 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1314 1315 bail_rq_wq: 1316 free_ud_wq_attr(qp); 1317 1318 bail_rq_rvt: 1319 rvt_free_rq(&qp->r_rq); 1320 1321 bail_driver_priv: 1322 rdi->driver_f.qp_priv_free(rdi, qp); 1323 1324 bail_qp: 1325 kfree(qp->s_ack_queue); 1326 kfree(qp); 1327 1328 bail_swq: 1329 vfree(swq); 1330 1331 return ret; 1332 } 1333 1334 /** 1335 * rvt_error_qp - put a QP into the error state 1336 * @qp: the QP to put into the error state 1337 * @err: the receive completion error to signal if a RWQE is active 1338 * 1339 * Flushes both send and receive work queues. 1340 * 1341 * Return: true if last WQE event should be generated. 1342 * The QP r_lock and s_lock should be held and interrupts disabled. 1343 * If we are already in error state, just return. 1344 */ 1345 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) 1346 { 1347 struct ib_wc wc; 1348 int ret = 0; 1349 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 1350 1351 lockdep_assert_held(&qp->r_lock); 1352 lockdep_assert_held(&qp->s_lock); 1353 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) 1354 goto bail; 1355 1356 qp->state = IB_QPS_ERR; 1357 1358 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 1359 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 1360 del_timer(&qp->s_timer); 1361 } 1362 1363 if (qp->s_flags & RVT_S_ANY_WAIT_SEND) 1364 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; 1365 1366 rdi->driver_f.notify_error_qp(qp); 1367 1368 /* Schedule the sending tasklet to drain the send work queue. */ 1369 if (READ_ONCE(qp->s_last) != qp->s_head) 1370 rdi->driver_f.schedule_send(qp); 1371 1372 rvt_clear_mr_refs(qp, 0); 1373 1374 memset(&wc, 0, sizeof(wc)); 1375 wc.qp = &qp->ibqp; 1376 wc.opcode = IB_WC_RECV; 1377 1378 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { 1379 wc.wr_id = qp->r_wr_id; 1380 wc.status = err; 1381 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1382 } 1383 wc.status = IB_WC_WR_FLUSH_ERR; 1384 1385 if (qp->r_rq.kwq) { 1386 u32 head; 1387 u32 tail; 1388 struct rvt_rwq *wq = NULL; 1389 struct rvt_krwq *kwq = NULL; 1390 1391 spin_lock(&qp->r_rq.kwq->c_lock); 1392 /* qp->ip used to validate if there is a user buffer mmaped */ 1393 if (qp->ip) { 1394 wq = qp->r_rq.wq; 1395 head = RDMA_READ_UAPI_ATOMIC(wq->head); 1396 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 1397 } else { 1398 kwq = qp->r_rq.kwq; 1399 head = kwq->head; 1400 tail = kwq->tail; 1401 } 1402 /* sanity check pointers before trusting them */ 1403 if (head >= qp->r_rq.size) 1404 head = 0; 1405 if (tail >= qp->r_rq.size) 1406 tail = 0; 1407 while (tail != head) { 1408 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; 1409 if (++tail >= qp->r_rq.size) 1410 tail = 0; 1411 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1412 } 1413 if (qp->ip) 1414 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 1415 else 1416 kwq->tail = tail; 1417 spin_unlock(&qp->r_rq.kwq->c_lock); 1418 } else if (qp->ibqp.event_handler) { 1419 ret = 1; 1420 } 1421 1422 bail: 1423 return ret; 1424 } 1425 EXPORT_SYMBOL(rvt_error_qp); 1426 1427 /* 1428 * Put the QP into the hash table. 1429 * The hash table holds a reference to the QP. 1430 */ 1431 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) 1432 { 1433 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 1434 unsigned long flags; 1435 1436 rvt_get_qp(qp); 1437 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); 1438 1439 if (qp->ibqp.qp_num <= 1) { 1440 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); 1441 } else { 1442 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); 1443 1444 qp->next = rdi->qp_dev->qp_table[n]; 1445 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); 1446 trace_rvt_qpinsert(qp, n); 1447 } 1448 1449 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); 1450 } 1451 1452 /** 1453 * rvt_modify_qp - modify the attributes of a queue pair 1454 * @ibqp: the queue pair who's attributes we're modifying 1455 * @attr: the new attributes 1456 * @attr_mask: the mask of attributes to modify 1457 * @udata: user data for libibverbs.so 1458 * 1459 * Return: 0 on success, otherwise returns an errno. 1460 */ 1461 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1462 int attr_mask, struct ib_udata *udata) 1463 { 1464 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1465 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1466 enum ib_qp_state cur_state, new_state; 1467 struct ib_event ev; 1468 int lastwqe = 0; 1469 int mig = 0; 1470 int pmtu = 0; /* for gcc warning only */ 1471 int opa_ah; 1472 1473 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) 1474 return -EOPNOTSUPP; 1475 1476 spin_lock_irq(&qp->r_lock); 1477 spin_lock(&qp->s_hlock); 1478 spin_lock(&qp->s_lock); 1479 1480 cur_state = attr_mask & IB_QP_CUR_STATE ? 1481 attr->cur_qp_state : qp->state; 1482 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; 1483 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); 1484 1485 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, 1486 attr_mask)) 1487 goto inval; 1488 1489 if (rdi->driver_f.check_modify_qp && 1490 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) 1491 goto inval; 1492 1493 if (attr_mask & IB_QP_AV) { 1494 if (opa_ah) { 1495 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1496 opa_get_mcast_base(OPA_MCAST_NR)) 1497 goto inval; 1498 } else { 1499 if (rdma_ah_get_dlid(&attr->ah_attr) >= 1500 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1501 goto inval; 1502 } 1503 1504 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) 1505 goto inval; 1506 } 1507 1508 if (attr_mask & IB_QP_ALT_PATH) { 1509 if (opa_ah) { 1510 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1511 opa_get_mcast_base(OPA_MCAST_NR)) 1512 goto inval; 1513 } else { 1514 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= 1515 be16_to_cpu(IB_MULTICAST_LID_BASE)) 1516 goto inval; 1517 } 1518 1519 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) 1520 goto inval; 1521 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) 1522 goto inval; 1523 } 1524 1525 if (attr_mask & IB_QP_PKEY_INDEX) 1526 if (attr->pkey_index >= rvt_get_npkeys(rdi)) 1527 goto inval; 1528 1529 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1530 if (attr->min_rnr_timer > 31) 1531 goto inval; 1532 1533 if (attr_mask & IB_QP_PORT) 1534 if (qp->ibqp.qp_type == IB_QPT_SMI || 1535 qp->ibqp.qp_type == IB_QPT_GSI || 1536 attr->port_num == 0 || 1537 attr->port_num > ibqp->device->phys_port_cnt) 1538 goto inval; 1539 1540 if (attr_mask & IB_QP_DEST_QPN) 1541 if (attr->dest_qp_num > RVT_QPN_MASK) 1542 goto inval; 1543 1544 if (attr_mask & IB_QP_RETRY_CNT) 1545 if (attr->retry_cnt > 7) 1546 goto inval; 1547 1548 if (attr_mask & IB_QP_RNR_RETRY) 1549 if (attr->rnr_retry > 7) 1550 goto inval; 1551 1552 /* 1553 * Don't allow invalid path_mtu values. OK to set greater 1554 * than the active mtu (or even the max_cap, if we have tuned 1555 * that to a small mtu. We'll set qp->path_mtu 1556 * to the lesser of requested attribute mtu and active, 1557 * for packetizing messages. 1558 * Note that the QP port has to be set in INIT and MTU in RTR. 1559 */ 1560 if (attr_mask & IB_QP_PATH_MTU) { 1561 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); 1562 if (pmtu < 0) 1563 goto inval; 1564 } 1565 1566 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1567 if (attr->path_mig_state == IB_MIG_REARM) { 1568 if (qp->s_mig_state == IB_MIG_ARMED) 1569 goto inval; 1570 if (new_state != IB_QPS_RTS) 1571 goto inval; 1572 } else if (attr->path_mig_state == IB_MIG_MIGRATED) { 1573 if (qp->s_mig_state == IB_MIG_REARM) 1574 goto inval; 1575 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) 1576 goto inval; 1577 if (qp->s_mig_state == IB_MIG_ARMED) 1578 mig = 1; 1579 } else { 1580 goto inval; 1581 } 1582 } 1583 1584 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1585 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) 1586 goto inval; 1587 1588 switch (new_state) { 1589 case IB_QPS_RESET: 1590 if (qp->state != IB_QPS_RESET) 1591 _rvt_reset_qp(rdi, qp, ibqp->qp_type); 1592 break; 1593 1594 case IB_QPS_RTR: 1595 /* Allow event to re-trigger if QP set to RTR more than once */ 1596 qp->r_flags &= ~RVT_R_COMM_EST; 1597 qp->state = new_state; 1598 break; 1599 1600 case IB_QPS_SQD: 1601 qp->s_draining = qp->s_last != qp->s_cur; 1602 qp->state = new_state; 1603 break; 1604 1605 case IB_QPS_SQE: 1606 if (qp->ibqp.qp_type == IB_QPT_RC) 1607 goto inval; 1608 qp->state = new_state; 1609 break; 1610 1611 case IB_QPS_ERR: 1612 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 1613 break; 1614 1615 default: 1616 qp->state = new_state; 1617 break; 1618 } 1619 1620 if (attr_mask & IB_QP_PKEY_INDEX) 1621 qp->s_pkey_index = attr->pkey_index; 1622 1623 if (attr_mask & IB_QP_PORT) 1624 qp->port_num = attr->port_num; 1625 1626 if (attr_mask & IB_QP_DEST_QPN) 1627 qp->remote_qpn = attr->dest_qp_num; 1628 1629 if (attr_mask & IB_QP_SQ_PSN) { 1630 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; 1631 qp->s_psn = qp->s_next_psn; 1632 qp->s_sending_psn = qp->s_next_psn; 1633 qp->s_last_psn = qp->s_next_psn - 1; 1634 qp->s_sending_hpsn = qp->s_last_psn; 1635 } 1636 1637 if (attr_mask & IB_QP_RQ_PSN) 1638 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; 1639 1640 if (attr_mask & IB_QP_ACCESS_FLAGS) 1641 qp->qp_access_flags = attr->qp_access_flags; 1642 1643 if (attr_mask & IB_QP_AV) { 1644 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); 1645 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); 1646 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); 1647 } 1648 1649 if (attr_mask & IB_QP_ALT_PATH) { 1650 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); 1651 qp->s_alt_pkey_index = attr->alt_pkey_index; 1652 } 1653 1654 if (attr_mask & IB_QP_PATH_MIG_STATE) { 1655 qp->s_mig_state = attr->path_mig_state; 1656 if (mig) { 1657 qp->remote_ah_attr = qp->alt_ah_attr; 1658 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); 1659 qp->s_pkey_index = qp->s_alt_pkey_index; 1660 } 1661 } 1662 1663 if (attr_mask & IB_QP_PATH_MTU) { 1664 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); 1665 qp->log_pmtu = ilog2(qp->pmtu); 1666 } 1667 1668 if (attr_mask & IB_QP_RETRY_CNT) { 1669 qp->s_retry_cnt = attr->retry_cnt; 1670 qp->s_retry = attr->retry_cnt; 1671 } 1672 1673 if (attr_mask & IB_QP_RNR_RETRY) { 1674 qp->s_rnr_retry_cnt = attr->rnr_retry; 1675 qp->s_rnr_retry = attr->rnr_retry; 1676 } 1677 1678 if (attr_mask & IB_QP_MIN_RNR_TIMER) 1679 qp->r_min_rnr_timer = attr->min_rnr_timer; 1680 1681 if (attr_mask & IB_QP_TIMEOUT) { 1682 qp->timeout = attr->timeout; 1683 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); 1684 } 1685 1686 if (attr_mask & IB_QP_QKEY) 1687 qp->qkey = attr->qkey; 1688 1689 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) 1690 qp->r_max_rd_atomic = attr->max_dest_rd_atomic; 1691 1692 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) 1693 qp->s_max_rd_atomic = attr->max_rd_atomic; 1694 1695 if (rdi->driver_f.modify_qp) 1696 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); 1697 1698 spin_unlock(&qp->s_lock); 1699 spin_unlock(&qp->s_hlock); 1700 spin_unlock_irq(&qp->r_lock); 1701 1702 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) 1703 rvt_insert_qp(rdi, qp); 1704 1705 if (lastwqe) { 1706 ev.device = qp->ibqp.device; 1707 ev.element.qp = &qp->ibqp; 1708 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 1709 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1710 } 1711 if (mig) { 1712 ev.device = qp->ibqp.device; 1713 ev.element.qp = &qp->ibqp; 1714 ev.event = IB_EVENT_PATH_MIG; 1715 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 1716 } 1717 return 0; 1718 1719 inval: 1720 spin_unlock(&qp->s_lock); 1721 spin_unlock(&qp->s_hlock); 1722 spin_unlock_irq(&qp->r_lock); 1723 return -EINVAL; 1724 } 1725 1726 /** 1727 * rvt_destroy_qp - destroy a queue pair 1728 * @ibqp: the queue pair to destroy 1729 * 1730 * Note that this can be called while the QP is actively sending or 1731 * receiving! 1732 * 1733 * Return: 0 on success. 1734 */ 1735 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) 1736 { 1737 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1738 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1739 1740 rvt_reset_qp(rdi, qp, ibqp->qp_type); 1741 1742 wait_event(qp->wait, !atomic_read(&qp->refcount)); 1743 /* qpn is now available for use again */ 1744 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); 1745 1746 spin_lock(&rdi->n_qps_lock); 1747 rdi->n_qps_allocated--; 1748 if (qp->ibqp.qp_type == IB_QPT_RC) { 1749 rdi->n_rc_qps--; 1750 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; 1751 } 1752 spin_unlock(&rdi->n_qps_lock); 1753 1754 if (qp->ip) 1755 kref_put(&qp->ip->ref, rvt_release_mmap_info); 1756 kvfree(qp->r_rq.kwq); 1757 rdi->driver_f.qp_priv_free(rdi, qp); 1758 kfree(qp->s_ack_queue); 1759 rdma_destroy_ah_attr(&qp->remote_ah_attr); 1760 rdma_destroy_ah_attr(&qp->alt_ah_attr); 1761 free_ud_wq_attr(qp); 1762 vfree(qp->s_wq); 1763 kfree(qp); 1764 return 0; 1765 } 1766 1767 /** 1768 * rvt_query_qp - query an ipbq 1769 * @ibqp: IB qp to query 1770 * @attr: attr struct to fill in 1771 * @attr_mask: attr mask ignored 1772 * @init_attr: struct to fill in 1773 * 1774 * Return: always 0 1775 */ 1776 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, 1777 int attr_mask, struct ib_qp_init_attr *init_attr) 1778 { 1779 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1780 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 1781 1782 attr->qp_state = qp->state; 1783 attr->cur_qp_state = attr->qp_state; 1784 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); 1785 attr->path_mig_state = qp->s_mig_state; 1786 attr->qkey = qp->qkey; 1787 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; 1788 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; 1789 attr->dest_qp_num = qp->remote_qpn; 1790 attr->qp_access_flags = qp->qp_access_flags; 1791 attr->cap.max_send_wr = qp->s_size - 1 - 1792 rdi->dparms.reserved_operations; 1793 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; 1794 attr->cap.max_send_sge = qp->s_max_sge; 1795 attr->cap.max_recv_sge = qp->r_rq.max_sge; 1796 attr->cap.max_inline_data = 0; 1797 attr->ah_attr = qp->remote_ah_attr; 1798 attr->alt_ah_attr = qp->alt_ah_attr; 1799 attr->pkey_index = qp->s_pkey_index; 1800 attr->alt_pkey_index = qp->s_alt_pkey_index; 1801 attr->en_sqd_async_notify = 0; 1802 attr->sq_draining = qp->s_draining; 1803 attr->max_rd_atomic = qp->s_max_rd_atomic; 1804 attr->max_dest_rd_atomic = qp->r_max_rd_atomic; 1805 attr->min_rnr_timer = qp->r_min_rnr_timer; 1806 attr->port_num = qp->port_num; 1807 attr->timeout = qp->timeout; 1808 attr->retry_cnt = qp->s_retry_cnt; 1809 attr->rnr_retry = qp->s_rnr_retry_cnt; 1810 attr->alt_port_num = 1811 rdma_ah_get_port_num(&qp->alt_ah_attr); 1812 attr->alt_timeout = qp->alt_timeout; 1813 1814 init_attr->event_handler = qp->ibqp.event_handler; 1815 init_attr->qp_context = qp->ibqp.qp_context; 1816 init_attr->send_cq = qp->ibqp.send_cq; 1817 init_attr->recv_cq = qp->ibqp.recv_cq; 1818 init_attr->srq = qp->ibqp.srq; 1819 init_attr->cap = attr->cap; 1820 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) 1821 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; 1822 else 1823 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; 1824 init_attr->qp_type = qp->ibqp.qp_type; 1825 init_attr->port_num = qp->port_num; 1826 return 0; 1827 } 1828 1829 /** 1830 * rvt_post_recv - post a receive on a QP 1831 * @ibqp: the QP to post the receive on 1832 * @wr: the WR to post 1833 * @bad_wr: the first bad WR is put here 1834 * 1835 * This may be called from interrupt context. 1836 * 1837 * Return: 0 on success otherwise errno 1838 */ 1839 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, 1840 const struct ib_recv_wr **bad_wr) 1841 { 1842 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 1843 struct rvt_krwq *wq = qp->r_rq.kwq; 1844 unsigned long flags; 1845 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && 1846 !qp->ibqp.srq; 1847 1848 /* Check that state is OK to post receive. */ 1849 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { 1850 *bad_wr = wr; 1851 return -EINVAL; 1852 } 1853 1854 for (; wr; wr = wr->next) { 1855 struct rvt_rwqe *wqe; 1856 u32 next; 1857 int i; 1858 1859 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { 1860 *bad_wr = wr; 1861 return -EINVAL; 1862 } 1863 1864 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); 1865 next = wq->head + 1; 1866 if (next >= qp->r_rq.size) 1867 next = 0; 1868 if (next == READ_ONCE(wq->tail)) { 1869 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1870 *bad_wr = wr; 1871 return -ENOMEM; 1872 } 1873 if (unlikely(qp_err_flush)) { 1874 struct ib_wc wc; 1875 1876 memset(&wc, 0, sizeof(wc)); 1877 wc.qp = &qp->ibqp; 1878 wc.opcode = IB_WC_RECV; 1879 wc.wr_id = wr->wr_id; 1880 wc.status = IB_WC_WR_FLUSH_ERR; 1881 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 1882 } else { 1883 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); 1884 wqe->wr_id = wr->wr_id; 1885 wqe->num_sge = wr->num_sge; 1886 for (i = 0; i < wr->num_sge; i++) { 1887 wqe->sg_list[i].addr = wr->sg_list[i].addr; 1888 wqe->sg_list[i].length = wr->sg_list[i].length; 1889 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 1890 } 1891 /* 1892 * Make sure queue entry is written 1893 * before the head index. 1894 */ 1895 smp_store_release(&wq->head, next); 1896 } 1897 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); 1898 } 1899 return 0; 1900 } 1901 1902 /** 1903 * rvt_qp_valid_operation - validate post send wr request 1904 * @qp - the qp 1905 * @post-parms - the post send table for the driver 1906 * @wr - the work request 1907 * 1908 * The routine validates the operation based on the 1909 * validation table an returns the length of the operation 1910 * which can extend beyond the ib_send_bw. Operation 1911 * dependent flags key atomic operation validation. 1912 * 1913 * There is an exception for UD qps that validates the pd and 1914 * overrides the length to include the additional UD specific 1915 * length. 1916 * 1917 * Returns a negative error or the length of the work request 1918 * for building the swqe. 1919 */ 1920 static inline int rvt_qp_valid_operation( 1921 struct rvt_qp *qp, 1922 const struct rvt_operation_params *post_parms, 1923 const struct ib_send_wr *wr) 1924 { 1925 int len; 1926 1927 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) 1928 return -EINVAL; 1929 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) 1930 return -EINVAL; 1931 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && 1932 ibpd_to_rvtpd(qp->ibqp.pd)->user) 1933 return -EINVAL; 1934 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && 1935 (wr->num_sge == 0 || 1936 wr->sg_list[0].length < sizeof(u64) || 1937 wr->sg_list[0].addr & (sizeof(u64) - 1))) 1938 return -EINVAL; 1939 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && 1940 !qp->s_max_rd_atomic) 1941 return -EINVAL; 1942 len = post_parms[wr->opcode].length; 1943 /* UD specific */ 1944 if (qp->ibqp.qp_type != IB_QPT_UC && 1945 qp->ibqp.qp_type != IB_QPT_RC) { 1946 if (qp->ibqp.pd != ud_wr(wr)->ah->pd) 1947 return -EINVAL; 1948 len = sizeof(struct ib_ud_wr); 1949 } 1950 return len; 1951 } 1952 1953 /** 1954 * rvt_qp_is_avail - determine queue capacity 1955 * @qp: the qp 1956 * @rdi: the rdmavt device 1957 * @reserved_op: is reserved operation 1958 * 1959 * This assumes the s_hlock is held but the s_last 1960 * qp variable is uncontrolled. 1961 * 1962 * For non reserved operations, the qp->s_avail 1963 * may be changed. 1964 * 1965 * The return value is zero or a -ENOMEM. 1966 */ 1967 static inline int rvt_qp_is_avail( 1968 struct rvt_qp *qp, 1969 struct rvt_dev_info *rdi, 1970 bool reserved_op) 1971 { 1972 u32 slast; 1973 u32 avail; 1974 u32 reserved_used; 1975 1976 /* see rvt_qp_wqe_unreserve() */ 1977 smp_mb__before_atomic(); 1978 if (unlikely(reserved_op)) { 1979 /* see rvt_qp_wqe_unreserve() */ 1980 reserved_used = atomic_read(&qp->s_reserved_used); 1981 if (reserved_used >= rdi->dparms.reserved_operations) 1982 return -ENOMEM; 1983 return 0; 1984 } 1985 /* non-reserved operations */ 1986 if (likely(qp->s_avail)) 1987 return 0; 1988 /* See rvt_qp_complete_swqe() */ 1989 slast = smp_load_acquire(&qp->s_last); 1990 if (qp->s_head >= slast) 1991 avail = qp->s_size - (qp->s_head - slast); 1992 else 1993 avail = slast - qp->s_head; 1994 1995 reserved_used = atomic_read(&qp->s_reserved_used); 1996 avail = avail - 1 - 1997 (rdi->dparms.reserved_operations - reserved_used); 1998 /* insure we don't assign a negative s_avail */ 1999 if ((s32)avail <= 0) 2000 return -ENOMEM; 2001 qp->s_avail = avail; 2002 if (WARN_ON(qp->s_avail > 2003 (qp->s_size - 1 - rdi->dparms.reserved_operations))) 2004 rvt_pr_err(rdi, 2005 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", 2006 qp->ibqp.qp_num, qp->s_size, qp->s_avail, 2007 qp->s_head, qp->s_tail, qp->s_cur, 2008 qp->s_acked, qp->s_last); 2009 return 0; 2010 } 2011 2012 /** 2013 * rvt_post_one_wr - post one RC, UC, or UD send work request 2014 * @qp: the QP to post on 2015 * @wr: the work request to send 2016 */ 2017 static int rvt_post_one_wr(struct rvt_qp *qp, 2018 const struct ib_send_wr *wr, 2019 bool *call_send) 2020 { 2021 struct rvt_swqe *wqe; 2022 u32 next; 2023 int i; 2024 int j; 2025 int acc; 2026 struct rvt_lkey_table *rkt; 2027 struct rvt_pd *pd; 2028 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2029 u8 log_pmtu; 2030 int ret; 2031 size_t cplen; 2032 bool reserved_op; 2033 int local_ops_delayed = 0; 2034 2035 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); 2036 2037 /* IB spec says that num_sge == 0 is OK. */ 2038 if (unlikely(wr->num_sge > qp->s_max_sge)) 2039 return -EINVAL; 2040 2041 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); 2042 if (ret < 0) 2043 return ret; 2044 cplen = ret; 2045 2046 /* 2047 * Local operations include fast register and local invalidate. 2048 * Fast register needs to be processed immediately because the 2049 * registered lkey may be used by following work requests and the 2050 * lkey needs to be valid at the time those requests are posted. 2051 * Local invalidate can be processed immediately if fencing is 2052 * not required and no previous local invalidate ops are pending. 2053 * Signaled local operations that have been processed immediately 2054 * need to have requests with "completion only" flags set posted 2055 * to the send queue in order to generate completions. 2056 */ 2057 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { 2058 switch (wr->opcode) { 2059 case IB_WR_REG_MR: 2060 ret = rvt_fast_reg_mr(qp, 2061 reg_wr(wr)->mr, 2062 reg_wr(wr)->key, 2063 reg_wr(wr)->access); 2064 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2065 return ret; 2066 break; 2067 case IB_WR_LOCAL_INV: 2068 if ((wr->send_flags & IB_SEND_FENCE) || 2069 atomic_read(&qp->local_ops_pending)) { 2070 local_ops_delayed = 1; 2071 } else { 2072 ret = rvt_invalidate_rkey( 2073 qp, wr->ex.invalidate_rkey); 2074 if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) 2075 return ret; 2076 } 2077 break; 2078 default: 2079 return -EINVAL; 2080 } 2081 } 2082 2083 reserved_op = rdi->post_parms[wr->opcode].flags & 2084 RVT_OPERATION_USE_RESERVE; 2085 /* check for avail */ 2086 ret = rvt_qp_is_avail(qp, rdi, reserved_op); 2087 if (ret) 2088 return ret; 2089 next = qp->s_head + 1; 2090 if (next >= qp->s_size) 2091 next = 0; 2092 2093 rkt = &rdi->lkey_table; 2094 pd = ibpd_to_rvtpd(qp->ibqp.pd); 2095 wqe = rvt_get_swqe_ptr(qp, qp->s_head); 2096 2097 /* cplen has length from above */ 2098 memcpy(&wqe->wr, wr, cplen); 2099 2100 wqe->length = 0; 2101 j = 0; 2102 if (wr->num_sge) { 2103 struct rvt_sge *last_sge = NULL; 2104 2105 acc = wr->opcode >= IB_WR_RDMA_READ ? 2106 IB_ACCESS_LOCAL_WRITE : 0; 2107 for (i = 0; i < wr->num_sge; i++) { 2108 u32 length = wr->sg_list[i].length; 2109 2110 if (length == 0) 2111 continue; 2112 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, 2113 &wr->sg_list[i], acc); 2114 if (unlikely(ret < 0)) 2115 goto bail_inval_free; 2116 wqe->length += length; 2117 if (ret) 2118 last_sge = &wqe->sg_list[j]; 2119 j += ret; 2120 } 2121 wqe->wr.num_sge = j; 2122 } 2123 2124 /* 2125 * Calculate and set SWQE PSN values prior to handing it off 2126 * to the driver's check routine. This give the driver the 2127 * opportunity to adjust PSN values based on internal checks. 2128 */ 2129 log_pmtu = qp->log_pmtu; 2130 if (qp->allowed_ops == IB_OPCODE_UD) { 2131 struct rvt_ah *ah = rvt_get_swqe_ah(wqe); 2132 2133 log_pmtu = ah->log_pmtu; 2134 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); 2135 } 2136 2137 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { 2138 if (local_ops_delayed) 2139 atomic_inc(&qp->local_ops_pending); 2140 else 2141 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; 2142 wqe->ssn = 0; 2143 wqe->psn = 0; 2144 wqe->lpsn = 0; 2145 } else { 2146 wqe->ssn = qp->s_ssn++; 2147 wqe->psn = qp->s_next_psn; 2148 wqe->lpsn = wqe->psn + 2149 (wqe->length ? 2150 ((wqe->length - 1) >> log_pmtu) : 2151 0); 2152 } 2153 2154 /* general part of wqe valid - allow for driver checks */ 2155 if (rdi->driver_f.setup_wqe) { 2156 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); 2157 if (ret < 0) 2158 goto bail_inval_free_ref; 2159 } 2160 2161 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) 2162 qp->s_next_psn = wqe->lpsn + 1; 2163 2164 if (unlikely(reserved_op)) { 2165 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 2166 rvt_qp_wqe_reserve(qp, wqe); 2167 } else { 2168 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 2169 qp->s_avail--; 2170 } 2171 trace_rvt_post_one_wr(qp, wqe, wr->num_sge); 2172 smp_wmb(); /* see request builders */ 2173 qp->s_head = next; 2174 2175 return 0; 2176 2177 bail_inval_free_ref: 2178 if (qp->allowed_ops == IB_OPCODE_UD) 2179 rdma_destroy_ah_attr(wqe->ud_wr.attr); 2180 bail_inval_free: 2181 /* release mr holds */ 2182 while (j) { 2183 struct rvt_sge *sge = &wqe->sg_list[--j]; 2184 2185 rvt_put_mr(sge->mr); 2186 } 2187 return ret; 2188 } 2189 2190 /** 2191 * rvt_post_send - post a send on a QP 2192 * @ibqp: the QP to post the send on 2193 * @wr: the list of work requests to post 2194 * @bad_wr: the first bad WR is put here 2195 * 2196 * This may be called from interrupt context. 2197 * 2198 * Return: 0 on success else errno 2199 */ 2200 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, 2201 const struct ib_send_wr **bad_wr) 2202 { 2203 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); 2204 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2205 unsigned long flags = 0; 2206 bool call_send; 2207 unsigned nreq = 0; 2208 int err = 0; 2209 2210 spin_lock_irqsave(&qp->s_hlock, flags); 2211 2212 /* 2213 * Ensure QP state is such that we can send. If not bail out early, 2214 * there is no need to do this every time we post a send. 2215 */ 2216 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { 2217 spin_unlock_irqrestore(&qp->s_hlock, flags); 2218 return -EINVAL; 2219 } 2220 2221 /* 2222 * If the send queue is empty, and we only have a single WR then just go 2223 * ahead and kick the send engine into gear. Otherwise we will always 2224 * just schedule the send to happen later. 2225 */ 2226 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; 2227 2228 for (; wr; wr = wr->next) { 2229 err = rvt_post_one_wr(qp, wr, &call_send); 2230 if (unlikely(err)) { 2231 *bad_wr = wr; 2232 goto bail; 2233 } 2234 nreq++; 2235 } 2236 bail: 2237 spin_unlock_irqrestore(&qp->s_hlock, flags); 2238 if (nreq) { 2239 /* 2240 * Only call do_send if there is exactly one packet, and the 2241 * driver said it was ok. 2242 */ 2243 if (nreq == 1 && call_send) 2244 rdi->driver_f.do_send(qp); 2245 else 2246 rdi->driver_f.schedule_send_no_lock(qp); 2247 } 2248 return err; 2249 } 2250 2251 /** 2252 * rvt_post_srq_recv - post a receive on a shared receive queue 2253 * @ibsrq: the SRQ to post the receive on 2254 * @wr: the list of work requests to post 2255 * @bad_wr: A pointer to the first WR to cause a problem is put here 2256 * 2257 * This may be called from interrupt context. 2258 * 2259 * Return: 0 on success else errno 2260 */ 2261 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, 2262 const struct ib_recv_wr **bad_wr) 2263 { 2264 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); 2265 struct rvt_krwq *wq; 2266 unsigned long flags; 2267 2268 for (; wr; wr = wr->next) { 2269 struct rvt_rwqe *wqe; 2270 u32 next; 2271 int i; 2272 2273 if ((unsigned)wr->num_sge > srq->rq.max_sge) { 2274 *bad_wr = wr; 2275 return -EINVAL; 2276 } 2277 2278 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); 2279 wq = srq->rq.kwq; 2280 next = wq->head + 1; 2281 if (next >= srq->rq.size) 2282 next = 0; 2283 if (next == READ_ONCE(wq->tail)) { 2284 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2285 *bad_wr = wr; 2286 return -ENOMEM; 2287 } 2288 2289 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); 2290 wqe->wr_id = wr->wr_id; 2291 wqe->num_sge = wr->num_sge; 2292 for (i = 0; i < wr->num_sge; i++) { 2293 wqe->sg_list[i].addr = wr->sg_list[i].addr; 2294 wqe->sg_list[i].length = wr->sg_list[i].length; 2295 wqe->sg_list[i].lkey = wr->sg_list[i].lkey; 2296 } 2297 /* Make sure queue entry is written before the head index. */ 2298 smp_store_release(&wq->head, next); 2299 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); 2300 } 2301 return 0; 2302 } 2303 2304 /* 2305 * rvt used the internal kernel struct as part of its ABI, for now make sure 2306 * the kernel struct does not change layout. FIXME: rvt should never cast the 2307 * user struct to a kernel struct. 2308 */ 2309 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) 2310 { 2311 BUILD_BUG_ON(offsetof(struct ib_sge, addr) != 2312 offsetof(struct rvt_wqe_sge, addr)); 2313 BUILD_BUG_ON(offsetof(struct ib_sge, length) != 2314 offsetof(struct rvt_wqe_sge, length)); 2315 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != 2316 offsetof(struct rvt_wqe_sge, lkey)); 2317 return (struct ib_sge *)sge; 2318 } 2319 2320 /* 2321 * Validate a RWQE and fill in the SGE state. 2322 * Return 1 if OK. 2323 */ 2324 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) 2325 { 2326 int i, j, ret; 2327 struct ib_wc wc; 2328 struct rvt_lkey_table *rkt; 2329 struct rvt_pd *pd; 2330 struct rvt_sge_state *ss; 2331 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2332 2333 rkt = &rdi->lkey_table; 2334 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); 2335 ss = &qp->r_sge; 2336 ss->sg_list = qp->r_sg_list; 2337 qp->r_len = 0; 2338 for (i = j = 0; i < wqe->num_sge; i++) { 2339 if (wqe->sg_list[i].length == 0) 2340 continue; 2341 /* Check LKEY */ 2342 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, 2343 NULL, rvt_cast_sge(&wqe->sg_list[i]), 2344 IB_ACCESS_LOCAL_WRITE); 2345 if (unlikely(ret <= 0)) 2346 goto bad_lkey; 2347 qp->r_len += wqe->sg_list[i].length; 2348 j++; 2349 } 2350 ss->num_sge = j; 2351 ss->total_len = qp->r_len; 2352 return 1; 2353 2354 bad_lkey: 2355 while (j) { 2356 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; 2357 2358 rvt_put_mr(sge->mr); 2359 } 2360 ss->num_sge = 0; 2361 memset(&wc, 0, sizeof(wc)); 2362 wc.wr_id = wqe->wr_id; 2363 wc.status = IB_WC_LOC_PROT_ERR; 2364 wc.opcode = IB_WC_RECV; 2365 wc.qp = &qp->ibqp; 2366 /* Signal solicited completion event. */ 2367 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); 2368 return 0; 2369 } 2370 2371 /** 2372 * get_rvt_head - get head indices of the circular buffer 2373 * @rq: data structure for request queue entry 2374 * @ip: the QP 2375 * 2376 * Return - head index value 2377 */ 2378 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) 2379 { 2380 u32 head; 2381 2382 if (ip) 2383 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); 2384 else 2385 head = rq->kwq->head; 2386 2387 return head; 2388 } 2389 2390 /** 2391 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE 2392 * @qp: the QP 2393 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge 2394 * 2395 * Return -1 if there is a local error, 0 if no RWQE is available, 2396 * otherwise return 1. 2397 * 2398 * Can be called from interrupt level. 2399 */ 2400 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) 2401 { 2402 unsigned long flags; 2403 struct rvt_rq *rq; 2404 struct rvt_krwq *kwq = NULL; 2405 struct rvt_rwq *wq; 2406 struct rvt_srq *srq; 2407 struct rvt_rwqe *wqe; 2408 void (*handler)(struct ib_event *, void *); 2409 u32 tail; 2410 u32 head; 2411 int ret; 2412 void *ip = NULL; 2413 2414 if (qp->ibqp.srq) { 2415 srq = ibsrq_to_rvtsrq(qp->ibqp.srq); 2416 handler = srq->ibsrq.event_handler; 2417 rq = &srq->rq; 2418 ip = srq->ip; 2419 } else { 2420 srq = NULL; 2421 handler = NULL; 2422 rq = &qp->r_rq; 2423 ip = qp->ip; 2424 } 2425 2426 spin_lock_irqsave(&rq->kwq->c_lock, flags); 2427 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2428 ret = 0; 2429 goto unlock; 2430 } 2431 kwq = rq->kwq; 2432 if (ip) { 2433 wq = rq->wq; 2434 tail = RDMA_READ_UAPI_ATOMIC(wq->tail); 2435 } else { 2436 tail = kwq->tail; 2437 } 2438 2439 /* Validate tail before using it since it is user writable. */ 2440 if (tail >= rq->size) 2441 tail = 0; 2442 2443 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { 2444 head = get_rvt_head(rq, ip); 2445 kwq->count = rvt_get_rq_count(rq, head, tail); 2446 } 2447 if (unlikely(kwq->count == 0)) { 2448 ret = 0; 2449 goto unlock; 2450 } 2451 /* Make sure entry is read after the count is read. */ 2452 smp_rmb(); 2453 wqe = rvt_get_rwqe_ptr(rq, tail); 2454 /* 2455 * Even though we update the tail index in memory, the verbs 2456 * consumer is not supposed to post more entries until a 2457 * completion is generated. 2458 */ 2459 if (++tail >= rq->size) 2460 tail = 0; 2461 if (ip) 2462 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); 2463 else 2464 kwq->tail = tail; 2465 if (!wr_id_only && !init_sge(qp, wqe)) { 2466 ret = -1; 2467 goto unlock; 2468 } 2469 qp->r_wr_id = wqe->wr_id; 2470 2471 kwq->count--; 2472 ret = 1; 2473 set_bit(RVT_R_WRID_VALID, &qp->r_aflags); 2474 if (handler) { 2475 /* 2476 * Validate head pointer value and compute 2477 * the number of remaining WQEs. 2478 */ 2479 if (kwq->count < srq->limit) { 2480 kwq->count = 2481 rvt_get_rq_count(rq, 2482 get_rvt_head(rq, ip), tail); 2483 if (kwq->count < srq->limit) { 2484 struct ib_event ev; 2485 2486 srq->limit = 0; 2487 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2488 ev.device = qp->ibqp.device; 2489 ev.element.srq = qp->ibqp.srq; 2490 ev.event = IB_EVENT_SRQ_LIMIT_REACHED; 2491 handler(&ev, srq->ibsrq.srq_context); 2492 goto bail; 2493 } 2494 } 2495 } 2496 unlock: 2497 spin_unlock_irqrestore(&rq->kwq->c_lock, flags); 2498 bail: 2499 return ret; 2500 } 2501 EXPORT_SYMBOL(rvt_get_rwqe); 2502 2503 /** 2504 * rvt_comm_est - handle trap with QP established 2505 * @qp: the QP 2506 */ 2507 void rvt_comm_est(struct rvt_qp *qp) 2508 { 2509 qp->r_flags |= RVT_R_COMM_EST; 2510 if (qp->ibqp.event_handler) { 2511 struct ib_event ev; 2512 2513 ev.device = qp->ibqp.device; 2514 ev.element.qp = &qp->ibqp; 2515 ev.event = IB_EVENT_COMM_EST; 2516 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2517 } 2518 } 2519 EXPORT_SYMBOL(rvt_comm_est); 2520 2521 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) 2522 { 2523 unsigned long flags; 2524 int lastwqe; 2525 2526 spin_lock_irqsave(&qp->s_lock, flags); 2527 lastwqe = rvt_error_qp(qp, err); 2528 spin_unlock_irqrestore(&qp->s_lock, flags); 2529 2530 if (lastwqe) { 2531 struct ib_event ev; 2532 2533 ev.device = qp->ibqp.device; 2534 ev.element.qp = &qp->ibqp; 2535 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 2536 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 2537 } 2538 } 2539 EXPORT_SYMBOL(rvt_rc_error); 2540 2541 /* 2542 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table 2543 * @index - the index 2544 * return usec from an index into ib_rvt_rnr_table 2545 */ 2546 unsigned long rvt_rnr_tbl_to_usec(u32 index) 2547 { 2548 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; 2549 } 2550 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); 2551 2552 static inline unsigned long rvt_aeth_to_usec(u32 aeth) 2553 { 2554 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & 2555 IB_AETH_CREDIT_MASK]; 2556 } 2557 2558 /* 2559 * rvt_add_retry_timer_ext - add/start a retry timer 2560 * @qp - the QP 2561 * @shift - timeout shift to wait for multiple packets 2562 * add a retry timer on the QP 2563 */ 2564 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) 2565 { 2566 struct ib_qp *ibqp = &qp->ibqp; 2567 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 2568 2569 lockdep_assert_held(&qp->s_lock); 2570 qp->s_flags |= RVT_S_TIMER; 2571 /* 4.096 usec. * (1 << qp->timeout) */ 2572 qp->s_timer.expires = jiffies + rdi->busy_jiffies + 2573 (qp->timeout_jiffies << shift); 2574 add_timer(&qp->s_timer); 2575 } 2576 EXPORT_SYMBOL(rvt_add_retry_timer_ext); 2577 2578 /** 2579 * rvt_add_rnr_timer - add/start an rnr timer on the QP 2580 * @qp: the QP 2581 * @aeth: aeth of RNR timeout, simulated aeth for loopback 2582 */ 2583 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) 2584 { 2585 u32 to; 2586 2587 lockdep_assert_held(&qp->s_lock); 2588 qp->s_flags |= RVT_S_WAIT_RNR; 2589 to = rvt_aeth_to_usec(aeth); 2590 trace_rvt_rnrnak_add(qp, to); 2591 hrtimer_start(&qp->s_rnr_timer, 2592 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); 2593 } 2594 EXPORT_SYMBOL(rvt_add_rnr_timer); 2595 2596 /** 2597 * rvt_stop_rc_timers - stop all timers 2598 * @qp: the QP 2599 * stop any pending timers 2600 */ 2601 void rvt_stop_rc_timers(struct rvt_qp *qp) 2602 { 2603 lockdep_assert_held(&qp->s_lock); 2604 /* Remove QP from all timers */ 2605 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { 2606 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); 2607 del_timer(&qp->s_timer); 2608 hrtimer_try_to_cancel(&qp->s_rnr_timer); 2609 } 2610 } 2611 EXPORT_SYMBOL(rvt_stop_rc_timers); 2612 2613 /** 2614 * rvt_stop_rnr_timer - stop an rnr timer 2615 * @qp - the QP 2616 * 2617 * stop an rnr timer and return if the timer 2618 * had been pending. 2619 */ 2620 static void rvt_stop_rnr_timer(struct rvt_qp *qp) 2621 { 2622 lockdep_assert_held(&qp->s_lock); 2623 /* Remove QP from rnr timer */ 2624 if (qp->s_flags & RVT_S_WAIT_RNR) { 2625 qp->s_flags &= ~RVT_S_WAIT_RNR; 2626 trace_rvt_rnrnak_stop(qp, 0); 2627 } 2628 } 2629 2630 /** 2631 * rvt_del_timers_sync - wait for any timeout routines to exit 2632 * @qp: the QP 2633 */ 2634 void rvt_del_timers_sync(struct rvt_qp *qp) 2635 { 2636 del_timer_sync(&qp->s_timer); 2637 hrtimer_cancel(&qp->s_rnr_timer); 2638 } 2639 EXPORT_SYMBOL(rvt_del_timers_sync); 2640 2641 /* 2642 * This is called from s_timer for missing responses. 2643 */ 2644 static void rvt_rc_timeout(struct timer_list *t) 2645 { 2646 struct rvt_qp *qp = from_timer(qp, t, s_timer); 2647 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2648 unsigned long flags; 2649 2650 spin_lock_irqsave(&qp->r_lock, flags); 2651 spin_lock(&qp->s_lock); 2652 if (qp->s_flags & RVT_S_TIMER) { 2653 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; 2654 2655 qp->s_flags &= ~RVT_S_TIMER; 2656 rvp->n_rc_timeouts++; 2657 del_timer(&qp->s_timer); 2658 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); 2659 if (rdi->driver_f.notify_restart_rc) 2660 rdi->driver_f.notify_restart_rc(qp, 2661 qp->s_last_psn + 1, 2662 1); 2663 rdi->driver_f.schedule_send(qp); 2664 } 2665 spin_unlock(&qp->s_lock); 2666 spin_unlock_irqrestore(&qp->r_lock, flags); 2667 } 2668 2669 /* 2670 * This is called from s_timer for RNR timeouts. 2671 */ 2672 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) 2673 { 2674 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); 2675 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2676 unsigned long flags; 2677 2678 spin_lock_irqsave(&qp->s_lock, flags); 2679 rvt_stop_rnr_timer(qp); 2680 trace_rvt_rnrnak_timeout(qp, 0); 2681 rdi->driver_f.schedule_send(qp); 2682 spin_unlock_irqrestore(&qp->s_lock, flags); 2683 return HRTIMER_NORESTART; 2684 } 2685 EXPORT_SYMBOL(rvt_rc_rnr_retry); 2686 2687 /** 2688 * rvt_qp_iter_init - initial for QP iteration 2689 * @rdi: rvt devinfo 2690 * @v: u64 value 2691 * @cb: user-defined callback 2692 * 2693 * This returns an iterator suitable for iterating QPs 2694 * in the system. 2695 * 2696 * The @cb is a user-defined callback and @v is a 64-bit 2697 * value passed to and relevant for processing in the 2698 * @cb. An example use case would be to alter QP processing 2699 * based on criteria not part of the rvt_qp. 2700 * 2701 * Use cases that require memory allocation to succeed 2702 * must preallocate appropriately. 2703 * 2704 * Return: a pointer to an rvt_qp_iter or NULL 2705 */ 2706 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 2707 u64 v, 2708 void (*cb)(struct rvt_qp *qp, u64 v)) 2709 { 2710 struct rvt_qp_iter *i; 2711 2712 i = kzalloc(sizeof(*i), GFP_KERNEL); 2713 if (!i) 2714 return NULL; 2715 2716 i->rdi = rdi; 2717 /* number of special QPs (SMI/GSI) for device */ 2718 i->specials = rdi->ibdev.phys_port_cnt * 2; 2719 i->v = v; 2720 i->cb = cb; 2721 2722 return i; 2723 } 2724 EXPORT_SYMBOL(rvt_qp_iter_init); 2725 2726 /** 2727 * rvt_qp_iter_next - return the next QP in iter 2728 * @iter: the iterator 2729 * 2730 * Fine grained QP iterator suitable for use 2731 * with debugfs seq_file mechanisms. 2732 * 2733 * Updates iter->qp with the current QP when the return 2734 * value is 0. 2735 * 2736 * Return: 0 - iter->qp is valid 1 - no more QPs 2737 */ 2738 int rvt_qp_iter_next(struct rvt_qp_iter *iter) 2739 __must_hold(RCU) 2740 { 2741 int n = iter->n; 2742 int ret = 1; 2743 struct rvt_qp *pqp = iter->qp; 2744 struct rvt_qp *qp; 2745 struct rvt_dev_info *rdi = iter->rdi; 2746 2747 /* 2748 * The approach is to consider the special qps 2749 * as additional table entries before the 2750 * real hash table. Since the qp code sets 2751 * the qp->next hash link to NULL, this works just fine. 2752 * 2753 * iter->specials is 2 * # ports 2754 * 2755 * n = 0..iter->specials is the special qp indices 2756 * 2757 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are 2758 * the potential hash bucket entries 2759 * 2760 */ 2761 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { 2762 if (pqp) { 2763 qp = rcu_dereference(pqp->next); 2764 } else { 2765 if (n < iter->specials) { 2766 struct rvt_ibport *rvp; 2767 int pidx; 2768 2769 pidx = n % rdi->ibdev.phys_port_cnt; 2770 rvp = rdi->ports[pidx]; 2771 qp = rcu_dereference(rvp->qp[n & 1]); 2772 } else { 2773 qp = rcu_dereference( 2774 rdi->qp_dev->qp_table[ 2775 (n - iter->specials)]); 2776 } 2777 } 2778 pqp = qp; 2779 if (qp) { 2780 iter->qp = qp; 2781 iter->n = n; 2782 return 0; 2783 } 2784 } 2785 return ret; 2786 } 2787 EXPORT_SYMBOL(rvt_qp_iter_next); 2788 2789 /** 2790 * rvt_qp_iter - iterate all QPs 2791 * @rdi: rvt devinfo 2792 * @v: a 64-bit value 2793 * @cb: a callback 2794 * 2795 * This provides a way for iterating all QPs. 2796 * 2797 * The @cb is a user-defined callback and @v is a 64-bit 2798 * value passed to and relevant for processing in the 2799 * cb. An example use case would be to alter QP processing 2800 * based on criteria not part of the rvt_qp. 2801 * 2802 * The code has an internal iterator to simplify 2803 * non seq_file use cases. 2804 */ 2805 void rvt_qp_iter(struct rvt_dev_info *rdi, 2806 u64 v, 2807 void (*cb)(struct rvt_qp *qp, u64 v)) 2808 { 2809 int ret; 2810 struct rvt_qp_iter i = { 2811 .rdi = rdi, 2812 .specials = rdi->ibdev.phys_port_cnt * 2, 2813 .v = v, 2814 .cb = cb 2815 }; 2816 2817 rcu_read_lock(); 2818 do { 2819 ret = rvt_qp_iter_next(&i); 2820 if (!ret) { 2821 rvt_get_qp(i.qp); 2822 rcu_read_unlock(); 2823 i.cb(i.qp, i.v); 2824 rcu_read_lock(); 2825 rvt_put_qp(i.qp); 2826 } 2827 } while (!ret); 2828 rcu_read_unlock(); 2829 } 2830 EXPORT_SYMBOL(rvt_qp_iter); 2831 2832 /* 2833 * This should be called with s_lock held. 2834 */ 2835 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 2836 enum ib_wc_status status) 2837 { 2838 u32 old_last, last; 2839 struct rvt_dev_info *rdi; 2840 2841 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2842 return; 2843 rdi = ib_to_rvt(qp->ibqp.device); 2844 2845 old_last = qp->s_last; 2846 trace_rvt_qp_send_completion(qp, wqe, old_last); 2847 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], 2848 status); 2849 if (qp->s_acked == old_last) 2850 qp->s_acked = last; 2851 if (qp->s_cur == old_last) 2852 qp->s_cur = last; 2853 if (qp->s_tail == old_last) 2854 qp->s_tail = last; 2855 if (qp->state == IB_QPS_SQD && last == qp->s_cur) 2856 qp->s_draining = 0; 2857 } 2858 EXPORT_SYMBOL(rvt_send_complete); 2859 2860 /** 2861 * rvt_copy_sge - copy data to SGE memory 2862 * @qp: associated QP 2863 * @ss: the SGE state 2864 * @data: the data to copy 2865 * @length: the length of the data 2866 * @release: boolean to release MR 2867 * @copy_last: do a separate copy of the last 8 bytes 2868 */ 2869 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 2870 void *data, u32 length, 2871 bool release, bool copy_last) 2872 { 2873 struct rvt_sge *sge = &ss->sge; 2874 int i; 2875 bool in_last = false; 2876 bool cacheless_copy = false; 2877 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 2878 struct rvt_wss *wss = rdi->wss; 2879 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; 2880 2881 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { 2882 cacheless_copy = length >= PAGE_SIZE; 2883 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { 2884 if (length >= PAGE_SIZE) { 2885 /* 2886 * NOTE: this *assumes*: 2887 * o The first vaddr is the dest. 2888 * o If multiple pages, then vaddr is sequential. 2889 */ 2890 wss_insert(wss, sge->vaddr); 2891 if (length >= (2 * PAGE_SIZE)) 2892 wss_insert(wss, (sge->vaddr + PAGE_SIZE)); 2893 2894 cacheless_copy = wss_exceeds_threshold(wss); 2895 } else { 2896 wss_advance_clean_counter(wss); 2897 } 2898 } 2899 2900 if (copy_last) { 2901 if (length > 8) { 2902 length -= 8; 2903 } else { 2904 copy_last = false; 2905 in_last = true; 2906 } 2907 } 2908 2909 again: 2910 while (length) { 2911 u32 len = rvt_get_sge_length(sge, length); 2912 2913 WARN_ON_ONCE(len == 0); 2914 if (unlikely(in_last)) { 2915 /* enforce byte transfer ordering */ 2916 for (i = 0; i < len; i++) 2917 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; 2918 } else if (cacheless_copy) { 2919 cacheless_memcpy(sge->vaddr, data, len); 2920 } else { 2921 memcpy(sge->vaddr, data, len); 2922 } 2923 rvt_update_sge(ss, len, release); 2924 data += len; 2925 length -= len; 2926 } 2927 2928 if (copy_last) { 2929 copy_last = false; 2930 in_last = true; 2931 length = 8; 2932 goto again; 2933 } 2934 } 2935 EXPORT_SYMBOL(rvt_copy_sge); 2936 2937 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, 2938 struct rvt_qp *sqp) 2939 { 2940 rvp->n_pkt_drops++; 2941 /* 2942 * For RC, the requester would timeout and retry so 2943 * shortcut the timeouts and just signal too many retries. 2944 */ 2945 return sqp->ibqp.qp_type == IB_QPT_RC ? 2946 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; 2947 } 2948 2949 /** 2950 * rvt_ruc_loopback - handle UC and RC loopback requests 2951 * @sqp: the sending QP 2952 * 2953 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI 2954 * Note that although we are single threaded due to the send engine, we still 2955 * have to protect against post_send(). We don't have to worry about 2956 * receive interrupts since this is a connected protocol and all packets 2957 * will pass through here. 2958 */ 2959 void rvt_ruc_loopback(struct rvt_qp *sqp) 2960 { 2961 struct rvt_ibport *rvp = NULL; 2962 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); 2963 struct rvt_qp *qp; 2964 struct rvt_swqe *wqe; 2965 struct rvt_sge *sge; 2966 unsigned long flags; 2967 struct ib_wc wc; 2968 u64 sdata; 2969 atomic64_t *maddr; 2970 enum ib_wc_status send_status; 2971 bool release; 2972 int ret; 2973 bool copy_last = false; 2974 int local_ops = 0; 2975 2976 rcu_read_lock(); 2977 rvp = rdi->ports[sqp->port_num - 1]; 2978 2979 /* 2980 * Note that we check the responder QP state after 2981 * checking the requester's state. 2982 */ 2983 2984 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, 2985 sqp->remote_qpn); 2986 2987 spin_lock_irqsave(&sqp->s_lock, flags); 2988 2989 /* Return if we are already busy processing a work request. */ 2990 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || 2991 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) 2992 goto unlock; 2993 2994 sqp->s_flags |= RVT_S_BUSY; 2995 2996 again: 2997 if (sqp->s_last == READ_ONCE(sqp->s_head)) 2998 goto clr_busy; 2999 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); 3000 3001 /* Return if it is not OK to start a new work request. */ 3002 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { 3003 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) 3004 goto clr_busy; 3005 /* We are in the error state, flush the work request. */ 3006 send_status = IB_WC_WR_FLUSH_ERR; 3007 goto flush_send; 3008 } 3009 3010 /* 3011 * We can rely on the entry not changing without the s_lock 3012 * being held until we update s_last. 3013 * We increment s_cur to indicate s_last is in progress. 3014 */ 3015 if (sqp->s_last == sqp->s_cur) { 3016 if (++sqp->s_cur >= sqp->s_size) 3017 sqp->s_cur = 0; 3018 } 3019 spin_unlock_irqrestore(&sqp->s_lock, flags); 3020 3021 if (!qp) { 3022 send_status = loopback_qp_drop(rvp, sqp); 3023 goto serr_no_r_lock; 3024 } 3025 spin_lock_irqsave(&qp->r_lock, flags); 3026 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || 3027 qp->ibqp.qp_type != sqp->ibqp.qp_type) { 3028 send_status = loopback_qp_drop(rvp, sqp); 3029 goto serr; 3030 } 3031 3032 memset(&wc, 0, sizeof(wc)); 3033 send_status = IB_WC_SUCCESS; 3034 3035 release = true; 3036 sqp->s_sge.sge = wqe->sg_list[0]; 3037 sqp->s_sge.sg_list = wqe->sg_list + 1; 3038 sqp->s_sge.num_sge = wqe->wr.num_sge; 3039 sqp->s_len = wqe->length; 3040 switch (wqe->wr.opcode) { 3041 case IB_WR_REG_MR: 3042 goto send_comp; 3043 3044 case IB_WR_LOCAL_INV: 3045 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { 3046 if (rvt_invalidate_rkey(sqp, 3047 wqe->wr.ex.invalidate_rkey)) 3048 send_status = IB_WC_LOC_PROT_ERR; 3049 local_ops = 1; 3050 } 3051 goto send_comp; 3052 3053 case IB_WR_SEND_WITH_INV: 3054 case IB_WR_SEND_WITH_IMM: 3055 case IB_WR_SEND: 3056 ret = rvt_get_rwqe(qp, false); 3057 if (ret < 0) 3058 goto op_err; 3059 if (!ret) 3060 goto rnr_nak; 3061 if (wqe->length > qp->r_len) 3062 goto inv_err; 3063 switch (wqe->wr.opcode) { 3064 case IB_WR_SEND_WITH_INV: 3065 if (!rvt_invalidate_rkey(qp, 3066 wqe->wr.ex.invalidate_rkey)) { 3067 wc.wc_flags = IB_WC_WITH_INVALIDATE; 3068 wc.ex.invalidate_rkey = 3069 wqe->wr.ex.invalidate_rkey; 3070 } 3071 break; 3072 case IB_WR_SEND_WITH_IMM: 3073 wc.wc_flags = IB_WC_WITH_IMM; 3074 wc.ex.imm_data = wqe->wr.ex.imm_data; 3075 break; 3076 default: 3077 break; 3078 } 3079 break; 3080 3081 case IB_WR_RDMA_WRITE_WITH_IMM: 3082 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3083 goto inv_err; 3084 wc.wc_flags = IB_WC_WITH_IMM; 3085 wc.ex.imm_data = wqe->wr.ex.imm_data; 3086 ret = rvt_get_rwqe(qp, true); 3087 if (ret < 0) 3088 goto op_err; 3089 if (!ret) 3090 goto rnr_nak; 3091 /* skip copy_last set and qp_access_flags recheck */ 3092 goto do_write; 3093 case IB_WR_RDMA_WRITE: 3094 copy_last = rvt_is_user_qp(qp); 3095 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3096 goto inv_err; 3097 do_write: 3098 if (wqe->length == 0) 3099 break; 3100 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, 3101 wqe->rdma_wr.remote_addr, 3102 wqe->rdma_wr.rkey, 3103 IB_ACCESS_REMOTE_WRITE))) 3104 goto acc_err; 3105 qp->r_sge.sg_list = NULL; 3106 qp->r_sge.num_sge = 1; 3107 qp->r_sge.total_len = wqe->length; 3108 break; 3109 3110 case IB_WR_RDMA_READ: 3111 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 3112 goto inv_err; 3113 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, 3114 wqe->rdma_wr.remote_addr, 3115 wqe->rdma_wr.rkey, 3116 IB_ACCESS_REMOTE_READ))) 3117 goto acc_err; 3118 release = false; 3119 sqp->s_sge.sg_list = NULL; 3120 sqp->s_sge.num_sge = 1; 3121 qp->r_sge.sge = wqe->sg_list[0]; 3122 qp->r_sge.sg_list = wqe->sg_list + 1; 3123 qp->r_sge.num_sge = wqe->wr.num_sge; 3124 qp->r_sge.total_len = wqe->length; 3125 break; 3126 3127 case IB_WR_ATOMIC_CMP_AND_SWP: 3128 case IB_WR_ATOMIC_FETCH_AND_ADD: 3129 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) 3130 goto inv_err; 3131 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), 3132 wqe->atomic_wr.remote_addr, 3133 wqe->atomic_wr.rkey, 3134 IB_ACCESS_REMOTE_ATOMIC))) 3135 goto acc_err; 3136 /* Perform atomic OP and save result. */ 3137 maddr = (atomic64_t *)qp->r_sge.sge.vaddr; 3138 sdata = wqe->atomic_wr.compare_add; 3139 *(u64 *)sqp->s_sge.sge.vaddr = 3140 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? 3141 (u64)atomic64_add_return(sdata, maddr) - sdata : 3142 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, 3143 sdata, wqe->atomic_wr.swap); 3144 rvt_put_mr(qp->r_sge.sge.mr); 3145 qp->r_sge.num_sge = 0; 3146 goto send_comp; 3147 3148 default: 3149 send_status = IB_WC_LOC_QP_OP_ERR; 3150 goto serr; 3151 } 3152 3153 sge = &sqp->s_sge.sge; 3154 while (sqp->s_len) { 3155 u32 len = rvt_get_sge_length(sge, sqp->s_len); 3156 3157 WARN_ON_ONCE(len == 0); 3158 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, 3159 len, release, copy_last); 3160 rvt_update_sge(&sqp->s_sge, len, !release); 3161 sqp->s_len -= len; 3162 } 3163 if (release) 3164 rvt_put_ss(&qp->r_sge); 3165 3166 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) 3167 goto send_comp; 3168 3169 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) 3170 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; 3171 else 3172 wc.opcode = IB_WC_RECV; 3173 wc.wr_id = qp->r_wr_id; 3174 wc.status = IB_WC_SUCCESS; 3175 wc.byte_len = wqe->length; 3176 wc.qp = &qp->ibqp; 3177 wc.src_qp = qp->remote_qpn; 3178 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; 3179 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); 3180 wc.port_num = 1; 3181 /* Signal completion event if the solicited bit is set. */ 3182 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); 3183 3184 send_comp: 3185 spin_unlock_irqrestore(&qp->r_lock, flags); 3186 spin_lock_irqsave(&sqp->s_lock, flags); 3187 rvp->n_loop_pkts++; 3188 flush_send: 3189 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; 3190 rvt_send_complete(sqp, wqe, send_status); 3191 if (local_ops) { 3192 atomic_dec(&sqp->local_ops_pending); 3193 local_ops = 0; 3194 } 3195 goto again; 3196 3197 rnr_nak: 3198 /* Handle RNR NAK */ 3199 if (qp->ibqp.qp_type == IB_QPT_UC) 3200 goto send_comp; 3201 rvp->n_rnr_naks++; 3202 /* 3203 * Note: we don't need the s_lock held since the BUSY flag 3204 * makes this single threaded. 3205 */ 3206 if (sqp->s_rnr_retry == 0) { 3207 send_status = IB_WC_RNR_RETRY_EXC_ERR; 3208 goto serr; 3209 } 3210 if (sqp->s_rnr_retry_cnt < 7) 3211 sqp->s_rnr_retry--; 3212 spin_unlock_irqrestore(&qp->r_lock, flags); 3213 spin_lock_irqsave(&sqp->s_lock, flags); 3214 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) 3215 goto clr_busy; 3216 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << 3217 IB_AETH_CREDIT_SHIFT); 3218 goto clr_busy; 3219 3220 op_err: 3221 send_status = IB_WC_REM_OP_ERR; 3222 wc.status = IB_WC_LOC_QP_OP_ERR; 3223 goto err; 3224 3225 inv_err: 3226 send_status = 3227 sqp->ibqp.qp_type == IB_QPT_RC ? 3228 IB_WC_REM_INV_REQ_ERR : 3229 IB_WC_SUCCESS; 3230 wc.status = IB_WC_LOC_QP_OP_ERR; 3231 goto err; 3232 3233 acc_err: 3234 send_status = IB_WC_REM_ACCESS_ERR; 3235 wc.status = IB_WC_LOC_PROT_ERR; 3236 err: 3237 /* responder goes to error state */ 3238 rvt_rc_error(qp, wc.status); 3239 3240 serr: 3241 spin_unlock_irqrestore(&qp->r_lock, flags); 3242 serr_no_r_lock: 3243 spin_lock_irqsave(&sqp->s_lock, flags); 3244 rvt_send_complete(sqp, wqe, send_status); 3245 if (sqp->ibqp.qp_type == IB_QPT_RC) { 3246 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); 3247 3248 sqp->s_flags &= ~RVT_S_BUSY; 3249 spin_unlock_irqrestore(&sqp->s_lock, flags); 3250 if (lastwqe) { 3251 struct ib_event ev; 3252 3253 ev.device = sqp->ibqp.device; 3254 ev.element.qp = &sqp->ibqp; 3255 ev.event = IB_EVENT_QP_LAST_WQE_REACHED; 3256 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); 3257 } 3258 goto done; 3259 } 3260 clr_busy: 3261 sqp->s_flags &= ~RVT_S_BUSY; 3262 unlock: 3263 spin_unlock_irqrestore(&sqp->s_lock, flags); 3264 done: 3265 rcu_read_unlock(); 3266 } 3267 EXPORT_SYMBOL(rvt_ruc_loopback); 3268