1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright(c) 2016 Intel Corporation. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <rdma/ib_umem.h> 9 #include <rdma/rdma_vt.h> 10 #include "vt.h" 11 #include "mr.h" 12 #include "trace.h" 13 14 /** 15 * rvt_driver_mr_init - Init MR resources per driver 16 * @rdi: rvt dev struct 17 * 18 * Do any intilization needed when a driver registers with rdmavt. 19 * 20 * Return: 0 on success or errno on failure 21 */ 22 int rvt_driver_mr_init(struct rvt_dev_info *rdi) 23 { 24 unsigned int lkey_table_size = rdi->dparms.lkey_table_size; 25 unsigned lk_tab_size; 26 int i; 27 28 /* 29 * The top hfi1_lkey_table_size bits are used to index the 30 * table. The lower 8 bits can be owned by the user (copied from 31 * the LKEY). The remaining bits act as a generation number or tag. 32 */ 33 if (!lkey_table_size) 34 return -EINVAL; 35 36 spin_lock_init(&rdi->lkey_table.lock); 37 38 /* ensure generation is at least 4 bits */ 39 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) { 40 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n", 41 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS); 42 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS; 43 lkey_table_size = rdi->dparms.lkey_table_size; 44 } 45 rdi->lkey_table.max = 1 << lkey_table_size; 46 rdi->lkey_table.shift = 32 - lkey_table_size; 47 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table); 48 rdi->lkey_table.table = (struct rvt_mregion __rcu **) 49 vmalloc_node(lk_tab_size, rdi->dparms.node); 50 if (!rdi->lkey_table.table) 51 return -ENOMEM; 52 53 RCU_INIT_POINTER(rdi->dma_mr, NULL); 54 for (i = 0; i < rdi->lkey_table.max; i++) 55 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL); 56 57 rdi->dparms.props.max_mr = rdi->lkey_table.max; 58 return 0; 59 } 60 61 /** 62 * rvt_mr_exit - clean up MR 63 * @rdi: rvt dev structure 64 * 65 * called when drivers have unregistered or perhaps failed to register with us 66 */ 67 void rvt_mr_exit(struct rvt_dev_info *rdi) 68 { 69 if (rdi->dma_mr) 70 rvt_pr_err(rdi, "DMA MR not null!\n"); 71 72 vfree(rdi->lkey_table.table); 73 } 74 75 static void rvt_deinit_mregion(struct rvt_mregion *mr) 76 { 77 int i = mr->mapsz; 78 79 mr->mapsz = 0; 80 while (i) 81 kfree(mr->map[--i]); 82 percpu_ref_exit(&mr->refcount); 83 } 84 85 static void __rvt_mregion_complete(struct percpu_ref *ref) 86 { 87 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion, 88 refcount); 89 90 complete(&mr->comp); 91 } 92 93 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd, 94 int count, unsigned int percpu_flags) 95 { 96 int m, i = 0; 97 struct rvt_dev_info *dev = ib_to_rvt(pd->device); 98 99 mr->mapsz = 0; 100 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 101 for (; i < m; i++) { 102 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL, 103 dev->dparms.node); 104 if (!mr->map[i]) 105 goto bail; 106 mr->mapsz++; 107 } 108 init_completion(&mr->comp); 109 /* count returning the ptr to user */ 110 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete, 111 percpu_flags, GFP_KERNEL)) 112 goto bail; 113 114 atomic_set(&mr->lkey_invalid, 0); 115 mr->pd = pd; 116 mr->max_segs = count; 117 return 0; 118 bail: 119 rvt_deinit_mregion(mr); 120 return -ENOMEM; 121 } 122 123 /** 124 * rvt_alloc_lkey - allocate an lkey 125 * @mr: memory region that this lkey protects 126 * @dma_region: 0->normal key, 1->restricted DMA key 127 * 128 * Returns 0 if successful, otherwise returns -errno. 129 * 130 * Increments mr reference count as required. 131 * 132 * Sets the lkey field mr for non-dma regions. 133 * 134 */ 135 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region) 136 { 137 unsigned long flags; 138 u32 r; 139 u32 n; 140 int ret = 0; 141 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 142 struct rvt_lkey_table *rkt = &dev->lkey_table; 143 144 rvt_get_mr(mr); 145 spin_lock_irqsave(&rkt->lock, flags); 146 147 /* special case for dma_mr lkey == 0 */ 148 if (dma_region) { 149 struct rvt_mregion *tmr; 150 151 tmr = rcu_access_pointer(dev->dma_mr); 152 if (!tmr) { 153 mr->lkey_published = 1; 154 /* Insure published written first */ 155 rcu_assign_pointer(dev->dma_mr, mr); 156 rvt_get_mr(mr); 157 } 158 goto success; 159 } 160 161 /* Find the next available LKEY */ 162 r = rkt->next; 163 n = r; 164 for (;;) { 165 if (!rcu_access_pointer(rkt->table[r])) 166 break; 167 r = (r + 1) & (rkt->max - 1); 168 if (r == n) 169 goto bail; 170 } 171 rkt->next = (r + 1) & (rkt->max - 1); 172 /* 173 * Make sure lkey is never zero which is reserved to indicate an 174 * unrestricted LKEY. 175 */ 176 rkt->gen++; 177 /* 178 * bits are capped to ensure enough bits for generation number 179 */ 180 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) | 181 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen) 182 << 8); 183 if (mr->lkey == 0) { 184 mr->lkey |= 1 << 8; 185 rkt->gen++; 186 } 187 mr->lkey_published = 1; 188 /* Insure published written first */ 189 rcu_assign_pointer(rkt->table[r], mr); 190 success: 191 spin_unlock_irqrestore(&rkt->lock, flags); 192 out: 193 return ret; 194 bail: 195 rvt_put_mr(mr); 196 spin_unlock_irqrestore(&rkt->lock, flags); 197 ret = -ENOMEM; 198 goto out; 199 } 200 201 /** 202 * rvt_free_lkey - free an lkey 203 * @mr: mr to free from tables 204 */ 205 static void rvt_free_lkey(struct rvt_mregion *mr) 206 { 207 unsigned long flags; 208 u32 lkey = mr->lkey; 209 u32 r; 210 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device); 211 struct rvt_lkey_table *rkt = &dev->lkey_table; 212 int freed = 0; 213 214 spin_lock_irqsave(&rkt->lock, flags); 215 if (!lkey) { 216 if (mr->lkey_published) { 217 mr->lkey_published = 0; 218 /* insure published is written before pointer */ 219 rcu_assign_pointer(dev->dma_mr, NULL); 220 rvt_put_mr(mr); 221 } 222 } else { 223 if (!mr->lkey_published) 224 goto out; 225 r = lkey >> (32 - dev->dparms.lkey_table_size); 226 mr->lkey_published = 0; 227 /* insure published is written before pointer */ 228 rcu_assign_pointer(rkt->table[r], NULL); 229 } 230 freed++; 231 out: 232 spin_unlock_irqrestore(&rkt->lock, flags); 233 if (freed) 234 percpu_ref_kill(&mr->refcount); 235 } 236 237 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd) 238 { 239 struct rvt_mr *mr; 240 int rval = -ENOMEM; 241 int m; 242 243 /* Allocate struct plus pointers to first level page tables. */ 244 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ; 245 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL); 246 if (!mr) 247 goto bail; 248 249 rval = rvt_init_mregion(&mr->mr, pd, count, 0); 250 if (rval) 251 goto bail; 252 /* 253 * ib_reg_phys_mr() will initialize mr->ibmr except for 254 * lkey and rkey. 255 */ 256 rval = rvt_alloc_lkey(&mr->mr, 0); 257 if (rval) 258 goto bail_mregion; 259 mr->ibmr.lkey = mr->mr.lkey; 260 mr->ibmr.rkey = mr->mr.lkey; 261 done: 262 return mr; 263 264 bail_mregion: 265 rvt_deinit_mregion(&mr->mr); 266 bail: 267 kfree(mr); 268 mr = ERR_PTR(rval); 269 goto done; 270 } 271 272 static void __rvt_free_mr(struct rvt_mr *mr) 273 { 274 rvt_free_lkey(&mr->mr); 275 rvt_deinit_mregion(&mr->mr); 276 kfree(mr); 277 } 278 279 /** 280 * rvt_get_dma_mr - get a DMA memory region 281 * @pd: protection domain for this memory region 282 * @acc: access flags 283 * 284 * Return: the memory region on success, otherwise returns an errno. 285 */ 286 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc) 287 { 288 struct rvt_mr *mr; 289 struct ib_mr *ret; 290 int rval; 291 292 if (ibpd_to_rvtpd(pd)->user) 293 return ERR_PTR(-EPERM); 294 295 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 296 if (!mr) { 297 ret = ERR_PTR(-ENOMEM); 298 goto bail; 299 } 300 301 rval = rvt_init_mregion(&mr->mr, pd, 0, 0); 302 if (rval) { 303 ret = ERR_PTR(rval); 304 goto bail; 305 } 306 307 rval = rvt_alloc_lkey(&mr->mr, 1); 308 if (rval) { 309 ret = ERR_PTR(rval); 310 goto bail_mregion; 311 } 312 313 mr->mr.access_flags = acc; 314 ret = &mr->ibmr; 315 done: 316 return ret; 317 318 bail_mregion: 319 rvt_deinit_mregion(&mr->mr); 320 bail: 321 kfree(mr); 322 goto done; 323 } 324 325 /** 326 * rvt_reg_user_mr - register a userspace memory region 327 * @pd: protection domain for this memory region 328 * @start: starting userspace address 329 * @length: length of region to register 330 * @virt_addr: associated virtual address 331 * @mr_access_flags: access flags for this memory region 332 * @dmah: dma handle 333 * @udata: unused by the driver 334 * 335 * Return: the memory region on success, otherwise returns an errno. 336 */ 337 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 338 u64 virt_addr, int mr_access_flags, 339 struct ib_dmah *dmah, 340 struct ib_udata *udata) 341 { 342 struct rvt_mr *mr; 343 struct ib_umem *umem; 344 struct sg_page_iter sg_iter; 345 int n, m; 346 struct ib_mr *ret; 347 348 if (dmah) 349 return ERR_PTR(-EOPNOTSUPP); 350 351 if (length == 0) 352 return ERR_PTR(-EINVAL); 353 354 umem = ib_umem_get(pd->device, start, length, mr_access_flags); 355 if (IS_ERR(umem)) 356 return ERR_CAST(umem); 357 358 n = ib_umem_num_pages(umem); 359 360 mr = __rvt_alloc_mr(n, pd); 361 if (IS_ERR(mr)) { 362 ret = ERR_CAST(mr); 363 goto bail_umem; 364 } 365 366 mr->mr.user_base = start; 367 mr->mr.iova = virt_addr; 368 mr->mr.length = length; 369 mr->mr.offset = ib_umem_offset(umem); 370 mr->mr.access_flags = mr_access_flags; 371 mr->umem = umem; 372 373 mr->mr.page_shift = PAGE_SHIFT; 374 m = 0; 375 n = 0; 376 for_each_sgtable_page (&umem->sgt_append.sgt, &sg_iter, 0) { 377 void *vaddr; 378 379 vaddr = page_address(sg_page_iter_page(&sg_iter)); 380 if (!vaddr) { 381 ret = ERR_PTR(-EINVAL); 382 goto bail_inval; 383 } 384 mr->mr.map[m]->segs[n].vaddr = vaddr; 385 mr->mr.map[m]->segs[n].length = PAGE_SIZE; 386 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE); 387 if (++n == RVT_SEGSZ) { 388 m++; 389 n = 0; 390 } 391 } 392 return &mr->ibmr; 393 394 bail_inval: 395 __rvt_free_mr(mr); 396 397 bail_umem: 398 ib_umem_release(umem); 399 400 return ret; 401 } 402 403 /** 404 * rvt_dereg_clean_qp_cb - callback from iterator 405 * @qp: the qp 406 * @v: the mregion (as u64) 407 * 408 * This routine fields the callback for all QPs and 409 * for QPs in the same PD as the MR will call the 410 * rvt_qp_mr_clean() to potentially cleanup references. 411 */ 412 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v) 413 { 414 struct rvt_mregion *mr = (struct rvt_mregion *)v; 415 416 /* skip PDs that are not ours */ 417 if (mr->pd != qp->ibqp.pd) 418 return; 419 rvt_qp_mr_clean(qp, mr->lkey); 420 } 421 422 /** 423 * rvt_dereg_clean_qps - find QPs for reference cleanup 424 * @mr: the MR that is being deregistered 425 * 426 * This routine iterates RC QPs looking for references 427 * to the lkey noted in mr. 428 */ 429 static void rvt_dereg_clean_qps(struct rvt_mregion *mr) 430 { 431 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 432 433 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb); 434 } 435 436 /** 437 * rvt_check_refs - check references 438 * @mr: the megion 439 * @t: the caller identification 440 * 441 * This routine checks MRs holding a reference during 442 * when being de-registered. 443 * 444 * If the count is non-zero, the code calls a clean routine then 445 * waits for the timeout for the count to zero. 446 */ 447 static int rvt_check_refs(struct rvt_mregion *mr, const char *t) 448 { 449 unsigned long timeout; 450 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device); 451 452 if (mr->lkey) { 453 /* avoid dma mr */ 454 rvt_dereg_clean_qps(mr); 455 /* @mr was indexed on rcu protected @lkey_table */ 456 synchronize_rcu(); 457 } 458 459 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ); 460 if (!timeout) { 461 rvt_pr_err(rdi, 462 "%s timeout mr %p pd %p lkey %x refcount %ld\n", 463 t, mr, mr->pd, mr->lkey, 464 atomic_long_read(&mr->refcount.data->count)); 465 rvt_get_mr(mr); 466 return -EBUSY; 467 } 468 return 0; 469 } 470 471 /** 472 * rvt_mr_has_lkey - is MR 473 * @mr: the mregion 474 * @lkey: the lkey 475 */ 476 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey) 477 { 478 return mr && lkey == mr->lkey; 479 } 480 481 /** 482 * rvt_ss_has_lkey - is mr in sge tests 483 * @ss: the sge state 484 * @lkey: the lkey 485 * 486 * This code tests for an MR in the indicated 487 * sge state. 488 */ 489 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey) 490 { 491 int i; 492 bool rval = false; 493 494 if (!ss->num_sge) 495 return rval; 496 /* first one */ 497 rval = rvt_mr_has_lkey(ss->sge.mr, lkey); 498 /* any others */ 499 for (i = 0; !rval && i < ss->num_sge - 1; i++) 500 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey); 501 return rval; 502 } 503 504 /** 505 * rvt_dereg_mr - unregister and free a memory region 506 * @ibmr: the memory region to free 507 * @udata: unused by the driver 508 * 509 * Note that this is called to free MRs created by rvt_get_dma_mr() 510 * or rvt_reg_user_mr(). 511 * 512 * Returns 0 on success. 513 */ 514 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 515 { 516 struct rvt_mr *mr = to_imr(ibmr); 517 int ret; 518 519 rvt_free_lkey(&mr->mr); 520 521 rvt_put_mr(&mr->mr); /* will set completion if last */ 522 ret = rvt_check_refs(&mr->mr, __func__); 523 if (ret) 524 goto out; 525 rvt_deinit_mregion(&mr->mr); 526 ib_umem_release(mr->umem); 527 kfree(mr); 528 out: 529 return ret; 530 } 531 532 /** 533 * rvt_alloc_mr - Allocate a memory region usable with the 534 * @pd: protection domain for this memory region 535 * @mr_type: mem region type 536 * @max_num_sg: Max number of segments allowed 537 * 538 * Return: the memory region on success, otherwise return an errno. 539 */ 540 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 541 u32 max_num_sg) 542 { 543 struct rvt_mr *mr; 544 545 if (mr_type != IB_MR_TYPE_MEM_REG) 546 return ERR_PTR(-EINVAL); 547 548 mr = __rvt_alloc_mr(max_num_sg, pd); 549 if (IS_ERR(mr)) 550 return ERR_CAST(mr); 551 552 return &mr->ibmr; 553 } 554 555 /** 556 * rvt_set_page - page assignment function called by ib_sg_to_pages 557 * @ibmr: memory region 558 * @addr: dma address of mapped page 559 * 560 * Return: 0 on success 561 */ 562 static int rvt_set_page(struct ib_mr *ibmr, u64 addr) 563 { 564 struct rvt_mr *mr = to_imr(ibmr); 565 u32 ps = 1 << mr->mr.page_shift; 566 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift; 567 int m, n; 568 569 if (unlikely(mapped_segs == mr->mr.max_segs)) 570 return -ENOMEM; 571 572 m = mapped_segs / RVT_SEGSZ; 573 n = mapped_segs % RVT_SEGSZ; 574 mr->mr.map[m]->segs[n].vaddr = (void *)addr; 575 mr->mr.map[m]->segs[n].length = ps; 576 mr->mr.length += ps; 577 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps); 578 579 return 0; 580 } 581 582 /** 583 * rvt_map_mr_sg - map sg list and set it the memory region 584 * @ibmr: memory region 585 * @sg: dma mapped scatterlist 586 * @sg_nents: number of entries in sg 587 * @sg_offset: offset in bytes into sg 588 * 589 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages. 590 * 591 * Return: number of sg elements mapped to the memory region 592 */ 593 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, 594 int sg_nents, unsigned int *sg_offset) 595 { 596 struct rvt_mr *mr = to_imr(ibmr); 597 int ret; 598 599 mr->mr.length = 0; 600 mr->mr.page_shift = PAGE_SHIFT; 601 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page); 602 mr->mr.user_base = ibmr->iova; 603 mr->mr.iova = ibmr->iova; 604 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr; 605 mr->mr.length = (size_t)ibmr->length; 606 trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset); 607 return ret; 608 } 609 610 /** 611 * rvt_fast_reg_mr - fast register physical MR 612 * @qp: the queue pair where the work request comes from 613 * @ibmr: the memory region to be registered 614 * @key: updated key for this memory region 615 * @access: access flags for this memory region 616 * 617 * Returns 0 on success. 618 */ 619 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key, 620 int access) 621 { 622 struct rvt_mr *mr = to_imr(ibmr); 623 624 if (qp->ibqp.pd != mr->mr.pd) 625 return -EACCES; 626 627 /* not applicable to dma MR or user MR */ 628 if (!mr->mr.lkey || mr->umem) 629 return -EINVAL; 630 631 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00)) 632 return -EINVAL; 633 634 ibmr->lkey = key; 635 ibmr->rkey = key; 636 mr->mr.lkey = key; 637 mr->mr.access_flags = access; 638 mr->mr.iova = ibmr->iova; 639 atomic_set(&mr->mr.lkey_invalid, 0); 640 641 return 0; 642 } 643 EXPORT_SYMBOL(rvt_fast_reg_mr); 644 645 /** 646 * rvt_invalidate_rkey - invalidate an MR rkey 647 * @qp: queue pair associated with the invalidate op 648 * @rkey: rkey to invalidate 649 * 650 * Returns 0 on success. 651 */ 652 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey) 653 { 654 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 655 struct rvt_lkey_table *rkt = &dev->lkey_table; 656 struct rvt_mregion *mr; 657 658 if (rkey == 0) 659 return -EINVAL; 660 661 rcu_read_lock(); 662 mr = rcu_dereference( 663 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]); 664 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 665 goto bail; 666 667 atomic_set(&mr->lkey_invalid, 1); 668 rcu_read_unlock(); 669 return 0; 670 671 bail: 672 rcu_read_unlock(); 673 return -EINVAL; 674 } 675 EXPORT_SYMBOL(rvt_invalidate_rkey); 676 677 /** 678 * rvt_sge_adjacent - is isge compressible 679 * @last_sge: last outgoing SGE written 680 * @sge: SGE to check 681 * 682 * If adjacent will update last_sge to add length. 683 * 684 * Return: true if isge is adjacent to last sge 685 */ 686 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge, 687 struct ib_sge *sge) 688 { 689 if (last_sge && sge->lkey == last_sge->mr->lkey && 690 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) { 691 if (sge->lkey) { 692 if (unlikely((sge->addr - last_sge->mr->user_base + 693 sge->length > last_sge->mr->length))) 694 return false; /* overrun, caller will catch */ 695 } else { 696 last_sge->length += sge->length; 697 } 698 last_sge->sge_length += sge->length; 699 trace_rvt_sge_adjacent(last_sge, sge); 700 return true; 701 } 702 return false; 703 } 704 705 /** 706 * rvt_lkey_ok - check IB SGE for validity and initialize 707 * @rkt: table containing lkey to check SGE against 708 * @pd: protection domain 709 * @isge: outgoing internal SGE 710 * @last_sge: last outgoing SGE written 711 * @sge: SGE to check 712 * @acc: access flags 713 * 714 * Check the IB SGE for validity and initialize our internal version 715 * of it. 716 * 717 * Increments the reference count when a new sge is stored. 718 * 719 * Return: 0 if compressed, 1 if added , otherwise returns -errno. 720 */ 721 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd, 722 struct rvt_sge *isge, struct rvt_sge *last_sge, 723 struct ib_sge *sge, int acc) 724 { 725 struct rvt_mregion *mr; 726 unsigned n, m; 727 size_t off; 728 729 /* 730 * We use LKEY == zero for kernel virtual addresses 731 * (see rvt_get_dma_mr()). 732 */ 733 if (sge->lkey == 0) { 734 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device); 735 736 if (pd->user) 737 return -EINVAL; 738 if (rvt_sge_adjacent(last_sge, sge)) 739 return 0; 740 rcu_read_lock(); 741 mr = rcu_dereference(dev->dma_mr); 742 if (!mr) 743 goto bail; 744 rvt_get_mr(mr); 745 rcu_read_unlock(); 746 747 isge->mr = mr; 748 isge->vaddr = (void *)sge->addr; 749 isge->length = sge->length; 750 isge->sge_length = sge->length; 751 isge->m = 0; 752 isge->n = 0; 753 goto ok; 754 } 755 if (rvt_sge_adjacent(last_sge, sge)) 756 return 0; 757 rcu_read_lock(); 758 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]); 759 if (!mr) 760 goto bail; 761 rvt_get_mr(mr); 762 if (!READ_ONCE(mr->lkey_published)) 763 goto bail_unref; 764 765 if (unlikely(atomic_read(&mr->lkey_invalid) || 766 mr->lkey != sge->lkey || mr->pd != &pd->ibpd)) 767 goto bail_unref; 768 769 off = sge->addr - mr->user_base; 770 if (unlikely(sge->addr < mr->user_base || 771 off + sge->length > mr->length || 772 (mr->access_flags & acc) != acc)) 773 goto bail_unref; 774 rcu_read_unlock(); 775 776 off += mr->offset; 777 if (mr->page_shift) { 778 /* 779 * page sizes are uniform power of 2 so no loop is necessary 780 * entries_spanned_by_off is the number of times the loop below 781 * would have executed. 782 */ 783 size_t entries_spanned_by_off; 784 785 entries_spanned_by_off = off >> mr->page_shift; 786 off -= (entries_spanned_by_off << mr->page_shift); 787 m = entries_spanned_by_off / RVT_SEGSZ; 788 n = entries_spanned_by_off % RVT_SEGSZ; 789 } else { 790 m = 0; 791 n = 0; 792 while (off >= mr->map[m]->segs[n].length) { 793 off -= mr->map[m]->segs[n].length; 794 n++; 795 if (n >= RVT_SEGSZ) { 796 m++; 797 n = 0; 798 } 799 } 800 } 801 isge->mr = mr; 802 isge->vaddr = mr->map[m]->segs[n].vaddr + off; 803 isge->length = mr->map[m]->segs[n].length - off; 804 isge->sge_length = sge->length; 805 isge->m = m; 806 isge->n = n; 807 ok: 808 trace_rvt_sge_new(isge, sge); 809 return 1; 810 bail_unref: 811 rvt_put_mr(mr); 812 bail: 813 rcu_read_unlock(); 814 return -EINVAL; 815 } 816 EXPORT_SYMBOL(rvt_lkey_ok); 817 818 /** 819 * rvt_rkey_ok - check the IB virtual address, length, and RKEY 820 * @qp: qp for validation 821 * @sge: SGE state 822 * @len: length of data 823 * @vaddr: virtual address to place data 824 * @rkey: rkey to check 825 * @acc: access flags 826 * 827 * Return: 1 if successful, otherwise 0. 828 * 829 * increments the reference count upon success 830 */ 831 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge, 832 u32 len, u64 vaddr, u32 rkey, int acc) 833 { 834 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device); 835 struct rvt_lkey_table *rkt = &dev->lkey_table; 836 struct rvt_mregion *mr; 837 unsigned n, m; 838 size_t off; 839 840 /* 841 * We use RKEY == zero for kernel virtual addresses 842 * (see rvt_get_dma_mr()). 843 */ 844 rcu_read_lock(); 845 if (rkey == 0) { 846 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd); 847 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device); 848 849 if (pd->user) 850 goto bail; 851 mr = rcu_dereference(rdi->dma_mr); 852 if (!mr) 853 goto bail; 854 rvt_get_mr(mr); 855 rcu_read_unlock(); 856 857 sge->mr = mr; 858 sge->vaddr = (void *)vaddr; 859 sge->length = len; 860 sge->sge_length = len; 861 sge->m = 0; 862 sge->n = 0; 863 goto ok; 864 } 865 866 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]); 867 if (!mr) 868 goto bail; 869 rvt_get_mr(mr); 870 /* insure mr read is before test */ 871 if (!READ_ONCE(mr->lkey_published)) 872 goto bail_unref; 873 if (unlikely(atomic_read(&mr->lkey_invalid) || 874 mr->lkey != rkey || qp->ibqp.pd != mr->pd)) 875 goto bail_unref; 876 877 off = vaddr - mr->iova; 878 if (unlikely(vaddr < mr->iova || off + len > mr->length || 879 (mr->access_flags & acc) == 0)) 880 goto bail_unref; 881 rcu_read_unlock(); 882 883 off += mr->offset; 884 if (mr->page_shift) { 885 /* 886 * page sizes are uniform power of 2 so no loop is necessary 887 * entries_spanned_by_off is the number of times the loop below 888 * would have executed. 889 */ 890 size_t entries_spanned_by_off; 891 892 entries_spanned_by_off = off >> mr->page_shift; 893 off -= (entries_spanned_by_off << mr->page_shift); 894 m = entries_spanned_by_off / RVT_SEGSZ; 895 n = entries_spanned_by_off % RVT_SEGSZ; 896 } else { 897 m = 0; 898 n = 0; 899 while (off >= mr->map[m]->segs[n].length) { 900 off -= mr->map[m]->segs[n].length; 901 n++; 902 if (n >= RVT_SEGSZ) { 903 m++; 904 n = 0; 905 } 906 } 907 } 908 sge->mr = mr; 909 sge->vaddr = mr->map[m]->segs[n].vaddr + off; 910 sge->length = mr->map[m]->segs[n].length - off; 911 sge->sge_length = len; 912 sge->m = m; 913 sge->n = n; 914 ok: 915 return 1; 916 bail_unref: 917 rvt_put_mr(mr); 918 bail: 919 rcu_read_unlock(); 920 return 0; 921 } 922 EXPORT_SYMBOL(rvt_rkey_ok); 923