xref: /linux/drivers/infiniband/sw/rdmavt/mr.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 /*
2  * Copyright(c) 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 #include "trace.h"
55 
56 /**
57  * rvt_driver_mr_init - Init MR resources per driver
58  * @rdi: rvt dev struct
59  *
60  * Do any intilization needed when a driver registers with rdmavt.
61  *
62  * Return: 0 on success or errno on failure
63  */
64 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65 {
66 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 	unsigned lk_tab_size;
68 	int i;
69 
70 	/*
71 	 * The top hfi1_lkey_table_size bits are used to index the
72 	 * table.  The lower 8 bits can be owned by the user (copied from
73 	 * the LKEY).  The remaining bits act as a generation number or tag.
74 	 */
75 	if (!lkey_table_size)
76 		return -EINVAL;
77 
78 	spin_lock_init(&rdi->lkey_table.lock);
79 
80 	/* ensure generation is at least 4 bits */
81 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 		lkey_table_size = rdi->dparms.lkey_table_size;
86 	}
87 	rdi->lkey_table.max = 1 << lkey_table_size;
88 	rdi->lkey_table.shift = 32 - lkey_table_size;
89 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
92 	if (!rdi->lkey_table.table)
93 		return -ENOMEM;
94 
95 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 	for (i = 0; i < rdi->lkey_table.max; i++)
97 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98 
99 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
100 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
101 	return 0;
102 }
103 
104 /**
105  *rvt_mr_exit: clean up MR
106  *@rdi: rvt dev structure
107  *
108  * called when drivers have unregistered or perhaps failed to register with us
109  */
110 void rvt_mr_exit(struct rvt_dev_info *rdi)
111 {
112 	if (rdi->dma_mr)
113 		rvt_pr_err(rdi, "DMA MR not null!\n");
114 
115 	vfree(rdi->lkey_table.table);
116 }
117 
118 static void rvt_deinit_mregion(struct rvt_mregion *mr)
119 {
120 	int i = mr->mapsz;
121 
122 	mr->mapsz = 0;
123 	while (i)
124 		kfree(mr->map[--i]);
125 	percpu_ref_exit(&mr->refcount);
126 }
127 
128 static void __rvt_mregion_complete(struct percpu_ref *ref)
129 {
130 	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
131 					      refcount);
132 
133 	complete(&mr->comp);
134 }
135 
136 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
137 			    int count, unsigned int percpu_flags)
138 {
139 	int m, i = 0;
140 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
141 
142 	mr->mapsz = 0;
143 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
144 	for (; i < m; i++) {
145 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
146 					  dev->dparms.node);
147 		if (!mr->map[i])
148 			goto bail;
149 		mr->mapsz++;
150 	}
151 	init_completion(&mr->comp);
152 	/* count returning the ptr to user */
153 	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
154 			    percpu_flags, GFP_KERNEL))
155 		goto bail;
156 
157 	atomic_set(&mr->lkey_invalid, 0);
158 	mr->pd = pd;
159 	mr->max_segs = count;
160 	return 0;
161 bail:
162 	rvt_deinit_mregion(mr);
163 	return -ENOMEM;
164 }
165 
166 /**
167  * rvt_alloc_lkey - allocate an lkey
168  * @mr: memory region that this lkey protects
169  * @dma_region: 0->normal key, 1->restricted DMA key
170  *
171  * Returns 0 if successful, otherwise returns -errno.
172  *
173  * Increments mr reference count as required.
174  *
175  * Sets the lkey field mr for non-dma regions.
176  *
177  */
178 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
179 {
180 	unsigned long flags;
181 	u32 r;
182 	u32 n;
183 	int ret = 0;
184 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
185 	struct rvt_lkey_table *rkt = &dev->lkey_table;
186 
187 	rvt_get_mr(mr);
188 	spin_lock_irqsave(&rkt->lock, flags);
189 
190 	/* special case for dma_mr lkey == 0 */
191 	if (dma_region) {
192 		struct rvt_mregion *tmr;
193 
194 		tmr = rcu_access_pointer(dev->dma_mr);
195 		if (!tmr) {
196 			mr->lkey_published = 1;
197 			/* Insure published written first */
198 			rcu_assign_pointer(dev->dma_mr, mr);
199 			rvt_get_mr(mr);
200 		}
201 		goto success;
202 	}
203 
204 	/* Find the next available LKEY */
205 	r = rkt->next;
206 	n = r;
207 	for (;;) {
208 		if (!rcu_access_pointer(rkt->table[r]))
209 			break;
210 		r = (r + 1) & (rkt->max - 1);
211 		if (r == n)
212 			goto bail;
213 	}
214 	rkt->next = (r + 1) & (rkt->max - 1);
215 	/*
216 	 * Make sure lkey is never zero which is reserved to indicate an
217 	 * unrestricted LKEY.
218 	 */
219 	rkt->gen++;
220 	/*
221 	 * bits are capped to ensure enough bits for generation number
222 	 */
223 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
224 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
225 		 << 8);
226 	if (mr->lkey == 0) {
227 		mr->lkey |= 1 << 8;
228 		rkt->gen++;
229 	}
230 	mr->lkey_published = 1;
231 	/* Insure published written first */
232 	rcu_assign_pointer(rkt->table[r], mr);
233 success:
234 	spin_unlock_irqrestore(&rkt->lock, flags);
235 out:
236 	return ret;
237 bail:
238 	rvt_put_mr(mr);
239 	spin_unlock_irqrestore(&rkt->lock, flags);
240 	ret = -ENOMEM;
241 	goto out;
242 }
243 
244 /**
245  * rvt_free_lkey - free an lkey
246  * @mr: mr to free from tables
247  */
248 static void rvt_free_lkey(struct rvt_mregion *mr)
249 {
250 	unsigned long flags;
251 	u32 lkey = mr->lkey;
252 	u32 r;
253 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
254 	struct rvt_lkey_table *rkt = &dev->lkey_table;
255 	int freed = 0;
256 
257 	spin_lock_irqsave(&rkt->lock, flags);
258 	if (!lkey) {
259 		if (mr->lkey_published) {
260 			mr->lkey_published = 0;
261 			/* insure published is written before pointer */
262 			rcu_assign_pointer(dev->dma_mr, NULL);
263 			rvt_put_mr(mr);
264 		}
265 	} else {
266 		if (!mr->lkey_published)
267 			goto out;
268 		r = lkey >> (32 - dev->dparms.lkey_table_size);
269 		mr->lkey_published = 0;
270 		/* insure published is written before pointer */
271 		rcu_assign_pointer(rkt->table[r], NULL);
272 	}
273 	freed++;
274 out:
275 	spin_unlock_irqrestore(&rkt->lock, flags);
276 	if (freed)
277 		percpu_ref_kill(&mr->refcount);
278 }
279 
280 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
281 {
282 	struct rvt_mr *mr;
283 	int rval = -ENOMEM;
284 	int m;
285 
286 	/* Allocate struct plus pointers to first level page tables. */
287 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
288 	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
289 	if (!mr)
290 		goto bail;
291 
292 	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
293 	if (rval)
294 		goto bail;
295 	/*
296 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
297 	 * lkey and rkey.
298 	 */
299 	rval = rvt_alloc_lkey(&mr->mr, 0);
300 	if (rval)
301 		goto bail_mregion;
302 	mr->ibmr.lkey = mr->mr.lkey;
303 	mr->ibmr.rkey = mr->mr.lkey;
304 done:
305 	return mr;
306 
307 bail_mregion:
308 	rvt_deinit_mregion(&mr->mr);
309 bail:
310 	kfree(mr);
311 	mr = ERR_PTR(rval);
312 	goto done;
313 }
314 
315 static void __rvt_free_mr(struct rvt_mr *mr)
316 {
317 	rvt_free_lkey(&mr->mr);
318 	rvt_deinit_mregion(&mr->mr);
319 	kfree(mr);
320 }
321 
322 /**
323  * rvt_get_dma_mr - get a DMA memory region
324  * @pd: protection domain for this memory region
325  * @acc: access flags
326  *
327  * Return: the memory region on success, otherwise returns an errno.
328  * Note that all DMA addresses should be created via the functions in
329  * struct dma_virt_ops.
330  */
331 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
332 {
333 	struct rvt_mr *mr;
334 	struct ib_mr *ret;
335 	int rval;
336 
337 	if (ibpd_to_rvtpd(pd)->user)
338 		return ERR_PTR(-EPERM);
339 
340 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
341 	if (!mr) {
342 		ret = ERR_PTR(-ENOMEM);
343 		goto bail;
344 	}
345 
346 	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
347 	if (rval) {
348 		ret = ERR_PTR(rval);
349 		goto bail;
350 	}
351 
352 	rval = rvt_alloc_lkey(&mr->mr, 1);
353 	if (rval) {
354 		ret = ERR_PTR(rval);
355 		goto bail_mregion;
356 	}
357 
358 	mr->mr.access_flags = acc;
359 	ret = &mr->ibmr;
360 done:
361 	return ret;
362 
363 bail_mregion:
364 	rvt_deinit_mregion(&mr->mr);
365 bail:
366 	kfree(mr);
367 	goto done;
368 }
369 
370 /**
371  * rvt_reg_user_mr - register a userspace memory region
372  * @pd: protection domain for this memory region
373  * @start: starting userspace address
374  * @length: length of region to register
375  * @mr_access_flags: access flags for this memory region
376  * @udata: unused by the driver
377  *
378  * Return: the memory region on success, otherwise returns an errno.
379  */
380 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
381 			      u64 virt_addr, int mr_access_flags,
382 			      struct ib_udata *udata)
383 {
384 	struct rvt_mr *mr;
385 	struct ib_umem *umem;
386 	struct sg_page_iter sg_iter;
387 	int n, m;
388 	struct ib_mr *ret;
389 
390 	if (length == 0)
391 		return ERR_PTR(-EINVAL);
392 
393 	umem = ib_umem_get(pd->device, start, length, mr_access_flags);
394 	if (IS_ERR(umem))
395 		return (void *)umem;
396 
397 	n = ib_umem_num_pages(umem);
398 
399 	mr = __rvt_alloc_mr(n, pd);
400 	if (IS_ERR(mr)) {
401 		ret = (struct ib_mr *)mr;
402 		goto bail_umem;
403 	}
404 
405 	mr->mr.user_base = start;
406 	mr->mr.iova = virt_addr;
407 	mr->mr.length = length;
408 	mr->mr.offset = ib_umem_offset(umem);
409 	mr->mr.access_flags = mr_access_flags;
410 	mr->umem = umem;
411 
412 	mr->mr.page_shift = PAGE_SHIFT;
413 	m = 0;
414 	n = 0;
415 	for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
416 		void *vaddr;
417 
418 		vaddr = page_address(sg_page_iter_page(&sg_iter));
419 		if (!vaddr) {
420 			ret = ERR_PTR(-EINVAL);
421 			goto bail_inval;
422 		}
423 		mr->mr.map[m]->segs[n].vaddr = vaddr;
424 		mr->mr.map[m]->segs[n].length = PAGE_SIZE;
425 		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
426 		if (++n == RVT_SEGSZ) {
427 			m++;
428 			n = 0;
429 		}
430 	}
431 	return &mr->ibmr;
432 
433 bail_inval:
434 	__rvt_free_mr(mr);
435 
436 bail_umem:
437 	ib_umem_release(umem);
438 
439 	return ret;
440 }
441 
442 /**
443  * rvt_dereg_clean_qp_cb - callback from iterator
444  * @qp - the qp
445  * @v - the mregion (as u64)
446  *
447  * This routine fields the callback for all QPs and
448  * for QPs in the same PD as the MR will call the
449  * rvt_qp_mr_clean() to potentially cleanup references.
450  */
451 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
452 {
453 	struct rvt_mregion *mr = (struct rvt_mregion *)v;
454 
455 	/* skip PDs that are not ours */
456 	if (mr->pd != qp->ibqp.pd)
457 		return;
458 	rvt_qp_mr_clean(qp, mr->lkey);
459 }
460 
461 /**
462  * rvt_dereg_clean_qps - find QPs for reference cleanup
463  * @mr - the MR that is being deregistered
464  *
465  * This routine iterates RC QPs looking for references
466  * to the lkey noted in mr.
467  */
468 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
469 {
470 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
471 
472 	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
473 }
474 
475 /**
476  * rvt_check_refs - check references
477  * @mr - the megion
478  * @t - the caller identification
479  *
480  * This routine checks MRs holding a reference during
481  * when being de-registered.
482  *
483  * If the count is non-zero, the code calls a clean routine then
484  * waits for the timeout for the count to zero.
485  */
486 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
487 {
488 	unsigned long timeout;
489 	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
490 
491 	if (mr->lkey) {
492 		/* avoid dma mr */
493 		rvt_dereg_clean_qps(mr);
494 		/* @mr was indexed on rcu protected @lkey_table */
495 		synchronize_rcu();
496 	}
497 
498 	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
499 	if (!timeout) {
500 		rvt_pr_err(rdi,
501 			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
502 			   t, mr, mr->pd, mr->lkey,
503 			   atomic_long_read(&mr->refcount.count));
504 		rvt_get_mr(mr);
505 		return -EBUSY;
506 	}
507 	return 0;
508 }
509 
510 /**
511  * rvt_mr_has_lkey - is MR
512  * @mr - the mregion
513  * @lkey - the lkey
514  */
515 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
516 {
517 	return mr && lkey == mr->lkey;
518 }
519 
520 /**
521  * rvt_ss_has_lkey - is mr in sge tests
522  * @ss - the sge state
523  * @lkey
524  *
525  * This code tests for an MR in the indicated
526  * sge state.
527  */
528 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
529 {
530 	int i;
531 	bool rval = false;
532 
533 	if (!ss->num_sge)
534 		return rval;
535 	/* first one */
536 	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
537 	/* any others */
538 	for (i = 0; !rval && i < ss->num_sge - 1; i++)
539 		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
540 	return rval;
541 }
542 
543 /**
544  * rvt_dereg_mr - unregister and free a memory region
545  * @ibmr: the memory region to free
546  *
547  *
548  * Note that this is called to free MRs created by rvt_get_dma_mr()
549  * or rvt_reg_user_mr().
550  *
551  * Returns 0 on success.
552  */
553 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
554 {
555 	struct rvt_mr *mr = to_imr(ibmr);
556 	int ret;
557 
558 	rvt_free_lkey(&mr->mr);
559 
560 	rvt_put_mr(&mr->mr); /* will set completion if last */
561 	ret = rvt_check_refs(&mr->mr, __func__);
562 	if (ret)
563 		goto out;
564 	rvt_deinit_mregion(&mr->mr);
565 	ib_umem_release(mr->umem);
566 	kfree(mr);
567 out:
568 	return ret;
569 }
570 
571 /**
572  * rvt_alloc_mr - Allocate a memory region usable with the
573  * @pd: protection domain for this memory region
574  * @mr_type: mem region type
575  * @max_num_sg: Max number of segments allowed
576  *
577  * Return: the memory region on success, otherwise return an errno.
578  */
579 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
580 			   u32 max_num_sg, struct ib_udata *udata)
581 {
582 	struct rvt_mr *mr;
583 
584 	if (mr_type != IB_MR_TYPE_MEM_REG)
585 		return ERR_PTR(-EINVAL);
586 
587 	mr = __rvt_alloc_mr(max_num_sg, pd);
588 	if (IS_ERR(mr))
589 		return (struct ib_mr *)mr;
590 
591 	return &mr->ibmr;
592 }
593 
594 /**
595  * rvt_set_page - page assignment function called by ib_sg_to_pages
596  * @ibmr: memory region
597  * @addr: dma address of mapped page
598  *
599  * Return: 0 on success
600  */
601 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
602 {
603 	struct rvt_mr *mr = to_imr(ibmr);
604 	u32 ps = 1 << mr->mr.page_shift;
605 	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
606 	int m, n;
607 
608 	if (unlikely(mapped_segs == mr->mr.max_segs))
609 		return -ENOMEM;
610 
611 	m = mapped_segs / RVT_SEGSZ;
612 	n = mapped_segs % RVT_SEGSZ;
613 	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
614 	mr->mr.map[m]->segs[n].length = ps;
615 	mr->mr.length += ps;
616 	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
617 
618 	return 0;
619 }
620 
621 /**
622  * rvt_map_mr_sg - map sg list and set it the memory region
623  * @ibmr: memory region
624  * @sg: dma mapped scatterlist
625  * @sg_nents: number of entries in sg
626  * @sg_offset: offset in bytes into sg
627  *
628  * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
629  *
630  * Return: number of sg elements mapped to the memory region
631  */
632 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
633 		  int sg_nents, unsigned int *sg_offset)
634 {
635 	struct rvt_mr *mr = to_imr(ibmr);
636 	int ret;
637 
638 	mr->mr.length = 0;
639 	mr->mr.page_shift = PAGE_SHIFT;
640 	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
641 	mr->mr.user_base = ibmr->iova;
642 	mr->mr.iova = ibmr->iova;
643 	mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
644 	mr->mr.length = (size_t)ibmr->length;
645 	trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
646 	return ret;
647 }
648 
649 /**
650  * rvt_fast_reg_mr - fast register physical MR
651  * @qp: the queue pair where the work request comes from
652  * @ibmr: the memory region to be registered
653  * @key: updated key for this memory region
654  * @access: access flags for this memory region
655  *
656  * Returns 0 on success.
657  */
658 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
659 		    int access)
660 {
661 	struct rvt_mr *mr = to_imr(ibmr);
662 
663 	if (qp->ibqp.pd != mr->mr.pd)
664 		return -EACCES;
665 
666 	/* not applicable to dma MR or user MR */
667 	if (!mr->mr.lkey || mr->umem)
668 		return -EINVAL;
669 
670 	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
671 		return -EINVAL;
672 
673 	ibmr->lkey = key;
674 	ibmr->rkey = key;
675 	mr->mr.lkey = key;
676 	mr->mr.access_flags = access;
677 	mr->mr.iova = ibmr->iova;
678 	atomic_set(&mr->mr.lkey_invalid, 0);
679 
680 	return 0;
681 }
682 EXPORT_SYMBOL(rvt_fast_reg_mr);
683 
684 /**
685  * rvt_invalidate_rkey - invalidate an MR rkey
686  * @qp: queue pair associated with the invalidate op
687  * @rkey: rkey to invalidate
688  *
689  * Returns 0 on success.
690  */
691 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
692 {
693 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
694 	struct rvt_lkey_table *rkt = &dev->lkey_table;
695 	struct rvt_mregion *mr;
696 
697 	if (rkey == 0)
698 		return -EINVAL;
699 
700 	rcu_read_lock();
701 	mr = rcu_dereference(
702 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
703 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
704 		goto bail;
705 
706 	atomic_set(&mr->lkey_invalid, 1);
707 	rcu_read_unlock();
708 	return 0;
709 
710 bail:
711 	rcu_read_unlock();
712 	return -EINVAL;
713 }
714 EXPORT_SYMBOL(rvt_invalidate_rkey);
715 
716 /**
717  * rvt_alloc_fmr - allocate a fast memory region
718  * @pd: the protection domain for this memory region
719  * @mr_access_flags: access flags for this memory region
720  * @fmr_attr: fast memory region attributes
721  *
722  * Return: the memory region on success, otherwise returns an errno.
723  */
724 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
725 			     struct ib_fmr_attr *fmr_attr)
726 {
727 	struct rvt_fmr *fmr;
728 	int m;
729 	struct ib_fmr *ret;
730 	int rval = -ENOMEM;
731 
732 	/* Allocate struct plus pointers to first level page tables. */
733 	m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
734 	fmr = kzalloc(struct_size(fmr, mr.map, m), GFP_KERNEL);
735 	if (!fmr)
736 		goto bail;
737 
738 	rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages,
739 				PERCPU_REF_INIT_ATOMIC);
740 	if (rval)
741 		goto bail;
742 
743 	/*
744 	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
745 	 * rkey.
746 	 */
747 	rval = rvt_alloc_lkey(&fmr->mr, 0);
748 	if (rval)
749 		goto bail_mregion;
750 	fmr->ibfmr.rkey = fmr->mr.lkey;
751 	fmr->ibfmr.lkey = fmr->mr.lkey;
752 	/*
753 	 * Resources are allocated but no valid mapping (RKEY can't be
754 	 * used).
755 	 */
756 	fmr->mr.access_flags = mr_access_flags;
757 	fmr->mr.max_segs = fmr_attr->max_pages;
758 	fmr->mr.page_shift = fmr_attr->page_shift;
759 
760 	ret = &fmr->ibfmr;
761 done:
762 	return ret;
763 
764 bail_mregion:
765 	rvt_deinit_mregion(&fmr->mr);
766 bail:
767 	kfree(fmr);
768 	ret = ERR_PTR(rval);
769 	goto done;
770 }
771 
772 /**
773  * rvt_map_phys_fmr - set up a fast memory region
774  * @ibfmr: the fast memory region to set up
775  * @page_list: the list of pages to associate with the fast memory region
776  * @list_len: the number of pages to associate with the fast memory region
777  * @iova: the virtual address of the start of the fast memory region
778  *
779  * This may be called from interrupt context.
780  *
781  * Return: 0 on success
782  */
783 
784 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
785 		     int list_len, u64 iova)
786 {
787 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
788 	struct rvt_lkey_table *rkt;
789 	unsigned long flags;
790 	int m, n;
791 	unsigned long i;
792 	u32 ps;
793 	struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
794 
795 	i = atomic_long_read(&fmr->mr.refcount.count);
796 	if (i > 2)
797 		return -EBUSY;
798 
799 	if (list_len > fmr->mr.max_segs)
800 		return -EINVAL;
801 
802 	rkt = &rdi->lkey_table;
803 	spin_lock_irqsave(&rkt->lock, flags);
804 	fmr->mr.user_base = iova;
805 	fmr->mr.iova = iova;
806 	ps = 1 << fmr->mr.page_shift;
807 	fmr->mr.length = list_len * ps;
808 	m = 0;
809 	n = 0;
810 	for (i = 0; i < list_len; i++) {
811 		fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
812 		fmr->mr.map[m]->segs[n].length = ps;
813 		trace_rvt_mr_fmr_seg(&fmr->mr, m, n, (void *)page_list[i], ps);
814 		if (++n == RVT_SEGSZ) {
815 			m++;
816 			n = 0;
817 		}
818 	}
819 	spin_unlock_irqrestore(&rkt->lock, flags);
820 	return 0;
821 }
822 
823 /**
824  * rvt_unmap_fmr - unmap fast memory regions
825  * @fmr_list: the list of fast memory regions to unmap
826  *
827  * Return: 0 on success.
828  */
829 int rvt_unmap_fmr(struct list_head *fmr_list)
830 {
831 	struct rvt_fmr *fmr;
832 	struct rvt_lkey_table *rkt;
833 	unsigned long flags;
834 	struct rvt_dev_info *rdi;
835 
836 	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
837 		rdi = ib_to_rvt(fmr->ibfmr.device);
838 		rkt = &rdi->lkey_table;
839 		spin_lock_irqsave(&rkt->lock, flags);
840 		fmr->mr.user_base = 0;
841 		fmr->mr.iova = 0;
842 		fmr->mr.length = 0;
843 		spin_unlock_irqrestore(&rkt->lock, flags);
844 	}
845 	return 0;
846 }
847 
848 /**
849  * rvt_dealloc_fmr - deallocate a fast memory region
850  * @ibfmr: the fast memory region to deallocate
851  *
852  * Return: 0 on success.
853  */
854 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
855 {
856 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
857 	int ret = 0;
858 
859 	rvt_free_lkey(&fmr->mr);
860 	rvt_put_mr(&fmr->mr); /* will set completion if last */
861 	ret = rvt_check_refs(&fmr->mr, __func__);
862 	if (ret)
863 		goto out;
864 	rvt_deinit_mregion(&fmr->mr);
865 	kfree(fmr);
866 out:
867 	return ret;
868 }
869 
870 /**
871  * rvt_sge_adjacent - is isge compressible
872  * @last_sge: last outgoing SGE written
873  * @sge: SGE to check
874  *
875  * If adjacent will update last_sge to add length.
876  *
877  * Return: true if isge is adjacent to last sge
878  */
879 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
880 				    struct ib_sge *sge)
881 {
882 	if (last_sge && sge->lkey == last_sge->mr->lkey &&
883 	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
884 		if (sge->lkey) {
885 			if (unlikely((sge->addr - last_sge->mr->user_base +
886 			      sge->length > last_sge->mr->length)))
887 				return false; /* overrun, caller will catch */
888 		} else {
889 			last_sge->length += sge->length;
890 		}
891 		last_sge->sge_length += sge->length;
892 		trace_rvt_sge_adjacent(last_sge, sge);
893 		return true;
894 	}
895 	return false;
896 }
897 
898 /**
899  * rvt_lkey_ok - check IB SGE for validity and initialize
900  * @rkt: table containing lkey to check SGE against
901  * @pd: protection domain
902  * @isge: outgoing internal SGE
903  * @last_sge: last outgoing SGE written
904  * @sge: SGE to check
905  * @acc: access flags
906  *
907  * Check the IB SGE for validity and initialize our internal version
908  * of it.
909  *
910  * Increments the reference count when a new sge is stored.
911  *
912  * Return: 0 if compressed, 1 if added , otherwise returns -errno.
913  */
914 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
915 		struct rvt_sge *isge, struct rvt_sge *last_sge,
916 		struct ib_sge *sge, int acc)
917 {
918 	struct rvt_mregion *mr;
919 	unsigned n, m;
920 	size_t off;
921 
922 	/*
923 	 * We use LKEY == zero for kernel virtual addresses
924 	 * (see rvt_get_dma_mr() and dma_virt_ops).
925 	 */
926 	if (sge->lkey == 0) {
927 		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
928 
929 		if (pd->user)
930 			return -EINVAL;
931 		if (rvt_sge_adjacent(last_sge, sge))
932 			return 0;
933 		rcu_read_lock();
934 		mr = rcu_dereference(dev->dma_mr);
935 		if (!mr)
936 			goto bail;
937 		rvt_get_mr(mr);
938 		rcu_read_unlock();
939 
940 		isge->mr = mr;
941 		isge->vaddr = (void *)sge->addr;
942 		isge->length = sge->length;
943 		isge->sge_length = sge->length;
944 		isge->m = 0;
945 		isge->n = 0;
946 		goto ok;
947 	}
948 	if (rvt_sge_adjacent(last_sge, sge))
949 		return 0;
950 	rcu_read_lock();
951 	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
952 	if (!mr)
953 		goto bail;
954 	rvt_get_mr(mr);
955 	if (!READ_ONCE(mr->lkey_published))
956 		goto bail_unref;
957 
958 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
959 		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
960 		goto bail_unref;
961 
962 	off = sge->addr - mr->user_base;
963 	if (unlikely(sge->addr < mr->user_base ||
964 		     off + sge->length > mr->length ||
965 		     (mr->access_flags & acc) != acc))
966 		goto bail_unref;
967 	rcu_read_unlock();
968 
969 	off += mr->offset;
970 	if (mr->page_shift) {
971 		/*
972 		 * page sizes are uniform power of 2 so no loop is necessary
973 		 * entries_spanned_by_off is the number of times the loop below
974 		 * would have executed.
975 		*/
976 		size_t entries_spanned_by_off;
977 
978 		entries_spanned_by_off = off >> mr->page_shift;
979 		off -= (entries_spanned_by_off << mr->page_shift);
980 		m = entries_spanned_by_off / RVT_SEGSZ;
981 		n = entries_spanned_by_off % RVT_SEGSZ;
982 	} else {
983 		m = 0;
984 		n = 0;
985 		while (off >= mr->map[m]->segs[n].length) {
986 			off -= mr->map[m]->segs[n].length;
987 			n++;
988 			if (n >= RVT_SEGSZ) {
989 				m++;
990 				n = 0;
991 			}
992 		}
993 	}
994 	isge->mr = mr;
995 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
996 	isge->length = mr->map[m]->segs[n].length - off;
997 	isge->sge_length = sge->length;
998 	isge->m = m;
999 	isge->n = n;
1000 ok:
1001 	trace_rvt_sge_new(isge, sge);
1002 	return 1;
1003 bail_unref:
1004 	rvt_put_mr(mr);
1005 bail:
1006 	rcu_read_unlock();
1007 	return -EINVAL;
1008 }
1009 EXPORT_SYMBOL(rvt_lkey_ok);
1010 
1011 /**
1012  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1013  * @qp: qp for validation
1014  * @sge: SGE state
1015  * @len: length of data
1016  * @vaddr: virtual address to place data
1017  * @rkey: rkey to check
1018  * @acc: access flags
1019  *
1020  * Return: 1 if successful, otherwise 0.
1021  *
1022  * increments the reference count upon success
1023  */
1024 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
1025 		u32 len, u64 vaddr, u32 rkey, int acc)
1026 {
1027 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
1028 	struct rvt_lkey_table *rkt = &dev->lkey_table;
1029 	struct rvt_mregion *mr;
1030 	unsigned n, m;
1031 	size_t off;
1032 
1033 	/*
1034 	 * We use RKEY == zero for kernel virtual addresses
1035 	 * (see rvt_get_dma_mr() and dma_virt_ops).
1036 	 */
1037 	rcu_read_lock();
1038 	if (rkey == 0) {
1039 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
1040 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
1041 
1042 		if (pd->user)
1043 			goto bail;
1044 		mr = rcu_dereference(rdi->dma_mr);
1045 		if (!mr)
1046 			goto bail;
1047 		rvt_get_mr(mr);
1048 		rcu_read_unlock();
1049 
1050 		sge->mr = mr;
1051 		sge->vaddr = (void *)vaddr;
1052 		sge->length = len;
1053 		sge->sge_length = len;
1054 		sge->m = 0;
1055 		sge->n = 0;
1056 		goto ok;
1057 	}
1058 
1059 	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
1060 	if (!mr)
1061 		goto bail;
1062 	rvt_get_mr(mr);
1063 	/* insure mr read is before test */
1064 	if (!READ_ONCE(mr->lkey_published))
1065 		goto bail_unref;
1066 	if (unlikely(atomic_read(&mr->lkey_invalid) ||
1067 		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
1068 		goto bail_unref;
1069 
1070 	off = vaddr - mr->iova;
1071 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
1072 		     (mr->access_flags & acc) == 0))
1073 		goto bail_unref;
1074 	rcu_read_unlock();
1075 
1076 	off += mr->offset;
1077 	if (mr->page_shift) {
1078 		/*
1079 		 * page sizes are uniform power of 2 so no loop is necessary
1080 		 * entries_spanned_by_off is the number of times the loop below
1081 		 * would have executed.
1082 		*/
1083 		size_t entries_spanned_by_off;
1084 
1085 		entries_spanned_by_off = off >> mr->page_shift;
1086 		off -= (entries_spanned_by_off << mr->page_shift);
1087 		m = entries_spanned_by_off / RVT_SEGSZ;
1088 		n = entries_spanned_by_off % RVT_SEGSZ;
1089 	} else {
1090 		m = 0;
1091 		n = 0;
1092 		while (off >= mr->map[m]->segs[n].length) {
1093 			off -= mr->map[m]->segs[n].length;
1094 			n++;
1095 			if (n >= RVT_SEGSZ) {
1096 				m++;
1097 				n = 0;
1098 			}
1099 		}
1100 	}
1101 	sge->mr = mr;
1102 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
1103 	sge->length = mr->map[m]->segs[n].length - off;
1104 	sge->sge_length = len;
1105 	sge->m = m;
1106 	sge->n = n;
1107 ok:
1108 	return 1;
1109 bail_unref:
1110 	rvt_put_mr(mr);
1111 bail:
1112 	rcu_read_unlock();
1113 	return 0;
1114 }
1115 EXPORT_SYMBOL(rvt_rkey_ok);
1116