xref: /linux/drivers/infiniband/sw/rdmavt/mr.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright(c) 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
52 #include "vt.h"
53 #include "mr.h"
54 
55 /**
56  * rvt_driver_mr_init - Init MR resources per driver
57  * @rdi: rvt dev struct
58  *
59  * Do any intilization needed when a driver registers with rdmavt.
60  *
61  * Return: 0 on success or errno on failure
62  */
63 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
64 {
65 	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
66 	unsigned lk_tab_size;
67 	int i;
68 
69 	/*
70 	 * The top hfi1_lkey_table_size bits are used to index the
71 	 * table.  The lower 8 bits can be owned by the user (copied from
72 	 * the LKEY).  The remaining bits act as a generation number or tag.
73 	 */
74 	if (!lkey_table_size)
75 		return -EINVAL;
76 
77 	spin_lock_init(&rdi->lkey_table.lock);
78 
79 	/* ensure generation is at least 4 bits */
80 	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
81 		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
82 			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
83 		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
84 		lkey_table_size = rdi->dparms.lkey_table_size;
85 	}
86 	rdi->lkey_table.max = 1 << lkey_table_size;
87 	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
88 	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
89 			       vmalloc_node(lk_tab_size, rdi->dparms.node);
90 	if (!rdi->lkey_table.table)
91 		return -ENOMEM;
92 
93 	RCU_INIT_POINTER(rdi->dma_mr, NULL);
94 	for (i = 0; i < rdi->lkey_table.max; i++)
95 		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
96 
97 	return 0;
98 }
99 
100 /**
101  *rvt_mr_exit: clean up MR
102  *@rdi: rvt dev structure
103  *
104  * called when drivers have unregistered or perhaps failed to register with us
105  */
106 void rvt_mr_exit(struct rvt_dev_info *rdi)
107 {
108 	if (rdi->dma_mr)
109 		rvt_pr_err(rdi, "DMA MR not null!\n");
110 
111 	vfree(rdi->lkey_table.table);
112 }
113 
114 static void rvt_deinit_mregion(struct rvt_mregion *mr)
115 {
116 	int i = mr->mapsz;
117 
118 	mr->mapsz = 0;
119 	while (i)
120 		kfree(mr->map[--i]);
121 }
122 
123 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
124 			    int count)
125 {
126 	int m, i = 0;
127 	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
128 
129 	mr->mapsz = 0;
130 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
131 	for (; i < m; i++) {
132 		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
133 					  dev->dparms.node);
134 		if (!mr->map[i]) {
135 			rvt_deinit_mregion(mr);
136 			return -ENOMEM;
137 		}
138 		mr->mapsz++;
139 	}
140 	init_completion(&mr->comp);
141 	/* count returning the ptr to user */
142 	atomic_set(&mr->refcount, 1);
143 	mr->pd = pd;
144 	mr->max_segs = count;
145 	return 0;
146 }
147 
148 /**
149  * rvt_alloc_lkey - allocate an lkey
150  * @mr: memory region that this lkey protects
151  * @dma_region: 0->normal key, 1->restricted DMA key
152  *
153  * Returns 0 if successful, otherwise returns -errno.
154  *
155  * Increments mr reference count as required.
156  *
157  * Sets the lkey field mr for non-dma regions.
158  *
159  */
160 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
161 {
162 	unsigned long flags;
163 	u32 r;
164 	u32 n;
165 	int ret = 0;
166 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
167 	struct rvt_lkey_table *rkt = &dev->lkey_table;
168 
169 	rvt_get_mr(mr);
170 	spin_lock_irqsave(&rkt->lock, flags);
171 
172 	/* special case for dma_mr lkey == 0 */
173 	if (dma_region) {
174 		struct rvt_mregion *tmr;
175 
176 		tmr = rcu_access_pointer(dev->dma_mr);
177 		if (!tmr) {
178 			rcu_assign_pointer(dev->dma_mr, mr);
179 			mr->lkey_published = 1;
180 		} else {
181 			rvt_put_mr(mr);
182 		}
183 		goto success;
184 	}
185 
186 	/* Find the next available LKEY */
187 	r = rkt->next;
188 	n = r;
189 	for (;;) {
190 		if (!rcu_access_pointer(rkt->table[r]))
191 			break;
192 		r = (r + 1) & (rkt->max - 1);
193 		if (r == n)
194 			goto bail;
195 	}
196 	rkt->next = (r + 1) & (rkt->max - 1);
197 	/*
198 	 * Make sure lkey is never zero which is reserved to indicate an
199 	 * unrestricted LKEY.
200 	 */
201 	rkt->gen++;
202 	/*
203 	 * bits are capped to ensure enough bits for generation number
204 	 */
205 	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
206 		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
207 		 << 8);
208 	if (mr->lkey == 0) {
209 		mr->lkey |= 1 << 8;
210 		rkt->gen++;
211 	}
212 	rcu_assign_pointer(rkt->table[r], mr);
213 	mr->lkey_published = 1;
214 success:
215 	spin_unlock_irqrestore(&rkt->lock, flags);
216 out:
217 	return ret;
218 bail:
219 	rvt_put_mr(mr);
220 	spin_unlock_irqrestore(&rkt->lock, flags);
221 	ret = -ENOMEM;
222 	goto out;
223 }
224 
225 /**
226  * rvt_free_lkey - free an lkey
227  * @mr: mr to free from tables
228  */
229 static void rvt_free_lkey(struct rvt_mregion *mr)
230 {
231 	unsigned long flags;
232 	u32 lkey = mr->lkey;
233 	u32 r;
234 	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
235 	struct rvt_lkey_table *rkt = &dev->lkey_table;
236 	int freed = 0;
237 
238 	spin_lock_irqsave(&rkt->lock, flags);
239 	if (!mr->lkey_published)
240 		goto out;
241 	if (lkey == 0) {
242 		RCU_INIT_POINTER(dev->dma_mr, NULL);
243 	} else {
244 		r = lkey >> (32 - dev->dparms.lkey_table_size);
245 		RCU_INIT_POINTER(rkt->table[r], NULL);
246 	}
247 	mr->lkey_published = 0;
248 	freed++;
249 out:
250 	spin_unlock_irqrestore(&rkt->lock, flags);
251 	if (freed) {
252 		synchronize_rcu();
253 		rvt_put_mr(mr);
254 	}
255 }
256 
257 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
258 {
259 	struct rvt_mr *mr;
260 	int rval = -ENOMEM;
261 	int m;
262 
263 	/* Allocate struct plus pointers to first level page tables. */
264 	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
265 	mr = kzalloc(sizeof(*mr) + m * sizeof(mr->mr.map[0]), GFP_KERNEL);
266 	if (!mr)
267 		goto bail;
268 
269 	rval = rvt_init_mregion(&mr->mr, pd, count);
270 	if (rval)
271 		goto bail;
272 	/*
273 	 * ib_reg_phys_mr() will initialize mr->ibmr except for
274 	 * lkey and rkey.
275 	 */
276 	rval = rvt_alloc_lkey(&mr->mr, 0);
277 	if (rval)
278 		goto bail_mregion;
279 	mr->ibmr.lkey = mr->mr.lkey;
280 	mr->ibmr.rkey = mr->mr.lkey;
281 done:
282 	return mr;
283 
284 bail_mregion:
285 	rvt_deinit_mregion(&mr->mr);
286 bail:
287 	kfree(mr);
288 	mr = ERR_PTR(rval);
289 	goto done;
290 }
291 
292 static void __rvt_free_mr(struct rvt_mr *mr)
293 {
294 	rvt_deinit_mregion(&mr->mr);
295 	rvt_free_lkey(&mr->mr);
296 	vfree(mr);
297 }
298 
299 /**
300  * rvt_get_dma_mr - get a DMA memory region
301  * @pd: protection domain for this memory region
302  * @acc: access flags
303  *
304  * Return: the memory region on success, otherwise returns an errno.
305  * Note that all DMA addresses should be created via the
306  * struct ib_dma_mapping_ops functions (see dma.c).
307  */
308 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
309 {
310 	struct rvt_mr *mr;
311 	struct ib_mr *ret;
312 	int rval;
313 
314 	if (ibpd_to_rvtpd(pd)->user)
315 		return ERR_PTR(-EPERM);
316 
317 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
318 	if (!mr) {
319 		ret = ERR_PTR(-ENOMEM);
320 		goto bail;
321 	}
322 
323 	rval = rvt_init_mregion(&mr->mr, pd, 0);
324 	if (rval) {
325 		ret = ERR_PTR(rval);
326 		goto bail;
327 	}
328 
329 	rval = rvt_alloc_lkey(&mr->mr, 1);
330 	if (rval) {
331 		ret = ERR_PTR(rval);
332 		goto bail_mregion;
333 	}
334 
335 	mr->mr.access_flags = acc;
336 	ret = &mr->ibmr;
337 done:
338 	return ret;
339 
340 bail_mregion:
341 	rvt_deinit_mregion(&mr->mr);
342 bail:
343 	kfree(mr);
344 	goto done;
345 }
346 
347 /**
348  * rvt_reg_user_mr - register a userspace memory region
349  * @pd: protection domain for this memory region
350  * @start: starting userspace address
351  * @length: length of region to register
352  * @mr_access_flags: access flags for this memory region
353  * @udata: unused by the driver
354  *
355  * Return: the memory region on success, otherwise returns an errno.
356  */
357 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
358 			      u64 virt_addr, int mr_access_flags,
359 			      struct ib_udata *udata)
360 {
361 	struct rvt_mr *mr;
362 	struct ib_umem *umem;
363 	struct scatterlist *sg;
364 	int n, m, entry;
365 	struct ib_mr *ret;
366 
367 	if (length == 0)
368 		return ERR_PTR(-EINVAL);
369 
370 	umem = ib_umem_get(pd->uobject->context, start, length,
371 			   mr_access_flags, 0);
372 	if (IS_ERR(umem))
373 		return (void *)umem;
374 
375 	n = umem->nmap;
376 
377 	mr = __rvt_alloc_mr(n, pd);
378 	if (IS_ERR(mr)) {
379 		ret = (struct ib_mr *)mr;
380 		goto bail_umem;
381 	}
382 
383 	mr->mr.user_base = start;
384 	mr->mr.iova = virt_addr;
385 	mr->mr.length = length;
386 	mr->mr.offset = ib_umem_offset(umem);
387 	mr->mr.access_flags = mr_access_flags;
388 	mr->umem = umem;
389 
390 	if (is_power_of_2(umem->page_size))
391 		mr->mr.page_shift = ilog2(umem->page_size);
392 	m = 0;
393 	n = 0;
394 	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) {
395 		void *vaddr;
396 
397 		vaddr = page_address(sg_page(sg));
398 		if (!vaddr) {
399 			ret = ERR_PTR(-EINVAL);
400 			goto bail_inval;
401 		}
402 		mr->mr.map[m]->segs[n].vaddr = vaddr;
403 		mr->mr.map[m]->segs[n].length = umem->page_size;
404 		n++;
405 		if (n == RVT_SEGSZ) {
406 			m++;
407 			n = 0;
408 		}
409 	}
410 	return &mr->ibmr;
411 
412 bail_inval:
413 	__rvt_free_mr(mr);
414 
415 bail_umem:
416 	ib_umem_release(umem);
417 
418 	return ret;
419 }
420 
421 /**
422  * rvt_dereg_mr - unregister and free a memory region
423  * @ibmr: the memory region to free
424  *
425  *
426  * Note that this is called to free MRs created by rvt_get_dma_mr()
427  * or rvt_reg_user_mr().
428  *
429  * Returns 0 on success.
430  */
431 int rvt_dereg_mr(struct ib_mr *ibmr)
432 {
433 	struct rvt_mr *mr = to_imr(ibmr);
434 	struct rvt_dev_info *rdi = ib_to_rvt(ibmr->pd->device);
435 	int ret = 0;
436 	unsigned long timeout;
437 
438 	rvt_free_lkey(&mr->mr);
439 
440 	rvt_put_mr(&mr->mr); /* will set completion if last */
441 	timeout = wait_for_completion_timeout(&mr->mr.comp, 5 * HZ);
442 	if (!timeout) {
443 		rvt_pr_err(rdi,
444 			   "rvt_dereg_mr timeout mr %p pd %p refcount %u\n",
445 			   mr, mr->mr.pd, atomic_read(&mr->mr.refcount));
446 		rvt_get_mr(&mr->mr);
447 		ret = -EBUSY;
448 		goto out;
449 	}
450 	rvt_deinit_mregion(&mr->mr);
451 	if (mr->umem)
452 		ib_umem_release(mr->umem);
453 	kfree(mr);
454 out:
455 	return ret;
456 }
457 
458 /**
459  * rvt_alloc_mr - Allocate a memory region usable with the
460  * @pd: protection domain for this memory region
461  * @mr_type: mem region type
462  * @max_num_sg: Max number of segments allowed
463  *
464  * Return: the memory region on success, otherwise return an errno.
465  */
466 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd,
467 			   enum ib_mr_type mr_type,
468 			   u32 max_num_sg)
469 {
470 	struct rvt_mr *mr;
471 
472 	if (mr_type != IB_MR_TYPE_MEM_REG)
473 		return ERR_PTR(-EINVAL);
474 
475 	mr = __rvt_alloc_mr(max_num_sg, pd);
476 	if (IS_ERR(mr))
477 		return (struct ib_mr *)mr;
478 
479 	return &mr->ibmr;
480 }
481 
482 /**
483  * rvt_alloc_fmr - allocate a fast memory region
484  * @pd: the protection domain for this memory region
485  * @mr_access_flags: access flags for this memory region
486  * @fmr_attr: fast memory region attributes
487  *
488  * Return: the memory region on success, otherwise returns an errno.
489  */
490 struct ib_fmr *rvt_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
491 			     struct ib_fmr_attr *fmr_attr)
492 {
493 	struct rvt_fmr *fmr;
494 	int m;
495 	struct ib_fmr *ret;
496 	int rval = -ENOMEM;
497 
498 	/* Allocate struct plus pointers to first level page tables. */
499 	m = (fmr_attr->max_pages + RVT_SEGSZ - 1) / RVT_SEGSZ;
500 	fmr = kzalloc(sizeof(*fmr) + m * sizeof(fmr->mr.map[0]), GFP_KERNEL);
501 	if (!fmr)
502 		goto bail;
503 
504 	rval = rvt_init_mregion(&fmr->mr, pd, fmr_attr->max_pages);
505 	if (rval)
506 		goto bail;
507 
508 	/*
509 	 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
510 	 * rkey.
511 	 */
512 	rval = rvt_alloc_lkey(&fmr->mr, 0);
513 	if (rval)
514 		goto bail_mregion;
515 	fmr->ibfmr.rkey = fmr->mr.lkey;
516 	fmr->ibfmr.lkey = fmr->mr.lkey;
517 	/*
518 	 * Resources are allocated but no valid mapping (RKEY can't be
519 	 * used).
520 	 */
521 	fmr->mr.access_flags = mr_access_flags;
522 	fmr->mr.max_segs = fmr_attr->max_pages;
523 	fmr->mr.page_shift = fmr_attr->page_shift;
524 
525 	ret = &fmr->ibfmr;
526 done:
527 	return ret;
528 
529 bail_mregion:
530 	rvt_deinit_mregion(&fmr->mr);
531 bail:
532 	kfree(fmr);
533 	ret = ERR_PTR(rval);
534 	goto done;
535 }
536 
537 /**
538  * rvt_map_phys_fmr - set up a fast memory region
539  * @ibmfr: the fast memory region to set up
540  * @page_list: the list of pages to associate with the fast memory region
541  * @list_len: the number of pages to associate with the fast memory region
542  * @iova: the virtual address of the start of the fast memory region
543  *
544  * This may be called from interrupt context.
545  *
546  * Return: 0 on success
547  */
548 
549 int rvt_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
550 		     int list_len, u64 iova)
551 {
552 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
553 	struct rvt_lkey_table *rkt;
554 	unsigned long flags;
555 	int m, n, i;
556 	u32 ps;
557 	struct rvt_dev_info *rdi = ib_to_rvt(ibfmr->device);
558 
559 	i = atomic_read(&fmr->mr.refcount);
560 	if (i > 2)
561 		return -EBUSY;
562 
563 	if (list_len > fmr->mr.max_segs)
564 		return -EINVAL;
565 
566 	rkt = &rdi->lkey_table;
567 	spin_lock_irqsave(&rkt->lock, flags);
568 	fmr->mr.user_base = iova;
569 	fmr->mr.iova = iova;
570 	ps = 1 << fmr->mr.page_shift;
571 	fmr->mr.length = list_len * ps;
572 	m = 0;
573 	n = 0;
574 	for (i = 0; i < list_len; i++) {
575 		fmr->mr.map[m]->segs[n].vaddr = (void *)page_list[i];
576 		fmr->mr.map[m]->segs[n].length = ps;
577 		if (++n == RVT_SEGSZ) {
578 			m++;
579 			n = 0;
580 		}
581 	}
582 	spin_unlock_irqrestore(&rkt->lock, flags);
583 	return 0;
584 }
585 
586 /**
587  * rvt_unmap_fmr - unmap fast memory regions
588  * @fmr_list: the list of fast memory regions to unmap
589  *
590  * Return: 0 on success.
591  */
592 int rvt_unmap_fmr(struct list_head *fmr_list)
593 {
594 	struct rvt_fmr *fmr;
595 	struct rvt_lkey_table *rkt;
596 	unsigned long flags;
597 	struct rvt_dev_info *rdi;
598 
599 	list_for_each_entry(fmr, fmr_list, ibfmr.list) {
600 		rdi = ib_to_rvt(fmr->ibfmr.device);
601 		rkt = &rdi->lkey_table;
602 		spin_lock_irqsave(&rkt->lock, flags);
603 		fmr->mr.user_base = 0;
604 		fmr->mr.iova = 0;
605 		fmr->mr.length = 0;
606 		spin_unlock_irqrestore(&rkt->lock, flags);
607 	}
608 	return 0;
609 }
610 
611 /**
612  * rvt_dealloc_fmr - deallocate a fast memory region
613  * @ibfmr: the fast memory region to deallocate
614  *
615  * Return: 0 on success.
616  */
617 int rvt_dealloc_fmr(struct ib_fmr *ibfmr)
618 {
619 	struct rvt_fmr *fmr = to_ifmr(ibfmr);
620 	int ret = 0;
621 	unsigned long timeout;
622 
623 	rvt_free_lkey(&fmr->mr);
624 	rvt_put_mr(&fmr->mr); /* will set completion if last */
625 	timeout = wait_for_completion_timeout(&fmr->mr.comp, 5 * HZ);
626 	if (!timeout) {
627 		rvt_get_mr(&fmr->mr);
628 		ret = -EBUSY;
629 		goto out;
630 	}
631 	rvt_deinit_mregion(&fmr->mr);
632 	kfree(fmr);
633 out:
634 	return ret;
635 }
636 
637 /**
638  * rvt_lkey_ok - check IB SGE for validity and initialize
639  * @rkt: table containing lkey to check SGE against
640  * @pd: protection domain
641  * @isge: outgoing internal SGE
642  * @sge: SGE to check
643  * @acc: access flags
644  *
645  * Check the IB SGE for validity and initialize our internal version
646  * of it.
647  *
648  * Return: 1 if valid and successful, otherwise returns 0.
649  *
650  * increments the reference count upon success
651  *
652  */
653 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
654 		struct rvt_sge *isge, struct ib_sge *sge, int acc)
655 {
656 	struct rvt_mregion *mr;
657 	unsigned n, m;
658 	size_t off;
659 	struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
660 
661 	/*
662 	 * We use LKEY == zero for kernel virtual addresses
663 	 * (see rvt_get_dma_mr and dma.c).
664 	 */
665 	rcu_read_lock();
666 	if (sge->lkey == 0) {
667 		if (pd->user)
668 			goto bail;
669 		mr = rcu_dereference(dev->dma_mr);
670 		if (!mr)
671 			goto bail;
672 		atomic_inc(&mr->refcount);
673 		rcu_read_unlock();
674 
675 		isge->mr = mr;
676 		isge->vaddr = (void *)sge->addr;
677 		isge->length = sge->length;
678 		isge->sge_length = sge->length;
679 		isge->m = 0;
680 		isge->n = 0;
681 		goto ok;
682 	}
683 	mr = rcu_dereference(
684 		rkt->table[(sge->lkey >> (32 - dev->dparms.lkey_table_size))]);
685 	if (unlikely(!mr || mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
686 		goto bail;
687 
688 	off = sge->addr - mr->user_base;
689 	if (unlikely(sge->addr < mr->user_base ||
690 		     off + sge->length > mr->length ||
691 		     (mr->access_flags & acc) != acc))
692 		goto bail;
693 	atomic_inc(&mr->refcount);
694 	rcu_read_unlock();
695 
696 	off += mr->offset;
697 	if (mr->page_shift) {
698 		/*
699 		 * page sizes are uniform power of 2 so no loop is necessary
700 		 * entries_spanned_by_off is the number of times the loop below
701 		 * would have executed.
702 		*/
703 		size_t entries_spanned_by_off;
704 
705 		entries_spanned_by_off = off >> mr->page_shift;
706 		off -= (entries_spanned_by_off << mr->page_shift);
707 		m = entries_spanned_by_off / RVT_SEGSZ;
708 		n = entries_spanned_by_off % RVT_SEGSZ;
709 	} else {
710 		m = 0;
711 		n = 0;
712 		while (off >= mr->map[m]->segs[n].length) {
713 			off -= mr->map[m]->segs[n].length;
714 			n++;
715 			if (n >= RVT_SEGSZ) {
716 				m++;
717 				n = 0;
718 			}
719 		}
720 	}
721 	isge->mr = mr;
722 	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
723 	isge->length = mr->map[m]->segs[n].length - off;
724 	isge->sge_length = sge->length;
725 	isge->m = m;
726 	isge->n = n;
727 ok:
728 	return 1;
729 bail:
730 	rcu_read_unlock();
731 	return 0;
732 }
733 EXPORT_SYMBOL(rvt_lkey_ok);
734 
735 /**
736  * rvt_rkey_ok - check the IB virtual address, length, and RKEY
737  * @qp: qp for validation
738  * @sge: SGE state
739  * @len: length of data
740  * @vaddr: virtual address to place data
741  * @rkey: rkey to check
742  * @acc: access flags
743  *
744  * Return: 1 if successful, otherwise 0.
745  *
746  * increments the reference count upon success
747  */
748 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
749 		u32 len, u64 vaddr, u32 rkey, int acc)
750 {
751 	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
752 	struct rvt_lkey_table *rkt = &dev->lkey_table;
753 	struct rvt_mregion *mr;
754 	unsigned n, m;
755 	size_t off;
756 
757 	/*
758 	 * We use RKEY == zero for kernel virtual addresses
759 	 * (see rvt_get_dma_mr and dma.c).
760 	 */
761 	rcu_read_lock();
762 	if (rkey == 0) {
763 		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
764 		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
765 
766 		if (pd->user)
767 			goto bail;
768 		mr = rcu_dereference(rdi->dma_mr);
769 		if (!mr)
770 			goto bail;
771 		atomic_inc(&mr->refcount);
772 		rcu_read_unlock();
773 
774 		sge->mr = mr;
775 		sge->vaddr = (void *)vaddr;
776 		sge->length = len;
777 		sge->sge_length = len;
778 		sge->m = 0;
779 		sge->n = 0;
780 		goto ok;
781 	}
782 
783 	mr = rcu_dereference(
784 		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
785 	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
786 		goto bail;
787 
788 	off = vaddr - mr->iova;
789 	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
790 		     (mr->access_flags & acc) == 0))
791 		goto bail;
792 	atomic_inc(&mr->refcount);
793 	rcu_read_unlock();
794 
795 	off += mr->offset;
796 	if (mr->page_shift) {
797 		/*
798 		 * page sizes are uniform power of 2 so no loop is necessary
799 		 * entries_spanned_by_off is the number of times the loop below
800 		 * would have executed.
801 		*/
802 		size_t entries_spanned_by_off;
803 
804 		entries_spanned_by_off = off >> mr->page_shift;
805 		off -= (entries_spanned_by_off << mr->page_shift);
806 		m = entries_spanned_by_off / RVT_SEGSZ;
807 		n = entries_spanned_by_off % RVT_SEGSZ;
808 	} else {
809 		m = 0;
810 		n = 0;
811 		while (off >= mr->map[m]->segs[n].length) {
812 			off -= mr->map[m]->segs[n].length;
813 			n++;
814 			if (n >= RVT_SEGSZ) {
815 				m++;
816 				n = 0;
817 			}
818 		}
819 	}
820 	sge->mr = mr;
821 	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
822 	sge->length = mr->map[m]->segs[n].length - off;
823 	sge->sge_length = len;
824 	sge->m = m;
825 	sge->n = n;
826 ok:
827 	return 1;
828 bail:
829 	rcu_read_unlock();
830 	return 0;
831 }
832 EXPORT_SYMBOL(rvt_rkey_ok);
833