1 /* 2 * Copyright (c) 2012 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/uio.h> 43 #include <linux/jiffies.h> 44 #include <asm/pgtable.h> 45 #include <linux/delay.h> 46 #include <linux/export.h> 47 48 #include "qib.h" 49 #include "qib_common.h" 50 #include "qib_user_sdma.h" 51 52 #undef pr_fmt 53 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 54 55 static int qib_open(struct inode *, struct file *); 56 static int qib_close(struct inode *, struct file *); 57 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 58 static ssize_t qib_aio_write(struct kiocb *, const struct iovec *, 59 unsigned long, loff_t); 60 static unsigned int qib_poll(struct file *, struct poll_table_struct *); 61 static int qib_mmapf(struct file *, struct vm_area_struct *); 62 63 static const struct file_operations qib_file_ops = { 64 .owner = THIS_MODULE, 65 .write = qib_write, 66 .aio_write = qib_aio_write, 67 .open = qib_open, 68 .release = qib_close, 69 .poll = qib_poll, 70 .mmap = qib_mmapf, 71 .llseek = noop_llseek, 72 }; 73 74 /* 75 * Convert kernel virtual addresses to physical addresses so they don't 76 * potentially conflict with the chip addresses used as mmap offsets. 77 * It doesn't really matter what mmap offset we use as long as we can 78 * interpret it correctly. 79 */ 80 static u64 cvt_kvaddr(void *p) 81 { 82 struct page *page; 83 u64 paddr = 0; 84 85 page = vmalloc_to_page(p); 86 if (page) 87 paddr = page_to_pfn(page) << PAGE_SHIFT; 88 89 return paddr; 90 } 91 92 static int qib_get_base_info(struct file *fp, void __user *ubase, 93 size_t ubase_size) 94 { 95 struct qib_ctxtdata *rcd = ctxt_fp(fp); 96 int ret = 0; 97 struct qib_base_info *kinfo = NULL; 98 struct qib_devdata *dd = rcd->dd; 99 struct qib_pportdata *ppd = rcd->ppd; 100 unsigned subctxt_cnt; 101 int shared, master; 102 size_t sz; 103 104 subctxt_cnt = rcd->subctxt_cnt; 105 if (!subctxt_cnt) { 106 shared = 0; 107 master = 0; 108 subctxt_cnt = 1; 109 } else { 110 shared = 1; 111 master = !subctxt_fp(fp); 112 } 113 114 sz = sizeof(*kinfo); 115 /* If context sharing is not requested, allow the old size structure */ 116 if (!shared) 117 sz -= 7 * sizeof(u64); 118 if (ubase_size < sz) { 119 ret = -EINVAL; 120 goto bail; 121 } 122 123 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 124 if (kinfo == NULL) { 125 ret = -ENOMEM; 126 goto bail; 127 } 128 129 ret = dd->f_get_base_info(rcd, kinfo); 130 if (ret < 0) 131 goto bail; 132 133 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 134 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 135 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 136 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 137 /* 138 * have to mmap whole thing 139 */ 140 kinfo->spi_rcv_egrbuftotlen = 141 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 142 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 143 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 144 rcd->rcvegrbuf_chunks; 145 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 146 if (master) 147 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 148 /* 149 * for this use, may be cfgctxts summed over all chips that 150 * are are configured and present 151 */ 152 kinfo->spi_nctxts = dd->cfgctxts; 153 /* unit (chip/board) our context is on */ 154 kinfo->spi_unit = dd->unit; 155 kinfo->spi_port = ppd->port; 156 /* for now, only a single page */ 157 kinfo->spi_tid_maxsize = PAGE_SIZE; 158 159 /* 160 * Doing this per context, and based on the skip value, etc. This has 161 * to be the actual buffer size, since the protocol code treats it 162 * as an array. 163 * 164 * These have to be set to user addresses in the user code via mmap. 165 * These values are used on return to user code for the mmap target 166 * addresses only. For 32 bit, same 44 bit address problem, so use 167 * the physical address, not virtual. Before 2.6.11, using the 168 * page_address() macro worked, but in 2.6.11, even that returns the 169 * full 64 bit address (upper bits all 1's). So far, using the 170 * physical addresses (or chip offsets, for chip mapping) works, but 171 * no doubt some future kernel release will change that, and we'll be 172 * on to yet another method of dealing with this. 173 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 174 * since the chips with non-zero rhf_offset don't normally 175 * enable tail register updates to host memory, but for testing, 176 * both can be enabled and used. 177 */ 178 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 179 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 180 kinfo->spi_rhf_offset = dd->rhf_offset; 181 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 182 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 183 /* setup per-unit (not port) status area for user programs */ 184 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 185 (char *) ppd->statusp - 186 (char *) dd->pioavailregs_dma; 187 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 188 if (!shared) { 189 kinfo->spi_piocnt = rcd->piocnt; 190 kinfo->spi_piobufbase = (u64) rcd->piobufs; 191 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 192 } else if (master) { 193 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 194 (rcd->piocnt % subctxt_cnt); 195 /* Master's PIO buffers are after all the slave's */ 196 kinfo->spi_piobufbase = (u64) rcd->piobufs + 197 dd->palign * 198 (rcd->piocnt - kinfo->spi_piocnt); 199 } else { 200 unsigned slave = subctxt_fp(fp) - 1; 201 202 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 203 kinfo->spi_piobufbase = (u64) rcd->piobufs + 204 dd->palign * kinfo->spi_piocnt * slave; 205 } 206 207 if (shared) { 208 kinfo->spi_sendbuf_status = 209 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 210 /* only spi_subctxt_* fields should be set in this block! */ 211 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 212 213 kinfo->spi_subctxt_rcvegrbuf = 214 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 215 kinfo->spi_subctxt_rcvhdr_base = 216 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 217 } 218 219 /* 220 * All user buffers are 2KB buffers. If we ever support 221 * giving 4KB buffers to user processes, this will need some 222 * work. Can't use piobufbase directly, because it has 223 * both 2K and 4K buffer base values. 224 */ 225 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 226 dd->palign; 227 kinfo->spi_pioalign = dd->palign; 228 kinfo->spi_qpair = QIB_KD_QP; 229 /* 230 * user mode PIO buffers are always 2KB, even when 4KB can 231 * be received, and sent via the kernel; this is ibmaxlen 232 * for 2K MTU. 233 */ 234 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 235 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 236 kinfo->spi_ctxt = rcd->ctxt; 237 kinfo->spi_subctxt = subctxt_fp(fp); 238 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 239 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 240 kinfo->spi_hw_version = dd->revision; 241 242 if (master) 243 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 244 245 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 246 if (copy_to_user(ubase, kinfo, sz)) 247 ret = -EFAULT; 248 bail: 249 kfree(kinfo); 250 return ret; 251 } 252 253 /** 254 * qib_tid_update - update a context TID 255 * @rcd: the context 256 * @fp: the qib device file 257 * @ti: the TID information 258 * 259 * The new implementation as of Oct 2004 is that the driver assigns 260 * the tid and returns it to the caller. To reduce search time, we 261 * keep a cursor for each context, walking the shadow tid array to find 262 * one that's not in use. 263 * 264 * For now, if we can't allocate the full list, we fail, although 265 * in the long run, we'll allocate as many as we can, and the 266 * caller will deal with that by trying the remaining pages later. 267 * That means that when we fail, we have to mark the tids as not in 268 * use again, in our shadow copy. 269 * 270 * It's up to the caller to free the tids when they are done. 271 * We'll unlock the pages as they free them. 272 * 273 * Also, right now we are locking one page at a time, but since 274 * the intended use of this routine is for a single group of 275 * virtually contiguous pages, that should change to improve 276 * performance. 277 */ 278 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 279 const struct qib_tid_info *ti) 280 { 281 int ret = 0, ntids; 282 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 283 u16 *tidlist; 284 struct qib_devdata *dd = rcd->dd; 285 u64 physaddr; 286 unsigned long vaddr; 287 u64 __iomem *tidbase; 288 unsigned long tidmap[8]; 289 struct page **pagep = NULL; 290 unsigned subctxt = subctxt_fp(fp); 291 292 if (!dd->pageshadow) { 293 ret = -ENOMEM; 294 goto done; 295 } 296 297 cnt = ti->tidcnt; 298 if (!cnt) { 299 ret = -EFAULT; 300 goto done; 301 } 302 ctxttid = rcd->ctxt * dd->rcvtidcnt; 303 if (!rcd->subctxt_cnt) { 304 tidcnt = dd->rcvtidcnt; 305 tid = rcd->tidcursor; 306 tidoff = 0; 307 } else if (!subctxt) { 308 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 309 (dd->rcvtidcnt % rcd->subctxt_cnt); 310 tidoff = dd->rcvtidcnt - tidcnt; 311 ctxttid += tidoff; 312 tid = tidcursor_fp(fp); 313 } else { 314 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 315 tidoff = tidcnt * (subctxt - 1); 316 ctxttid += tidoff; 317 tid = tidcursor_fp(fp); 318 } 319 if (cnt > tidcnt) { 320 /* make sure it all fits in tid_pg_list */ 321 qib_devinfo(dd->pcidev, 322 "Process tried to allocate %u TIDs, only trying max (%u)\n", 323 cnt, tidcnt); 324 cnt = tidcnt; 325 } 326 pagep = (struct page **) rcd->tid_pg_list; 327 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 328 pagep += tidoff; 329 tidlist += tidoff; 330 331 memset(tidmap, 0, sizeof(tidmap)); 332 /* before decrement; chip actual # */ 333 ntids = tidcnt; 334 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 335 dd->rcvtidbase + 336 ctxttid * sizeof(*tidbase)); 337 338 /* virtual address of first page in transfer */ 339 vaddr = ti->tidvaddr; 340 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 341 cnt * PAGE_SIZE)) { 342 ret = -EFAULT; 343 goto done; 344 } 345 ret = qib_get_user_pages(vaddr, cnt, pagep); 346 if (ret) { 347 /* 348 * if (ret == -EBUSY) 349 * We can't continue because the pagep array won't be 350 * initialized. This should never happen, 351 * unless perhaps the user has mpin'ed the pages 352 * themselves. 353 */ 354 qib_devinfo(dd->pcidev, 355 "Failed to lock addr %p, %u pages: " 356 "errno %d\n", (void *) vaddr, cnt, -ret); 357 goto done; 358 } 359 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 360 for (; ntids--; tid++) { 361 if (tid == tidcnt) 362 tid = 0; 363 if (!dd->pageshadow[ctxttid + tid]) 364 break; 365 } 366 if (ntids < 0) { 367 /* 368 * Oops, wrapped all the way through their TIDs, 369 * and didn't have enough free; see comments at 370 * start of routine 371 */ 372 i--; /* last tidlist[i] not filled in */ 373 ret = -ENOMEM; 374 break; 375 } 376 tidlist[i] = tid + tidoff; 377 /* we "know" system pages and TID pages are same size */ 378 dd->pageshadow[ctxttid + tid] = pagep[i]; 379 dd->physshadow[ctxttid + tid] = 380 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 381 PCI_DMA_FROMDEVICE); 382 /* 383 * don't need atomic or it's overhead 384 */ 385 __set_bit(tid, tidmap); 386 physaddr = dd->physshadow[ctxttid + tid]; 387 /* PERFORMANCE: below should almost certainly be cached */ 388 dd->f_put_tid(dd, &tidbase[tid], 389 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 390 /* 391 * don't check this tid in qib_ctxtshadow, since we 392 * just filled it in; start with the next one. 393 */ 394 tid++; 395 } 396 397 if (ret) { 398 u32 limit; 399 cleanup: 400 /* jump here if copy out of updated info failed... */ 401 /* same code that's in qib_free_tid() */ 402 limit = sizeof(tidmap) * BITS_PER_BYTE; 403 if (limit > tidcnt) 404 /* just in case size changes in future */ 405 limit = tidcnt; 406 tid = find_first_bit((const unsigned long *)tidmap, limit); 407 for (; tid < limit; tid++) { 408 if (!test_bit(tid, tidmap)) 409 continue; 410 if (dd->pageshadow[ctxttid + tid]) { 411 dma_addr_t phys; 412 413 phys = dd->physshadow[ctxttid + tid]; 414 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 415 /* PERFORMANCE: below should almost certainly 416 * be cached 417 */ 418 dd->f_put_tid(dd, &tidbase[tid], 419 RCVHQ_RCV_TYPE_EXPECTED, 420 dd->tidinvalid); 421 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 422 PCI_DMA_FROMDEVICE); 423 dd->pageshadow[ctxttid + tid] = NULL; 424 } 425 } 426 qib_release_user_pages(pagep, cnt); 427 } else { 428 /* 429 * Copy the updated array, with qib_tid's filled in, back 430 * to user. Since we did the copy in already, this "should 431 * never fail" If it does, we have to clean up... 432 */ 433 if (copy_to_user((void __user *) 434 (unsigned long) ti->tidlist, 435 tidlist, cnt * sizeof(*tidlist))) { 436 ret = -EFAULT; 437 goto cleanup; 438 } 439 if (copy_to_user((void __user *) (unsigned long) ti->tidmap, 440 tidmap, sizeof tidmap)) { 441 ret = -EFAULT; 442 goto cleanup; 443 } 444 if (tid == tidcnt) 445 tid = 0; 446 if (!rcd->subctxt_cnt) 447 rcd->tidcursor = tid; 448 else 449 tidcursor_fp(fp) = tid; 450 } 451 452 done: 453 return ret; 454 } 455 456 /** 457 * qib_tid_free - free a context TID 458 * @rcd: the context 459 * @subctxt: the subcontext 460 * @ti: the TID info 461 * 462 * right now we are unlocking one page at a time, but since 463 * the intended use of this routine is for a single group of 464 * virtually contiguous pages, that should change to improve 465 * performance. We check that the TID is in range for this context 466 * but otherwise don't check validity; if user has an error and 467 * frees the wrong tid, it's only their own data that can thereby 468 * be corrupted. We do check that the TID was in use, for sanity 469 * We always use our idea of the saved address, not the address that 470 * they pass in to us. 471 */ 472 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 473 const struct qib_tid_info *ti) 474 { 475 int ret = 0; 476 u32 tid, ctxttid, cnt, limit, tidcnt; 477 struct qib_devdata *dd = rcd->dd; 478 u64 __iomem *tidbase; 479 unsigned long tidmap[8]; 480 481 if (!dd->pageshadow) { 482 ret = -ENOMEM; 483 goto done; 484 } 485 486 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, 487 sizeof tidmap)) { 488 ret = -EFAULT; 489 goto done; 490 } 491 492 ctxttid = rcd->ctxt * dd->rcvtidcnt; 493 if (!rcd->subctxt_cnt) 494 tidcnt = dd->rcvtidcnt; 495 else if (!subctxt) { 496 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 497 (dd->rcvtidcnt % rcd->subctxt_cnt); 498 ctxttid += dd->rcvtidcnt - tidcnt; 499 } else { 500 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 501 ctxttid += tidcnt * (subctxt - 1); 502 } 503 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 504 dd->rcvtidbase + 505 ctxttid * sizeof(*tidbase)); 506 507 limit = sizeof(tidmap) * BITS_PER_BYTE; 508 if (limit > tidcnt) 509 /* just in case size changes in future */ 510 limit = tidcnt; 511 tid = find_first_bit(tidmap, limit); 512 for (cnt = 0; tid < limit; tid++) { 513 /* 514 * small optimization; if we detect a run of 3 or so without 515 * any set, use find_first_bit again. That's mainly to 516 * accelerate the case where we wrapped, so we have some at 517 * the beginning, and some at the end, and a big gap 518 * in the middle. 519 */ 520 if (!test_bit(tid, tidmap)) 521 continue; 522 cnt++; 523 if (dd->pageshadow[ctxttid + tid]) { 524 struct page *p; 525 dma_addr_t phys; 526 527 p = dd->pageshadow[ctxttid + tid]; 528 dd->pageshadow[ctxttid + tid] = NULL; 529 phys = dd->physshadow[ctxttid + tid]; 530 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 531 /* PERFORMANCE: below should almost certainly be 532 * cached 533 */ 534 dd->f_put_tid(dd, &tidbase[tid], 535 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 536 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 537 PCI_DMA_FROMDEVICE); 538 qib_release_user_pages(&p, 1); 539 } 540 } 541 done: 542 return ret; 543 } 544 545 /** 546 * qib_set_part_key - set a partition key 547 * @rcd: the context 548 * @key: the key 549 * 550 * We can have up to 4 active at a time (other than the default, which is 551 * always allowed). This is somewhat tricky, since multiple contexts may set 552 * the same key, so we reference count them, and clean up at exit. All 4 553 * partition keys are packed into a single qlogic_ib register. It's an 554 * error for a process to set the same pkey multiple times. We provide no 555 * mechanism to de-allocate a pkey at this time, we may eventually need to 556 * do that. I've used the atomic operations, and no locking, and only make 557 * a single pass through what's available. This should be more than 558 * adequate for some time. I'll think about spinlocks or the like if and as 559 * it's necessary. 560 */ 561 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 562 { 563 struct qib_pportdata *ppd = rcd->ppd; 564 int i, any = 0, pidx = -1; 565 u16 lkey = key & 0x7FFF; 566 int ret; 567 568 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) { 569 /* nothing to do; this key always valid */ 570 ret = 0; 571 goto bail; 572 } 573 574 if (!lkey) { 575 ret = -EINVAL; 576 goto bail; 577 } 578 579 /* 580 * Set the full membership bit, because it has to be 581 * set in the register or the packet, and it seems 582 * cleaner to set in the register than to force all 583 * callers to set it. 584 */ 585 key |= 0x8000; 586 587 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 588 if (!rcd->pkeys[i] && pidx == -1) 589 pidx = i; 590 if (rcd->pkeys[i] == key) { 591 ret = -EEXIST; 592 goto bail; 593 } 594 } 595 if (pidx == -1) { 596 ret = -EBUSY; 597 goto bail; 598 } 599 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 600 if (!ppd->pkeys[i]) { 601 any++; 602 continue; 603 } 604 if (ppd->pkeys[i] == key) { 605 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 606 607 if (atomic_inc_return(pkrefs) > 1) { 608 rcd->pkeys[pidx] = key; 609 ret = 0; 610 goto bail; 611 } else { 612 /* 613 * lost race, decrement count, catch below 614 */ 615 atomic_dec(pkrefs); 616 any++; 617 } 618 } 619 if ((ppd->pkeys[i] & 0x7FFF) == lkey) { 620 /* 621 * It makes no sense to have both the limited and 622 * full membership PKEY set at the same time since 623 * the unlimited one will disable the limited one. 624 */ 625 ret = -EEXIST; 626 goto bail; 627 } 628 } 629 if (!any) { 630 ret = -EBUSY; 631 goto bail; 632 } 633 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 634 if (!ppd->pkeys[i] && 635 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 636 rcd->pkeys[pidx] = key; 637 ppd->pkeys[i] = key; 638 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 639 ret = 0; 640 goto bail; 641 } 642 } 643 ret = -EBUSY; 644 645 bail: 646 return ret; 647 } 648 649 /** 650 * qib_manage_rcvq - manage a context's receive queue 651 * @rcd: the context 652 * @subctxt: the subcontext 653 * @start_stop: action to carry out 654 * 655 * start_stop == 0 disables receive on the context, for use in queue 656 * overflow conditions. start_stop==1 re-enables, to be used to 657 * re-init the software copy of the head register 658 */ 659 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 660 int start_stop) 661 { 662 struct qib_devdata *dd = rcd->dd; 663 unsigned int rcvctrl_op; 664 665 if (subctxt) 666 goto bail; 667 /* atomically clear receive enable ctxt. */ 668 if (start_stop) { 669 /* 670 * On enable, force in-memory copy of the tail register to 671 * 0, so that protocol code doesn't have to worry about 672 * whether or not the chip has yet updated the in-memory 673 * copy or not on return from the system call. The chip 674 * always resets it's tail register back to 0 on a 675 * transition from disabled to enabled. 676 */ 677 if (rcd->rcvhdrtail_kvaddr) 678 qib_clear_rcvhdrtail(rcd); 679 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 680 } else 681 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 682 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 683 /* always; new head should be equal to new tail; see above */ 684 bail: 685 return 0; 686 } 687 688 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 689 struct qib_devdata *dd) 690 { 691 int i, j, pchanged = 0; 692 u64 oldpkey; 693 struct qib_pportdata *ppd = rcd->ppd; 694 695 /* for debugging only */ 696 oldpkey = (u64) ppd->pkeys[0] | 697 ((u64) ppd->pkeys[1] << 16) | 698 ((u64) ppd->pkeys[2] << 32) | 699 ((u64) ppd->pkeys[3] << 48); 700 701 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 702 if (!rcd->pkeys[i]) 703 continue; 704 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 705 /* check for match independent of the global bit */ 706 if ((ppd->pkeys[j] & 0x7fff) != 707 (rcd->pkeys[i] & 0x7fff)) 708 continue; 709 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 710 ppd->pkeys[j] = 0; 711 pchanged++; 712 } 713 break; 714 } 715 rcd->pkeys[i] = 0; 716 } 717 if (pchanged) 718 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 719 } 720 721 /* common code for the mappings on dma_alloc_coherent mem */ 722 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 723 unsigned len, void *kvaddr, u32 write_ok, char *what) 724 { 725 struct qib_devdata *dd = rcd->dd; 726 unsigned long pfn; 727 int ret; 728 729 if ((vma->vm_end - vma->vm_start) > len) { 730 qib_devinfo(dd->pcidev, 731 "FAIL on %s: len %lx > %x\n", what, 732 vma->vm_end - vma->vm_start, len); 733 ret = -EFAULT; 734 goto bail; 735 } 736 737 /* 738 * shared context user code requires rcvhdrq mapped r/w, others 739 * only allowed readonly mapping. 740 */ 741 if (!write_ok) { 742 if (vma->vm_flags & VM_WRITE) { 743 qib_devinfo(dd->pcidev, 744 "%s must be mapped readonly\n", what); 745 ret = -EPERM; 746 goto bail; 747 } 748 749 /* don't allow them to later change with mprotect */ 750 vma->vm_flags &= ~VM_MAYWRITE; 751 } 752 753 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 754 ret = remap_pfn_range(vma, vma->vm_start, pfn, 755 len, vma->vm_page_prot); 756 if (ret) 757 qib_devinfo(dd->pcidev, 758 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 759 what, rcd->ctxt, pfn, len, ret); 760 bail: 761 return ret; 762 } 763 764 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 765 u64 ureg) 766 { 767 unsigned long phys; 768 unsigned long sz; 769 int ret; 770 771 /* 772 * This is real hardware, so use io_remap. This is the mechanism 773 * for the user process to update the head registers for their ctxt 774 * in the chip. 775 */ 776 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 777 if ((vma->vm_end - vma->vm_start) > sz) { 778 qib_devinfo(dd->pcidev, 779 "FAIL mmap userreg: reqlen %lx > PAGE\n", 780 vma->vm_end - vma->vm_start); 781 ret = -EFAULT; 782 } else { 783 phys = dd->physaddr + ureg; 784 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 785 786 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 787 ret = io_remap_pfn_range(vma, vma->vm_start, 788 phys >> PAGE_SHIFT, 789 vma->vm_end - vma->vm_start, 790 vma->vm_page_prot); 791 } 792 return ret; 793 } 794 795 static int mmap_piobufs(struct vm_area_struct *vma, 796 struct qib_devdata *dd, 797 struct qib_ctxtdata *rcd, 798 unsigned piobufs, unsigned piocnt) 799 { 800 unsigned long phys; 801 int ret; 802 803 /* 804 * When we map the PIO buffers in the chip, we want to map them as 805 * writeonly, no read possible; unfortunately, x86 doesn't allow 806 * for this in hardware, but we still prevent users from asking 807 * for it. 808 */ 809 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 810 qib_devinfo(dd->pcidev, 811 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 812 vma->vm_end - vma->vm_start); 813 ret = -EINVAL; 814 goto bail; 815 } 816 817 phys = dd->physaddr + piobufs; 818 819 #if defined(__powerpc__) 820 /* There isn't a generic way to specify writethrough mappings */ 821 pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE; 822 pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU; 823 pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED; 824 #endif 825 826 /* 827 * don't allow them to later change to readable with mprotect (for when 828 * not initially mapped readable, as is normally the case) 829 */ 830 vma->vm_flags &= ~VM_MAYREAD; 831 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 832 833 if (qib_wc_pat) 834 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 835 836 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 837 vma->vm_end - vma->vm_start, 838 vma->vm_page_prot); 839 bail: 840 return ret; 841 } 842 843 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 844 struct qib_ctxtdata *rcd) 845 { 846 struct qib_devdata *dd = rcd->dd; 847 unsigned long start, size; 848 size_t total_size, i; 849 unsigned long pfn; 850 int ret; 851 852 size = rcd->rcvegrbuf_size; 853 total_size = rcd->rcvegrbuf_chunks * size; 854 if ((vma->vm_end - vma->vm_start) > total_size) { 855 qib_devinfo(dd->pcidev, 856 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 857 vma->vm_end - vma->vm_start, 858 (unsigned long) total_size); 859 ret = -EINVAL; 860 goto bail; 861 } 862 863 if (vma->vm_flags & VM_WRITE) { 864 qib_devinfo(dd->pcidev, 865 "Can't map eager buffers as writable (flags=%lx)\n", 866 vma->vm_flags); 867 ret = -EPERM; 868 goto bail; 869 } 870 /* don't allow them to later change to writeable with mprotect */ 871 vma->vm_flags &= ~VM_MAYWRITE; 872 873 start = vma->vm_start; 874 875 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 876 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 877 ret = remap_pfn_range(vma, start, pfn, size, 878 vma->vm_page_prot); 879 if (ret < 0) 880 goto bail; 881 } 882 ret = 0; 883 884 bail: 885 return ret; 886 } 887 888 /* 889 * qib_file_vma_fault - handle a VMA page fault. 890 */ 891 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 892 { 893 struct page *page; 894 895 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 896 if (!page) 897 return VM_FAULT_SIGBUS; 898 899 get_page(page); 900 vmf->page = page; 901 902 return 0; 903 } 904 905 static struct vm_operations_struct qib_file_vm_ops = { 906 .fault = qib_file_vma_fault, 907 }; 908 909 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 910 struct qib_ctxtdata *rcd, unsigned subctxt) 911 { 912 struct qib_devdata *dd = rcd->dd; 913 unsigned subctxt_cnt; 914 unsigned long len; 915 void *addr; 916 size_t size; 917 int ret = 0; 918 919 subctxt_cnt = rcd->subctxt_cnt; 920 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 921 922 /* 923 * Each process has all the subctxt uregbase, rcvhdrq, and 924 * rcvegrbufs mmapped - as an array for all the processes, 925 * and also separately for this process. 926 */ 927 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 928 addr = rcd->subctxt_uregbase; 929 size = PAGE_SIZE * subctxt_cnt; 930 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 931 addr = rcd->subctxt_rcvhdr_base; 932 size = rcd->rcvhdrq_size * subctxt_cnt; 933 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 934 addr = rcd->subctxt_rcvegrbuf; 935 size *= subctxt_cnt; 936 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 937 PAGE_SIZE * subctxt)) { 938 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 939 size = PAGE_SIZE; 940 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 941 rcd->rcvhdrq_size * subctxt)) { 942 addr = rcd->subctxt_rcvhdr_base + 943 rcd->rcvhdrq_size * subctxt; 944 size = rcd->rcvhdrq_size; 945 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 946 addr = rcd->user_event_mask; 947 size = PAGE_SIZE; 948 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 949 size * subctxt)) { 950 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 951 /* rcvegrbufs are read-only on the slave */ 952 if (vma->vm_flags & VM_WRITE) { 953 qib_devinfo(dd->pcidev, 954 "Can't map eager buffers as " 955 "writable (flags=%lx)\n", vma->vm_flags); 956 ret = -EPERM; 957 goto bail; 958 } 959 /* 960 * Don't allow permission to later change to writeable 961 * with mprotect. 962 */ 963 vma->vm_flags &= ~VM_MAYWRITE; 964 } else 965 goto bail; 966 len = vma->vm_end - vma->vm_start; 967 if (len > size) { 968 ret = -EINVAL; 969 goto bail; 970 } 971 972 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 973 vma->vm_ops = &qib_file_vm_ops; 974 vma->vm_flags |= VM_RESERVED | VM_DONTEXPAND; 975 ret = 1; 976 977 bail: 978 return ret; 979 } 980 981 /** 982 * qib_mmapf - mmap various structures into user space 983 * @fp: the file pointer 984 * @vma: the VM area 985 * 986 * We use this to have a shared buffer between the kernel and the user code 987 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 988 * buffers in the chip. We have the open and close entries so we can bump 989 * the ref count and keep the driver from being unloaded while still mapped. 990 */ 991 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 992 { 993 struct qib_ctxtdata *rcd; 994 struct qib_devdata *dd; 995 u64 pgaddr, ureg; 996 unsigned piobufs, piocnt; 997 int ret, match = 1; 998 999 rcd = ctxt_fp(fp); 1000 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 1001 ret = -EINVAL; 1002 goto bail; 1003 } 1004 dd = rcd->dd; 1005 1006 /* 1007 * This is the qib_do_user_init() code, mapping the shared buffers 1008 * and per-context user registers into the user process. The address 1009 * referred to by vm_pgoff is the file offset passed via mmap(). 1010 * For shared contexts, this is the kernel vmalloc() address of the 1011 * pages to share with the master. 1012 * For non-shared or master ctxts, this is a physical address. 1013 * We only do one mmap for each space mapped. 1014 */ 1015 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1016 1017 /* 1018 * Check for 0 in case one of the allocations failed, but user 1019 * called mmap anyway. 1020 */ 1021 if (!pgaddr) { 1022 ret = -EINVAL; 1023 goto bail; 1024 } 1025 1026 /* 1027 * Physical addresses must fit in 40 bits for our hardware. 1028 * Check for kernel virtual addresses first, anything else must 1029 * match a HW or memory address. 1030 */ 1031 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1032 if (ret) { 1033 if (ret > 0) 1034 ret = 0; 1035 goto bail; 1036 } 1037 1038 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1039 if (!rcd->subctxt_cnt) { 1040 /* ctxt is not shared */ 1041 piocnt = rcd->piocnt; 1042 piobufs = rcd->piobufs; 1043 } else if (!subctxt_fp(fp)) { 1044 /* caller is the master */ 1045 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1046 (rcd->piocnt % rcd->subctxt_cnt); 1047 piobufs = rcd->piobufs + 1048 dd->palign * (rcd->piocnt - piocnt); 1049 } else { 1050 unsigned slave = subctxt_fp(fp) - 1; 1051 1052 /* caller is a slave */ 1053 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1054 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1055 } 1056 1057 if (pgaddr == ureg) 1058 ret = mmap_ureg(vma, dd, ureg); 1059 else if (pgaddr == piobufs) 1060 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1061 else if (pgaddr == dd->pioavailregs_phys) 1062 /* in-memory copy of pioavail registers */ 1063 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1064 (void *) dd->pioavailregs_dma, 0, 1065 "pioavail registers"); 1066 else if (pgaddr == rcd->rcvegr_phys) 1067 ret = mmap_rcvegrbufs(vma, rcd); 1068 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1069 /* 1070 * The rcvhdrq itself; multiple pages, contiguous 1071 * from an i/o perspective. Shared contexts need 1072 * to map r/w, so we allow writing. 1073 */ 1074 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1075 rcd->rcvhdrq, 1, "rcvhdrq"); 1076 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1077 /* in-memory copy of rcvhdrq tail register */ 1078 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1079 rcd->rcvhdrtail_kvaddr, 0, 1080 "rcvhdrq tail"); 1081 else 1082 match = 0; 1083 if (!match) 1084 ret = -EINVAL; 1085 1086 vma->vm_private_data = NULL; 1087 1088 if (ret < 0) 1089 qib_devinfo(dd->pcidev, 1090 "mmap Failure %d: off %llx len %lx\n", 1091 -ret, (unsigned long long)pgaddr, 1092 vma->vm_end - vma->vm_start); 1093 bail: 1094 return ret; 1095 } 1096 1097 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd, 1098 struct file *fp, 1099 struct poll_table_struct *pt) 1100 { 1101 struct qib_devdata *dd = rcd->dd; 1102 unsigned pollflag; 1103 1104 poll_wait(fp, &rcd->wait, pt); 1105 1106 spin_lock_irq(&dd->uctxt_lock); 1107 if (rcd->urgent != rcd->urgent_poll) { 1108 pollflag = POLLIN | POLLRDNORM; 1109 rcd->urgent_poll = rcd->urgent; 1110 } else { 1111 pollflag = 0; 1112 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1113 } 1114 spin_unlock_irq(&dd->uctxt_lock); 1115 1116 return pollflag; 1117 } 1118 1119 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd, 1120 struct file *fp, 1121 struct poll_table_struct *pt) 1122 { 1123 struct qib_devdata *dd = rcd->dd; 1124 unsigned pollflag; 1125 1126 poll_wait(fp, &rcd->wait, pt); 1127 1128 spin_lock_irq(&dd->uctxt_lock); 1129 if (dd->f_hdrqempty(rcd)) { 1130 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1131 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1132 pollflag = 0; 1133 } else 1134 pollflag = POLLIN | POLLRDNORM; 1135 spin_unlock_irq(&dd->uctxt_lock); 1136 1137 return pollflag; 1138 } 1139 1140 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt) 1141 { 1142 struct qib_ctxtdata *rcd; 1143 unsigned pollflag; 1144 1145 rcd = ctxt_fp(fp); 1146 if (!rcd) 1147 pollflag = POLLERR; 1148 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1149 pollflag = qib_poll_urgent(rcd, fp, pt); 1150 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1151 pollflag = qib_poll_next(rcd, fp, pt); 1152 else /* invalid */ 1153 pollflag = POLLERR; 1154 1155 return pollflag; 1156 } 1157 1158 /* 1159 * Check that userland and driver are compatible for subcontexts. 1160 */ 1161 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1162 { 1163 /* this code is written long-hand for clarity */ 1164 if (QIB_USER_SWMAJOR != user_swmajor) { 1165 /* no promise of compatibility if major mismatch */ 1166 return 0; 1167 } 1168 if (QIB_USER_SWMAJOR == 1) { 1169 switch (QIB_USER_SWMINOR) { 1170 case 0: 1171 case 1: 1172 case 2: 1173 /* no subctxt implementation so cannot be compatible */ 1174 return 0; 1175 case 3: 1176 /* 3 is only compatible with itself */ 1177 return user_swminor == 3; 1178 default: 1179 /* >= 4 are compatible (or are expected to be) */ 1180 return user_swminor >= 4; 1181 } 1182 } 1183 /* make no promises yet for future major versions */ 1184 return 0; 1185 } 1186 1187 static int init_subctxts(struct qib_devdata *dd, 1188 struct qib_ctxtdata *rcd, 1189 const struct qib_user_info *uinfo) 1190 { 1191 int ret = 0; 1192 unsigned num_subctxts; 1193 size_t size; 1194 1195 /* 1196 * If the user is requesting zero subctxts, 1197 * skip the subctxt allocation. 1198 */ 1199 if (uinfo->spu_subctxt_cnt <= 0) 1200 goto bail; 1201 num_subctxts = uinfo->spu_subctxt_cnt; 1202 1203 /* Check for subctxt compatibility */ 1204 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1205 uinfo->spu_userversion & 0xffff)) { 1206 qib_devinfo(dd->pcidev, 1207 "Mismatched user version (%d.%d) and driver " 1208 "version (%d.%d) while context sharing. Ensure " 1209 "that driver and library are from the same " 1210 "release.\n", 1211 (int) (uinfo->spu_userversion >> 16), 1212 (int) (uinfo->spu_userversion & 0xffff), 1213 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1214 goto bail; 1215 } 1216 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1217 ret = -EINVAL; 1218 goto bail; 1219 } 1220 1221 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1222 if (!rcd->subctxt_uregbase) { 1223 ret = -ENOMEM; 1224 goto bail; 1225 } 1226 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1227 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1228 sizeof(u32), PAGE_SIZE) * num_subctxts; 1229 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1230 if (!rcd->subctxt_rcvhdr_base) { 1231 ret = -ENOMEM; 1232 goto bail_ureg; 1233 } 1234 1235 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1236 rcd->rcvegrbuf_size * 1237 num_subctxts); 1238 if (!rcd->subctxt_rcvegrbuf) { 1239 ret = -ENOMEM; 1240 goto bail_rhdr; 1241 } 1242 1243 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1244 rcd->subctxt_id = uinfo->spu_subctxt_id; 1245 rcd->active_slaves = 1; 1246 rcd->redirect_seq_cnt = 1; 1247 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1248 goto bail; 1249 1250 bail_rhdr: 1251 vfree(rcd->subctxt_rcvhdr_base); 1252 bail_ureg: 1253 vfree(rcd->subctxt_uregbase); 1254 rcd->subctxt_uregbase = NULL; 1255 bail: 1256 return ret; 1257 } 1258 1259 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1260 struct file *fp, const struct qib_user_info *uinfo) 1261 { 1262 struct qib_devdata *dd = ppd->dd; 1263 struct qib_ctxtdata *rcd; 1264 void *ptmp = NULL; 1265 int ret; 1266 1267 rcd = qib_create_ctxtdata(ppd, ctxt); 1268 1269 /* 1270 * Allocate memory for use in qib_tid_update() at open to 1271 * reduce cost of expected send setup per message segment 1272 */ 1273 if (rcd) 1274 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1275 dd->rcvtidcnt * sizeof(struct page **), 1276 GFP_KERNEL); 1277 1278 if (!rcd || !ptmp) { 1279 qib_dev_err(dd, 1280 "Unable to allocate ctxtdata memory, failing open\n"); 1281 ret = -ENOMEM; 1282 goto bailerr; 1283 } 1284 rcd->userversion = uinfo->spu_userversion; 1285 ret = init_subctxts(dd, rcd, uinfo); 1286 if (ret) 1287 goto bailerr; 1288 rcd->tid_pg_list = ptmp; 1289 rcd->pid = current->pid; 1290 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1291 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1292 ctxt_fp(fp) = rcd; 1293 qib_stats.sps_ctxts++; 1294 dd->freectxts--; 1295 ret = 0; 1296 goto bail; 1297 1298 bailerr: 1299 dd->rcd[ctxt] = NULL; 1300 kfree(rcd); 1301 kfree(ptmp); 1302 bail: 1303 return ret; 1304 } 1305 1306 static inline int usable(struct qib_pportdata *ppd) 1307 { 1308 struct qib_devdata *dd = ppd->dd; 1309 1310 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1311 (ppd->lflags & QIBL_LINKACTIVE); 1312 } 1313 1314 /* 1315 * Select a context on the given device, either using a requested port 1316 * or the port based on the context number. 1317 */ 1318 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1319 const struct qib_user_info *uinfo) 1320 { 1321 struct qib_pportdata *ppd = NULL; 1322 int ret, ctxt; 1323 1324 if (port) { 1325 if (!usable(dd->pport + port - 1)) { 1326 ret = -ENETDOWN; 1327 goto done; 1328 } else 1329 ppd = dd->pport + port - 1; 1330 } 1331 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1332 ctxt++) 1333 ; 1334 if (ctxt == dd->cfgctxts) { 1335 ret = -EBUSY; 1336 goto done; 1337 } 1338 if (!ppd) { 1339 u32 pidx = ctxt % dd->num_pports; 1340 if (usable(dd->pport + pidx)) 1341 ppd = dd->pport + pidx; 1342 else { 1343 for (pidx = 0; pidx < dd->num_pports && !ppd; 1344 pidx++) 1345 if (usable(dd->pport + pidx)) 1346 ppd = dd->pport + pidx; 1347 } 1348 } 1349 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1350 done: 1351 return ret; 1352 } 1353 1354 static int find_free_ctxt(int unit, struct file *fp, 1355 const struct qib_user_info *uinfo) 1356 { 1357 struct qib_devdata *dd = qib_lookup(unit); 1358 int ret; 1359 1360 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1361 ret = -ENODEV; 1362 else 1363 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1364 1365 return ret; 1366 } 1367 1368 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1369 unsigned alg) 1370 { 1371 struct qib_devdata *udd = NULL; 1372 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1373 u32 port = uinfo->spu_port, ctxt; 1374 1375 devmax = qib_count_units(&npresent, &nup); 1376 if (!npresent) { 1377 ret = -ENXIO; 1378 goto done; 1379 } 1380 if (nup == 0) { 1381 ret = -ENETDOWN; 1382 goto done; 1383 } 1384 1385 if (alg == QIB_PORT_ALG_ACROSS) { 1386 unsigned inuse = ~0U; 1387 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1388 for (ndev = 0; ndev < devmax; ndev++) { 1389 struct qib_devdata *dd = qib_lookup(ndev); 1390 unsigned cused = 0, cfree = 0, pusable = 0; 1391 if (!dd) 1392 continue; 1393 if (port && port <= dd->num_pports && 1394 usable(dd->pport + port - 1)) 1395 pusable = 1; 1396 else 1397 for (i = 0; i < dd->num_pports; i++) 1398 if (usable(dd->pport + i)) 1399 pusable++; 1400 if (!pusable) 1401 continue; 1402 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1403 ctxt++) 1404 if (dd->rcd[ctxt]) 1405 cused++; 1406 else 1407 cfree++; 1408 if (pusable && cfree && cused < inuse) { 1409 udd = dd; 1410 inuse = cused; 1411 } 1412 } 1413 if (udd) { 1414 ret = choose_port_ctxt(fp, udd, port, uinfo); 1415 goto done; 1416 } 1417 } else { 1418 for (ndev = 0; ndev < devmax; ndev++) { 1419 struct qib_devdata *dd = qib_lookup(ndev); 1420 if (dd) { 1421 ret = choose_port_ctxt(fp, dd, port, uinfo); 1422 if (!ret) 1423 goto done; 1424 if (ret == -EBUSY) 1425 dusable++; 1426 } 1427 } 1428 } 1429 ret = dusable ? -EBUSY : -ENETDOWN; 1430 1431 done: 1432 return ret; 1433 } 1434 1435 static int find_shared_ctxt(struct file *fp, 1436 const struct qib_user_info *uinfo) 1437 { 1438 int devmax, ndev, i; 1439 int ret = 0; 1440 1441 devmax = qib_count_units(NULL, NULL); 1442 1443 for (ndev = 0; ndev < devmax; ndev++) { 1444 struct qib_devdata *dd = qib_lookup(ndev); 1445 1446 /* device portion of usable() */ 1447 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1448 continue; 1449 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1450 struct qib_ctxtdata *rcd = dd->rcd[i]; 1451 1452 /* Skip ctxts which are not yet open */ 1453 if (!rcd || !rcd->cnt) 1454 continue; 1455 /* Skip ctxt if it doesn't match the requested one */ 1456 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1457 continue; 1458 /* Verify the sharing process matches the master */ 1459 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1460 rcd->userversion != uinfo->spu_userversion || 1461 rcd->cnt >= rcd->subctxt_cnt) { 1462 ret = -EINVAL; 1463 goto done; 1464 } 1465 ctxt_fp(fp) = rcd; 1466 subctxt_fp(fp) = rcd->cnt++; 1467 rcd->subpid[subctxt_fp(fp)] = current->pid; 1468 tidcursor_fp(fp) = 0; 1469 rcd->active_slaves |= 1 << subctxt_fp(fp); 1470 ret = 1; 1471 goto done; 1472 } 1473 } 1474 1475 done: 1476 return ret; 1477 } 1478 1479 static int qib_open(struct inode *in, struct file *fp) 1480 { 1481 /* The real work is performed later in qib_assign_ctxt() */ 1482 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1483 if (fp->private_data) /* no cpu affinity by default */ 1484 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1485 return fp->private_data ? 0 : -ENOMEM; 1486 } 1487 1488 /* 1489 * Get ctxt early, so can set affinity prior to memory allocation. 1490 */ 1491 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1492 { 1493 int ret; 1494 int i_minor; 1495 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1496 1497 /* Check to be sure we haven't already initialized this file */ 1498 if (ctxt_fp(fp)) { 1499 ret = -EINVAL; 1500 goto done; 1501 } 1502 1503 /* for now, if major version is different, bail */ 1504 swmajor = uinfo->spu_userversion >> 16; 1505 if (swmajor != QIB_USER_SWMAJOR) { 1506 ret = -ENODEV; 1507 goto done; 1508 } 1509 1510 swminor = uinfo->spu_userversion & 0xffff; 1511 1512 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1513 alg = uinfo->spu_port_alg; 1514 1515 mutex_lock(&qib_mutex); 1516 1517 if (qib_compatible_subctxts(swmajor, swminor) && 1518 uinfo->spu_subctxt_cnt) { 1519 ret = find_shared_ctxt(fp, uinfo); 1520 if (ret) { 1521 if (ret > 0) 1522 ret = 0; 1523 goto done_chk_sdma; 1524 } 1525 } 1526 1527 i_minor = iminor(fp->f_dentry->d_inode) - QIB_USER_MINOR_BASE; 1528 if (i_minor) 1529 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1530 else 1531 ret = get_a_ctxt(fp, uinfo, alg); 1532 1533 done_chk_sdma: 1534 if (!ret) { 1535 struct qib_filedata *fd = fp->private_data; 1536 const struct qib_ctxtdata *rcd = fd->rcd; 1537 const struct qib_devdata *dd = rcd->dd; 1538 unsigned int weight; 1539 1540 if (dd->flags & QIB_HAS_SEND_DMA) { 1541 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1542 dd->unit, 1543 rcd->ctxt, 1544 fd->subctxt); 1545 if (!fd->pq) 1546 ret = -ENOMEM; 1547 } 1548 1549 /* 1550 * If process has NOT already set it's affinity, select and 1551 * reserve a processor for it, as a rendezvous for all 1552 * users of the driver. If they don't actually later 1553 * set affinity to this cpu, or set it to some other cpu, 1554 * it just means that sooner or later we don't recommend 1555 * a cpu, and let the scheduler do it's best. 1556 */ 1557 weight = cpumask_weight(tsk_cpus_allowed(current)); 1558 if (!ret && weight >= qib_cpulist_count) { 1559 int cpu; 1560 cpu = find_first_zero_bit(qib_cpulist, 1561 qib_cpulist_count); 1562 if (cpu != qib_cpulist_count) { 1563 __set_bit(cpu, qib_cpulist); 1564 fd->rec_cpu_num = cpu; 1565 } 1566 } else if (weight == 1 && 1567 test_bit(cpumask_first(tsk_cpus_allowed(current)), 1568 qib_cpulist)) 1569 qib_devinfo(dd->pcidev, 1570 "%s PID %u affinity set to cpu %d; already allocated\n", 1571 current->comm, current->pid, 1572 cpumask_first(tsk_cpus_allowed(current))); 1573 } 1574 1575 mutex_unlock(&qib_mutex); 1576 1577 done: 1578 return ret; 1579 } 1580 1581 1582 static int qib_do_user_init(struct file *fp, 1583 const struct qib_user_info *uinfo) 1584 { 1585 int ret; 1586 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1587 struct qib_devdata *dd; 1588 unsigned uctxt; 1589 1590 /* Subctxts don't need to initialize anything since master did it. */ 1591 if (subctxt_fp(fp)) { 1592 ret = wait_event_interruptible(rcd->wait, 1593 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1594 goto bail; 1595 } 1596 1597 dd = rcd->dd; 1598 1599 /* some ctxts may get extra buffers, calculate that here */ 1600 uctxt = rcd->ctxt - dd->first_user_ctxt; 1601 if (uctxt < dd->ctxts_extrabuf) { 1602 rcd->piocnt = dd->pbufsctxt + 1; 1603 rcd->pio_base = rcd->piocnt * uctxt; 1604 } else { 1605 rcd->piocnt = dd->pbufsctxt; 1606 rcd->pio_base = rcd->piocnt * uctxt + 1607 dd->ctxts_extrabuf; 1608 } 1609 1610 /* 1611 * All user buffers are 2KB buffers. If we ever support 1612 * giving 4KB buffers to user processes, this will need some 1613 * work. Can't use piobufbase directly, because it has 1614 * both 2K and 4K buffer base values. So check and handle. 1615 */ 1616 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1617 if (rcd->pio_base >= dd->piobcnt2k) { 1618 qib_dev_err(dd, 1619 "%u:ctxt%u: no 2KB buffers available\n", 1620 dd->unit, rcd->ctxt); 1621 ret = -ENOBUFS; 1622 goto bail; 1623 } 1624 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1625 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1626 rcd->ctxt, rcd->piocnt); 1627 } 1628 1629 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1630 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1631 TXCHK_CHG_TYPE_USER, rcd); 1632 /* 1633 * try to ensure that processes start up with consistent avail update 1634 * for their own range, at least. If system very quiet, it might 1635 * have the in-memory copy out of date at startup for this range of 1636 * buffers, when a context gets re-used. Do after the chg_pioavail 1637 * and before the rest of setup, so it's "almost certain" the dma 1638 * will have occurred (can't 100% guarantee, but should be many 1639 * decimals of 9s, with this ordering), given how much else happens 1640 * after this. 1641 */ 1642 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1643 1644 /* 1645 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1646 * array for time being. If rcd->ctxt > chip-supported, 1647 * we need to do extra stuff here to handle by handling overflow 1648 * through ctxt 0, someday 1649 */ 1650 ret = qib_create_rcvhdrq(dd, rcd); 1651 if (!ret) 1652 ret = qib_setup_eagerbufs(rcd); 1653 if (ret) 1654 goto bail_pio; 1655 1656 rcd->tidcursor = 0; /* start at beginning after open */ 1657 1658 /* initialize poll variables... */ 1659 rcd->urgent = 0; 1660 rcd->urgent_poll = 0; 1661 1662 /* 1663 * Now enable the ctxt for receive. 1664 * For chips that are set to DMA the tail register to memory 1665 * when they change (and when the update bit transitions from 1666 * 0 to 1. So for those chips, we turn it off and then back on. 1667 * This will (very briefly) affect any other open ctxts, but the 1668 * duration is very short, and therefore isn't an issue. We 1669 * explicitly set the in-memory tail copy to 0 beforehand, so we 1670 * don't have to wait to be sure the DMA update has happened 1671 * (chip resets head/tail to 0 on transition to enable). 1672 */ 1673 if (rcd->rcvhdrtail_kvaddr) 1674 qib_clear_rcvhdrtail(rcd); 1675 1676 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1677 rcd->ctxt); 1678 1679 /* Notify any waiting slaves */ 1680 if (rcd->subctxt_cnt) { 1681 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1682 wake_up(&rcd->wait); 1683 } 1684 return 0; 1685 1686 bail_pio: 1687 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1688 TXCHK_CHG_TYPE_KERN, rcd); 1689 bail: 1690 return ret; 1691 } 1692 1693 /** 1694 * unlock_exptid - unlock any expected TID entries context still had in use 1695 * @rcd: ctxt 1696 * 1697 * We don't actually update the chip here, because we do a bulk update 1698 * below, using f_clear_tids. 1699 */ 1700 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1701 { 1702 struct qib_devdata *dd = rcd->dd; 1703 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1704 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1705 1706 for (i = ctxt_tidbase; i < maxtid; i++) { 1707 struct page *p = dd->pageshadow[i]; 1708 dma_addr_t phys; 1709 1710 if (!p) 1711 continue; 1712 1713 phys = dd->physshadow[i]; 1714 dd->physshadow[i] = dd->tidinvalid; 1715 dd->pageshadow[i] = NULL; 1716 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1717 PCI_DMA_FROMDEVICE); 1718 qib_release_user_pages(&p, 1); 1719 cnt++; 1720 } 1721 } 1722 1723 static int qib_close(struct inode *in, struct file *fp) 1724 { 1725 int ret = 0; 1726 struct qib_filedata *fd; 1727 struct qib_ctxtdata *rcd; 1728 struct qib_devdata *dd; 1729 unsigned long flags; 1730 unsigned ctxt; 1731 pid_t pid; 1732 1733 mutex_lock(&qib_mutex); 1734 1735 fd = fp->private_data; 1736 fp->private_data = NULL; 1737 rcd = fd->rcd; 1738 if (!rcd) { 1739 mutex_unlock(&qib_mutex); 1740 goto bail; 1741 } 1742 1743 dd = rcd->dd; 1744 1745 /* ensure all pio buffer writes in progress are flushed */ 1746 qib_flush_wc(); 1747 1748 /* drain user sdma queue */ 1749 if (fd->pq) { 1750 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1751 qib_user_sdma_queue_destroy(fd->pq); 1752 } 1753 1754 if (fd->rec_cpu_num != -1) 1755 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1756 1757 if (--rcd->cnt) { 1758 /* 1759 * XXX If the master closes the context before the slave(s), 1760 * revoke the mmap for the eager receive queue so 1761 * the slave(s) don't wait for receive data forever. 1762 */ 1763 rcd->active_slaves &= ~(1 << fd->subctxt); 1764 rcd->subpid[fd->subctxt] = 0; 1765 mutex_unlock(&qib_mutex); 1766 goto bail; 1767 } 1768 1769 /* early; no interrupt users after this */ 1770 spin_lock_irqsave(&dd->uctxt_lock, flags); 1771 ctxt = rcd->ctxt; 1772 dd->rcd[ctxt] = NULL; 1773 pid = rcd->pid; 1774 rcd->pid = 0; 1775 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1776 1777 if (rcd->rcvwait_to || rcd->piowait_to || 1778 rcd->rcvnowait || rcd->pionowait) { 1779 rcd->rcvwait_to = 0; 1780 rcd->piowait_to = 0; 1781 rcd->rcvnowait = 0; 1782 rcd->pionowait = 0; 1783 } 1784 if (rcd->flag) 1785 rcd->flag = 0; 1786 1787 if (dd->kregbase) { 1788 /* atomically clear receive enable ctxt and intr avail. */ 1789 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1790 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1791 1792 /* clean up the pkeys for this ctxt user */ 1793 qib_clean_part_key(rcd, dd); 1794 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1795 qib_chg_pioavailkernel(dd, rcd->pio_base, 1796 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1797 1798 dd->f_clear_tids(dd, rcd); 1799 1800 if (dd->pageshadow) 1801 unlock_expected_tids(rcd); 1802 qib_stats.sps_ctxts--; 1803 dd->freectxts++; 1804 } 1805 1806 mutex_unlock(&qib_mutex); 1807 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1808 1809 bail: 1810 kfree(fd); 1811 return ret; 1812 } 1813 1814 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1815 { 1816 struct qib_ctxt_info info; 1817 int ret; 1818 size_t sz; 1819 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1820 struct qib_filedata *fd; 1821 1822 fd = fp->private_data; 1823 1824 info.num_active = qib_count_active_units(); 1825 info.unit = rcd->dd->unit; 1826 info.port = rcd->ppd->port; 1827 info.ctxt = rcd->ctxt; 1828 info.subctxt = subctxt_fp(fp); 1829 /* Number of user ctxts available for this device. */ 1830 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1831 info.num_subctxts = rcd->subctxt_cnt; 1832 info.rec_cpu = fd->rec_cpu_num; 1833 sz = sizeof(info); 1834 1835 if (copy_to_user(uinfo, &info, sz)) { 1836 ret = -EFAULT; 1837 goto bail; 1838 } 1839 ret = 0; 1840 1841 bail: 1842 return ret; 1843 } 1844 1845 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1846 u32 __user *inflightp) 1847 { 1848 const u32 val = qib_user_sdma_inflight_counter(pq); 1849 1850 if (put_user(val, inflightp)) 1851 return -EFAULT; 1852 1853 return 0; 1854 } 1855 1856 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1857 struct qib_user_sdma_queue *pq, 1858 u32 __user *completep) 1859 { 1860 u32 val; 1861 int err; 1862 1863 if (!pq) 1864 return -EINVAL; 1865 1866 err = qib_user_sdma_make_progress(ppd, pq); 1867 if (err < 0) 1868 return err; 1869 1870 val = qib_user_sdma_complete_counter(pq); 1871 if (put_user(val, completep)) 1872 return -EFAULT; 1873 1874 return 0; 1875 } 1876 1877 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1878 { 1879 int ret = 0; 1880 1881 if (!usable(rcd->ppd)) { 1882 int i; 1883 /* 1884 * if link is down, or otherwise not usable, delay 1885 * the caller up to 30 seconds, so we don't thrash 1886 * in trying to get the chip back to ACTIVE, and 1887 * set flag so they make the call again. 1888 */ 1889 if (rcd->user_event_mask) { 1890 /* 1891 * subctxt_cnt is 0 if not shared, so do base 1892 * separately, first, then remaining subctxt, if any 1893 */ 1894 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1895 &rcd->user_event_mask[0]); 1896 for (i = 1; i < rcd->subctxt_cnt; i++) 1897 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1898 &rcd->user_event_mask[i]); 1899 } 1900 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1901 msleep(100); 1902 ret = -ENETDOWN; 1903 } 1904 return ret; 1905 } 1906 1907 /* 1908 * Find all user contexts in use, and set the specified bit in their 1909 * event mask. 1910 * See also find_ctxt() for a similar use, that is specific to send buffers. 1911 */ 1912 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 1913 { 1914 struct qib_ctxtdata *rcd; 1915 unsigned ctxt; 1916 int ret = 0; 1917 unsigned long flags; 1918 1919 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 1920 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 1921 ctxt++) { 1922 rcd = ppd->dd->rcd[ctxt]; 1923 if (!rcd) 1924 continue; 1925 if (rcd->user_event_mask) { 1926 int i; 1927 /* 1928 * subctxt_cnt is 0 if not shared, so do base 1929 * separately, first, then remaining subctxt, if any 1930 */ 1931 set_bit(evtbit, &rcd->user_event_mask[0]); 1932 for (i = 1; i < rcd->subctxt_cnt; i++) 1933 set_bit(evtbit, &rcd->user_event_mask[i]); 1934 } 1935 ret = 1; 1936 break; 1937 } 1938 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 1939 1940 return ret; 1941 } 1942 1943 /* 1944 * clear the event notifier events for this context. 1945 * For the DISARM_BUFS case, we also take action (this obsoletes 1946 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 1947 * compatibility. 1948 * Other bits don't currently require actions, just atomically clear. 1949 * User process then performs actions appropriate to bit having been 1950 * set, if desired, and checks again in future. 1951 */ 1952 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 1953 unsigned long events) 1954 { 1955 int ret = 0, i; 1956 1957 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 1958 if (!test_bit(i, &events)) 1959 continue; 1960 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 1961 (void)qib_disarm_piobufs_ifneeded(rcd); 1962 ret = disarm_req_delay(rcd); 1963 } else 1964 clear_bit(i, &rcd->user_event_mask[subctxt]); 1965 } 1966 return ret; 1967 } 1968 1969 static ssize_t qib_write(struct file *fp, const char __user *data, 1970 size_t count, loff_t *off) 1971 { 1972 const struct qib_cmd __user *ucmd; 1973 struct qib_ctxtdata *rcd; 1974 const void __user *src; 1975 size_t consumed, copy = 0; 1976 struct qib_cmd cmd; 1977 ssize_t ret = 0; 1978 void *dest; 1979 1980 if (count < sizeof(cmd.type)) { 1981 ret = -EINVAL; 1982 goto bail; 1983 } 1984 1985 ucmd = (const struct qib_cmd __user *) data; 1986 1987 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 1988 ret = -EFAULT; 1989 goto bail; 1990 } 1991 1992 consumed = sizeof(cmd.type); 1993 1994 switch (cmd.type) { 1995 case QIB_CMD_ASSIGN_CTXT: 1996 case QIB_CMD_USER_INIT: 1997 copy = sizeof(cmd.cmd.user_info); 1998 dest = &cmd.cmd.user_info; 1999 src = &ucmd->cmd.user_info; 2000 break; 2001 2002 case QIB_CMD_RECV_CTRL: 2003 copy = sizeof(cmd.cmd.recv_ctrl); 2004 dest = &cmd.cmd.recv_ctrl; 2005 src = &ucmd->cmd.recv_ctrl; 2006 break; 2007 2008 case QIB_CMD_CTXT_INFO: 2009 copy = sizeof(cmd.cmd.ctxt_info); 2010 dest = &cmd.cmd.ctxt_info; 2011 src = &ucmd->cmd.ctxt_info; 2012 break; 2013 2014 case QIB_CMD_TID_UPDATE: 2015 case QIB_CMD_TID_FREE: 2016 copy = sizeof(cmd.cmd.tid_info); 2017 dest = &cmd.cmd.tid_info; 2018 src = &ucmd->cmd.tid_info; 2019 break; 2020 2021 case QIB_CMD_SET_PART_KEY: 2022 copy = sizeof(cmd.cmd.part_key); 2023 dest = &cmd.cmd.part_key; 2024 src = &ucmd->cmd.part_key; 2025 break; 2026 2027 case QIB_CMD_DISARM_BUFS: 2028 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2029 copy = 0; 2030 src = NULL; 2031 dest = NULL; 2032 break; 2033 2034 case QIB_CMD_POLL_TYPE: 2035 copy = sizeof(cmd.cmd.poll_type); 2036 dest = &cmd.cmd.poll_type; 2037 src = &ucmd->cmd.poll_type; 2038 break; 2039 2040 case QIB_CMD_ARMLAUNCH_CTRL: 2041 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2042 dest = &cmd.cmd.armlaunch_ctrl; 2043 src = &ucmd->cmd.armlaunch_ctrl; 2044 break; 2045 2046 case QIB_CMD_SDMA_INFLIGHT: 2047 copy = sizeof(cmd.cmd.sdma_inflight); 2048 dest = &cmd.cmd.sdma_inflight; 2049 src = &ucmd->cmd.sdma_inflight; 2050 break; 2051 2052 case QIB_CMD_SDMA_COMPLETE: 2053 copy = sizeof(cmd.cmd.sdma_complete); 2054 dest = &cmd.cmd.sdma_complete; 2055 src = &ucmd->cmd.sdma_complete; 2056 break; 2057 2058 case QIB_CMD_ACK_EVENT: 2059 copy = sizeof(cmd.cmd.event_mask); 2060 dest = &cmd.cmd.event_mask; 2061 src = &ucmd->cmd.event_mask; 2062 break; 2063 2064 default: 2065 ret = -EINVAL; 2066 goto bail; 2067 } 2068 2069 if (copy) { 2070 if ((count - consumed) < copy) { 2071 ret = -EINVAL; 2072 goto bail; 2073 } 2074 if (copy_from_user(dest, src, copy)) { 2075 ret = -EFAULT; 2076 goto bail; 2077 } 2078 consumed += copy; 2079 } 2080 2081 rcd = ctxt_fp(fp); 2082 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2083 ret = -EINVAL; 2084 goto bail; 2085 } 2086 2087 switch (cmd.type) { 2088 case QIB_CMD_ASSIGN_CTXT: 2089 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2090 if (ret) 2091 goto bail; 2092 break; 2093 2094 case QIB_CMD_USER_INIT: 2095 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2096 if (ret) 2097 goto bail; 2098 ret = qib_get_base_info(fp, (void __user *) (unsigned long) 2099 cmd.cmd.user_info.spu_base_info, 2100 cmd.cmd.user_info.spu_base_info_size); 2101 break; 2102 2103 case QIB_CMD_RECV_CTRL: 2104 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2105 break; 2106 2107 case QIB_CMD_CTXT_INFO: 2108 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2109 (unsigned long) cmd.cmd.ctxt_info); 2110 break; 2111 2112 case QIB_CMD_TID_UPDATE: 2113 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2114 break; 2115 2116 case QIB_CMD_TID_FREE: 2117 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2118 break; 2119 2120 case QIB_CMD_SET_PART_KEY: 2121 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2122 break; 2123 2124 case QIB_CMD_DISARM_BUFS: 2125 (void)qib_disarm_piobufs_ifneeded(rcd); 2126 ret = disarm_req_delay(rcd); 2127 break; 2128 2129 case QIB_CMD_PIOAVAILUPD: 2130 qib_force_pio_avail_update(rcd->dd); 2131 break; 2132 2133 case QIB_CMD_POLL_TYPE: 2134 rcd->poll_type = cmd.cmd.poll_type; 2135 break; 2136 2137 case QIB_CMD_ARMLAUNCH_CTRL: 2138 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2139 break; 2140 2141 case QIB_CMD_SDMA_INFLIGHT: 2142 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2143 (u32 __user *) (unsigned long) 2144 cmd.cmd.sdma_inflight); 2145 break; 2146 2147 case QIB_CMD_SDMA_COMPLETE: 2148 ret = qib_sdma_get_complete(rcd->ppd, 2149 user_sdma_queue_fp(fp), 2150 (u32 __user *) (unsigned long) 2151 cmd.cmd.sdma_complete); 2152 break; 2153 2154 case QIB_CMD_ACK_EVENT: 2155 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2156 cmd.cmd.event_mask); 2157 break; 2158 } 2159 2160 if (ret >= 0) 2161 ret = consumed; 2162 2163 bail: 2164 return ret; 2165 } 2166 2167 static ssize_t qib_aio_write(struct kiocb *iocb, const struct iovec *iov, 2168 unsigned long dim, loff_t off) 2169 { 2170 struct qib_filedata *fp = iocb->ki_filp->private_data; 2171 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2172 struct qib_user_sdma_queue *pq = fp->pq; 2173 2174 if (!dim || !pq) 2175 return -EINVAL; 2176 2177 return qib_user_sdma_writev(rcd, pq, iov, dim); 2178 } 2179 2180 static struct class *qib_class; 2181 static dev_t qib_dev; 2182 2183 int qib_cdev_init(int minor, const char *name, 2184 const struct file_operations *fops, 2185 struct cdev **cdevp, struct device **devp) 2186 { 2187 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2188 struct cdev *cdev; 2189 struct device *device = NULL; 2190 int ret; 2191 2192 cdev = cdev_alloc(); 2193 if (!cdev) { 2194 pr_err("Could not allocate cdev for minor %d, %s\n", 2195 minor, name); 2196 ret = -ENOMEM; 2197 goto done; 2198 } 2199 2200 cdev->owner = THIS_MODULE; 2201 cdev->ops = fops; 2202 kobject_set_name(&cdev->kobj, name); 2203 2204 ret = cdev_add(cdev, dev, 1); 2205 if (ret < 0) { 2206 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2207 minor, name, -ret); 2208 goto err_cdev; 2209 } 2210 2211 device = device_create(qib_class, NULL, dev, NULL, name); 2212 if (!IS_ERR(device)) 2213 goto done; 2214 ret = PTR_ERR(device); 2215 device = NULL; 2216 pr_err("Could not create device for minor %d, %s (err %d)\n", 2217 minor, name, -ret); 2218 err_cdev: 2219 cdev_del(cdev); 2220 cdev = NULL; 2221 done: 2222 *cdevp = cdev; 2223 *devp = device; 2224 return ret; 2225 } 2226 2227 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2228 { 2229 struct device *device = *devp; 2230 2231 if (device) { 2232 device_unregister(device); 2233 *devp = NULL; 2234 } 2235 2236 if (*cdevp) { 2237 cdev_del(*cdevp); 2238 *cdevp = NULL; 2239 } 2240 } 2241 2242 static struct cdev *wildcard_cdev; 2243 static struct device *wildcard_device; 2244 2245 int __init qib_dev_init(void) 2246 { 2247 int ret; 2248 2249 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2250 if (ret < 0) { 2251 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2252 goto done; 2253 } 2254 2255 qib_class = class_create(THIS_MODULE, "ipath"); 2256 if (IS_ERR(qib_class)) { 2257 ret = PTR_ERR(qib_class); 2258 pr_err("Could not create device class (err %d)\n", -ret); 2259 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2260 } 2261 2262 done: 2263 return ret; 2264 } 2265 2266 void qib_dev_cleanup(void) 2267 { 2268 if (qib_class) { 2269 class_destroy(qib_class); 2270 qib_class = NULL; 2271 } 2272 2273 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2274 } 2275 2276 static atomic_t user_count = ATOMIC_INIT(0); 2277 2278 static void qib_user_remove(struct qib_devdata *dd) 2279 { 2280 if (atomic_dec_return(&user_count) == 0) 2281 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2282 2283 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2284 } 2285 2286 static int qib_user_add(struct qib_devdata *dd) 2287 { 2288 char name[10]; 2289 int ret; 2290 2291 if (atomic_inc_return(&user_count) == 1) { 2292 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2293 &wildcard_cdev, &wildcard_device); 2294 if (ret) 2295 goto done; 2296 } 2297 2298 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2299 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2300 &dd->user_cdev, &dd->user_device); 2301 if (ret) 2302 qib_user_remove(dd); 2303 done: 2304 return ret; 2305 } 2306 2307 /* 2308 * Create per-unit files in /dev 2309 */ 2310 int qib_device_create(struct qib_devdata *dd) 2311 { 2312 int r, ret; 2313 2314 r = qib_user_add(dd); 2315 ret = qib_diag_add(dd); 2316 if (r && !ret) 2317 ret = r; 2318 return ret; 2319 } 2320 2321 /* 2322 * Remove per-unit files in /dev 2323 * void, core kernel returns no errors for this stuff 2324 */ 2325 void qib_device_remove(struct qib_devdata *dd) 2326 { 2327 qib_user_remove(dd); 2328 qib_diag_remove(dd); 2329 } 2330