1 /* 2 * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. 3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. 4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/pci.h> 36 #include <linux/poll.h> 37 #include <linux/cdev.h> 38 #include <linux/swap.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/io.h> 42 #include <linux/jiffies.h> 43 #include <asm/pgtable.h> 44 #include <linux/delay.h> 45 #include <linux/export.h> 46 #include <linux/uio.h> 47 48 #include <rdma/ib.h> 49 50 #include "qib.h" 51 #include "qib_common.h" 52 #include "qib_user_sdma.h" 53 54 #undef pr_fmt 55 #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt 56 57 static int qib_open(struct inode *, struct file *); 58 static int qib_close(struct inode *, struct file *); 59 static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); 60 static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *); 61 static unsigned int qib_poll(struct file *, struct poll_table_struct *); 62 static int qib_mmapf(struct file *, struct vm_area_struct *); 63 64 /* 65 * This is really, really weird shit - write() and writev() here 66 * have completely unrelated semantics. Sucky userland ABI, 67 * film at 11. 68 */ 69 static const struct file_operations qib_file_ops = { 70 .owner = THIS_MODULE, 71 .write = qib_write, 72 .write_iter = qib_write_iter, 73 .open = qib_open, 74 .release = qib_close, 75 .poll = qib_poll, 76 .mmap = qib_mmapf, 77 .llseek = noop_llseek, 78 }; 79 80 /* 81 * Convert kernel virtual addresses to physical addresses so they don't 82 * potentially conflict with the chip addresses used as mmap offsets. 83 * It doesn't really matter what mmap offset we use as long as we can 84 * interpret it correctly. 85 */ 86 static u64 cvt_kvaddr(void *p) 87 { 88 struct page *page; 89 u64 paddr = 0; 90 91 page = vmalloc_to_page(p); 92 if (page) 93 paddr = page_to_pfn(page) << PAGE_SHIFT; 94 95 return paddr; 96 } 97 98 static int qib_get_base_info(struct file *fp, void __user *ubase, 99 size_t ubase_size) 100 { 101 struct qib_ctxtdata *rcd = ctxt_fp(fp); 102 int ret = 0; 103 struct qib_base_info *kinfo = NULL; 104 struct qib_devdata *dd = rcd->dd; 105 struct qib_pportdata *ppd = rcd->ppd; 106 unsigned subctxt_cnt; 107 int shared, master; 108 size_t sz; 109 110 subctxt_cnt = rcd->subctxt_cnt; 111 if (!subctxt_cnt) { 112 shared = 0; 113 master = 0; 114 subctxt_cnt = 1; 115 } else { 116 shared = 1; 117 master = !subctxt_fp(fp); 118 } 119 120 sz = sizeof(*kinfo); 121 /* If context sharing is not requested, allow the old size structure */ 122 if (!shared) 123 sz -= 7 * sizeof(u64); 124 if (ubase_size < sz) { 125 ret = -EINVAL; 126 goto bail; 127 } 128 129 kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); 130 if (kinfo == NULL) { 131 ret = -ENOMEM; 132 goto bail; 133 } 134 135 ret = dd->f_get_base_info(rcd, kinfo); 136 if (ret < 0) 137 goto bail; 138 139 kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; 140 kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; 141 kinfo->spi_tidegrcnt = rcd->rcvegrcnt; 142 kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; 143 /* 144 * have to mmap whole thing 145 */ 146 kinfo->spi_rcv_egrbuftotlen = 147 rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 148 kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; 149 kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / 150 rcd->rcvegrbuf_chunks; 151 kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; 152 if (master) 153 kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; 154 /* 155 * for this use, may be cfgctxts summed over all chips that 156 * are are configured and present 157 */ 158 kinfo->spi_nctxts = dd->cfgctxts; 159 /* unit (chip/board) our context is on */ 160 kinfo->spi_unit = dd->unit; 161 kinfo->spi_port = ppd->port; 162 /* for now, only a single page */ 163 kinfo->spi_tid_maxsize = PAGE_SIZE; 164 165 /* 166 * Doing this per context, and based on the skip value, etc. This has 167 * to be the actual buffer size, since the protocol code treats it 168 * as an array. 169 * 170 * These have to be set to user addresses in the user code via mmap. 171 * These values are used on return to user code for the mmap target 172 * addresses only. For 32 bit, same 44 bit address problem, so use 173 * the physical address, not virtual. Before 2.6.11, using the 174 * page_address() macro worked, but in 2.6.11, even that returns the 175 * full 64 bit address (upper bits all 1's). So far, using the 176 * physical addresses (or chip offsets, for chip mapping) works, but 177 * no doubt some future kernel release will change that, and we'll be 178 * on to yet another method of dealing with this. 179 * Normally only one of rcvhdr_tailaddr or rhf_offset is useful 180 * since the chips with non-zero rhf_offset don't normally 181 * enable tail register updates to host memory, but for testing, 182 * both can be enabled and used. 183 */ 184 kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; 185 kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; 186 kinfo->spi_rhf_offset = dd->rhf_offset; 187 kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; 188 kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; 189 /* setup per-unit (not port) status area for user programs */ 190 kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + 191 (char *) ppd->statusp - 192 (char *) dd->pioavailregs_dma; 193 kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; 194 if (!shared) { 195 kinfo->spi_piocnt = rcd->piocnt; 196 kinfo->spi_piobufbase = (u64) rcd->piobufs; 197 kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); 198 } else if (master) { 199 kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + 200 (rcd->piocnt % subctxt_cnt); 201 /* Master's PIO buffers are after all the slave's */ 202 kinfo->spi_piobufbase = (u64) rcd->piobufs + 203 dd->palign * 204 (rcd->piocnt - kinfo->spi_piocnt); 205 } else { 206 unsigned slave = subctxt_fp(fp) - 1; 207 208 kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; 209 kinfo->spi_piobufbase = (u64) rcd->piobufs + 210 dd->palign * kinfo->spi_piocnt * slave; 211 } 212 213 if (shared) { 214 kinfo->spi_sendbuf_status = 215 cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); 216 /* only spi_subctxt_* fields should be set in this block! */ 217 kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); 218 219 kinfo->spi_subctxt_rcvegrbuf = 220 cvt_kvaddr(rcd->subctxt_rcvegrbuf); 221 kinfo->spi_subctxt_rcvhdr_base = 222 cvt_kvaddr(rcd->subctxt_rcvhdr_base); 223 } 224 225 /* 226 * All user buffers are 2KB buffers. If we ever support 227 * giving 4KB buffers to user processes, this will need some 228 * work. Can't use piobufbase directly, because it has 229 * both 2K and 4K buffer base values. 230 */ 231 kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / 232 dd->palign; 233 kinfo->spi_pioalign = dd->palign; 234 kinfo->spi_qpair = QIB_KD_QP; 235 /* 236 * user mode PIO buffers are always 2KB, even when 4KB can 237 * be received, and sent via the kernel; this is ibmaxlen 238 * for 2K MTU. 239 */ 240 kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); 241 kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ 242 kinfo->spi_ctxt = rcd->ctxt; 243 kinfo->spi_subctxt = subctxt_fp(fp); 244 kinfo->spi_sw_version = QIB_KERN_SWVERSION; 245 kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ 246 kinfo->spi_hw_version = dd->revision; 247 248 if (master) 249 kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; 250 251 sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); 252 if (copy_to_user(ubase, kinfo, sz)) 253 ret = -EFAULT; 254 bail: 255 kfree(kinfo); 256 return ret; 257 } 258 259 /** 260 * qib_tid_update - update a context TID 261 * @rcd: the context 262 * @fp: the qib device file 263 * @ti: the TID information 264 * 265 * The new implementation as of Oct 2004 is that the driver assigns 266 * the tid and returns it to the caller. To reduce search time, we 267 * keep a cursor for each context, walking the shadow tid array to find 268 * one that's not in use. 269 * 270 * For now, if we can't allocate the full list, we fail, although 271 * in the long run, we'll allocate as many as we can, and the 272 * caller will deal with that by trying the remaining pages later. 273 * That means that when we fail, we have to mark the tids as not in 274 * use again, in our shadow copy. 275 * 276 * It's up to the caller to free the tids when they are done. 277 * We'll unlock the pages as they free them. 278 * 279 * Also, right now we are locking one page at a time, but since 280 * the intended use of this routine is for a single group of 281 * virtually contiguous pages, that should change to improve 282 * performance. 283 */ 284 static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, 285 const struct qib_tid_info *ti) 286 { 287 int ret = 0, ntids; 288 u32 tid, ctxttid, cnt, i, tidcnt, tidoff; 289 u16 *tidlist; 290 struct qib_devdata *dd = rcd->dd; 291 u64 physaddr; 292 unsigned long vaddr; 293 u64 __iomem *tidbase; 294 unsigned long tidmap[8]; 295 struct page **pagep = NULL; 296 unsigned subctxt = subctxt_fp(fp); 297 298 if (!dd->pageshadow) { 299 ret = -ENOMEM; 300 goto done; 301 } 302 303 cnt = ti->tidcnt; 304 if (!cnt) { 305 ret = -EFAULT; 306 goto done; 307 } 308 ctxttid = rcd->ctxt * dd->rcvtidcnt; 309 if (!rcd->subctxt_cnt) { 310 tidcnt = dd->rcvtidcnt; 311 tid = rcd->tidcursor; 312 tidoff = 0; 313 } else if (!subctxt) { 314 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 315 (dd->rcvtidcnt % rcd->subctxt_cnt); 316 tidoff = dd->rcvtidcnt - tidcnt; 317 ctxttid += tidoff; 318 tid = tidcursor_fp(fp); 319 } else { 320 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 321 tidoff = tidcnt * (subctxt - 1); 322 ctxttid += tidoff; 323 tid = tidcursor_fp(fp); 324 } 325 if (cnt > tidcnt) { 326 /* make sure it all fits in tid_pg_list */ 327 qib_devinfo(dd->pcidev, 328 "Process tried to allocate %u TIDs, only trying max (%u)\n", 329 cnt, tidcnt); 330 cnt = tidcnt; 331 } 332 pagep = (struct page **) rcd->tid_pg_list; 333 tidlist = (u16 *) &pagep[dd->rcvtidcnt]; 334 pagep += tidoff; 335 tidlist += tidoff; 336 337 memset(tidmap, 0, sizeof(tidmap)); 338 /* before decrement; chip actual # */ 339 ntids = tidcnt; 340 tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + 341 dd->rcvtidbase + 342 ctxttid * sizeof(*tidbase)); 343 344 /* virtual address of first page in transfer */ 345 vaddr = ti->tidvaddr; 346 if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, 347 cnt * PAGE_SIZE)) { 348 ret = -EFAULT; 349 goto done; 350 } 351 ret = qib_get_user_pages(vaddr, cnt, pagep); 352 if (ret) { 353 /* 354 * if (ret == -EBUSY) 355 * We can't continue because the pagep array won't be 356 * initialized. This should never happen, 357 * unless perhaps the user has mpin'ed the pages 358 * themselves. 359 */ 360 qib_devinfo( 361 dd->pcidev, 362 "Failed to lock addr %p, %u pages: errno %d\n", 363 (void *) vaddr, cnt, -ret); 364 goto done; 365 } 366 for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { 367 for (; ntids--; tid++) { 368 if (tid == tidcnt) 369 tid = 0; 370 if (!dd->pageshadow[ctxttid + tid]) 371 break; 372 } 373 if (ntids < 0) { 374 /* 375 * Oops, wrapped all the way through their TIDs, 376 * and didn't have enough free; see comments at 377 * start of routine 378 */ 379 i--; /* last tidlist[i] not filled in */ 380 ret = -ENOMEM; 381 break; 382 } 383 tidlist[i] = tid + tidoff; 384 /* we "know" system pages and TID pages are same size */ 385 dd->pageshadow[ctxttid + tid] = pagep[i]; 386 dd->physshadow[ctxttid + tid] = 387 qib_map_page(dd->pcidev, pagep[i], 0, PAGE_SIZE, 388 PCI_DMA_FROMDEVICE); 389 /* 390 * don't need atomic or it's overhead 391 */ 392 __set_bit(tid, tidmap); 393 physaddr = dd->physshadow[ctxttid + tid]; 394 /* PERFORMANCE: below should almost certainly be cached */ 395 dd->f_put_tid(dd, &tidbase[tid], 396 RCVHQ_RCV_TYPE_EXPECTED, physaddr); 397 /* 398 * don't check this tid in qib_ctxtshadow, since we 399 * just filled it in; start with the next one. 400 */ 401 tid++; 402 } 403 404 if (ret) { 405 u32 limit; 406 cleanup: 407 /* jump here if copy out of updated info failed... */ 408 /* same code that's in qib_free_tid() */ 409 limit = sizeof(tidmap) * BITS_PER_BYTE; 410 if (limit > tidcnt) 411 /* just in case size changes in future */ 412 limit = tidcnt; 413 tid = find_first_bit((const unsigned long *)tidmap, limit); 414 for (; tid < limit; tid++) { 415 if (!test_bit(tid, tidmap)) 416 continue; 417 if (dd->pageshadow[ctxttid + tid]) { 418 dma_addr_t phys; 419 420 phys = dd->physshadow[ctxttid + tid]; 421 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 422 /* PERFORMANCE: below should almost certainly 423 * be cached 424 */ 425 dd->f_put_tid(dd, &tidbase[tid], 426 RCVHQ_RCV_TYPE_EXPECTED, 427 dd->tidinvalid); 428 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 429 PCI_DMA_FROMDEVICE); 430 dd->pageshadow[ctxttid + tid] = NULL; 431 } 432 } 433 qib_release_user_pages(pagep, cnt); 434 } else { 435 /* 436 * Copy the updated array, with qib_tid's filled in, back 437 * to user. Since we did the copy in already, this "should 438 * never fail" If it does, we have to clean up... 439 */ 440 if (copy_to_user((void __user *) 441 (unsigned long) ti->tidlist, 442 tidlist, cnt * sizeof(*tidlist))) { 443 ret = -EFAULT; 444 goto cleanup; 445 } 446 if (copy_to_user((void __user *) (unsigned long) ti->tidmap, 447 tidmap, sizeof(tidmap))) { 448 ret = -EFAULT; 449 goto cleanup; 450 } 451 if (tid == tidcnt) 452 tid = 0; 453 if (!rcd->subctxt_cnt) 454 rcd->tidcursor = tid; 455 else 456 tidcursor_fp(fp) = tid; 457 } 458 459 done: 460 return ret; 461 } 462 463 /** 464 * qib_tid_free - free a context TID 465 * @rcd: the context 466 * @subctxt: the subcontext 467 * @ti: the TID info 468 * 469 * right now we are unlocking one page at a time, but since 470 * the intended use of this routine is for a single group of 471 * virtually contiguous pages, that should change to improve 472 * performance. We check that the TID is in range for this context 473 * but otherwise don't check validity; if user has an error and 474 * frees the wrong tid, it's only their own data that can thereby 475 * be corrupted. We do check that the TID was in use, for sanity 476 * We always use our idea of the saved address, not the address that 477 * they pass in to us. 478 */ 479 static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, 480 const struct qib_tid_info *ti) 481 { 482 int ret = 0; 483 u32 tid, ctxttid, cnt, limit, tidcnt; 484 struct qib_devdata *dd = rcd->dd; 485 u64 __iomem *tidbase; 486 unsigned long tidmap[8]; 487 488 if (!dd->pageshadow) { 489 ret = -ENOMEM; 490 goto done; 491 } 492 493 if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, 494 sizeof(tidmap))) { 495 ret = -EFAULT; 496 goto done; 497 } 498 499 ctxttid = rcd->ctxt * dd->rcvtidcnt; 500 if (!rcd->subctxt_cnt) 501 tidcnt = dd->rcvtidcnt; 502 else if (!subctxt) { 503 tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + 504 (dd->rcvtidcnt % rcd->subctxt_cnt); 505 ctxttid += dd->rcvtidcnt - tidcnt; 506 } else { 507 tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; 508 ctxttid += tidcnt * (subctxt - 1); 509 } 510 tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + 511 dd->rcvtidbase + 512 ctxttid * sizeof(*tidbase)); 513 514 limit = sizeof(tidmap) * BITS_PER_BYTE; 515 if (limit > tidcnt) 516 /* just in case size changes in future */ 517 limit = tidcnt; 518 tid = find_first_bit(tidmap, limit); 519 for (cnt = 0; tid < limit; tid++) { 520 /* 521 * small optimization; if we detect a run of 3 or so without 522 * any set, use find_first_bit again. That's mainly to 523 * accelerate the case where we wrapped, so we have some at 524 * the beginning, and some at the end, and a big gap 525 * in the middle. 526 */ 527 if (!test_bit(tid, tidmap)) 528 continue; 529 cnt++; 530 if (dd->pageshadow[ctxttid + tid]) { 531 struct page *p; 532 dma_addr_t phys; 533 534 p = dd->pageshadow[ctxttid + tid]; 535 dd->pageshadow[ctxttid + tid] = NULL; 536 phys = dd->physshadow[ctxttid + tid]; 537 dd->physshadow[ctxttid + tid] = dd->tidinvalid; 538 /* PERFORMANCE: below should almost certainly be 539 * cached 540 */ 541 dd->f_put_tid(dd, &tidbase[tid], 542 RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); 543 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 544 PCI_DMA_FROMDEVICE); 545 qib_release_user_pages(&p, 1); 546 } 547 } 548 done: 549 return ret; 550 } 551 552 /** 553 * qib_set_part_key - set a partition key 554 * @rcd: the context 555 * @key: the key 556 * 557 * We can have up to 4 active at a time (other than the default, which is 558 * always allowed). This is somewhat tricky, since multiple contexts may set 559 * the same key, so we reference count them, and clean up at exit. All 4 560 * partition keys are packed into a single qlogic_ib register. It's an 561 * error for a process to set the same pkey multiple times. We provide no 562 * mechanism to de-allocate a pkey at this time, we may eventually need to 563 * do that. I've used the atomic operations, and no locking, and only make 564 * a single pass through what's available. This should be more than 565 * adequate for some time. I'll think about spinlocks or the like if and as 566 * it's necessary. 567 */ 568 static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) 569 { 570 struct qib_pportdata *ppd = rcd->ppd; 571 int i, any = 0, pidx = -1; 572 u16 lkey = key & 0x7FFF; 573 int ret; 574 575 if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) { 576 /* nothing to do; this key always valid */ 577 ret = 0; 578 goto bail; 579 } 580 581 if (!lkey) { 582 ret = -EINVAL; 583 goto bail; 584 } 585 586 /* 587 * Set the full membership bit, because it has to be 588 * set in the register or the packet, and it seems 589 * cleaner to set in the register than to force all 590 * callers to set it. 591 */ 592 key |= 0x8000; 593 594 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 595 if (!rcd->pkeys[i] && pidx == -1) 596 pidx = i; 597 if (rcd->pkeys[i] == key) { 598 ret = -EEXIST; 599 goto bail; 600 } 601 } 602 if (pidx == -1) { 603 ret = -EBUSY; 604 goto bail; 605 } 606 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 607 if (!ppd->pkeys[i]) { 608 any++; 609 continue; 610 } 611 if (ppd->pkeys[i] == key) { 612 atomic_t *pkrefs = &ppd->pkeyrefs[i]; 613 614 if (atomic_inc_return(pkrefs) > 1) { 615 rcd->pkeys[pidx] = key; 616 ret = 0; 617 goto bail; 618 } else { 619 /* 620 * lost race, decrement count, catch below 621 */ 622 atomic_dec(pkrefs); 623 any++; 624 } 625 } 626 if ((ppd->pkeys[i] & 0x7FFF) == lkey) { 627 /* 628 * It makes no sense to have both the limited and 629 * full membership PKEY set at the same time since 630 * the unlimited one will disable the limited one. 631 */ 632 ret = -EEXIST; 633 goto bail; 634 } 635 } 636 if (!any) { 637 ret = -EBUSY; 638 goto bail; 639 } 640 for (any = i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { 641 if (!ppd->pkeys[i] && 642 atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { 643 rcd->pkeys[pidx] = key; 644 ppd->pkeys[i] = key; 645 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 646 ret = 0; 647 goto bail; 648 } 649 } 650 ret = -EBUSY; 651 652 bail: 653 return ret; 654 } 655 656 /** 657 * qib_manage_rcvq - manage a context's receive queue 658 * @rcd: the context 659 * @subctxt: the subcontext 660 * @start_stop: action to carry out 661 * 662 * start_stop == 0 disables receive on the context, for use in queue 663 * overflow conditions. start_stop==1 re-enables, to be used to 664 * re-init the software copy of the head register 665 */ 666 static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, 667 int start_stop) 668 { 669 struct qib_devdata *dd = rcd->dd; 670 unsigned int rcvctrl_op; 671 672 if (subctxt) 673 goto bail; 674 /* atomically clear receive enable ctxt. */ 675 if (start_stop) { 676 /* 677 * On enable, force in-memory copy of the tail register to 678 * 0, so that protocol code doesn't have to worry about 679 * whether or not the chip has yet updated the in-memory 680 * copy or not on return from the system call. The chip 681 * always resets it's tail register back to 0 on a 682 * transition from disabled to enabled. 683 */ 684 if (rcd->rcvhdrtail_kvaddr) 685 qib_clear_rcvhdrtail(rcd); 686 rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; 687 } else 688 rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; 689 dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); 690 /* always; new head should be equal to new tail; see above */ 691 bail: 692 return 0; 693 } 694 695 static void qib_clean_part_key(struct qib_ctxtdata *rcd, 696 struct qib_devdata *dd) 697 { 698 int i, j, pchanged = 0; 699 u64 oldpkey; 700 struct qib_pportdata *ppd = rcd->ppd; 701 702 /* for debugging only */ 703 oldpkey = (u64) ppd->pkeys[0] | 704 ((u64) ppd->pkeys[1] << 16) | 705 ((u64) ppd->pkeys[2] << 32) | 706 ((u64) ppd->pkeys[3] << 48); 707 708 for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { 709 if (!rcd->pkeys[i]) 710 continue; 711 for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { 712 /* check for match independent of the global bit */ 713 if ((ppd->pkeys[j] & 0x7fff) != 714 (rcd->pkeys[i] & 0x7fff)) 715 continue; 716 if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { 717 ppd->pkeys[j] = 0; 718 pchanged++; 719 } 720 break; 721 } 722 rcd->pkeys[i] = 0; 723 } 724 if (pchanged) 725 (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); 726 } 727 728 /* common code for the mappings on dma_alloc_coherent mem */ 729 static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, 730 unsigned len, void *kvaddr, u32 write_ok, char *what) 731 { 732 struct qib_devdata *dd = rcd->dd; 733 unsigned long pfn; 734 int ret; 735 736 if ((vma->vm_end - vma->vm_start) > len) { 737 qib_devinfo(dd->pcidev, 738 "FAIL on %s: len %lx > %x\n", what, 739 vma->vm_end - vma->vm_start, len); 740 ret = -EFAULT; 741 goto bail; 742 } 743 744 /* 745 * shared context user code requires rcvhdrq mapped r/w, others 746 * only allowed readonly mapping. 747 */ 748 if (!write_ok) { 749 if (vma->vm_flags & VM_WRITE) { 750 qib_devinfo(dd->pcidev, 751 "%s must be mapped readonly\n", what); 752 ret = -EPERM; 753 goto bail; 754 } 755 756 /* don't allow them to later change with mprotect */ 757 vma->vm_flags &= ~VM_MAYWRITE; 758 } 759 760 pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; 761 ret = remap_pfn_range(vma, vma->vm_start, pfn, 762 len, vma->vm_page_prot); 763 if (ret) 764 qib_devinfo(dd->pcidev, 765 "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", 766 what, rcd->ctxt, pfn, len, ret); 767 bail: 768 return ret; 769 } 770 771 static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, 772 u64 ureg) 773 { 774 unsigned long phys; 775 unsigned long sz; 776 int ret; 777 778 /* 779 * This is real hardware, so use io_remap. This is the mechanism 780 * for the user process to update the head registers for their ctxt 781 * in the chip. 782 */ 783 sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; 784 if ((vma->vm_end - vma->vm_start) > sz) { 785 qib_devinfo(dd->pcidev, 786 "FAIL mmap userreg: reqlen %lx > PAGE\n", 787 vma->vm_end - vma->vm_start); 788 ret = -EFAULT; 789 } else { 790 phys = dd->physaddr + ureg; 791 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 792 793 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 794 ret = io_remap_pfn_range(vma, vma->vm_start, 795 phys >> PAGE_SHIFT, 796 vma->vm_end - vma->vm_start, 797 vma->vm_page_prot); 798 } 799 return ret; 800 } 801 802 static int mmap_piobufs(struct vm_area_struct *vma, 803 struct qib_devdata *dd, 804 struct qib_ctxtdata *rcd, 805 unsigned piobufs, unsigned piocnt) 806 { 807 unsigned long phys; 808 int ret; 809 810 /* 811 * When we map the PIO buffers in the chip, we want to map them as 812 * writeonly, no read possible; unfortunately, x86 doesn't allow 813 * for this in hardware, but we still prevent users from asking 814 * for it. 815 */ 816 if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { 817 qib_devinfo(dd->pcidev, 818 "FAIL mmap piobufs: reqlen %lx > PAGE\n", 819 vma->vm_end - vma->vm_start); 820 ret = -EINVAL; 821 goto bail; 822 } 823 824 phys = dd->physaddr + piobufs; 825 826 #if defined(__powerpc__) 827 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 828 #endif 829 830 /* 831 * don't allow them to later change to readable with mprotect (for when 832 * not initially mapped readable, as is normally the case) 833 */ 834 vma->vm_flags &= ~VM_MAYREAD; 835 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; 836 837 /* We used PAT if wc_cookie == 0 */ 838 if (!dd->wc_cookie) 839 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 840 841 ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, 842 vma->vm_end - vma->vm_start, 843 vma->vm_page_prot); 844 bail: 845 return ret; 846 } 847 848 static int mmap_rcvegrbufs(struct vm_area_struct *vma, 849 struct qib_ctxtdata *rcd) 850 { 851 struct qib_devdata *dd = rcd->dd; 852 unsigned long start, size; 853 size_t total_size, i; 854 unsigned long pfn; 855 int ret; 856 857 size = rcd->rcvegrbuf_size; 858 total_size = rcd->rcvegrbuf_chunks * size; 859 if ((vma->vm_end - vma->vm_start) > total_size) { 860 qib_devinfo(dd->pcidev, 861 "FAIL on egr bufs: reqlen %lx > actual %lx\n", 862 vma->vm_end - vma->vm_start, 863 (unsigned long) total_size); 864 ret = -EINVAL; 865 goto bail; 866 } 867 868 if (vma->vm_flags & VM_WRITE) { 869 qib_devinfo(dd->pcidev, 870 "Can't map eager buffers as writable (flags=%lx)\n", 871 vma->vm_flags); 872 ret = -EPERM; 873 goto bail; 874 } 875 /* don't allow them to later change to writeable with mprotect */ 876 vma->vm_flags &= ~VM_MAYWRITE; 877 878 start = vma->vm_start; 879 880 for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { 881 pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; 882 ret = remap_pfn_range(vma, start, pfn, size, 883 vma->vm_page_prot); 884 if (ret < 0) 885 goto bail; 886 } 887 ret = 0; 888 889 bail: 890 return ret; 891 } 892 893 /* 894 * qib_file_vma_fault - handle a VMA page fault. 895 */ 896 static int qib_file_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 897 { 898 struct page *page; 899 900 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 901 if (!page) 902 return VM_FAULT_SIGBUS; 903 904 get_page(page); 905 vmf->page = page; 906 907 return 0; 908 } 909 910 static const struct vm_operations_struct qib_file_vm_ops = { 911 .fault = qib_file_vma_fault, 912 }; 913 914 static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, 915 struct qib_ctxtdata *rcd, unsigned subctxt) 916 { 917 struct qib_devdata *dd = rcd->dd; 918 unsigned subctxt_cnt; 919 unsigned long len; 920 void *addr; 921 size_t size; 922 int ret = 0; 923 924 subctxt_cnt = rcd->subctxt_cnt; 925 size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; 926 927 /* 928 * Each process has all the subctxt uregbase, rcvhdrq, and 929 * rcvegrbufs mmapped - as an array for all the processes, 930 * and also separately for this process. 931 */ 932 if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { 933 addr = rcd->subctxt_uregbase; 934 size = PAGE_SIZE * subctxt_cnt; 935 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { 936 addr = rcd->subctxt_rcvhdr_base; 937 size = rcd->rcvhdrq_size * subctxt_cnt; 938 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { 939 addr = rcd->subctxt_rcvegrbuf; 940 size *= subctxt_cnt; 941 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + 942 PAGE_SIZE * subctxt)) { 943 addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; 944 size = PAGE_SIZE; 945 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + 946 rcd->rcvhdrq_size * subctxt)) { 947 addr = rcd->subctxt_rcvhdr_base + 948 rcd->rcvhdrq_size * subctxt; 949 size = rcd->rcvhdrq_size; 950 } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { 951 addr = rcd->user_event_mask; 952 size = PAGE_SIZE; 953 } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + 954 size * subctxt)) { 955 addr = rcd->subctxt_rcvegrbuf + size * subctxt; 956 /* rcvegrbufs are read-only on the slave */ 957 if (vma->vm_flags & VM_WRITE) { 958 qib_devinfo(dd->pcidev, 959 "Can't map eager buffers as writable (flags=%lx)\n", 960 vma->vm_flags); 961 ret = -EPERM; 962 goto bail; 963 } 964 /* 965 * Don't allow permission to later change to writeable 966 * with mprotect. 967 */ 968 vma->vm_flags &= ~VM_MAYWRITE; 969 } else 970 goto bail; 971 len = vma->vm_end - vma->vm_start; 972 if (len > size) { 973 ret = -EINVAL; 974 goto bail; 975 } 976 977 vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; 978 vma->vm_ops = &qib_file_vm_ops; 979 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 980 ret = 1; 981 982 bail: 983 return ret; 984 } 985 986 /** 987 * qib_mmapf - mmap various structures into user space 988 * @fp: the file pointer 989 * @vma: the VM area 990 * 991 * We use this to have a shared buffer between the kernel and the user code 992 * for the rcvhdr queue, egr buffers, and the per-context user regs and pio 993 * buffers in the chip. We have the open and close entries so we can bump 994 * the ref count and keep the driver from being unloaded while still mapped. 995 */ 996 static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) 997 { 998 struct qib_ctxtdata *rcd; 999 struct qib_devdata *dd; 1000 u64 pgaddr, ureg; 1001 unsigned piobufs, piocnt; 1002 int ret, match = 1; 1003 1004 rcd = ctxt_fp(fp); 1005 if (!rcd || !(vma->vm_flags & VM_SHARED)) { 1006 ret = -EINVAL; 1007 goto bail; 1008 } 1009 dd = rcd->dd; 1010 1011 /* 1012 * This is the qib_do_user_init() code, mapping the shared buffers 1013 * and per-context user registers into the user process. The address 1014 * referred to by vm_pgoff is the file offset passed via mmap(). 1015 * For shared contexts, this is the kernel vmalloc() address of the 1016 * pages to share with the master. 1017 * For non-shared or master ctxts, this is a physical address. 1018 * We only do one mmap for each space mapped. 1019 */ 1020 pgaddr = vma->vm_pgoff << PAGE_SHIFT; 1021 1022 /* 1023 * Check for 0 in case one of the allocations failed, but user 1024 * called mmap anyway. 1025 */ 1026 if (!pgaddr) { 1027 ret = -EINVAL; 1028 goto bail; 1029 } 1030 1031 /* 1032 * Physical addresses must fit in 40 bits for our hardware. 1033 * Check for kernel virtual addresses first, anything else must 1034 * match a HW or memory address. 1035 */ 1036 ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); 1037 if (ret) { 1038 if (ret > 0) 1039 ret = 0; 1040 goto bail; 1041 } 1042 1043 ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; 1044 if (!rcd->subctxt_cnt) { 1045 /* ctxt is not shared */ 1046 piocnt = rcd->piocnt; 1047 piobufs = rcd->piobufs; 1048 } else if (!subctxt_fp(fp)) { 1049 /* caller is the master */ 1050 piocnt = (rcd->piocnt / rcd->subctxt_cnt) + 1051 (rcd->piocnt % rcd->subctxt_cnt); 1052 piobufs = rcd->piobufs + 1053 dd->palign * (rcd->piocnt - piocnt); 1054 } else { 1055 unsigned slave = subctxt_fp(fp) - 1; 1056 1057 /* caller is a slave */ 1058 piocnt = rcd->piocnt / rcd->subctxt_cnt; 1059 piobufs = rcd->piobufs + dd->palign * piocnt * slave; 1060 } 1061 1062 if (pgaddr == ureg) 1063 ret = mmap_ureg(vma, dd, ureg); 1064 else if (pgaddr == piobufs) 1065 ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); 1066 else if (pgaddr == dd->pioavailregs_phys) 1067 /* in-memory copy of pioavail registers */ 1068 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1069 (void *) dd->pioavailregs_dma, 0, 1070 "pioavail registers"); 1071 else if (pgaddr == rcd->rcvegr_phys) 1072 ret = mmap_rcvegrbufs(vma, rcd); 1073 else if (pgaddr == (u64) rcd->rcvhdrq_phys) 1074 /* 1075 * The rcvhdrq itself; multiple pages, contiguous 1076 * from an i/o perspective. Shared contexts need 1077 * to map r/w, so we allow writing. 1078 */ 1079 ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, 1080 rcd->rcvhdrq, 1, "rcvhdrq"); 1081 else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) 1082 /* in-memory copy of rcvhdrq tail register */ 1083 ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, 1084 rcd->rcvhdrtail_kvaddr, 0, 1085 "rcvhdrq tail"); 1086 else 1087 match = 0; 1088 if (!match) 1089 ret = -EINVAL; 1090 1091 vma->vm_private_data = NULL; 1092 1093 if (ret < 0) 1094 qib_devinfo(dd->pcidev, 1095 "mmap Failure %d: off %llx len %lx\n", 1096 -ret, (unsigned long long)pgaddr, 1097 vma->vm_end - vma->vm_start); 1098 bail: 1099 return ret; 1100 } 1101 1102 static unsigned int qib_poll_urgent(struct qib_ctxtdata *rcd, 1103 struct file *fp, 1104 struct poll_table_struct *pt) 1105 { 1106 struct qib_devdata *dd = rcd->dd; 1107 unsigned pollflag; 1108 1109 poll_wait(fp, &rcd->wait, pt); 1110 1111 spin_lock_irq(&dd->uctxt_lock); 1112 if (rcd->urgent != rcd->urgent_poll) { 1113 pollflag = POLLIN | POLLRDNORM; 1114 rcd->urgent_poll = rcd->urgent; 1115 } else { 1116 pollflag = 0; 1117 set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); 1118 } 1119 spin_unlock_irq(&dd->uctxt_lock); 1120 1121 return pollflag; 1122 } 1123 1124 static unsigned int qib_poll_next(struct qib_ctxtdata *rcd, 1125 struct file *fp, 1126 struct poll_table_struct *pt) 1127 { 1128 struct qib_devdata *dd = rcd->dd; 1129 unsigned pollflag; 1130 1131 poll_wait(fp, &rcd->wait, pt); 1132 1133 spin_lock_irq(&dd->uctxt_lock); 1134 if (dd->f_hdrqempty(rcd)) { 1135 set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); 1136 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); 1137 pollflag = 0; 1138 } else 1139 pollflag = POLLIN | POLLRDNORM; 1140 spin_unlock_irq(&dd->uctxt_lock); 1141 1142 return pollflag; 1143 } 1144 1145 static unsigned int qib_poll(struct file *fp, struct poll_table_struct *pt) 1146 { 1147 struct qib_ctxtdata *rcd; 1148 unsigned pollflag; 1149 1150 rcd = ctxt_fp(fp); 1151 if (!rcd) 1152 pollflag = POLLERR; 1153 else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) 1154 pollflag = qib_poll_urgent(rcd, fp, pt); 1155 else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) 1156 pollflag = qib_poll_next(rcd, fp, pt); 1157 else /* invalid */ 1158 pollflag = POLLERR; 1159 1160 return pollflag; 1161 } 1162 1163 static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) 1164 { 1165 struct qib_filedata *fd = fp->private_data; 1166 const unsigned int weight = cpumask_weight(¤t->cpus_allowed); 1167 const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); 1168 int local_cpu; 1169 1170 /* 1171 * If process has NOT already set it's affinity, select and 1172 * reserve a processor for it on the local NUMA node. 1173 */ 1174 if ((weight >= qib_cpulist_count) && 1175 (cpumask_weight(local_mask) <= qib_cpulist_count)) { 1176 for_each_cpu(local_cpu, local_mask) 1177 if (!test_and_set_bit(local_cpu, qib_cpulist)) { 1178 fd->rec_cpu_num = local_cpu; 1179 return; 1180 } 1181 } 1182 1183 /* 1184 * If process has NOT already set it's affinity, select and 1185 * reserve a processor for it, as a rendevous for all 1186 * users of the driver. If they don't actually later 1187 * set affinity to this cpu, or set it to some other cpu, 1188 * it just means that sooner or later we don't recommend 1189 * a cpu, and let the scheduler do it's best. 1190 */ 1191 if (weight >= qib_cpulist_count) { 1192 int cpu; 1193 1194 cpu = find_first_zero_bit(qib_cpulist, 1195 qib_cpulist_count); 1196 if (cpu == qib_cpulist_count) 1197 qib_dev_err(dd, 1198 "no cpus avail for affinity PID %u\n", 1199 current->pid); 1200 else { 1201 __set_bit(cpu, qib_cpulist); 1202 fd->rec_cpu_num = cpu; 1203 } 1204 } 1205 } 1206 1207 /* 1208 * Check that userland and driver are compatible for subcontexts. 1209 */ 1210 static int qib_compatible_subctxts(int user_swmajor, int user_swminor) 1211 { 1212 /* this code is written long-hand for clarity */ 1213 if (QIB_USER_SWMAJOR != user_swmajor) { 1214 /* no promise of compatibility if major mismatch */ 1215 return 0; 1216 } 1217 if (QIB_USER_SWMAJOR == 1) { 1218 switch (QIB_USER_SWMINOR) { 1219 case 0: 1220 case 1: 1221 case 2: 1222 /* no subctxt implementation so cannot be compatible */ 1223 return 0; 1224 case 3: 1225 /* 3 is only compatible with itself */ 1226 return user_swminor == 3; 1227 default: 1228 /* >= 4 are compatible (or are expected to be) */ 1229 return user_swminor <= QIB_USER_SWMINOR; 1230 } 1231 } 1232 /* make no promises yet for future major versions */ 1233 return 0; 1234 } 1235 1236 static int init_subctxts(struct qib_devdata *dd, 1237 struct qib_ctxtdata *rcd, 1238 const struct qib_user_info *uinfo) 1239 { 1240 int ret = 0; 1241 unsigned num_subctxts; 1242 size_t size; 1243 1244 /* 1245 * If the user is requesting zero subctxts, 1246 * skip the subctxt allocation. 1247 */ 1248 if (uinfo->spu_subctxt_cnt <= 0) 1249 goto bail; 1250 num_subctxts = uinfo->spu_subctxt_cnt; 1251 1252 /* Check for subctxt compatibility */ 1253 if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, 1254 uinfo->spu_userversion & 0xffff)) { 1255 qib_devinfo(dd->pcidev, 1256 "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", 1257 (int) (uinfo->spu_userversion >> 16), 1258 (int) (uinfo->spu_userversion & 0xffff), 1259 QIB_USER_SWMAJOR, QIB_USER_SWMINOR); 1260 goto bail; 1261 } 1262 if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { 1263 ret = -EINVAL; 1264 goto bail; 1265 } 1266 1267 rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); 1268 if (!rcd->subctxt_uregbase) { 1269 ret = -ENOMEM; 1270 goto bail; 1271 } 1272 /* Note: rcd->rcvhdrq_size isn't initialized yet. */ 1273 size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * 1274 sizeof(u32), PAGE_SIZE) * num_subctxts; 1275 rcd->subctxt_rcvhdr_base = vmalloc_user(size); 1276 if (!rcd->subctxt_rcvhdr_base) { 1277 ret = -ENOMEM; 1278 goto bail_ureg; 1279 } 1280 1281 rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * 1282 rcd->rcvegrbuf_size * 1283 num_subctxts); 1284 if (!rcd->subctxt_rcvegrbuf) { 1285 ret = -ENOMEM; 1286 goto bail_rhdr; 1287 } 1288 1289 rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; 1290 rcd->subctxt_id = uinfo->spu_subctxt_id; 1291 rcd->active_slaves = 1; 1292 rcd->redirect_seq_cnt = 1; 1293 set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1294 goto bail; 1295 1296 bail_rhdr: 1297 vfree(rcd->subctxt_rcvhdr_base); 1298 bail_ureg: 1299 vfree(rcd->subctxt_uregbase); 1300 rcd->subctxt_uregbase = NULL; 1301 bail: 1302 return ret; 1303 } 1304 1305 static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, 1306 struct file *fp, const struct qib_user_info *uinfo) 1307 { 1308 struct qib_filedata *fd = fp->private_data; 1309 struct qib_devdata *dd = ppd->dd; 1310 struct qib_ctxtdata *rcd; 1311 void *ptmp = NULL; 1312 int ret; 1313 int numa_id; 1314 1315 assign_ctxt_affinity(fp, dd); 1316 1317 numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? 1318 cpu_to_node(fd->rec_cpu_num) : 1319 numa_node_id()) : dd->assigned_node_id; 1320 1321 rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); 1322 1323 /* 1324 * Allocate memory for use in qib_tid_update() at open to 1325 * reduce cost of expected send setup per message segment 1326 */ 1327 if (rcd) 1328 ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + 1329 dd->rcvtidcnt * sizeof(struct page **), 1330 GFP_KERNEL); 1331 1332 if (!rcd || !ptmp) { 1333 qib_dev_err(dd, 1334 "Unable to allocate ctxtdata memory, failing open\n"); 1335 ret = -ENOMEM; 1336 goto bailerr; 1337 } 1338 rcd->userversion = uinfo->spu_userversion; 1339 ret = init_subctxts(dd, rcd, uinfo); 1340 if (ret) 1341 goto bailerr; 1342 rcd->tid_pg_list = ptmp; 1343 rcd->pid = current->pid; 1344 init_waitqueue_head(&dd->rcd[ctxt]->wait); 1345 strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); 1346 ctxt_fp(fp) = rcd; 1347 qib_stats.sps_ctxts++; 1348 dd->freectxts--; 1349 ret = 0; 1350 goto bail; 1351 1352 bailerr: 1353 if (fd->rec_cpu_num != -1) 1354 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1355 1356 dd->rcd[ctxt] = NULL; 1357 kfree(rcd); 1358 kfree(ptmp); 1359 bail: 1360 return ret; 1361 } 1362 1363 static inline int usable(struct qib_pportdata *ppd) 1364 { 1365 struct qib_devdata *dd = ppd->dd; 1366 1367 return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && 1368 (ppd->lflags & QIBL_LINKACTIVE); 1369 } 1370 1371 /* 1372 * Select a context on the given device, either using a requested port 1373 * or the port based on the context number. 1374 */ 1375 static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, 1376 const struct qib_user_info *uinfo) 1377 { 1378 struct qib_pportdata *ppd = NULL; 1379 int ret, ctxt; 1380 1381 if (port) { 1382 if (!usable(dd->pport + port - 1)) { 1383 ret = -ENETDOWN; 1384 goto done; 1385 } else 1386 ppd = dd->pport + port - 1; 1387 } 1388 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; 1389 ctxt++) 1390 ; 1391 if (ctxt == dd->cfgctxts) { 1392 ret = -EBUSY; 1393 goto done; 1394 } 1395 if (!ppd) { 1396 u32 pidx = ctxt % dd->num_pports; 1397 1398 if (usable(dd->pport + pidx)) 1399 ppd = dd->pport + pidx; 1400 else { 1401 for (pidx = 0; pidx < dd->num_pports && !ppd; 1402 pidx++) 1403 if (usable(dd->pport + pidx)) 1404 ppd = dd->pport + pidx; 1405 } 1406 } 1407 ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; 1408 done: 1409 return ret; 1410 } 1411 1412 static int find_free_ctxt(int unit, struct file *fp, 1413 const struct qib_user_info *uinfo) 1414 { 1415 struct qib_devdata *dd = qib_lookup(unit); 1416 int ret; 1417 1418 if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) 1419 ret = -ENODEV; 1420 else 1421 ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); 1422 1423 return ret; 1424 } 1425 1426 static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, 1427 unsigned alg) 1428 { 1429 struct qib_devdata *udd = NULL; 1430 int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; 1431 u32 port = uinfo->spu_port, ctxt; 1432 1433 devmax = qib_count_units(&npresent, &nup); 1434 if (!npresent) { 1435 ret = -ENXIO; 1436 goto done; 1437 } 1438 if (nup == 0) { 1439 ret = -ENETDOWN; 1440 goto done; 1441 } 1442 1443 if (alg == QIB_PORT_ALG_ACROSS) { 1444 unsigned inuse = ~0U; 1445 1446 /* find device (with ACTIVE ports) with fewest ctxts in use */ 1447 for (ndev = 0; ndev < devmax; ndev++) { 1448 struct qib_devdata *dd = qib_lookup(ndev); 1449 unsigned cused = 0, cfree = 0, pusable = 0; 1450 1451 if (!dd) 1452 continue; 1453 if (port && port <= dd->num_pports && 1454 usable(dd->pport + port - 1)) 1455 pusable = 1; 1456 else 1457 for (i = 0; i < dd->num_pports; i++) 1458 if (usable(dd->pport + i)) 1459 pusable++; 1460 if (!pusable) 1461 continue; 1462 for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; 1463 ctxt++) 1464 if (dd->rcd[ctxt]) 1465 cused++; 1466 else 1467 cfree++; 1468 if (cfree && cused < inuse) { 1469 udd = dd; 1470 inuse = cused; 1471 } 1472 } 1473 if (udd) { 1474 ret = choose_port_ctxt(fp, udd, port, uinfo); 1475 goto done; 1476 } 1477 } else { 1478 for (ndev = 0; ndev < devmax; ndev++) { 1479 struct qib_devdata *dd = qib_lookup(ndev); 1480 1481 if (dd) { 1482 ret = choose_port_ctxt(fp, dd, port, uinfo); 1483 if (!ret) 1484 goto done; 1485 if (ret == -EBUSY) 1486 dusable++; 1487 } 1488 } 1489 } 1490 ret = dusable ? -EBUSY : -ENETDOWN; 1491 1492 done: 1493 return ret; 1494 } 1495 1496 static int find_shared_ctxt(struct file *fp, 1497 const struct qib_user_info *uinfo) 1498 { 1499 int devmax, ndev, i; 1500 int ret = 0; 1501 1502 devmax = qib_count_units(NULL, NULL); 1503 1504 for (ndev = 0; ndev < devmax; ndev++) { 1505 struct qib_devdata *dd = qib_lookup(ndev); 1506 1507 /* device portion of usable() */ 1508 if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) 1509 continue; 1510 for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { 1511 struct qib_ctxtdata *rcd = dd->rcd[i]; 1512 1513 /* Skip ctxts which are not yet open */ 1514 if (!rcd || !rcd->cnt) 1515 continue; 1516 /* Skip ctxt if it doesn't match the requested one */ 1517 if (rcd->subctxt_id != uinfo->spu_subctxt_id) 1518 continue; 1519 /* Verify the sharing process matches the master */ 1520 if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || 1521 rcd->userversion != uinfo->spu_userversion || 1522 rcd->cnt >= rcd->subctxt_cnt) { 1523 ret = -EINVAL; 1524 goto done; 1525 } 1526 ctxt_fp(fp) = rcd; 1527 subctxt_fp(fp) = rcd->cnt++; 1528 rcd->subpid[subctxt_fp(fp)] = current->pid; 1529 tidcursor_fp(fp) = 0; 1530 rcd->active_slaves |= 1 << subctxt_fp(fp); 1531 ret = 1; 1532 goto done; 1533 } 1534 } 1535 1536 done: 1537 return ret; 1538 } 1539 1540 static int qib_open(struct inode *in, struct file *fp) 1541 { 1542 /* The real work is performed later in qib_assign_ctxt() */ 1543 fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); 1544 if (fp->private_data) /* no cpu affinity by default */ 1545 ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; 1546 return fp->private_data ? 0 : -ENOMEM; 1547 } 1548 1549 static int find_hca(unsigned int cpu, int *unit) 1550 { 1551 int ret = 0, devmax, npresent, nup, ndev; 1552 1553 *unit = -1; 1554 1555 devmax = qib_count_units(&npresent, &nup); 1556 if (!npresent) { 1557 ret = -ENXIO; 1558 goto done; 1559 } 1560 if (!nup) { 1561 ret = -ENETDOWN; 1562 goto done; 1563 } 1564 for (ndev = 0; ndev < devmax; ndev++) { 1565 struct qib_devdata *dd = qib_lookup(ndev); 1566 1567 if (dd) { 1568 if (pcibus_to_node(dd->pcidev->bus) < 0) { 1569 ret = -EINVAL; 1570 goto done; 1571 } 1572 if (cpu_to_node(cpu) == 1573 pcibus_to_node(dd->pcidev->bus)) { 1574 *unit = ndev; 1575 goto done; 1576 } 1577 } 1578 } 1579 done: 1580 return ret; 1581 } 1582 1583 static int do_qib_user_sdma_queue_create(struct file *fp) 1584 { 1585 struct qib_filedata *fd = fp->private_data; 1586 struct qib_ctxtdata *rcd = fd->rcd; 1587 struct qib_devdata *dd = rcd->dd; 1588 1589 if (dd->flags & QIB_HAS_SEND_DMA) { 1590 1591 fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, 1592 dd->unit, 1593 rcd->ctxt, 1594 fd->subctxt); 1595 if (!fd->pq) 1596 return -ENOMEM; 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* 1603 * Get ctxt early, so can set affinity prior to memory allocation. 1604 */ 1605 static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) 1606 { 1607 int ret; 1608 int i_minor; 1609 unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; 1610 1611 /* Check to be sure we haven't already initialized this file */ 1612 if (ctxt_fp(fp)) { 1613 ret = -EINVAL; 1614 goto done; 1615 } 1616 1617 /* for now, if major version is different, bail */ 1618 swmajor = uinfo->spu_userversion >> 16; 1619 if (swmajor != QIB_USER_SWMAJOR) { 1620 ret = -ENODEV; 1621 goto done; 1622 } 1623 1624 swminor = uinfo->spu_userversion & 0xffff; 1625 1626 if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) 1627 alg = uinfo->spu_port_alg; 1628 1629 mutex_lock(&qib_mutex); 1630 1631 if (qib_compatible_subctxts(swmajor, swminor) && 1632 uinfo->spu_subctxt_cnt) { 1633 ret = find_shared_ctxt(fp, uinfo); 1634 if (ret > 0) { 1635 ret = do_qib_user_sdma_queue_create(fp); 1636 if (!ret) 1637 assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); 1638 goto done_ok; 1639 } 1640 } 1641 1642 i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; 1643 if (i_minor) 1644 ret = find_free_ctxt(i_minor - 1, fp, uinfo); 1645 else { 1646 int unit; 1647 const unsigned int cpu = cpumask_first(¤t->cpus_allowed); 1648 const unsigned int weight = 1649 cpumask_weight(¤t->cpus_allowed); 1650 1651 if (weight == 1 && !test_bit(cpu, qib_cpulist)) 1652 if (!find_hca(cpu, &unit) && unit >= 0) 1653 if (!find_free_ctxt(unit, fp, uinfo)) { 1654 ret = 0; 1655 goto done_chk_sdma; 1656 } 1657 ret = get_a_ctxt(fp, uinfo, alg); 1658 } 1659 1660 done_chk_sdma: 1661 if (!ret) 1662 ret = do_qib_user_sdma_queue_create(fp); 1663 done_ok: 1664 mutex_unlock(&qib_mutex); 1665 1666 done: 1667 return ret; 1668 } 1669 1670 1671 static int qib_do_user_init(struct file *fp, 1672 const struct qib_user_info *uinfo) 1673 { 1674 int ret; 1675 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1676 struct qib_devdata *dd; 1677 unsigned uctxt; 1678 1679 /* Subctxts don't need to initialize anything since master did it. */ 1680 if (subctxt_fp(fp)) { 1681 ret = wait_event_interruptible(rcd->wait, 1682 !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); 1683 goto bail; 1684 } 1685 1686 dd = rcd->dd; 1687 1688 /* some ctxts may get extra buffers, calculate that here */ 1689 uctxt = rcd->ctxt - dd->first_user_ctxt; 1690 if (uctxt < dd->ctxts_extrabuf) { 1691 rcd->piocnt = dd->pbufsctxt + 1; 1692 rcd->pio_base = rcd->piocnt * uctxt; 1693 } else { 1694 rcd->piocnt = dd->pbufsctxt; 1695 rcd->pio_base = rcd->piocnt * uctxt + 1696 dd->ctxts_extrabuf; 1697 } 1698 1699 /* 1700 * All user buffers are 2KB buffers. If we ever support 1701 * giving 4KB buffers to user processes, this will need some 1702 * work. Can't use piobufbase directly, because it has 1703 * both 2K and 4K buffer base values. So check and handle. 1704 */ 1705 if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { 1706 if (rcd->pio_base >= dd->piobcnt2k) { 1707 qib_dev_err(dd, 1708 "%u:ctxt%u: no 2KB buffers available\n", 1709 dd->unit, rcd->ctxt); 1710 ret = -ENOBUFS; 1711 goto bail; 1712 } 1713 rcd->piocnt = dd->piobcnt2k - rcd->pio_base; 1714 qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", 1715 rcd->ctxt, rcd->piocnt); 1716 } 1717 1718 rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; 1719 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1720 TXCHK_CHG_TYPE_USER, rcd); 1721 /* 1722 * try to ensure that processes start up with consistent avail update 1723 * for their own range, at least. If system very quiet, it might 1724 * have the in-memory copy out of date at startup for this range of 1725 * buffers, when a context gets re-used. Do after the chg_pioavail 1726 * and before the rest of setup, so it's "almost certain" the dma 1727 * will have occurred (can't 100% guarantee, but should be many 1728 * decimals of 9s, with this ordering), given how much else happens 1729 * after this. 1730 */ 1731 dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); 1732 1733 /* 1734 * Now allocate the rcvhdr Q and eager TIDs; skip the TID 1735 * array for time being. If rcd->ctxt > chip-supported, 1736 * we need to do extra stuff here to handle by handling overflow 1737 * through ctxt 0, someday 1738 */ 1739 ret = qib_create_rcvhdrq(dd, rcd); 1740 if (!ret) 1741 ret = qib_setup_eagerbufs(rcd); 1742 if (ret) 1743 goto bail_pio; 1744 1745 rcd->tidcursor = 0; /* start at beginning after open */ 1746 1747 /* initialize poll variables... */ 1748 rcd->urgent = 0; 1749 rcd->urgent_poll = 0; 1750 1751 /* 1752 * Now enable the ctxt for receive. 1753 * For chips that are set to DMA the tail register to memory 1754 * when they change (and when the update bit transitions from 1755 * 0 to 1. So for those chips, we turn it off and then back on. 1756 * This will (very briefly) affect any other open ctxts, but the 1757 * duration is very short, and therefore isn't an issue. We 1758 * explicitly set the in-memory tail copy to 0 beforehand, so we 1759 * don't have to wait to be sure the DMA update has happened 1760 * (chip resets head/tail to 0 on transition to enable). 1761 */ 1762 if (rcd->rcvhdrtail_kvaddr) 1763 qib_clear_rcvhdrtail(rcd); 1764 1765 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, 1766 rcd->ctxt); 1767 1768 /* Notify any waiting slaves */ 1769 if (rcd->subctxt_cnt) { 1770 clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); 1771 wake_up(&rcd->wait); 1772 } 1773 return 0; 1774 1775 bail_pio: 1776 qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, 1777 TXCHK_CHG_TYPE_KERN, rcd); 1778 bail: 1779 return ret; 1780 } 1781 1782 /** 1783 * unlock_exptid - unlock any expected TID entries context still had in use 1784 * @rcd: ctxt 1785 * 1786 * We don't actually update the chip here, because we do a bulk update 1787 * below, using f_clear_tids. 1788 */ 1789 static void unlock_expected_tids(struct qib_ctxtdata *rcd) 1790 { 1791 struct qib_devdata *dd = rcd->dd; 1792 int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; 1793 int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; 1794 1795 for (i = ctxt_tidbase; i < maxtid; i++) { 1796 struct page *p = dd->pageshadow[i]; 1797 dma_addr_t phys; 1798 1799 if (!p) 1800 continue; 1801 1802 phys = dd->physshadow[i]; 1803 dd->physshadow[i] = dd->tidinvalid; 1804 dd->pageshadow[i] = NULL; 1805 pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, 1806 PCI_DMA_FROMDEVICE); 1807 qib_release_user_pages(&p, 1); 1808 cnt++; 1809 } 1810 } 1811 1812 static int qib_close(struct inode *in, struct file *fp) 1813 { 1814 int ret = 0; 1815 struct qib_filedata *fd; 1816 struct qib_ctxtdata *rcd; 1817 struct qib_devdata *dd; 1818 unsigned long flags; 1819 unsigned ctxt; 1820 pid_t pid; 1821 1822 mutex_lock(&qib_mutex); 1823 1824 fd = fp->private_data; 1825 fp->private_data = NULL; 1826 rcd = fd->rcd; 1827 if (!rcd) { 1828 mutex_unlock(&qib_mutex); 1829 goto bail; 1830 } 1831 1832 dd = rcd->dd; 1833 1834 /* ensure all pio buffer writes in progress are flushed */ 1835 qib_flush_wc(); 1836 1837 /* drain user sdma queue */ 1838 if (fd->pq) { 1839 qib_user_sdma_queue_drain(rcd->ppd, fd->pq); 1840 qib_user_sdma_queue_destroy(fd->pq); 1841 } 1842 1843 if (fd->rec_cpu_num != -1) 1844 __clear_bit(fd->rec_cpu_num, qib_cpulist); 1845 1846 if (--rcd->cnt) { 1847 /* 1848 * XXX If the master closes the context before the slave(s), 1849 * revoke the mmap for the eager receive queue so 1850 * the slave(s) don't wait for receive data forever. 1851 */ 1852 rcd->active_slaves &= ~(1 << fd->subctxt); 1853 rcd->subpid[fd->subctxt] = 0; 1854 mutex_unlock(&qib_mutex); 1855 goto bail; 1856 } 1857 1858 /* early; no interrupt users after this */ 1859 spin_lock_irqsave(&dd->uctxt_lock, flags); 1860 ctxt = rcd->ctxt; 1861 dd->rcd[ctxt] = NULL; 1862 pid = rcd->pid; 1863 rcd->pid = 0; 1864 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1865 1866 if (rcd->rcvwait_to || rcd->piowait_to || 1867 rcd->rcvnowait || rcd->pionowait) { 1868 rcd->rcvwait_to = 0; 1869 rcd->piowait_to = 0; 1870 rcd->rcvnowait = 0; 1871 rcd->pionowait = 0; 1872 } 1873 if (rcd->flag) 1874 rcd->flag = 0; 1875 1876 if (dd->kregbase) { 1877 /* atomically clear receive enable ctxt and intr avail. */ 1878 dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | 1879 QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); 1880 1881 /* clean up the pkeys for this ctxt user */ 1882 qib_clean_part_key(rcd, dd); 1883 qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); 1884 qib_chg_pioavailkernel(dd, rcd->pio_base, 1885 rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); 1886 1887 dd->f_clear_tids(dd, rcd); 1888 1889 if (dd->pageshadow) 1890 unlock_expected_tids(rcd); 1891 qib_stats.sps_ctxts--; 1892 dd->freectxts++; 1893 } 1894 1895 mutex_unlock(&qib_mutex); 1896 qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ 1897 1898 bail: 1899 kfree(fd); 1900 return ret; 1901 } 1902 1903 static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) 1904 { 1905 struct qib_ctxt_info info; 1906 int ret; 1907 size_t sz; 1908 struct qib_ctxtdata *rcd = ctxt_fp(fp); 1909 struct qib_filedata *fd; 1910 1911 fd = fp->private_data; 1912 1913 info.num_active = qib_count_active_units(); 1914 info.unit = rcd->dd->unit; 1915 info.port = rcd->ppd->port; 1916 info.ctxt = rcd->ctxt; 1917 info.subctxt = subctxt_fp(fp); 1918 /* Number of user ctxts available for this device. */ 1919 info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; 1920 info.num_subctxts = rcd->subctxt_cnt; 1921 info.rec_cpu = fd->rec_cpu_num; 1922 sz = sizeof(info); 1923 1924 if (copy_to_user(uinfo, &info, sz)) { 1925 ret = -EFAULT; 1926 goto bail; 1927 } 1928 ret = 0; 1929 1930 bail: 1931 return ret; 1932 } 1933 1934 static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, 1935 u32 __user *inflightp) 1936 { 1937 const u32 val = qib_user_sdma_inflight_counter(pq); 1938 1939 if (put_user(val, inflightp)) 1940 return -EFAULT; 1941 1942 return 0; 1943 } 1944 1945 static int qib_sdma_get_complete(struct qib_pportdata *ppd, 1946 struct qib_user_sdma_queue *pq, 1947 u32 __user *completep) 1948 { 1949 u32 val; 1950 int err; 1951 1952 if (!pq) 1953 return -EINVAL; 1954 1955 err = qib_user_sdma_make_progress(ppd, pq); 1956 if (err < 0) 1957 return err; 1958 1959 val = qib_user_sdma_complete_counter(pq); 1960 if (put_user(val, completep)) 1961 return -EFAULT; 1962 1963 return 0; 1964 } 1965 1966 static int disarm_req_delay(struct qib_ctxtdata *rcd) 1967 { 1968 int ret = 0; 1969 1970 if (!usable(rcd->ppd)) { 1971 int i; 1972 /* 1973 * if link is down, or otherwise not usable, delay 1974 * the caller up to 30 seconds, so we don't thrash 1975 * in trying to get the chip back to ACTIVE, and 1976 * set flag so they make the call again. 1977 */ 1978 if (rcd->user_event_mask) { 1979 /* 1980 * subctxt_cnt is 0 if not shared, so do base 1981 * separately, first, then remaining subctxt, if any 1982 */ 1983 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1984 &rcd->user_event_mask[0]); 1985 for (i = 1; i < rcd->subctxt_cnt; i++) 1986 set_bit(_QIB_EVENT_DISARM_BUFS_BIT, 1987 &rcd->user_event_mask[i]); 1988 } 1989 for (i = 0; !usable(rcd->ppd) && i < 300; i++) 1990 msleep(100); 1991 ret = -ENETDOWN; 1992 } 1993 return ret; 1994 } 1995 1996 /* 1997 * Find all user contexts in use, and set the specified bit in their 1998 * event mask. 1999 * See also find_ctxt() for a similar use, that is specific to send buffers. 2000 */ 2001 int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) 2002 { 2003 struct qib_ctxtdata *rcd; 2004 unsigned ctxt; 2005 int ret = 0; 2006 unsigned long flags; 2007 2008 spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); 2009 for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; 2010 ctxt++) { 2011 rcd = ppd->dd->rcd[ctxt]; 2012 if (!rcd) 2013 continue; 2014 if (rcd->user_event_mask) { 2015 int i; 2016 /* 2017 * subctxt_cnt is 0 if not shared, so do base 2018 * separately, first, then remaining subctxt, if any 2019 */ 2020 set_bit(evtbit, &rcd->user_event_mask[0]); 2021 for (i = 1; i < rcd->subctxt_cnt; i++) 2022 set_bit(evtbit, &rcd->user_event_mask[i]); 2023 } 2024 ret = 1; 2025 break; 2026 } 2027 spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); 2028 2029 return ret; 2030 } 2031 2032 /* 2033 * clear the event notifier events for this context. 2034 * For the DISARM_BUFS case, we also take action (this obsoletes 2035 * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards 2036 * compatibility. 2037 * Other bits don't currently require actions, just atomically clear. 2038 * User process then performs actions appropriate to bit having been 2039 * set, if desired, and checks again in future. 2040 */ 2041 static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, 2042 unsigned long events) 2043 { 2044 int ret = 0, i; 2045 2046 for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { 2047 if (!test_bit(i, &events)) 2048 continue; 2049 if (i == _QIB_EVENT_DISARM_BUFS_BIT) { 2050 (void)qib_disarm_piobufs_ifneeded(rcd); 2051 ret = disarm_req_delay(rcd); 2052 } else 2053 clear_bit(i, &rcd->user_event_mask[subctxt]); 2054 } 2055 return ret; 2056 } 2057 2058 static ssize_t qib_write(struct file *fp, const char __user *data, 2059 size_t count, loff_t *off) 2060 { 2061 const struct qib_cmd __user *ucmd; 2062 struct qib_ctxtdata *rcd; 2063 const void __user *src; 2064 size_t consumed, copy = 0; 2065 struct qib_cmd cmd; 2066 ssize_t ret = 0; 2067 void *dest; 2068 2069 if (WARN_ON_ONCE(!ib_safe_file_access(fp))) 2070 return -EACCES; 2071 2072 if (count < sizeof(cmd.type)) { 2073 ret = -EINVAL; 2074 goto bail; 2075 } 2076 2077 ucmd = (const struct qib_cmd __user *) data; 2078 2079 if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { 2080 ret = -EFAULT; 2081 goto bail; 2082 } 2083 2084 consumed = sizeof(cmd.type); 2085 2086 switch (cmd.type) { 2087 case QIB_CMD_ASSIGN_CTXT: 2088 case QIB_CMD_USER_INIT: 2089 copy = sizeof(cmd.cmd.user_info); 2090 dest = &cmd.cmd.user_info; 2091 src = &ucmd->cmd.user_info; 2092 break; 2093 2094 case QIB_CMD_RECV_CTRL: 2095 copy = sizeof(cmd.cmd.recv_ctrl); 2096 dest = &cmd.cmd.recv_ctrl; 2097 src = &ucmd->cmd.recv_ctrl; 2098 break; 2099 2100 case QIB_CMD_CTXT_INFO: 2101 copy = sizeof(cmd.cmd.ctxt_info); 2102 dest = &cmd.cmd.ctxt_info; 2103 src = &ucmd->cmd.ctxt_info; 2104 break; 2105 2106 case QIB_CMD_TID_UPDATE: 2107 case QIB_CMD_TID_FREE: 2108 copy = sizeof(cmd.cmd.tid_info); 2109 dest = &cmd.cmd.tid_info; 2110 src = &ucmd->cmd.tid_info; 2111 break; 2112 2113 case QIB_CMD_SET_PART_KEY: 2114 copy = sizeof(cmd.cmd.part_key); 2115 dest = &cmd.cmd.part_key; 2116 src = &ucmd->cmd.part_key; 2117 break; 2118 2119 case QIB_CMD_DISARM_BUFS: 2120 case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ 2121 copy = 0; 2122 src = NULL; 2123 dest = NULL; 2124 break; 2125 2126 case QIB_CMD_POLL_TYPE: 2127 copy = sizeof(cmd.cmd.poll_type); 2128 dest = &cmd.cmd.poll_type; 2129 src = &ucmd->cmd.poll_type; 2130 break; 2131 2132 case QIB_CMD_ARMLAUNCH_CTRL: 2133 copy = sizeof(cmd.cmd.armlaunch_ctrl); 2134 dest = &cmd.cmd.armlaunch_ctrl; 2135 src = &ucmd->cmd.armlaunch_ctrl; 2136 break; 2137 2138 case QIB_CMD_SDMA_INFLIGHT: 2139 copy = sizeof(cmd.cmd.sdma_inflight); 2140 dest = &cmd.cmd.sdma_inflight; 2141 src = &ucmd->cmd.sdma_inflight; 2142 break; 2143 2144 case QIB_CMD_SDMA_COMPLETE: 2145 copy = sizeof(cmd.cmd.sdma_complete); 2146 dest = &cmd.cmd.sdma_complete; 2147 src = &ucmd->cmd.sdma_complete; 2148 break; 2149 2150 case QIB_CMD_ACK_EVENT: 2151 copy = sizeof(cmd.cmd.event_mask); 2152 dest = &cmd.cmd.event_mask; 2153 src = &ucmd->cmd.event_mask; 2154 break; 2155 2156 default: 2157 ret = -EINVAL; 2158 goto bail; 2159 } 2160 2161 if (copy) { 2162 if ((count - consumed) < copy) { 2163 ret = -EINVAL; 2164 goto bail; 2165 } 2166 if (copy_from_user(dest, src, copy)) { 2167 ret = -EFAULT; 2168 goto bail; 2169 } 2170 consumed += copy; 2171 } 2172 2173 rcd = ctxt_fp(fp); 2174 if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { 2175 ret = -EINVAL; 2176 goto bail; 2177 } 2178 2179 switch (cmd.type) { 2180 case QIB_CMD_ASSIGN_CTXT: 2181 ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); 2182 if (ret) 2183 goto bail; 2184 break; 2185 2186 case QIB_CMD_USER_INIT: 2187 ret = qib_do_user_init(fp, &cmd.cmd.user_info); 2188 if (ret) 2189 goto bail; 2190 ret = qib_get_base_info(fp, (void __user *) (unsigned long) 2191 cmd.cmd.user_info.spu_base_info, 2192 cmd.cmd.user_info.spu_base_info_size); 2193 break; 2194 2195 case QIB_CMD_RECV_CTRL: 2196 ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); 2197 break; 2198 2199 case QIB_CMD_CTXT_INFO: 2200 ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) 2201 (unsigned long) cmd.cmd.ctxt_info); 2202 break; 2203 2204 case QIB_CMD_TID_UPDATE: 2205 ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); 2206 break; 2207 2208 case QIB_CMD_TID_FREE: 2209 ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); 2210 break; 2211 2212 case QIB_CMD_SET_PART_KEY: 2213 ret = qib_set_part_key(rcd, cmd.cmd.part_key); 2214 break; 2215 2216 case QIB_CMD_DISARM_BUFS: 2217 (void)qib_disarm_piobufs_ifneeded(rcd); 2218 ret = disarm_req_delay(rcd); 2219 break; 2220 2221 case QIB_CMD_PIOAVAILUPD: 2222 qib_force_pio_avail_update(rcd->dd); 2223 break; 2224 2225 case QIB_CMD_POLL_TYPE: 2226 rcd->poll_type = cmd.cmd.poll_type; 2227 break; 2228 2229 case QIB_CMD_ARMLAUNCH_CTRL: 2230 rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); 2231 break; 2232 2233 case QIB_CMD_SDMA_INFLIGHT: 2234 ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), 2235 (u32 __user *) (unsigned long) 2236 cmd.cmd.sdma_inflight); 2237 break; 2238 2239 case QIB_CMD_SDMA_COMPLETE: 2240 ret = qib_sdma_get_complete(rcd->ppd, 2241 user_sdma_queue_fp(fp), 2242 (u32 __user *) (unsigned long) 2243 cmd.cmd.sdma_complete); 2244 break; 2245 2246 case QIB_CMD_ACK_EVENT: 2247 ret = qib_user_event_ack(rcd, subctxt_fp(fp), 2248 cmd.cmd.event_mask); 2249 break; 2250 } 2251 2252 if (ret >= 0) 2253 ret = consumed; 2254 2255 bail: 2256 return ret; 2257 } 2258 2259 static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from) 2260 { 2261 struct qib_filedata *fp = iocb->ki_filp->private_data; 2262 struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); 2263 struct qib_user_sdma_queue *pq = fp->pq; 2264 2265 if (!iter_is_iovec(from) || !from->nr_segs || !pq) 2266 return -EINVAL; 2267 2268 return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs); 2269 } 2270 2271 static struct class *qib_class; 2272 static dev_t qib_dev; 2273 2274 int qib_cdev_init(int minor, const char *name, 2275 const struct file_operations *fops, 2276 struct cdev **cdevp, struct device **devp) 2277 { 2278 const dev_t dev = MKDEV(MAJOR(qib_dev), minor); 2279 struct cdev *cdev; 2280 struct device *device = NULL; 2281 int ret; 2282 2283 cdev = cdev_alloc(); 2284 if (!cdev) { 2285 pr_err("Could not allocate cdev for minor %d, %s\n", 2286 minor, name); 2287 ret = -ENOMEM; 2288 goto done; 2289 } 2290 2291 cdev->owner = THIS_MODULE; 2292 cdev->ops = fops; 2293 kobject_set_name(&cdev->kobj, name); 2294 2295 ret = cdev_add(cdev, dev, 1); 2296 if (ret < 0) { 2297 pr_err("Could not add cdev for minor %d, %s (err %d)\n", 2298 minor, name, -ret); 2299 goto err_cdev; 2300 } 2301 2302 device = device_create(qib_class, NULL, dev, NULL, "%s", name); 2303 if (!IS_ERR(device)) 2304 goto done; 2305 ret = PTR_ERR(device); 2306 device = NULL; 2307 pr_err("Could not create device for minor %d, %s (err %d)\n", 2308 minor, name, -ret); 2309 err_cdev: 2310 cdev_del(cdev); 2311 cdev = NULL; 2312 done: 2313 *cdevp = cdev; 2314 *devp = device; 2315 return ret; 2316 } 2317 2318 void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) 2319 { 2320 struct device *device = *devp; 2321 2322 if (device) { 2323 device_unregister(device); 2324 *devp = NULL; 2325 } 2326 2327 if (*cdevp) { 2328 cdev_del(*cdevp); 2329 *cdevp = NULL; 2330 } 2331 } 2332 2333 static struct cdev *wildcard_cdev; 2334 static struct device *wildcard_device; 2335 2336 int __init qib_dev_init(void) 2337 { 2338 int ret; 2339 2340 ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); 2341 if (ret < 0) { 2342 pr_err("Could not allocate chrdev region (err %d)\n", -ret); 2343 goto done; 2344 } 2345 2346 qib_class = class_create(THIS_MODULE, "ipath"); 2347 if (IS_ERR(qib_class)) { 2348 ret = PTR_ERR(qib_class); 2349 pr_err("Could not create device class (err %d)\n", -ret); 2350 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2351 } 2352 2353 done: 2354 return ret; 2355 } 2356 2357 void qib_dev_cleanup(void) 2358 { 2359 if (qib_class) { 2360 class_destroy(qib_class); 2361 qib_class = NULL; 2362 } 2363 2364 unregister_chrdev_region(qib_dev, QIB_NMINORS); 2365 } 2366 2367 static atomic_t user_count = ATOMIC_INIT(0); 2368 2369 static void qib_user_remove(struct qib_devdata *dd) 2370 { 2371 if (atomic_dec_return(&user_count) == 0) 2372 qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); 2373 2374 qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); 2375 } 2376 2377 static int qib_user_add(struct qib_devdata *dd) 2378 { 2379 char name[10]; 2380 int ret; 2381 2382 if (atomic_inc_return(&user_count) == 1) { 2383 ret = qib_cdev_init(0, "ipath", &qib_file_ops, 2384 &wildcard_cdev, &wildcard_device); 2385 if (ret) 2386 goto done; 2387 } 2388 2389 snprintf(name, sizeof(name), "ipath%d", dd->unit); 2390 ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, 2391 &dd->user_cdev, &dd->user_device); 2392 if (ret) 2393 qib_user_remove(dd); 2394 done: 2395 return ret; 2396 } 2397 2398 /* 2399 * Create per-unit files in /dev 2400 */ 2401 int qib_device_create(struct qib_devdata *dd) 2402 { 2403 int r, ret; 2404 2405 r = qib_user_add(dd); 2406 ret = qib_diag_add(dd); 2407 if (r && !ret) 2408 ret = r; 2409 return ret; 2410 } 2411 2412 /* 2413 * Remove per-unit files in /dev 2414 * void, core kernel returns no errors for this stuff 2415 */ 2416 void qib_device_remove(struct qib_devdata *dd) 2417 { 2418 qib_user_remove(dd); 2419 qib_diag_remove(dd); 2420 } 2421