1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem_odp.h> 34 #include <linux/kernel.h> 35 #include <linux/dma-buf.h> 36 #include <linux/dma-resv.h> 37 38 #include "mlx5_ib.h" 39 #include "cmd.h" 40 #include "umr.h" 41 #include "qp.h" 42 43 #include <linux/mlx5/eq.h> 44 45 /* Contains the details of a pagefault. */ 46 struct mlx5_pagefault { 47 u32 bytes_committed; 48 u64 token; 49 u8 event_subtype; 50 u8 type; 51 union { 52 /* Initiator or send message responder pagefault details. */ 53 struct { 54 /* Received packet size, only valid for responders. */ 55 u32 packet_size; 56 /* 57 * Number of resource holding WQE, depends on type. 58 */ 59 u32 wq_num; 60 /* 61 * WQE index. Refers to either the send queue or 62 * receive queue, according to event_subtype. 63 */ 64 u16 wqe_index; 65 } wqe; 66 /* RDMA responder pagefault details */ 67 struct { 68 u32 r_key; 69 /* 70 * Received packet size, minimal size page fault 71 * resolution required for forward progress. 72 */ 73 u32 packet_size; 74 u32 rdma_op_len; 75 u64 rdma_va; 76 } rdma; 77 struct { 78 u64 va; 79 u32 mkey; 80 u32 fault_byte_count; 81 u32 prefetch_before_byte_count; 82 u32 prefetch_after_byte_count; 83 u8 flags; 84 } memory; 85 }; 86 87 struct mlx5_ib_pf_eq *eq; 88 struct work_struct work; 89 }; 90 91 #define MAX_PREFETCH_LEN (4*1024*1024U) 92 93 /* Timeout in ms to wait for an active mmu notifier to complete when handling 94 * a pagefault. */ 95 #define MMU_NOTIFIER_TIMEOUT 1000 96 97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 102 103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 104 105 static u64 mlx5_imr_ksm_entries; 106 107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 108 struct mlx5_ib_mr *imr, int flags) 109 { 110 struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev; 111 struct mlx5_klm *end = pklm + nentries; 112 int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0; 113 __be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ? 114 cpu_to_be32(imr->null_mmkey.key) : 115 mr_to_mdev(imr)->mkeys.null_mkey; 116 u64 va = 117 MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0; 118 119 if (flags & MLX5_IB_UPD_XLT_ZAP) { 120 for (; pklm != end; pklm++, idx++, va += step) { 121 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 122 pklm->key = key; 123 pklm->va = cpu_to_be64(va); 124 } 125 return; 126 } 127 128 /* 129 * The locking here is pretty subtle. Ideally the implicit_children 130 * xarray would be protected by the umem_mutex, however that is not 131 * possible. Instead this uses a weaker update-then-lock pattern: 132 * 133 * xa_store() 134 * mutex_lock(umem_mutex) 135 * mlx5r_umr_update_xlt() 136 * mutex_unlock(umem_mutex) 137 * destroy lkey 138 * 139 * ie any change the xarray must be followed by the locked update_xlt 140 * before destroying. 141 * 142 * The umem_mutex provides the acquire/release semantic needed to make 143 * the xa_store() visible to a racing thread. 144 */ 145 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 146 147 for (; pklm != end; pklm++, idx++, va += step) { 148 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 149 150 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 151 if (mtt) { 152 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 153 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 154 } else { 155 pklm->key = key; 156 pklm->va = cpu_to_be64(va); 157 } 158 } 159 } 160 161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma) 162 { 163 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; 164 165 if (umem_dma & ODP_READ_ALLOWED_BIT) 166 mtt_entry |= MLX5_IB_MTT_READ; 167 if (umem_dma & ODP_WRITE_ALLOWED_BIT) 168 mtt_entry |= MLX5_IB_MTT_WRITE; 169 170 return mtt_entry; 171 } 172 173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, 174 struct mlx5_ib_mr *mr, int flags) 175 { 176 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 177 dma_addr_t pa; 178 size_t i; 179 180 if (flags & MLX5_IB_UPD_XLT_ZAP) 181 return; 182 183 for (i = 0; i < nentries; i++) { 184 pa = odp->dma_list[idx + i]; 185 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); 186 } 187 } 188 189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, 190 struct mlx5_ib_mr *mr, int flags) 191 { 192 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 193 populate_klm(xlt, idx, nentries, mr, flags); 194 } else { 195 populate_mtt(xlt, idx, nentries, mr, flags); 196 } 197 } 198 199 /* 200 * This must be called after the mr has been removed from implicit_children. 201 * NOTE: The MR does not necessarily have to be 202 * empty here, parallel page faults could have raced with the free process and 203 * added pages to it. 204 */ 205 static void free_implicit_child_mr_work(struct work_struct *work) 206 { 207 struct mlx5_ib_mr *mr = 208 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 209 struct mlx5_ib_mr *imr = mr->parent; 210 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 211 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 212 213 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 214 215 mutex_lock(&odp_imr->umem_mutex); 216 mlx5r_umr_update_xlt(mr->parent, 217 ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0, 218 MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); 219 mutex_unlock(&odp_imr->umem_mutex); 220 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 221 222 mlx5r_deref_odp_mkey(&imr->mmkey); 223 } 224 225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 226 { 227 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 228 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 229 struct mlx5_ib_mr *imr = mr->parent; 230 231 /* 232 * If userspace is racing freeing the parent implicit ODP MR then we can 233 * loose the race with parent destruction. In this case 234 * mlx5_ib_free_odp_mr() will free everything in the implicit_children 235 * xarray so NOP is fine. This child MR cannot be destroyed here because 236 * we are under its umem_mutex. 237 */ 238 if (!refcount_inc_not_zero(&imr->mmkey.usecount)) 239 return; 240 241 xa_lock(&imr->implicit_children); 242 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) != 243 mr) { 244 xa_unlock(&imr->implicit_children); 245 return; 246 } 247 248 if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault)) 249 __xa_erase(&mr_to_mdev(mr)->odp_mkeys, 250 mlx5_base_mkey(mr->mmkey.key)); 251 xa_unlock(&imr->implicit_children); 252 253 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 254 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 255 queue_work(system_unbound_wq, &mr->odp_destroy.work); 256 } 257 258 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 259 const struct mmu_notifier_range *range, 260 unsigned long cur_seq) 261 { 262 struct ib_umem_odp *umem_odp = 263 container_of(mni, struct ib_umem_odp, notifier); 264 struct mlx5_ib_mr *mr; 265 const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1; 266 u64 idx = 0, blk_start_idx = 0; 267 u64 invalidations = 0; 268 unsigned long start; 269 unsigned long end; 270 int in_block = 0; 271 u64 addr; 272 273 if (!mmu_notifier_range_blockable(range)) 274 return false; 275 276 mutex_lock(&umem_odp->umem_mutex); 277 mmu_interval_set_seq(mni, cur_seq); 278 /* 279 * If npages is zero then umem_odp->private may not be setup yet. This 280 * does not complete until after the first page is mapped for DMA. 281 */ 282 if (!umem_odp->npages) 283 goto out; 284 mr = umem_odp->private; 285 if (!mr) 286 goto out; 287 288 start = max_t(u64, ib_umem_start(umem_odp), range->start); 289 end = min_t(u64, ib_umem_end(umem_odp), range->end); 290 291 /* 292 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 293 * while we are doing the invalidation, no page fault will attempt to 294 * overwrite the same MTTs. Concurent invalidations might race us, 295 * but they will write 0s as well, so no difference in the end result. 296 */ 297 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 298 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 299 /* 300 * Strive to write the MTTs in chunks, but avoid overwriting 301 * non-existing MTTs. The huristic here can be improved to 302 * estimate the cost of another UMR vs. the cost of bigger 303 * UMR. 304 */ 305 if (umem_odp->dma_list[idx] & 306 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 307 if (!in_block) { 308 blk_start_idx = idx; 309 in_block = 1; 310 } 311 312 /* Count page invalidations */ 313 invalidations += idx - blk_start_idx + 1; 314 } else { 315 u64 umr_offset = idx & umr_block_mask; 316 317 if (in_block && umr_offset == 0) { 318 mlx5r_umr_update_xlt(mr, blk_start_idx, 319 idx - blk_start_idx, 0, 320 MLX5_IB_UPD_XLT_ZAP | 321 MLX5_IB_UPD_XLT_ATOMIC); 322 in_block = 0; 323 } 324 } 325 } 326 if (in_block) 327 mlx5r_umr_update_xlt(mr, blk_start_idx, 328 idx - blk_start_idx + 1, 0, 329 MLX5_IB_UPD_XLT_ZAP | 330 MLX5_IB_UPD_XLT_ATOMIC); 331 332 mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations); 333 334 /* 335 * We are now sure that the device will not access the 336 * memory. We can safely unmap it, and mark it as dirty if 337 * needed. 338 */ 339 340 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 341 342 if (unlikely(!umem_odp->npages && mr->parent)) 343 destroy_unused_implicit_child_mr(mr); 344 out: 345 mutex_unlock(&umem_odp->umem_mutex); 346 return true; 347 } 348 349 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 350 .invalidate = mlx5_ib_invalidate_range, 351 }; 352 353 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev) 354 { 355 struct ib_odp_caps *caps = &dev->odp_caps; 356 357 memset(caps, 0, sizeof(*caps)); 358 359 if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0)) 360 return; 361 362 caps->general_caps = IB_ODP_SUPPORT; 363 364 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 365 dev->odp_max_size = U64_MAX; 366 else 367 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 368 369 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send)) 370 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 371 372 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive)) 373 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 374 375 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send)) 376 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 377 378 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive)) 379 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 380 381 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write)) 382 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 383 384 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read)) 385 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 386 387 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic)) 388 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 389 390 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive)) 391 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 392 393 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send)) 394 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 395 396 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive)) 397 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 398 399 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write)) 400 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 401 402 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read)) 403 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 404 405 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic)) 406 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 407 408 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive)) 409 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 410 411 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 412 MLX5_CAP_GEN(dev->mdev, null_mkey) && 413 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 414 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 415 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 416 } 417 418 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 419 struct mlx5_pagefault *pfault, 420 int error) 421 { 422 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 423 pfault->wqe.wq_num : pfault->token; 424 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; 425 void *info; 426 int err; 427 428 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 429 430 if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) { 431 info = MLX5_ADDR_OF(page_fault_resume_in, in, 432 page_fault_info.mem_page_fault_info); 433 MLX5_SET(mem_page_fault_info, info, fault_token_31_0, 434 pfault->token & 0xffffffff); 435 MLX5_SET(mem_page_fault_info, info, fault_token_47_32, 436 (pfault->token >> 32) & 0xffff); 437 MLX5_SET(mem_page_fault_info, info, error, !!error); 438 } else { 439 info = MLX5_ADDR_OF(page_fault_resume_in, in, 440 page_fault_info.trans_page_fault_info); 441 MLX5_SET(trans_page_fault_info, info, page_fault_type, 442 pfault->type); 443 MLX5_SET(trans_page_fault_info, info, fault_token, 444 pfault->token); 445 MLX5_SET(trans_page_fault_info, info, wq_number, wq_num); 446 MLX5_SET(trans_page_fault_info, info, error, !!error); 447 } 448 449 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); 450 if (err) 451 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 452 wq_num, err); 453 } 454 455 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 456 unsigned long idx) 457 { 458 struct mlx5_ib_dev *dev = mr_to_mdev(imr); 459 struct ib_umem_odp *odp; 460 struct mlx5_ib_mr *mr; 461 struct mlx5_ib_mr *ret; 462 int err; 463 464 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 465 idx * MLX5_IMR_MTT_SIZE, 466 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 467 if (IS_ERR(odp)) 468 return ERR_CAST(odp); 469 470 mr = mlx5_mr_cache_alloc(dev, imr->access_flags, 471 MLX5_MKC_ACCESS_MODE_MTT, 472 MLX5_IMR_MTT_ENTRIES); 473 if (IS_ERR(mr)) { 474 ib_umem_odp_release(odp); 475 return mr; 476 } 477 478 mr->access_flags = imr->access_flags; 479 mr->ibmr.pd = imr->ibmr.pd; 480 mr->ibmr.device = &mr_to_mdev(imr)->ib_dev; 481 mr->umem = &odp->umem; 482 mr->ibmr.lkey = mr->mmkey.key; 483 mr->ibmr.rkey = mr->mmkey.key; 484 mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE; 485 mr->parent = imr; 486 odp->private = mr; 487 488 /* 489 * First refcount is owned by the xarray and second refconut 490 * is returned to the caller. 491 */ 492 refcount_set(&mr->mmkey.usecount, 2); 493 494 err = mlx5r_umr_update_xlt(mr, 0, 495 MLX5_IMR_MTT_ENTRIES, 496 PAGE_SHIFT, 497 MLX5_IB_UPD_XLT_ZAP | 498 MLX5_IB_UPD_XLT_ENABLE); 499 if (err) { 500 ret = ERR_PTR(err); 501 goto out_mr; 502 } 503 504 xa_lock(&imr->implicit_children); 505 ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 506 GFP_KERNEL); 507 if (unlikely(ret)) { 508 if (xa_is_err(ret)) { 509 ret = ERR_PTR(xa_err(ret)); 510 goto out_lock; 511 } 512 /* 513 * Another thread beat us to creating the child mr, use 514 * theirs. 515 */ 516 refcount_inc(&ret->mmkey.usecount); 517 goto out_lock; 518 } 519 520 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) { 521 ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key), 522 &mr->mmkey, GFP_KERNEL); 523 if (xa_is_err(ret)) { 524 ret = ERR_PTR(xa_err(ret)); 525 __xa_erase(&imr->implicit_children, idx); 526 goto out_lock; 527 } 528 mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD; 529 } 530 xa_unlock(&imr->implicit_children); 531 mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr); 532 return mr; 533 534 out_lock: 535 xa_unlock(&imr->implicit_children); 536 out_mr: 537 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 538 return ret; 539 } 540 541 /* 542 * When using memory scheme ODP, implicit MRs can't use the reserved null mkey 543 * and each implicit MR needs to assign a private null mkey to get the page 544 * faults on. 545 * The null mkey is created with the properties to enable getting the page 546 * fault for every time it is accessed and having all relevant access flags. 547 */ 548 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev, 549 struct mlx5_ib_mr *imr, 550 struct mlx5_ib_pd *pd) 551 { 552 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64; 553 void *mkc; 554 u32 *in; 555 int err; 556 557 in = kzalloc(inlen, GFP_KERNEL); 558 if (!in) 559 return -ENOMEM; 560 561 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4); 562 MLX5_SET(create_mkey_in, in, pg_access, 1); 563 564 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 565 MLX5_SET(mkc, mkc, a, 1); 566 MLX5_SET(mkc, mkc, rw, 1); 567 MLX5_SET(mkc, mkc, rr, 1); 568 MLX5_SET(mkc, mkc, lw, 1); 569 MLX5_SET(mkc, mkc, lr, 1); 570 MLX5_SET(mkc, mkc, free, 0); 571 MLX5_SET(mkc, mkc, umr_en, 0); 572 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 573 574 MLX5_SET(mkc, mkc, translations_octword_size, 4); 575 MLX5_SET(mkc, mkc, log_page_size, 61); 576 MLX5_SET(mkc, mkc, length64, 1); 577 MLX5_SET(mkc, mkc, pd, pd->pdn); 578 MLX5_SET64(mkc, mkc, start_addr, 0); 579 MLX5_SET(mkc, mkc, qpn, 0xffffff); 580 581 err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen); 582 if (err) 583 goto free_in; 584 585 imr->null_mmkey.type = MLX5_MKEY_NULL; 586 587 free_in: 588 kfree(in); 589 return err; 590 } 591 592 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 593 int access_flags) 594 { 595 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 596 struct ib_umem_odp *umem_odp; 597 struct mlx5_ib_mr *imr; 598 int err; 599 600 if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE)) 601 return ERR_PTR(-EOPNOTSUPP); 602 603 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); 604 if (IS_ERR(umem_odp)) 605 return ERR_CAST(umem_odp); 606 607 imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM, 608 mlx5_imr_ksm_entries); 609 if (IS_ERR(imr)) { 610 ib_umem_odp_release(umem_odp); 611 return imr; 612 } 613 614 imr->access_flags = access_flags; 615 imr->ibmr.pd = &pd->ibpd; 616 imr->ibmr.iova = 0; 617 imr->umem = &umem_odp->umem; 618 imr->ibmr.lkey = imr->mmkey.key; 619 imr->ibmr.rkey = imr->mmkey.key; 620 imr->ibmr.device = &dev->ib_dev; 621 imr->is_odp_implicit = true; 622 xa_init(&imr->implicit_children); 623 624 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) { 625 err = alloc_implicit_mr_null_mkey(dev, imr, pd); 626 if (err) 627 goto out_mr; 628 629 err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey); 630 if (err) 631 goto out_mr; 632 } 633 634 err = mlx5r_umr_update_xlt(imr, 0, 635 mlx5_imr_ksm_entries, 636 MLX5_KSM_PAGE_SHIFT, 637 MLX5_IB_UPD_XLT_INDIRECT | 638 MLX5_IB_UPD_XLT_ZAP | 639 MLX5_IB_UPD_XLT_ENABLE); 640 if (err) 641 goto out_mr; 642 643 err = mlx5r_store_odp_mkey(dev, &imr->mmkey); 644 if (err) 645 goto out_mr; 646 647 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 648 return imr; 649 out_mr: 650 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 651 mlx5_ib_dereg_mr(&imr->ibmr, NULL); 652 return ERR_PTR(err); 653 } 654 655 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr) 656 { 657 struct mlx5_ib_mr *mtt; 658 unsigned long idx; 659 660 /* 661 * If this is an implicit MR it is already invalidated so we can just 662 * delete the children mkeys. 663 */ 664 xa_for_each(&mr->implicit_children, idx, mtt) { 665 xa_erase(&mr->implicit_children, idx); 666 mlx5_ib_dereg_mr(&mtt->ibmr, NULL); 667 } 668 669 if (mr->null_mmkey.key) { 670 xa_erase(&mr_to_mdev(mr)->odp_mkeys, 671 mlx5_base_mkey(mr->null_mmkey.key)); 672 673 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, 674 mr->null_mmkey.key); 675 } 676 } 677 678 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 679 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2) 680 #define MLX5_PF_FLAGS_ENABLE BIT(3) 681 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 682 u64 user_va, size_t bcnt, u32 *bytes_mapped, 683 u32 flags) 684 { 685 int page_shift, ret, np; 686 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 687 u64 access_mask; 688 u64 start_idx; 689 bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT); 690 u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC; 691 692 if (flags & MLX5_PF_FLAGS_ENABLE) 693 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 694 695 page_shift = odp->page_shift; 696 start_idx = (user_va - ib_umem_start(odp)) >> page_shift; 697 access_mask = ODP_READ_ALLOWED_BIT; 698 699 if (odp->umem.writable && !downgrade) 700 access_mask |= ODP_WRITE_ALLOWED_BIT; 701 702 np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault); 703 if (np < 0) 704 return np; 705 706 /* 707 * No need to check whether the MTTs really belong to this MR, since 708 * ib_umem_odp_map_dma_and_lock already checks this. 709 */ 710 ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags); 711 mutex_unlock(&odp->umem_mutex); 712 713 if (ret < 0) { 714 if (ret != -EAGAIN) 715 mlx5_ib_err(mr_to_mdev(mr), 716 "Failed to update mkey page tables\n"); 717 goto out; 718 } 719 720 if (bytes_mapped) { 721 u32 new_mappings = (np << page_shift) - 722 (user_va - round_down(user_va, 1 << page_shift)); 723 724 *bytes_mapped += min_t(u32, new_mappings, bcnt); 725 } 726 727 return np << (page_shift - PAGE_SHIFT); 728 729 out: 730 return ret; 731 } 732 733 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 734 struct ib_umem_odp *odp_imr, u64 user_va, 735 size_t bcnt, u32 *bytes_mapped, u32 flags) 736 { 737 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 738 unsigned long upd_start_idx = end_idx + 1; 739 unsigned long upd_len = 0; 740 unsigned long npages = 0; 741 int err; 742 int ret; 743 744 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 745 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 746 return -EFAULT; 747 748 /* Fault each child mr that intersects with our interval. */ 749 while (bcnt) { 750 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 751 struct ib_umem_odp *umem_odp; 752 struct mlx5_ib_mr *mtt; 753 u64 len; 754 755 xa_lock(&imr->implicit_children); 756 mtt = xa_load(&imr->implicit_children, idx); 757 if (unlikely(!mtt)) { 758 xa_unlock(&imr->implicit_children); 759 mtt = implicit_get_child_mr(imr, idx); 760 if (IS_ERR(mtt)) { 761 ret = PTR_ERR(mtt); 762 goto out; 763 } 764 upd_start_idx = min(upd_start_idx, idx); 765 upd_len = idx - upd_start_idx + 1; 766 } else { 767 refcount_inc(&mtt->mmkey.usecount); 768 xa_unlock(&imr->implicit_children); 769 } 770 771 umem_odp = to_ib_umem_odp(mtt->umem); 772 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 773 user_va; 774 775 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 776 bytes_mapped, flags); 777 778 mlx5r_deref_odp_mkey(&mtt->mmkey); 779 780 if (ret < 0) 781 goto out; 782 user_va += len; 783 bcnt -= len; 784 npages += ret; 785 } 786 787 ret = npages; 788 789 /* 790 * Any time the implicit_children are changed we must perform an 791 * update of the xlt before exiting to ensure the HW and the 792 * implicit_children remains synchronized. 793 */ 794 out: 795 if (likely(!upd_len)) 796 return ret; 797 798 /* 799 * Notice this is not strictly ordered right, the KSM is updated after 800 * the implicit_children is updated, so a parallel page fault could 801 * see a MR that is not yet visible in the KSM. This is similar to a 802 * parallel page fault seeing a MR that is being concurrently removed 803 * from the KSM. Both of these improbable situations are resolved 804 * safely by resuming the HW and then taking another page fault. The 805 * next pagefault handler will see the new information. 806 */ 807 mutex_lock(&odp_imr->umem_mutex); 808 err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0, 809 MLX5_IB_UPD_XLT_INDIRECT | 810 MLX5_IB_UPD_XLT_ATOMIC); 811 mutex_unlock(&odp_imr->umem_mutex); 812 if (err) { 813 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n"); 814 return err; 815 } 816 return ret; 817 } 818 819 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt, 820 u32 *bytes_mapped, u32 flags) 821 { 822 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem); 823 u32 xlt_flags = 0; 824 int err; 825 unsigned long page_size; 826 827 if (flags & MLX5_PF_FLAGS_ENABLE) 828 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 829 830 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL); 831 err = ib_umem_dmabuf_map_pages(umem_dmabuf); 832 if (err) { 833 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 834 return err; 835 } 836 837 page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf); 838 if (!page_size) { 839 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 840 err = -EINVAL; 841 } else { 842 if (mr->data_direct) 843 err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags); 844 else 845 err = mlx5r_umr_update_mr_pas(mr, xlt_flags); 846 } 847 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 848 849 if (err) 850 return err; 851 852 if (bytes_mapped) 853 *bytes_mapped += bcnt; 854 855 return ib_umem_num_pages(mr->umem); 856 } 857 858 /* 859 * Returns: 860 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 861 * not accessible, or the MR is no longer valid. 862 * -EAGAIN/-ENOMEM: The operation should be retried 863 * 864 * -EINVAL/others: General internal malfunction 865 * >0: Number of pages mapped 866 */ 867 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 868 u32 *bytes_mapped, u32 flags, bool permissive_fault) 869 { 870 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 871 872 if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault) 873 return -EFAULT; 874 875 if (mr->umem->is_dmabuf) 876 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags); 877 878 if (!odp->is_implicit_odp) { 879 u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova; 880 u64 user_va; 881 882 if (check_add_overflow(offset, (u64)odp->umem.address, 883 &user_va)) 884 return -EFAULT; 885 886 if (permissive_fault) { 887 if (user_va < ib_umem_start(odp)) 888 user_va = ib_umem_start(odp); 889 if ((user_va + bcnt) > ib_umem_end(odp)) 890 bcnt = ib_umem_end(odp) - user_va; 891 } else if (unlikely(user_va >= ib_umem_end(odp) || 892 ib_umem_end(odp) - user_va < bcnt)) 893 return -EFAULT; 894 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, 895 flags); 896 } 897 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 898 flags); 899 } 900 901 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr) 902 { 903 int ret; 904 905 ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address, 906 mr->umem->length, NULL, 907 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE); 908 return ret >= 0 ? 0 : ret; 909 } 910 911 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr) 912 { 913 int ret; 914 915 ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL, 916 MLX5_PF_FLAGS_ENABLE); 917 918 return ret >= 0 ? 0 : ret; 919 } 920 921 struct pf_frame { 922 struct pf_frame *next; 923 u32 key; 924 u64 io_virt; 925 size_t bcnt; 926 int depth; 927 }; 928 929 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key) 930 { 931 if (!mmkey) 932 return false; 933 if (mmkey->type == MLX5_MKEY_MW || 934 mmkey->type == MLX5_MKEY_INDIRECT_DEVX) 935 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 936 return mmkey->key == key; 937 } 938 939 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key) 940 { 941 struct mlx5_ib_mkey *mmkey; 942 943 xa_lock(&dev->odp_mkeys); 944 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 945 if (!mmkey) { 946 mmkey = ERR_PTR(-ENOENT); 947 goto out; 948 } 949 if (!mkey_is_eq(mmkey, key)) { 950 mmkey = ERR_PTR(-EFAULT); 951 goto out; 952 } 953 refcount_inc(&mmkey->usecount); 954 out: 955 xa_unlock(&dev->odp_mkeys); 956 957 return mmkey; 958 } 959 960 /* 961 * Handle a single data segment in a page-fault WQE or RDMA region. 962 * 963 * Returns zero on success. The caller may continue to the next data segment. 964 * Can return the following error codes: 965 * -EAGAIN to designate a temporary error. The caller will abort handling the 966 * page fault and resolve it. 967 * -EFAULT when there's an error mapping the requested pages. The caller will 968 * abort the page fault handling. 969 */ 970 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 971 struct ib_pd *pd, u32 key, 972 u64 io_virt, size_t bcnt, 973 u32 *bytes_committed, 974 u32 *bytes_mapped) 975 { 976 int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range; 977 struct pf_frame *head = NULL, *frame; 978 struct mlx5_ib_mkey *mmkey; 979 struct mlx5_ib_mr *mr; 980 struct mlx5_klm *pklm; 981 u32 *out = NULL; 982 size_t offset; 983 984 io_virt += *bytes_committed; 985 bcnt -= *bytes_committed; 986 next_mr: 987 mmkey = find_odp_mkey(dev, key); 988 if (IS_ERR(mmkey)) { 989 ret = PTR_ERR(mmkey); 990 if (ret == -ENOENT) { 991 mlx5_ib_dbg( 992 dev, 993 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 994 key); 995 if (bytes_mapped) 996 *bytes_mapped += bcnt; 997 /* 998 * The user could specify a SGL with multiple lkeys and 999 * only some of them are ODP. Treat the non-ODP ones as 1000 * fully faulted. 1001 */ 1002 ret = 0; 1003 } 1004 goto end; 1005 } 1006 1007 switch (mmkey->type) { 1008 case MLX5_MKEY_MR: 1009 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1010 1011 pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) - 1012 (io_virt & PAGE_MASK)) >> 1013 PAGE_SHIFT; 1014 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false); 1015 if (ret < 0) 1016 goto end; 1017 1018 mlx5_update_odp_stats_with_handled(mr, faults, ret); 1019 1020 if (ret < pages_in_range) { 1021 ret = -EFAULT; 1022 goto end; 1023 } 1024 1025 ret = 0; 1026 break; 1027 1028 case MLX5_MKEY_MW: 1029 case MLX5_MKEY_INDIRECT_DEVX: 1030 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 1031 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 1032 ret = -EFAULT; 1033 goto end; 1034 } 1035 1036 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 1037 sizeof(*pklm) * (mmkey->ndescs - 2); 1038 1039 if (outlen > cur_outlen) { 1040 kfree(out); 1041 out = kzalloc(outlen, GFP_KERNEL); 1042 if (!out) { 1043 ret = -ENOMEM; 1044 goto end; 1045 } 1046 cur_outlen = outlen; 1047 } 1048 1049 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 1050 bsf0_klm0_pas_mtt0_1); 1051 1052 ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen); 1053 if (ret) 1054 goto end; 1055 1056 offset = io_virt - MLX5_GET64(query_mkey_out, out, 1057 memory_key_mkey_entry.start_addr); 1058 1059 for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) { 1060 if (offset >= be32_to_cpu(pklm->bcount)) { 1061 offset -= be32_to_cpu(pklm->bcount); 1062 continue; 1063 } 1064 1065 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1066 if (!frame) { 1067 ret = -ENOMEM; 1068 goto end; 1069 } 1070 1071 frame->key = be32_to_cpu(pklm->key); 1072 frame->io_virt = be64_to_cpu(pklm->va) + offset; 1073 frame->bcnt = min_t(size_t, bcnt, 1074 be32_to_cpu(pklm->bcount) - offset); 1075 frame->depth = depth + 1; 1076 frame->next = head; 1077 head = frame; 1078 1079 bcnt -= frame->bcnt; 1080 offset = 0; 1081 } 1082 break; 1083 1084 default: 1085 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 1086 ret = -EFAULT; 1087 goto end; 1088 } 1089 1090 if (head) { 1091 frame = head; 1092 head = frame->next; 1093 1094 key = frame->key; 1095 io_virt = frame->io_virt; 1096 bcnt = frame->bcnt; 1097 depth = frame->depth; 1098 kfree(frame); 1099 1100 mlx5r_deref_odp_mkey(mmkey); 1101 goto next_mr; 1102 } 1103 1104 end: 1105 if (!IS_ERR(mmkey)) 1106 mlx5r_deref_odp_mkey(mmkey); 1107 while (head) { 1108 frame = head; 1109 head = frame->next; 1110 kfree(frame); 1111 } 1112 kfree(out); 1113 1114 *bytes_committed = 0; 1115 return ret; 1116 } 1117 1118 /* 1119 * Parse a series of data segments for page fault handling. 1120 * 1121 * @dev: Pointer to mlx5 IB device 1122 * @pfault: contains page fault information. 1123 * @wqe: points at the first data segment in the WQE. 1124 * @wqe_end: points after the end of the WQE. 1125 * @bytes_mapped: receives the number of bytes that the function was able to 1126 * map. This allows the caller to decide intelligently whether 1127 * enough memory was mapped to resolve the page fault 1128 * successfully (e.g. enough for the next MTU, or the entire 1129 * WQE). 1130 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus 1131 * the committed bytes). 1132 * @receive_queue: receive WQE end of sg list 1133 * 1134 * Returns zero for success or a negative error code. 1135 */ 1136 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 1137 struct mlx5_pagefault *pfault, 1138 void *wqe, 1139 void *wqe_end, u32 *bytes_mapped, 1140 u32 *total_wqe_bytes, bool receive_queue) 1141 { 1142 int ret = 0; 1143 u64 io_virt; 1144 __be32 key; 1145 u32 byte_count; 1146 size_t bcnt; 1147 int inline_segment; 1148 1149 if (bytes_mapped) 1150 *bytes_mapped = 0; 1151 if (total_wqe_bytes) 1152 *total_wqe_bytes = 0; 1153 1154 while (wqe < wqe_end) { 1155 struct mlx5_wqe_data_seg *dseg = wqe; 1156 1157 io_virt = be64_to_cpu(dseg->addr); 1158 key = dseg->lkey; 1159 byte_count = be32_to_cpu(dseg->byte_count); 1160 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1161 bcnt = byte_count & ~MLX5_INLINE_SEG; 1162 1163 if (inline_segment) { 1164 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1165 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1166 16); 1167 } else { 1168 wqe += sizeof(*dseg); 1169 } 1170 1171 /* receive WQE end of sg list. */ 1172 if (receive_queue && bcnt == 0 && 1173 key == dev->mkeys.terminate_scatter_list_mkey && 1174 io_virt == 0) 1175 break; 1176 1177 if (!inline_segment && total_wqe_bytes) { 1178 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1179 pfault->bytes_committed); 1180 } 1181 1182 /* A zero length data segment designates a length of 2GB. */ 1183 if (bcnt == 0) 1184 bcnt = 1U << 31; 1185 1186 if (inline_segment || bcnt <= pfault->bytes_committed) { 1187 pfault->bytes_committed -= 1188 min_t(size_t, bcnt, 1189 pfault->bytes_committed); 1190 continue; 1191 } 1192 1193 ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key), 1194 io_virt, bcnt, 1195 &pfault->bytes_committed, 1196 bytes_mapped); 1197 if (ret < 0) 1198 break; 1199 } 1200 1201 return ret; 1202 } 1203 1204 /* 1205 * Parse initiator WQE. Advances the wqe pointer to point at the 1206 * scatter-gather list, and set wqe_end to the end of the WQE. 1207 */ 1208 static int mlx5_ib_mr_initiator_pfault_handler( 1209 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1210 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1211 { 1212 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1213 u16 wqe_index = pfault->wqe.wqe_index; 1214 struct mlx5_base_av *av; 1215 unsigned ds, opcode; 1216 u32 qpn = qp->trans_qp.base.mqp.qpn; 1217 1218 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1219 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1220 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1221 ds, wqe_length); 1222 return -EFAULT; 1223 } 1224 1225 if (ds == 0) { 1226 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1227 wqe_index, qpn); 1228 return -EFAULT; 1229 } 1230 1231 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1232 *wqe += sizeof(*ctrl); 1233 1234 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1235 MLX5_WQE_CTRL_OPCODE_MASK; 1236 1237 if (qp->type == IB_QPT_XRC_INI) 1238 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1239 1240 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { 1241 av = *wqe; 1242 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1243 *wqe += sizeof(struct mlx5_av); 1244 else 1245 *wqe += sizeof(struct mlx5_base_av); 1246 } 1247 1248 switch (opcode) { 1249 case MLX5_OPCODE_RDMA_WRITE: 1250 case MLX5_OPCODE_RDMA_WRITE_IMM: 1251 case MLX5_OPCODE_RDMA_READ: 1252 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1253 break; 1254 case MLX5_OPCODE_ATOMIC_CS: 1255 case MLX5_OPCODE_ATOMIC_FA: 1256 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1257 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1258 break; 1259 } 1260 1261 return 0; 1262 } 1263 1264 /* 1265 * Parse responder WQE and set wqe_end to the end of the WQE. 1266 */ 1267 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1268 struct mlx5_ib_srq *srq, 1269 void **wqe, void **wqe_end, 1270 int wqe_length) 1271 { 1272 int wqe_size = 1 << srq->msrq.wqe_shift; 1273 1274 if (wqe_size > wqe_length) { 1275 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1276 return -EFAULT; 1277 } 1278 1279 *wqe_end = *wqe + wqe_size; 1280 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1281 1282 return 0; 1283 } 1284 1285 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1286 struct mlx5_ib_qp *qp, 1287 void *wqe, void **wqe_end, 1288 int wqe_length) 1289 { 1290 struct mlx5_ib_wq *wq = &qp->rq; 1291 int wqe_size = 1 << wq->wqe_shift; 1292 1293 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { 1294 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1295 return -EFAULT; 1296 } 1297 1298 if (wqe_size > wqe_length) { 1299 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1300 return -EFAULT; 1301 } 1302 1303 *wqe_end = wqe + wqe_size; 1304 1305 return 0; 1306 } 1307 1308 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1309 u32 wq_num, int pf_type) 1310 { 1311 struct mlx5_core_rsc_common *common = NULL; 1312 struct mlx5_core_srq *srq; 1313 1314 switch (pf_type) { 1315 case MLX5_WQE_PF_TYPE_RMP: 1316 srq = mlx5_cmd_get_srq(dev, wq_num); 1317 if (srq) 1318 common = &srq->common; 1319 break; 1320 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1321 case MLX5_WQE_PF_TYPE_RESP: 1322 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1323 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); 1324 break; 1325 default: 1326 break; 1327 } 1328 1329 return common; 1330 } 1331 1332 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1333 { 1334 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1335 1336 return to_mibqp(mqp); 1337 } 1338 1339 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1340 { 1341 struct mlx5_core_srq *msrq = 1342 container_of(res, struct mlx5_core_srq, common); 1343 1344 return to_mibsrq(msrq); 1345 } 1346 1347 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1348 struct mlx5_pagefault *pfault) 1349 { 1350 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1351 u16 wqe_index = pfault->wqe.wqe_index; 1352 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1353 u32 bytes_mapped, total_wqe_bytes; 1354 struct mlx5_core_rsc_common *res; 1355 int resume_with_error = 1; 1356 struct mlx5_ib_qp *qp; 1357 size_t bytes_copied; 1358 int ret = 0; 1359 1360 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1361 if (!res) { 1362 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1363 return; 1364 } 1365 1366 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1367 res->res != MLX5_RES_XSRQ) { 1368 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1369 pfault->type); 1370 goto resolve_page_fault; 1371 } 1372 1373 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1374 if (!wqe_start) { 1375 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1376 goto resolve_page_fault; 1377 } 1378 1379 wqe = wqe_start; 1380 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1381 if (qp && sq) { 1382 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1383 &bytes_copied); 1384 if (ret) 1385 goto read_user; 1386 ret = mlx5_ib_mr_initiator_pfault_handler( 1387 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1388 } else if (qp && !sq) { 1389 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1390 &bytes_copied); 1391 if (ret) 1392 goto read_user; 1393 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1394 dev, qp, wqe, &wqe_end, bytes_copied); 1395 } else if (!qp) { 1396 struct mlx5_ib_srq *srq = res_to_srq(res); 1397 1398 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1399 &bytes_copied); 1400 if (ret) 1401 goto read_user; 1402 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1403 dev, srq, &wqe, &wqe_end, bytes_copied); 1404 } 1405 1406 if (ret < 0 || wqe >= wqe_end) 1407 goto resolve_page_fault; 1408 1409 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1410 &total_wqe_bytes, !sq); 1411 if (ret == -EAGAIN) 1412 goto out; 1413 1414 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1415 goto resolve_page_fault; 1416 1417 out: 1418 ret = 0; 1419 resume_with_error = 0; 1420 1421 read_user: 1422 if (ret) 1423 mlx5_ib_err( 1424 dev, 1425 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n", 1426 ret, wqe_index, pfault->token); 1427 1428 resolve_page_fault: 1429 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1430 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1431 pfault->wqe.wq_num, resume_with_error, 1432 pfault->type); 1433 mlx5_core_res_put(res); 1434 free_page((unsigned long)wqe_start); 1435 } 1436 1437 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1438 struct mlx5_pagefault *pfault) 1439 { 1440 u64 address; 1441 u32 length; 1442 u32 prefetch_len = pfault->bytes_committed; 1443 int prefetch_activated = 0; 1444 u32 rkey = pfault->rdma.r_key; 1445 int ret; 1446 1447 /* The RDMA responder handler handles the page fault in two parts. 1448 * First it brings the necessary pages for the current packet 1449 * (and uses the pfault context), and then (after resuming the QP) 1450 * prefetches more pages. The second operation cannot use the pfault 1451 * context and therefore uses the dummy_pfault context allocated on 1452 * the stack */ 1453 pfault->rdma.rdma_va += pfault->bytes_committed; 1454 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1455 pfault->rdma.rdma_op_len); 1456 pfault->bytes_committed = 0; 1457 1458 address = pfault->rdma.rdma_va; 1459 length = pfault->rdma.rdma_op_len; 1460 1461 /* For some operations, the hardware cannot tell the exact message 1462 * length, and in those cases it reports zero. Use prefetch 1463 * logic. */ 1464 if (length == 0) { 1465 prefetch_activated = 1; 1466 length = pfault->rdma.packet_size; 1467 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1468 } 1469 1470 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1471 &pfault->bytes_committed, NULL); 1472 if (ret == -EAGAIN) { 1473 /* We're racing with an invalidation, don't prefetch */ 1474 prefetch_activated = 0; 1475 } else if (ret < 0) { 1476 mlx5_ib_page_fault_resume(dev, pfault, 1); 1477 if (ret != -ENOENT) 1478 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n", 1479 ret, pfault->token, pfault->type); 1480 return; 1481 } 1482 1483 mlx5_ib_page_fault_resume(dev, pfault, 0); 1484 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n", 1485 pfault->token, pfault->type, 1486 prefetch_activated); 1487 1488 /* At this point, there might be a new pagefault already arriving in 1489 * the eq, switch to the dummy pagefault for the rest of the 1490 * processing. We're still OK with the objects being alive as the 1491 * work-queue is being fenced. */ 1492 1493 if (prefetch_activated) { 1494 u32 bytes_committed = 0; 1495 1496 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1497 prefetch_len, 1498 &bytes_committed, NULL); 1499 if (ret < 0 && ret != -EAGAIN) { 1500 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n", 1501 ret, pfault->token, address, prefetch_len); 1502 } 1503 } 1504 } 1505 1506 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7) 1507 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev, 1508 struct mlx5_pagefault *pfault) 1509 { 1510 u64 prefetch_va = 1511 pfault->memory.va - pfault->memory.prefetch_before_byte_count; 1512 size_t prefetch_size = pfault->memory.prefetch_before_byte_count + 1513 pfault->memory.fault_byte_count + 1514 pfault->memory.prefetch_after_byte_count; 1515 struct mlx5_ib_mkey *mmkey; 1516 struct mlx5_ib_mr *mr, *child_mr; 1517 int ret = 0; 1518 1519 mmkey = find_odp_mkey(dev, pfault->memory.mkey); 1520 if (IS_ERR(mmkey)) 1521 goto err; 1522 1523 switch (mmkey->type) { 1524 case MLX5_MKEY_IMPLICIT_CHILD: 1525 child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1526 mr = child_mr->parent; 1527 break; 1528 case MLX5_MKEY_NULL: 1529 mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey); 1530 break; 1531 default: 1532 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1533 break; 1534 } 1535 1536 /* If prefetch fails, handle only demanded page fault */ 1537 ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true); 1538 if (ret < 0) { 1539 ret = pagefault_mr(mr, pfault->memory.va, 1540 pfault->memory.fault_byte_count, NULL, 0, 1541 true); 1542 if (ret < 0) 1543 goto err; 1544 } 1545 1546 mlx5_update_odp_stats_with_handled(mr, faults, ret); 1547 mlx5r_deref_odp_mkey(mmkey); 1548 1549 if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST) 1550 mlx5_ib_page_fault_resume(dev, pfault, 0); 1551 1552 mlx5_ib_dbg( 1553 dev, 1554 "PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n", 1555 pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ? 1556 "" : 1557 "without resume cmd", 1558 pfault->token, pfault->memory.mkey, pfault->memory.va, 1559 pfault->memory.fault_byte_count); 1560 1561 return; 1562 1563 err: 1564 if (!IS_ERR(mmkey)) 1565 mlx5r_deref_odp_mkey(mmkey); 1566 mlx5_ib_page_fault_resume(dev, pfault, 1); 1567 mlx5_ib_dbg( 1568 dev, 1569 "PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n", 1570 pfault->token, pfault->memory.mkey, pfault->memory.va, 1571 pfault->memory.fault_byte_count, ret); 1572 } 1573 1574 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1575 { 1576 u8 event_subtype = pfault->event_subtype; 1577 1578 switch (event_subtype) { 1579 case MLX5_PFAULT_SUBTYPE_WQE: 1580 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1581 break; 1582 case MLX5_PFAULT_SUBTYPE_RDMA: 1583 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1584 break; 1585 case MLX5_PFAULT_SUBTYPE_MEMORY: 1586 mlx5_ib_mr_memory_pfault_handler(dev, pfault); 1587 break; 1588 default: 1589 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1590 event_subtype); 1591 mlx5_ib_page_fault_resume(dev, pfault, 1); 1592 } 1593 } 1594 1595 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1596 { 1597 struct mlx5_pagefault *pfault = container_of(work, 1598 struct mlx5_pagefault, 1599 work); 1600 struct mlx5_ib_pf_eq *eq = pfault->eq; 1601 1602 mlx5_ib_pfault(eq->dev, pfault); 1603 mempool_free(pfault, eq->pool); 1604 } 1605 1606 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096 1607 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1608 { 1609 struct mlx5_eqe_page_fault *pf_eqe; 1610 struct mlx5_pagefault *pfault; 1611 struct mlx5_eqe *eqe; 1612 int cc = 0; 1613 1614 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1615 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1616 if (!pfault) { 1617 schedule_work(&eq->work); 1618 break; 1619 } 1620 1621 pf_eqe = &eqe->data.page_fault; 1622 pfault->event_subtype = eqe->sub_type; 1623 1624 switch (eqe->sub_type) { 1625 case MLX5_PFAULT_SUBTYPE_RDMA: 1626 /* RDMA based event */ 1627 pfault->bytes_committed = 1628 be32_to_cpu(pf_eqe->rdma.bytes_committed); 1629 pfault->type = 1630 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1631 pfault->token = 1632 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1633 MLX5_24BIT_MASK; 1634 pfault->rdma.r_key = 1635 be32_to_cpu(pf_eqe->rdma.r_key); 1636 pfault->rdma.packet_size = 1637 be16_to_cpu(pf_eqe->rdma.packet_length); 1638 pfault->rdma.rdma_op_len = 1639 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1640 pfault->rdma.rdma_va = 1641 be64_to_cpu(pf_eqe->rdma.rdma_va); 1642 mlx5_ib_dbg( 1643 eq->dev, 1644 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n", 1645 eqe->sub_type, pfault->bytes_committed, 1646 pfault->type, pfault->token, 1647 pfault->rdma.r_key); 1648 mlx5_ib_dbg(eq->dev, 1649 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1650 pfault->rdma.rdma_op_len, 1651 pfault->rdma.rdma_va); 1652 break; 1653 1654 case MLX5_PFAULT_SUBTYPE_WQE: 1655 /* WQE based event */ 1656 pfault->bytes_committed = 1657 be32_to_cpu(pf_eqe->wqe.bytes_committed); 1658 pfault->type = 1659 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1660 pfault->token = 1661 be32_to_cpu(pf_eqe->wqe.token); 1662 pfault->wqe.wq_num = 1663 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1664 MLX5_24BIT_MASK; 1665 pfault->wqe.wqe_index = 1666 be16_to_cpu(pf_eqe->wqe.wqe_index); 1667 pfault->wqe.packet_size = 1668 be16_to_cpu(pf_eqe->wqe.packet_length); 1669 mlx5_ib_dbg( 1670 eq->dev, 1671 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1672 eqe->sub_type, pfault->bytes_committed, 1673 pfault->type, pfault->token, pfault->wqe.wq_num, 1674 pfault->wqe.wqe_index); 1675 break; 1676 1677 case MLX5_PFAULT_SUBTYPE_MEMORY: 1678 /* Memory based event */ 1679 pfault->bytes_committed = 0; 1680 pfault->token = 1681 be32_to_cpu(pf_eqe->memory.token31_0) | 1682 ((u64)be16_to_cpu(pf_eqe->memory.token47_32) 1683 << 32); 1684 pfault->memory.va = be64_to_cpu(pf_eqe->memory.va); 1685 pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey); 1686 pfault->memory.fault_byte_count = (be32_to_cpu( 1687 pf_eqe->memory.demand_fault_pages) >> 12) * 1688 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1689 pfault->memory.prefetch_before_byte_count = 1690 be16_to_cpu( 1691 pf_eqe->memory.pre_demand_fault_pages) * 1692 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1693 pfault->memory.prefetch_after_byte_count = 1694 be16_to_cpu( 1695 pf_eqe->memory.post_demand_fault_pages) * 1696 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1697 pfault->memory.flags = pf_eqe->memory.flags; 1698 mlx5_ib_dbg( 1699 eq->dev, 1700 "PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n", 1701 eqe->sub_type, pfault->token, 1702 pfault->memory.mkey, 1703 pfault->memory.fault_byte_count, 1704 pfault->memory.va, pfault->memory.flags); 1705 mlx5_ib_dbg( 1706 eq->dev, 1707 "PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n", 1708 pfault->memory.prefetch_before_byte_count, 1709 pfault->memory.prefetch_after_byte_count); 1710 break; 1711 1712 default: 1713 mlx5_ib_warn(eq->dev, 1714 "Unsupported page fault event sub-type: 0x%02hhx\n", 1715 eqe->sub_type); 1716 /* Unsupported page faults should still be 1717 * resolved by the page fault handler 1718 */ 1719 } 1720 1721 pfault->eq = eq; 1722 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1723 queue_work(eq->wq, &pfault->work); 1724 1725 cc = mlx5_eq_update_cc(eq->core, ++cc); 1726 } 1727 1728 mlx5_eq_update_ci(eq->core, cc, 1); 1729 } 1730 1731 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1732 void *data) 1733 { 1734 struct mlx5_ib_pf_eq *eq = 1735 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1736 unsigned long flags; 1737 1738 if (spin_trylock_irqsave(&eq->lock, flags)) { 1739 mlx5_ib_eq_pf_process(eq); 1740 spin_unlock_irqrestore(&eq->lock, flags); 1741 } else { 1742 schedule_work(&eq->work); 1743 } 1744 1745 return IRQ_HANDLED; 1746 } 1747 1748 /* mempool_refill() was proposed but unfortunately wasn't accepted 1749 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1750 * Cheap workaround. 1751 */ 1752 static void mempool_refill(mempool_t *pool) 1753 { 1754 while (pool->curr_nr < pool->min_nr) 1755 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1756 } 1757 1758 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1759 { 1760 struct mlx5_ib_pf_eq *eq = 1761 container_of(work, struct mlx5_ib_pf_eq, work); 1762 1763 mempool_refill(eq->pool); 1764 1765 spin_lock_irq(&eq->lock); 1766 mlx5_ib_eq_pf_process(eq); 1767 spin_unlock_irq(&eq->lock); 1768 } 1769 1770 enum { 1771 MLX5_IB_NUM_PF_EQE = 0x1000, 1772 MLX5_IB_NUM_PF_DRAIN = 64, 1773 }; 1774 1775 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1776 { 1777 struct mlx5_eq_param param = {}; 1778 int err = 0; 1779 1780 mutex_lock(&dev->odp_eq_mutex); 1781 if (eq->core) 1782 goto unlock; 1783 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1784 spin_lock_init(&eq->lock); 1785 eq->dev = dev; 1786 1787 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1788 sizeof(struct mlx5_pagefault)); 1789 if (!eq->pool) { 1790 err = -ENOMEM; 1791 goto unlock; 1792 } 1793 1794 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1795 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1796 MLX5_NUM_CMD_EQE); 1797 if (!eq->wq) { 1798 err = -ENOMEM; 1799 goto err_mempool; 1800 } 1801 1802 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1803 param = (struct mlx5_eq_param) { 1804 .nent = MLX5_IB_NUM_PF_EQE, 1805 }; 1806 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1807 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1808 if (IS_ERR(eq->core)) { 1809 err = PTR_ERR(eq->core); 1810 goto err_wq; 1811 } 1812 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1813 if (err) { 1814 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1815 goto err_eq; 1816 } 1817 1818 mutex_unlock(&dev->odp_eq_mutex); 1819 return 0; 1820 err_eq: 1821 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1822 err_wq: 1823 eq->core = NULL; 1824 destroy_workqueue(eq->wq); 1825 err_mempool: 1826 mempool_destroy(eq->pool); 1827 unlock: 1828 mutex_unlock(&dev->odp_eq_mutex); 1829 return err; 1830 } 1831 1832 static int 1833 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1834 { 1835 int err; 1836 1837 if (!eq->core) 1838 return 0; 1839 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1840 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1841 cancel_work_sync(&eq->work); 1842 destroy_workqueue(eq->wq); 1843 mempool_destroy(eq->pool); 1844 1845 return err; 1846 } 1847 1848 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev) 1849 { 1850 struct mlx5r_cache_rb_key rb_key = { 1851 .access_mode = MLX5_MKC_ACCESS_MODE_KSM, 1852 .ndescs = mlx5_imr_ksm_entries, 1853 }; 1854 struct mlx5_cache_ent *ent; 1855 1856 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1857 return 0; 1858 1859 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true); 1860 if (IS_ERR(ent)) 1861 return PTR_ERR(ent); 1862 1863 return 0; 1864 } 1865 1866 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1867 .advise_mr = mlx5_ib_advise_mr, 1868 }; 1869 1870 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1871 { 1872 internal_fill_odp_caps(dev); 1873 1874 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1875 return 0; 1876 1877 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1878 1879 mutex_init(&dev->odp_eq_mutex); 1880 return 0; 1881 } 1882 1883 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1884 { 1885 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1886 return; 1887 1888 mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq); 1889 } 1890 1891 int mlx5_ib_odp_init(void) 1892 { 1893 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1894 MLX5_IMR_MTT_BITS); 1895 1896 return 0; 1897 } 1898 1899 struct prefetch_mr_work { 1900 struct work_struct work; 1901 u32 pf_flags; 1902 u32 num_sge; 1903 struct { 1904 u64 io_virt; 1905 struct mlx5_ib_mr *mr; 1906 size_t length; 1907 } frags[]; 1908 }; 1909 1910 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1911 { 1912 u32 i; 1913 1914 for (i = 0; i < work->num_sge; ++i) 1915 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey); 1916 1917 kvfree(work); 1918 } 1919 1920 static struct mlx5_ib_mr * 1921 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1922 u32 lkey) 1923 { 1924 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1925 struct mlx5_ib_mr *mr = NULL; 1926 struct mlx5_ib_mkey *mmkey; 1927 1928 xa_lock(&dev->odp_mkeys); 1929 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1930 if (!mmkey || mmkey->key != lkey) { 1931 mr = ERR_PTR(-ENOENT); 1932 goto end; 1933 } 1934 if (mmkey->type != MLX5_MKEY_MR) { 1935 mr = ERR_PTR(-EINVAL); 1936 goto end; 1937 } 1938 1939 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1940 1941 if (mr->ibmr.pd != pd) { 1942 mr = ERR_PTR(-EPERM); 1943 goto end; 1944 } 1945 1946 /* prefetch with write-access must be supported by the MR */ 1947 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1948 !mr->umem->writable) { 1949 mr = ERR_PTR(-EPERM); 1950 goto end; 1951 } 1952 1953 refcount_inc(&mmkey->usecount); 1954 end: 1955 xa_unlock(&dev->odp_mkeys); 1956 return mr; 1957 } 1958 1959 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1960 { 1961 struct prefetch_mr_work *work = 1962 container_of(w, struct prefetch_mr_work, work); 1963 u32 bytes_mapped = 0; 1964 int ret; 1965 u32 i; 1966 1967 /* We rely on IB/core that work is executed if we have num_sge != 0 only. */ 1968 WARN_ON(!work->num_sge); 1969 for (i = 0; i < work->num_sge; ++i) { 1970 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1971 work->frags[i].length, &bytes_mapped, 1972 work->pf_flags, false); 1973 if (ret <= 0) 1974 continue; 1975 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret); 1976 } 1977 1978 destroy_prefetch_work(work); 1979 } 1980 1981 static int init_prefetch_work(struct ib_pd *pd, 1982 enum ib_uverbs_advise_mr_advice advice, 1983 u32 pf_flags, struct prefetch_mr_work *work, 1984 struct ib_sge *sg_list, u32 num_sge) 1985 { 1986 u32 i; 1987 1988 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1989 work->pf_flags = pf_flags; 1990 1991 for (i = 0; i < num_sge; ++i) { 1992 struct mlx5_ib_mr *mr; 1993 1994 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1995 if (IS_ERR(mr)) { 1996 work->num_sge = i; 1997 return PTR_ERR(mr); 1998 } 1999 work->frags[i].io_virt = sg_list[i].addr; 2000 work->frags[i].length = sg_list[i].length; 2001 work->frags[i].mr = mr; 2002 } 2003 work->num_sge = num_sge; 2004 return 0; 2005 } 2006 2007 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 2008 enum ib_uverbs_advise_mr_advice advice, 2009 u32 pf_flags, struct ib_sge *sg_list, 2010 u32 num_sge) 2011 { 2012 u32 bytes_mapped = 0; 2013 int ret = 0; 2014 u32 i; 2015 2016 for (i = 0; i < num_sge; ++i) { 2017 struct mlx5_ib_mr *mr; 2018 2019 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 2020 if (IS_ERR(mr)) 2021 return PTR_ERR(mr); 2022 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 2023 &bytes_mapped, pf_flags, false); 2024 if (ret < 0) { 2025 mlx5r_deref_odp_mkey(&mr->mmkey); 2026 return ret; 2027 } 2028 mlx5_update_odp_stats(mr, prefetch, ret); 2029 mlx5r_deref_odp_mkey(&mr->mmkey); 2030 } 2031 2032 return 0; 2033 } 2034 2035 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 2036 enum ib_uverbs_advise_mr_advice advice, 2037 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2038 { 2039 u32 pf_flags = 0; 2040 struct prefetch_mr_work *work; 2041 int rc; 2042 2043 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 2044 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 2045 2046 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 2047 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT; 2048 2049 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 2050 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 2051 num_sge); 2052 2053 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 2054 if (!work) 2055 return -ENOMEM; 2056 2057 rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge); 2058 if (rc) { 2059 destroy_prefetch_work(work); 2060 return rc; 2061 } 2062 queue_work(system_unbound_wq, &work->work); 2063 return 0; 2064 } 2065