xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision fe7fad476ec8153a8b8767a08114e3e4a58a837e)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 
38 #include "mlx5_ib.h"
39 #include "cmd.h"
40 #include "umr.h"
41 #include "qp.h"
42 
43 #include <linux/mlx5/eq.h>
44 
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47 	u32			bytes_committed;
48 	u64			token;
49 	u8			event_subtype;
50 	u8			type;
51 	union {
52 		/* Initiator or send message responder pagefault details. */
53 		struct {
54 			/* Received packet size, only valid for responders. */
55 			u32	packet_size;
56 			/*
57 			 * Number of resource holding WQE, depends on type.
58 			 */
59 			u32	wq_num;
60 			/*
61 			 * WQE index. Refers to either the send queue or
62 			 * receive queue, according to event_subtype.
63 			 */
64 			u16	wqe_index;
65 		} wqe;
66 		/* RDMA responder pagefault details */
67 		struct {
68 			u32	r_key;
69 			/*
70 			 * Received packet size, minimal size page fault
71 			 * resolution required for forward progress.
72 			 */
73 			u32	packet_size;
74 			u32	rdma_op_len;
75 			u64	rdma_va;
76 		} rdma;
77 		struct {
78 			u64	va;
79 			u32	mkey;
80 			u32	fault_byte_count;
81 			u32     prefetch_before_byte_count;
82 			u32     prefetch_after_byte_count;
83 			u8	flags;
84 		} memory;
85 	};
86 
87 	struct mlx5_ib_pf_eq	*eq;
88 	struct work_struct	work;
89 };
90 
91 #define MAX_PREFETCH_LEN (4*1024*1024U)
92 
93 /* Timeout in ms to wait for an active mmu notifier to complete when handling
94  * a pagefault. */
95 #define MMU_NOTIFIER_TIMEOUT 1000
96 
97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
102 
103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
104 
105 static u64 mlx5_imr_ksm_entries;
106 
107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
108 			struct mlx5_ib_mr *imr, int flags)
109 {
110 	struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
111 	struct mlx5_klm *end = pklm + nentries;
112 	int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
113 	__be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
114 			     cpu_to_be32(imr->null_mmkey.key) :
115 			     mr_to_mdev(imr)->mkeys.null_mkey;
116 	u64 va =
117 		MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
118 
119 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
120 		for (; pklm != end; pklm++, idx++, va += step) {
121 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
122 			pklm->key = key;
123 			pklm->va = cpu_to_be64(va);
124 		}
125 		return;
126 	}
127 
128 	/*
129 	 * The locking here is pretty subtle. Ideally the implicit_children
130 	 * xarray would be protected by the umem_mutex, however that is not
131 	 * possible. Instead this uses a weaker update-then-lock pattern:
132 	 *
133 	 *    xa_store()
134 	 *    mutex_lock(umem_mutex)
135 	 *     mlx5r_umr_update_xlt()
136 	 *    mutex_unlock(umem_mutex)
137 	 *    destroy lkey
138 	 *
139 	 * ie any change the xarray must be followed by the locked update_xlt
140 	 * before destroying.
141 	 *
142 	 * The umem_mutex provides the acquire/release semantic needed to make
143 	 * the xa_store() visible to a racing thread.
144 	 */
145 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
146 
147 	for (; pklm != end; pklm++, idx++, va += step) {
148 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
149 
150 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
151 		if (mtt) {
152 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
153 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
154 		} else {
155 			pklm->key = key;
156 			pklm->va = cpu_to_be64(va);
157 		}
158 	}
159 }
160 
161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
162 {
163 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
164 
165 	if (umem_dma & ODP_READ_ALLOWED_BIT)
166 		mtt_entry |= MLX5_IB_MTT_READ;
167 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
168 		mtt_entry |= MLX5_IB_MTT_WRITE;
169 
170 	return mtt_entry;
171 }
172 
173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
174 			 struct mlx5_ib_mr *mr, int flags)
175 {
176 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
177 	dma_addr_t pa;
178 	size_t i;
179 
180 	if (flags & MLX5_IB_UPD_XLT_ZAP)
181 		return;
182 
183 	for (i = 0; i < nentries; i++) {
184 		pa = odp->dma_list[idx + i];
185 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
186 	}
187 }
188 
189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
190 			   struct mlx5_ib_mr *mr, int flags)
191 {
192 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
193 		populate_klm(xlt, idx, nentries, mr, flags);
194 	} else {
195 		populate_mtt(xlt, idx, nentries, mr, flags);
196 	}
197 }
198 
199 /*
200  * This must be called after the mr has been removed from implicit_children.
201  * NOTE: The MR does not necessarily have to be
202  * empty here, parallel page faults could have raced with the free process and
203  * added pages to it.
204  */
205 static void free_implicit_child_mr_work(struct work_struct *work)
206 {
207 	struct mlx5_ib_mr *mr =
208 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
209 	struct mlx5_ib_mr *imr = mr->parent;
210 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
211 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
212 
213 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
214 
215 	mutex_lock(&odp_imr->umem_mutex);
216 	mlx5r_umr_update_xlt(mr->parent,
217 			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
218 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
219 	mutex_unlock(&odp_imr->umem_mutex);
220 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
221 
222 	mlx5r_deref_odp_mkey(&imr->mmkey);
223 }
224 
225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
226 {
227 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
228 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
229 	struct mlx5_ib_mr *imr = mr->parent;
230 
231 	/*
232 	 * If userspace is racing freeing the parent implicit ODP MR then we can
233 	 * loose the race with parent destruction. In this case
234 	 * mlx5_ib_free_odp_mr() will free everything in the implicit_children
235 	 * xarray so NOP is fine. This child MR cannot be destroyed here because
236 	 * we are under its umem_mutex.
237 	 */
238 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
239 		return;
240 
241 	xa_lock(&imr->implicit_children);
242 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) !=
243 	    mr) {
244 		xa_unlock(&imr->implicit_children);
245 		return;
246 	}
247 
248 	if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
249 		__xa_erase(&mr_to_mdev(mr)->odp_mkeys,
250 			   mlx5_base_mkey(mr->mmkey.key));
251 	xa_unlock(&imr->implicit_children);
252 
253 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
254 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
255 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
256 }
257 
258 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
259 				     const struct mmu_notifier_range *range,
260 				     unsigned long cur_seq)
261 {
262 	struct ib_umem_odp *umem_odp =
263 		container_of(mni, struct ib_umem_odp, notifier);
264 	struct mlx5_ib_mr *mr;
265 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
266 	u64 idx = 0, blk_start_idx = 0;
267 	u64 invalidations = 0;
268 	unsigned long start;
269 	unsigned long end;
270 	int in_block = 0;
271 	u64 addr;
272 
273 	if (!mmu_notifier_range_blockable(range))
274 		return false;
275 
276 	mutex_lock(&umem_odp->umem_mutex);
277 	mmu_interval_set_seq(mni, cur_seq);
278 	/*
279 	 * If npages is zero then umem_odp->private may not be setup yet. This
280 	 * does not complete until after the first page is mapped for DMA.
281 	 */
282 	if (!umem_odp->npages)
283 		goto out;
284 	mr = umem_odp->private;
285 	if (!mr)
286 		goto out;
287 
288 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
289 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
290 
291 	/*
292 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
293 	 * while we are doing the invalidation, no page fault will attempt to
294 	 * overwrite the same MTTs.  Concurent invalidations might race us,
295 	 * but they will write 0s as well, so no difference in the end result.
296 	 */
297 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
298 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
299 		/*
300 		 * Strive to write the MTTs in chunks, but avoid overwriting
301 		 * non-existing MTTs. The huristic here can be improved to
302 		 * estimate the cost of another UMR vs. the cost of bigger
303 		 * UMR.
304 		 */
305 		if (umem_odp->dma_list[idx] &
306 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
307 			if (!in_block) {
308 				blk_start_idx = idx;
309 				in_block = 1;
310 			}
311 
312 			/* Count page invalidations */
313 			invalidations += idx - blk_start_idx + 1;
314 		} else {
315 			u64 umr_offset = idx & umr_block_mask;
316 
317 			if (in_block && umr_offset == 0) {
318 				mlx5r_umr_update_xlt(mr, blk_start_idx,
319 						     idx - blk_start_idx, 0,
320 						     MLX5_IB_UPD_XLT_ZAP |
321 						     MLX5_IB_UPD_XLT_ATOMIC);
322 				in_block = 0;
323 			}
324 		}
325 	}
326 	if (in_block)
327 		mlx5r_umr_update_xlt(mr, blk_start_idx,
328 				     idx - blk_start_idx + 1, 0,
329 				     MLX5_IB_UPD_XLT_ZAP |
330 				     MLX5_IB_UPD_XLT_ATOMIC);
331 
332 	mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations);
333 
334 	/*
335 	 * We are now sure that the device will not access the
336 	 * memory. We can safely unmap it, and mark it as dirty if
337 	 * needed.
338 	 */
339 
340 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
341 
342 	if (unlikely(!umem_odp->npages && mr->parent))
343 		destroy_unused_implicit_child_mr(mr);
344 out:
345 	mutex_unlock(&umem_odp->umem_mutex);
346 	return true;
347 }
348 
349 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
350 	.invalidate = mlx5_ib_invalidate_range,
351 };
352 
353 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
354 {
355 	struct ib_odp_caps *caps = &dev->odp_caps;
356 
357 	memset(caps, 0, sizeof(*caps));
358 
359 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
360 		return;
361 
362 	caps->general_caps = IB_ODP_SUPPORT;
363 
364 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
365 		dev->odp_max_size = U64_MAX;
366 	else
367 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
368 
369 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
370 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
371 
372 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
373 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
374 
375 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
376 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
377 
378 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
379 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
380 
381 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
382 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
383 
384 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
385 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
386 
387 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
388 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
389 
390 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
391 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
392 
393 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
394 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
395 
396 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
397 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
398 
399 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
400 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
401 
402 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
403 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
404 
405 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
406 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
407 
408 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
409 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
410 
411 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
412 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
413 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
414 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
415 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
416 }
417 
418 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
419 				      struct mlx5_pagefault *pfault,
420 				      int error)
421 {
422 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
423 		     pfault->wqe.wq_num : pfault->token;
424 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
425 	void *info;
426 	int err;
427 
428 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
429 
430 	if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
431 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
432 				    page_fault_info.mem_page_fault_info);
433 		MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
434 			 pfault->token & 0xffffffff);
435 		MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
436 			 (pfault->token >> 32) & 0xffff);
437 		MLX5_SET(mem_page_fault_info, info, error, !!error);
438 	} else {
439 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
440 				    page_fault_info.trans_page_fault_info);
441 		MLX5_SET(trans_page_fault_info, info, page_fault_type,
442 			 pfault->type);
443 		MLX5_SET(trans_page_fault_info, info, fault_token,
444 			 pfault->token);
445 		MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
446 		MLX5_SET(trans_page_fault_info, info, error, !!error);
447 	}
448 
449 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
450 	if (err)
451 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
452 			    wq_num, err);
453 }
454 
455 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
456 						unsigned long idx)
457 {
458 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
459 	struct ib_umem_odp *odp;
460 	struct mlx5_ib_mr *mr;
461 	struct mlx5_ib_mr *ret;
462 	int err;
463 
464 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
465 				      idx * MLX5_IMR_MTT_SIZE,
466 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
467 	if (IS_ERR(odp))
468 		return ERR_CAST(odp);
469 
470 	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
471 				 MLX5_MKC_ACCESS_MODE_MTT,
472 				 MLX5_IMR_MTT_ENTRIES);
473 	if (IS_ERR(mr)) {
474 		ib_umem_odp_release(odp);
475 		return mr;
476 	}
477 
478 	mr->access_flags = imr->access_flags;
479 	mr->ibmr.pd = imr->ibmr.pd;
480 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
481 	mr->umem = &odp->umem;
482 	mr->ibmr.lkey = mr->mmkey.key;
483 	mr->ibmr.rkey = mr->mmkey.key;
484 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
485 	mr->parent = imr;
486 	odp->private = mr;
487 
488 	/*
489 	 * First refcount is owned by the xarray and second refconut
490 	 * is returned to the caller.
491 	 */
492 	refcount_set(&mr->mmkey.usecount, 2);
493 
494 	err = mlx5r_umr_update_xlt(mr, 0,
495 				   MLX5_IMR_MTT_ENTRIES,
496 				   PAGE_SHIFT,
497 				   MLX5_IB_UPD_XLT_ZAP |
498 				   MLX5_IB_UPD_XLT_ENABLE);
499 	if (err) {
500 		ret = ERR_PTR(err);
501 		goto out_mr;
502 	}
503 
504 	xa_lock(&imr->implicit_children);
505 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
506 			   GFP_KERNEL);
507 	if (unlikely(ret)) {
508 		if (xa_is_err(ret)) {
509 			ret = ERR_PTR(xa_err(ret));
510 			goto out_lock;
511 		}
512 		/*
513 		 * Another thread beat us to creating the child mr, use
514 		 * theirs.
515 		 */
516 		refcount_inc(&ret->mmkey.usecount);
517 		goto out_lock;
518 	}
519 
520 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
521 		ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
522 				 &mr->mmkey, GFP_KERNEL);
523 		if (xa_is_err(ret)) {
524 			ret = ERR_PTR(xa_err(ret));
525 			__xa_erase(&imr->implicit_children, idx);
526 			goto out_lock;
527 		}
528 		mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
529 	}
530 	xa_unlock(&imr->implicit_children);
531 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
532 	return mr;
533 
534 out_lock:
535 	xa_unlock(&imr->implicit_children);
536 out_mr:
537 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
538 	return ret;
539 }
540 
541 /*
542  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
543  * and each implicit MR needs to assign a private null mkey to get the page
544  * faults on.
545  * The null mkey is created with the properties to enable getting the page
546  * fault for every time it is accessed and having all relevant access flags.
547  */
548 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
549 				       struct mlx5_ib_mr *imr,
550 				       struct mlx5_ib_pd *pd)
551 {
552 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
553 	void *mkc;
554 	u32 *in;
555 	int err;
556 
557 	in = kzalloc(inlen, GFP_KERNEL);
558 	if (!in)
559 		return -ENOMEM;
560 
561 	MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
562 	MLX5_SET(create_mkey_in, in, pg_access, 1);
563 
564 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
565 	MLX5_SET(mkc, mkc, a, 1);
566 	MLX5_SET(mkc, mkc, rw, 1);
567 	MLX5_SET(mkc, mkc, rr, 1);
568 	MLX5_SET(mkc, mkc, lw, 1);
569 	MLX5_SET(mkc, mkc, lr, 1);
570 	MLX5_SET(mkc, mkc, free, 0);
571 	MLX5_SET(mkc, mkc, umr_en, 0);
572 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
573 
574 	MLX5_SET(mkc, mkc, translations_octword_size, 4);
575 	MLX5_SET(mkc, mkc, log_page_size, 61);
576 	MLX5_SET(mkc, mkc, length64, 1);
577 	MLX5_SET(mkc, mkc, pd, pd->pdn);
578 	MLX5_SET64(mkc, mkc, start_addr, 0);
579 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
580 
581 	err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
582 	if (err)
583 		goto free_in;
584 
585 	imr->null_mmkey.type = MLX5_MKEY_NULL;
586 
587 free_in:
588 	kfree(in);
589 	return err;
590 }
591 
592 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
593 					     int access_flags)
594 {
595 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
596 	struct ib_umem_odp *umem_odp;
597 	struct mlx5_ib_mr *imr;
598 	int err;
599 
600 	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
601 		return ERR_PTR(-EOPNOTSUPP);
602 
603 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
604 	if (IS_ERR(umem_odp))
605 		return ERR_CAST(umem_odp);
606 
607 	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
608 				  mlx5_imr_ksm_entries);
609 	if (IS_ERR(imr)) {
610 		ib_umem_odp_release(umem_odp);
611 		return imr;
612 	}
613 
614 	imr->access_flags = access_flags;
615 	imr->ibmr.pd = &pd->ibpd;
616 	imr->ibmr.iova = 0;
617 	imr->umem = &umem_odp->umem;
618 	imr->ibmr.lkey = imr->mmkey.key;
619 	imr->ibmr.rkey = imr->mmkey.key;
620 	imr->ibmr.device = &dev->ib_dev;
621 	imr->is_odp_implicit = true;
622 	xa_init(&imr->implicit_children);
623 
624 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
625 		err = alloc_implicit_mr_null_mkey(dev, imr, pd);
626 		if (err)
627 			goto out_mr;
628 
629 		err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
630 		if (err)
631 			goto out_mr;
632 	}
633 
634 	err = mlx5r_umr_update_xlt(imr, 0,
635 				   mlx5_imr_ksm_entries,
636 				   MLX5_KSM_PAGE_SHIFT,
637 				   MLX5_IB_UPD_XLT_INDIRECT |
638 				   MLX5_IB_UPD_XLT_ZAP |
639 				   MLX5_IB_UPD_XLT_ENABLE);
640 	if (err)
641 		goto out_mr;
642 
643 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
644 	if (err)
645 		goto out_mr;
646 
647 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
648 	return imr;
649 out_mr:
650 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
651 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
652 	return ERR_PTR(err);
653 }
654 
655 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
656 {
657 	struct mlx5_ib_mr *mtt;
658 	unsigned long idx;
659 
660 	/*
661 	 * If this is an implicit MR it is already invalidated so we can just
662 	 * delete the children mkeys.
663 	 */
664 	xa_for_each(&mr->implicit_children, idx, mtt) {
665 		xa_erase(&mr->implicit_children, idx);
666 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
667 	}
668 
669 	if (mr->null_mmkey.key) {
670 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
671 			 mlx5_base_mkey(mr->null_mmkey.key));
672 
673 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
674 				       mr->null_mmkey.key);
675 	}
676 }
677 
678 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
679 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
680 #define MLX5_PF_FLAGS_ENABLE BIT(3)
681 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
682 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
683 			     u32 flags)
684 {
685 	int page_shift, ret, np;
686 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
687 	u64 access_mask;
688 	u64 start_idx;
689 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
690 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
691 
692 	if (flags & MLX5_PF_FLAGS_ENABLE)
693 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
694 
695 	page_shift = odp->page_shift;
696 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
697 	access_mask = ODP_READ_ALLOWED_BIT;
698 
699 	if (odp->umem.writable && !downgrade)
700 		access_mask |= ODP_WRITE_ALLOWED_BIT;
701 
702 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
703 	if (np < 0)
704 		return np;
705 
706 	/*
707 	 * No need to check whether the MTTs really belong to this MR, since
708 	 * ib_umem_odp_map_dma_and_lock already checks this.
709 	 */
710 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
711 	mutex_unlock(&odp->umem_mutex);
712 
713 	if (ret < 0) {
714 		if (ret != -EAGAIN)
715 			mlx5_ib_err(mr_to_mdev(mr),
716 				    "Failed to update mkey page tables\n");
717 		goto out;
718 	}
719 
720 	if (bytes_mapped) {
721 		u32 new_mappings = (np << page_shift) -
722 			(user_va - round_down(user_va, 1 << page_shift));
723 
724 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
725 	}
726 
727 	return np << (page_shift - PAGE_SHIFT);
728 
729 out:
730 	return ret;
731 }
732 
733 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
734 				 struct ib_umem_odp *odp_imr, u64 user_va,
735 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
736 {
737 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
738 	unsigned long upd_start_idx = end_idx + 1;
739 	unsigned long upd_len = 0;
740 	unsigned long npages = 0;
741 	int err;
742 	int ret;
743 
744 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
745 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
746 		return -EFAULT;
747 
748 	/* Fault each child mr that intersects with our interval. */
749 	while (bcnt) {
750 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
751 		struct ib_umem_odp *umem_odp;
752 		struct mlx5_ib_mr *mtt;
753 		u64 len;
754 
755 		xa_lock(&imr->implicit_children);
756 		mtt = xa_load(&imr->implicit_children, idx);
757 		if (unlikely(!mtt)) {
758 			xa_unlock(&imr->implicit_children);
759 			mtt = implicit_get_child_mr(imr, idx);
760 			if (IS_ERR(mtt)) {
761 				ret = PTR_ERR(mtt);
762 				goto out;
763 			}
764 			upd_start_idx = min(upd_start_idx, idx);
765 			upd_len = idx - upd_start_idx + 1;
766 		} else {
767 			refcount_inc(&mtt->mmkey.usecount);
768 			xa_unlock(&imr->implicit_children);
769 		}
770 
771 		umem_odp = to_ib_umem_odp(mtt->umem);
772 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
773 		      user_va;
774 
775 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
776 					bytes_mapped, flags);
777 
778 		mlx5r_deref_odp_mkey(&mtt->mmkey);
779 
780 		if (ret < 0)
781 			goto out;
782 		user_va += len;
783 		bcnt -= len;
784 		npages += ret;
785 	}
786 
787 	ret = npages;
788 
789 	/*
790 	 * Any time the implicit_children are changed we must perform an
791 	 * update of the xlt before exiting to ensure the HW and the
792 	 * implicit_children remains synchronized.
793 	 */
794 out:
795 	if (likely(!upd_len))
796 		return ret;
797 
798 	/*
799 	 * Notice this is not strictly ordered right, the KSM is updated after
800 	 * the implicit_children is updated, so a parallel page fault could
801 	 * see a MR that is not yet visible in the KSM.  This is similar to a
802 	 * parallel page fault seeing a MR that is being concurrently removed
803 	 * from the KSM. Both of these improbable situations are resolved
804 	 * safely by resuming the HW and then taking another page fault. The
805 	 * next pagefault handler will see the new information.
806 	 */
807 	mutex_lock(&odp_imr->umem_mutex);
808 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
809 				   MLX5_IB_UPD_XLT_INDIRECT |
810 					  MLX5_IB_UPD_XLT_ATOMIC);
811 	mutex_unlock(&odp_imr->umem_mutex);
812 	if (err) {
813 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
814 		return err;
815 	}
816 	return ret;
817 }
818 
819 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
820 			       u32 *bytes_mapped, u32 flags)
821 {
822 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
823 	u32 xlt_flags = 0;
824 	int err;
825 	unsigned long page_size;
826 
827 	if (flags & MLX5_PF_FLAGS_ENABLE)
828 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
829 
830 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
831 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
832 	if (err) {
833 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
834 		return err;
835 	}
836 
837 	page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf);
838 	if (!page_size) {
839 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
840 		err = -EINVAL;
841 	} else {
842 		if (mr->data_direct)
843 			err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags);
844 		else
845 			err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
846 	}
847 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
848 
849 	if (err)
850 		return err;
851 
852 	if (bytes_mapped)
853 		*bytes_mapped += bcnt;
854 
855 	return ib_umem_num_pages(mr->umem);
856 }
857 
858 /*
859  * Returns:
860  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
861  *           not accessible, or the MR is no longer valid.
862  *  -EAGAIN/-ENOMEM: The operation should be retried
863  *
864  *  -EINVAL/others: General internal malfunction
865  *  >0: Number of pages mapped
866  */
867 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
868 			u32 *bytes_mapped, u32 flags, bool permissive_fault)
869 {
870 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
871 
872 	if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
873 		return -EFAULT;
874 
875 	if (mr->umem->is_dmabuf)
876 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
877 
878 	if (!odp->is_implicit_odp) {
879 		u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
880 		u64 user_va;
881 
882 		if (check_add_overflow(offset, (u64)odp->umem.address,
883 				       &user_va))
884 			return -EFAULT;
885 
886 		if (permissive_fault) {
887 			if (user_va < ib_umem_start(odp))
888 				user_va = ib_umem_start(odp);
889 			if ((user_va + bcnt) > ib_umem_end(odp))
890 				bcnt = ib_umem_end(odp) - user_va;
891 		} else if (unlikely(user_va >= ib_umem_end(odp) ||
892 				    ib_umem_end(odp) - user_va < bcnt))
893 			return -EFAULT;
894 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
895 					 flags);
896 	}
897 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
898 				     flags);
899 }
900 
901 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
902 {
903 	int ret;
904 
905 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
906 				mr->umem->length, NULL,
907 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
908 	return ret >= 0 ? 0 : ret;
909 }
910 
911 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
912 {
913 	int ret;
914 
915 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
916 				  MLX5_PF_FLAGS_ENABLE);
917 
918 	return ret >= 0 ? 0 : ret;
919 }
920 
921 struct pf_frame {
922 	struct pf_frame *next;
923 	u32 key;
924 	u64 io_virt;
925 	size_t bcnt;
926 	int depth;
927 };
928 
929 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
930 {
931 	if (!mmkey)
932 		return false;
933 	if (mmkey->type == MLX5_MKEY_MW ||
934 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
935 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
936 	return mmkey->key == key;
937 }
938 
939 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
940 {
941 	struct mlx5_ib_mkey *mmkey;
942 
943 	xa_lock(&dev->odp_mkeys);
944 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
945 	if (!mmkey) {
946 		mmkey = ERR_PTR(-ENOENT);
947 		goto out;
948 	}
949 	if (!mkey_is_eq(mmkey, key)) {
950 		mmkey = ERR_PTR(-EFAULT);
951 		goto out;
952 	}
953 	refcount_inc(&mmkey->usecount);
954 out:
955 	xa_unlock(&dev->odp_mkeys);
956 
957 	return mmkey;
958 }
959 
960 /*
961  * Handle a single data segment in a page-fault WQE or RDMA region.
962  *
963  * Returns zero on success. The caller may continue to the next data segment.
964  * Can return the following error codes:
965  * -EAGAIN to designate a temporary error. The caller will abort handling the
966  *  page fault and resolve it.
967  * -EFAULT when there's an error mapping the requested pages. The caller will
968  *  abort the page fault handling.
969  */
970 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
971 					 struct ib_pd *pd, u32 key,
972 					 u64 io_virt, size_t bcnt,
973 					 u32 *bytes_committed,
974 					 u32 *bytes_mapped)
975 {
976 	int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range;
977 	struct pf_frame *head = NULL, *frame;
978 	struct mlx5_ib_mkey *mmkey;
979 	struct mlx5_ib_mr *mr;
980 	struct mlx5_klm *pklm;
981 	u32 *out = NULL;
982 	size_t offset;
983 
984 	io_virt += *bytes_committed;
985 	bcnt -= *bytes_committed;
986 next_mr:
987 	mmkey = find_odp_mkey(dev, key);
988 	if (IS_ERR(mmkey)) {
989 		ret = PTR_ERR(mmkey);
990 		if (ret == -ENOENT) {
991 			mlx5_ib_dbg(
992 				dev,
993 				"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
994 				key);
995 			if (bytes_mapped)
996 				*bytes_mapped += bcnt;
997 			/*
998 			 * The user could specify a SGL with multiple lkeys and
999 			 * only some of them are ODP. Treat the non-ODP ones as
1000 			 * fully faulted.
1001 			 */
1002 			ret = 0;
1003 		}
1004 		goto end;
1005 	}
1006 
1007 	switch (mmkey->type) {
1008 	case MLX5_MKEY_MR:
1009 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1010 
1011 		pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) -
1012 				  (io_virt & PAGE_MASK)) >>
1013 				 PAGE_SHIFT;
1014 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
1015 		if (ret < 0)
1016 			goto end;
1017 
1018 		mlx5_update_odp_stats_with_handled(mr, faults, ret);
1019 
1020 		if (ret < pages_in_range) {
1021 			ret = -EFAULT;
1022 			goto end;
1023 		}
1024 
1025 		ret = 0;
1026 		break;
1027 
1028 	case MLX5_MKEY_MW:
1029 	case MLX5_MKEY_INDIRECT_DEVX:
1030 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1031 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
1032 			ret = -EFAULT;
1033 			goto end;
1034 		}
1035 
1036 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1037 			sizeof(*pklm) * (mmkey->ndescs - 2);
1038 
1039 		if (outlen > cur_outlen) {
1040 			kfree(out);
1041 			out = kzalloc(outlen, GFP_KERNEL);
1042 			if (!out) {
1043 				ret = -ENOMEM;
1044 				goto end;
1045 			}
1046 			cur_outlen = outlen;
1047 		}
1048 
1049 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1050 						       bsf0_klm0_pas_mtt0_1);
1051 
1052 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1053 		if (ret)
1054 			goto end;
1055 
1056 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
1057 					      memory_key_mkey_entry.start_addr);
1058 
1059 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1060 			if (offset >= be32_to_cpu(pklm->bcount)) {
1061 				offset -= be32_to_cpu(pklm->bcount);
1062 				continue;
1063 			}
1064 
1065 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1066 			if (!frame) {
1067 				ret = -ENOMEM;
1068 				goto end;
1069 			}
1070 
1071 			frame->key = be32_to_cpu(pklm->key);
1072 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
1073 			frame->bcnt = min_t(size_t, bcnt,
1074 					    be32_to_cpu(pklm->bcount) - offset);
1075 			frame->depth = depth + 1;
1076 			frame->next = head;
1077 			head = frame;
1078 
1079 			bcnt -= frame->bcnt;
1080 			offset = 0;
1081 		}
1082 		break;
1083 
1084 	default:
1085 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1086 		ret = -EFAULT;
1087 		goto end;
1088 	}
1089 
1090 	if (head) {
1091 		frame = head;
1092 		head = frame->next;
1093 
1094 		key = frame->key;
1095 		io_virt = frame->io_virt;
1096 		bcnt = frame->bcnt;
1097 		depth = frame->depth;
1098 		kfree(frame);
1099 
1100 		mlx5r_deref_odp_mkey(mmkey);
1101 		goto next_mr;
1102 	}
1103 
1104 end:
1105 	if (!IS_ERR(mmkey))
1106 		mlx5r_deref_odp_mkey(mmkey);
1107 	while (head) {
1108 		frame = head;
1109 		head = frame->next;
1110 		kfree(frame);
1111 	}
1112 	kfree(out);
1113 
1114 	*bytes_committed = 0;
1115 	return ret;
1116 }
1117 
1118 /*
1119  * Parse a series of data segments for page fault handling.
1120  *
1121  * @dev:  Pointer to mlx5 IB device
1122  * @pfault: contains page fault information.
1123  * @wqe: points at the first data segment in the WQE.
1124  * @wqe_end: points after the end of the WQE.
1125  * @bytes_mapped: receives the number of bytes that the function was able to
1126  *                map. This allows the caller to decide intelligently whether
1127  *                enough memory was mapped to resolve the page fault
1128  *                successfully (e.g. enough for the next MTU, or the entire
1129  *                WQE).
1130  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1131  *                   the committed bytes).
1132  * @receive_queue: receive WQE end of sg list
1133  *
1134  * Returns zero for success or a negative error code.
1135  */
1136 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1137 				   struct mlx5_pagefault *pfault,
1138 				   void *wqe,
1139 				   void *wqe_end, u32 *bytes_mapped,
1140 				   u32 *total_wqe_bytes, bool receive_queue)
1141 {
1142 	int ret = 0;
1143 	u64 io_virt;
1144 	__be32 key;
1145 	u32 byte_count;
1146 	size_t bcnt;
1147 	int inline_segment;
1148 
1149 	if (bytes_mapped)
1150 		*bytes_mapped = 0;
1151 	if (total_wqe_bytes)
1152 		*total_wqe_bytes = 0;
1153 
1154 	while (wqe < wqe_end) {
1155 		struct mlx5_wqe_data_seg *dseg = wqe;
1156 
1157 		io_virt = be64_to_cpu(dseg->addr);
1158 		key = dseg->lkey;
1159 		byte_count = be32_to_cpu(dseg->byte_count);
1160 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1161 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1162 
1163 		if (inline_segment) {
1164 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1165 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1166 				     16);
1167 		} else {
1168 			wqe += sizeof(*dseg);
1169 		}
1170 
1171 		/* receive WQE end of sg list. */
1172 		if (receive_queue && bcnt == 0 &&
1173 		    key == dev->mkeys.terminate_scatter_list_mkey &&
1174 		    io_virt == 0)
1175 			break;
1176 
1177 		if (!inline_segment && total_wqe_bytes) {
1178 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1179 					pfault->bytes_committed);
1180 		}
1181 
1182 		/* A zero length data segment designates a length of 2GB. */
1183 		if (bcnt == 0)
1184 			bcnt = 1U << 31;
1185 
1186 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1187 			pfault->bytes_committed -=
1188 				min_t(size_t, bcnt,
1189 				      pfault->bytes_committed);
1190 			continue;
1191 		}
1192 
1193 		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1194 						    io_virt, bcnt,
1195 						    &pfault->bytes_committed,
1196 						    bytes_mapped);
1197 		if (ret < 0)
1198 			break;
1199 	}
1200 
1201 	return ret;
1202 }
1203 
1204 /*
1205  * Parse initiator WQE. Advances the wqe pointer to point at the
1206  * scatter-gather list, and set wqe_end to the end of the WQE.
1207  */
1208 static int mlx5_ib_mr_initiator_pfault_handler(
1209 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1210 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1211 {
1212 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1213 	u16 wqe_index = pfault->wqe.wqe_index;
1214 	struct mlx5_base_av *av;
1215 	unsigned ds, opcode;
1216 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1217 
1218 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1219 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1220 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1221 			    ds, wqe_length);
1222 		return -EFAULT;
1223 	}
1224 
1225 	if (ds == 0) {
1226 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1227 			    wqe_index, qpn);
1228 		return -EFAULT;
1229 	}
1230 
1231 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1232 	*wqe += sizeof(*ctrl);
1233 
1234 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1235 		 MLX5_WQE_CTRL_OPCODE_MASK;
1236 
1237 	if (qp->type == IB_QPT_XRC_INI)
1238 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1239 
1240 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1241 		av = *wqe;
1242 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1243 			*wqe += sizeof(struct mlx5_av);
1244 		else
1245 			*wqe += sizeof(struct mlx5_base_av);
1246 	}
1247 
1248 	switch (opcode) {
1249 	case MLX5_OPCODE_RDMA_WRITE:
1250 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1251 	case MLX5_OPCODE_RDMA_READ:
1252 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1253 		break;
1254 	case MLX5_OPCODE_ATOMIC_CS:
1255 	case MLX5_OPCODE_ATOMIC_FA:
1256 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1257 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1258 		break;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Parse responder WQE and set wqe_end to the end of the WQE.
1266  */
1267 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1268 						   struct mlx5_ib_srq *srq,
1269 						   void **wqe, void **wqe_end,
1270 						   int wqe_length)
1271 {
1272 	int wqe_size = 1 << srq->msrq.wqe_shift;
1273 
1274 	if (wqe_size > wqe_length) {
1275 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1276 		return -EFAULT;
1277 	}
1278 
1279 	*wqe_end = *wqe + wqe_size;
1280 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1281 
1282 	return 0;
1283 }
1284 
1285 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1286 						  struct mlx5_ib_qp *qp,
1287 						  void *wqe, void **wqe_end,
1288 						  int wqe_length)
1289 {
1290 	struct mlx5_ib_wq *wq = &qp->rq;
1291 	int wqe_size = 1 << wq->wqe_shift;
1292 
1293 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1294 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1295 		return -EFAULT;
1296 	}
1297 
1298 	if (wqe_size > wqe_length) {
1299 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1300 		return -EFAULT;
1301 	}
1302 
1303 	*wqe_end = wqe + wqe_size;
1304 
1305 	return 0;
1306 }
1307 
1308 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1309 						       u32 wq_num, int pf_type)
1310 {
1311 	struct mlx5_core_rsc_common *common = NULL;
1312 	struct mlx5_core_srq *srq;
1313 
1314 	switch (pf_type) {
1315 	case MLX5_WQE_PF_TYPE_RMP:
1316 		srq = mlx5_cmd_get_srq(dev, wq_num);
1317 		if (srq)
1318 			common = &srq->common;
1319 		break;
1320 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1321 	case MLX5_WQE_PF_TYPE_RESP:
1322 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1323 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1324 		break;
1325 	default:
1326 		break;
1327 	}
1328 
1329 	return common;
1330 }
1331 
1332 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1333 {
1334 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1335 
1336 	return to_mibqp(mqp);
1337 }
1338 
1339 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1340 {
1341 	struct mlx5_core_srq *msrq =
1342 		container_of(res, struct mlx5_core_srq, common);
1343 
1344 	return to_mibsrq(msrq);
1345 }
1346 
1347 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1348 					  struct mlx5_pagefault *pfault)
1349 {
1350 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1351 	u16 wqe_index = pfault->wqe.wqe_index;
1352 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1353 	u32 bytes_mapped, total_wqe_bytes;
1354 	struct mlx5_core_rsc_common *res;
1355 	int resume_with_error = 1;
1356 	struct mlx5_ib_qp *qp;
1357 	size_t bytes_copied;
1358 	int ret = 0;
1359 
1360 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1361 	if (!res) {
1362 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1363 		return;
1364 	}
1365 
1366 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1367 	    res->res != MLX5_RES_XSRQ) {
1368 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1369 			    pfault->type);
1370 		goto resolve_page_fault;
1371 	}
1372 
1373 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1374 	if (!wqe_start) {
1375 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1376 		goto resolve_page_fault;
1377 	}
1378 
1379 	wqe = wqe_start;
1380 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1381 	if (qp && sq) {
1382 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1383 					  &bytes_copied);
1384 		if (ret)
1385 			goto read_user;
1386 		ret = mlx5_ib_mr_initiator_pfault_handler(
1387 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1388 	} else if (qp && !sq) {
1389 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1390 					  &bytes_copied);
1391 		if (ret)
1392 			goto read_user;
1393 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1394 			dev, qp, wqe, &wqe_end, bytes_copied);
1395 	} else if (!qp) {
1396 		struct mlx5_ib_srq *srq = res_to_srq(res);
1397 
1398 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1399 					   &bytes_copied);
1400 		if (ret)
1401 			goto read_user;
1402 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1403 			dev, srq, &wqe, &wqe_end, bytes_copied);
1404 	}
1405 
1406 	if (ret < 0 || wqe >= wqe_end)
1407 		goto resolve_page_fault;
1408 
1409 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1410 				      &total_wqe_bytes, !sq);
1411 	if (ret == -EAGAIN)
1412 		goto out;
1413 
1414 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1415 		goto resolve_page_fault;
1416 
1417 out:
1418 	ret = 0;
1419 	resume_with_error = 0;
1420 
1421 read_user:
1422 	if (ret)
1423 		mlx5_ib_err(
1424 			dev,
1425 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1426 			ret, wqe_index, pfault->token);
1427 
1428 resolve_page_fault:
1429 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1430 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1431 		    pfault->wqe.wq_num, resume_with_error,
1432 		    pfault->type);
1433 	mlx5_core_res_put(res);
1434 	free_page((unsigned long)wqe_start);
1435 }
1436 
1437 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1438 					   struct mlx5_pagefault *pfault)
1439 {
1440 	u64 address;
1441 	u32 length;
1442 	u32 prefetch_len = pfault->bytes_committed;
1443 	int prefetch_activated = 0;
1444 	u32 rkey = pfault->rdma.r_key;
1445 	int ret;
1446 
1447 	/* The RDMA responder handler handles the page fault in two parts.
1448 	 * First it brings the necessary pages for the current packet
1449 	 * (and uses the pfault context), and then (after resuming the QP)
1450 	 * prefetches more pages. The second operation cannot use the pfault
1451 	 * context and therefore uses the dummy_pfault context allocated on
1452 	 * the stack */
1453 	pfault->rdma.rdma_va += pfault->bytes_committed;
1454 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1455 					 pfault->rdma.rdma_op_len);
1456 	pfault->bytes_committed = 0;
1457 
1458 	address = pfault->rdma.rdma_va;
1459 	length  = pfault->rdma.rdma_op_len;
1460 
1461 	/* For some operations, the hardware cannot tell the exact message
1462 	 * length, and in those cases it reports zero. Use prefetch
1463 	 * logic. */
1464 	if (length == 0) {
1465 		prefetch_activated = 1;
1466 		length = pfault->rdma.packet_size;
1467 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1468 	}
1469 
1470 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1471 					    &pfault->bytes_committed, NULL);
1472 	if (ret == -EAGAIN) {
1473 		/* We're racing with an invalidation, don't prefetch */
1474 		prefetch_activated = 0;
1475 	} else if (ret < 0) {
1476 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1477 		if (ret != -ENOENT)
1478 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1479 				    ret, pfault->token, pfault->type);
1480 		return;
1481 	}
1482 
1483 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1484 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1485 		    pfault->token, pfault->type,
1486 		    prefetch_activated);
1487 
1488 	/* At this point, there might be a new pagefault already arriving in
1489 	 * the eq, switch to the dummy pagefault for the rest of the
1490 	 * processing. We're still OK with the objects being alive as the
1491 	 * work-queue is being fenced. */
1492 
1493 	if (prefetch_activated) {
1494 		u32 bytes_committed = 0;
1495 
1496 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1497 						    prefetch_len,
1498 						    &bytes_committed, NULL);
1499 		if (ret < 0 && ret != -EAGAIN) {
1500 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1501 				    ret, pfault->token, address, prefetch_len);
1502 		}
1503 	}
1504 }
1505 
1506 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
1507 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1508 					     struct mlx5_pagefault *pfault)
1509 {
1510 	u64 prefetch_va =
1511 		pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1512 	size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1513 			       pfault->memory.fault_byte_count +
1514 			       pfault->memory.prefetch_after_byte_count;
1515 	struct mlx5_ib_mkey *mmkey;
1516 	struct mlx5_ib_mr *mr, *child_mr;
1517 	int ret = 0;
1518 
1519 	mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1520 	if (IS_ERR(mmkey))
1521 		goto err;
1522 
1523 	switch (mmkey->type) {
1524 	case MLX5_MKEY_IMPLICIT_CHILD:
1525 		child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1526 		mr = child_mr->parent;
1527 		break;
1528 	case MLX5_MKEY_NULL:
1529 		mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1530 		break;
1531 	default:
1532 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1533 		break;
1534 	}
1535 
1536 	/* If prefetch fails, handle only demanded page fault */
1537 	ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1538 	if (ret < 0) {
1539 		ret = pagefault_mr(mr, pfault->memory.va,
1540 				   pfault->memory.fault_byte_count, NULL, 0,
1541 				   true);
1542 		if (ret < 0)
1543 			goto err;
1544 	}
1545 
1546 	mlx5_update_odp_stats_with_handled(mr, faults, ret);
1547 	mlx5r_deref_odp_mkey(mmkey);
1548 
1549 	if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1550 		mlx5_ib_page_fault_resume(dev, pfault, 0);
1551 
1552 	mlx5_ib_dbg(
1553 		dev,
1554 		"PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1555 		pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1556 			"" :
1557 			"without resume cmd",
1558 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1559 		pfault->memory.fault_byte_count);
1560 
1561 	return;
1562 
1563 err:
1564 	if (!IS_ERR(mmkey))
1565 		mlx5r_deref_odp_mkey(mmkey);
1566 	mlx5_ib_page_fault_resume(dev, pfault, 1);
1567 	mlx5_ib_dbg(
1568 		dev,
1569 		"PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1570 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1571 		pfault->memory.fault_byte_count, ret);
1572 }
1573 
1574 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1575 {
1576 	u8 event_subtype = pfault->event_subtype;
1577 
1578 	switch (event_subtype) {
1579 	case MLX5_PFAULT_SUBTYPE_WQE:
1580 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1581 		break;
1582 	case MLX5_PFAULT_SUBTYPE_RDMA:
1583 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1584 		break;
1585 	case MLX5_PFAULT_SUBTYPE_MEMORY:
1586 		mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1587 		break;
1588 	default:
1589 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1590 			    event_subtype);
1591 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1592 	}
1593 }
1594 
1595 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1596 {
1597 	struct mlx5_pagefault *pfault = container_of(work,
1598 						     struct mlx5_pagefault,
1599 						     work);
1600 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1601 
1602 	mlx5_ib_pfault(eq->dev, pfault);
1603 	mempool_free(pfault, eq->pool);
1604 }
1605 
1606 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
1607 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1608 {
1609 	struct mlx5_eqe_page_fault *pf_eqe;
1610 	struct mlx5_pagefault *pfault;
1611 	struct mlx5_eqe *eqe;
1612 	int cc = 0;
1613 
1614 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1615 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1616 		if (!pfault) {
1617 			schedule_work(&eq->work);
1618 			break;
1619 		}
1620 
1621 		pf_eqe = &eqe->data.page_fault;
1622 		pfault->event_subtype = eqe->sub_type;
1623 
1624 		switch (eqe->sub_type) {
1625 		case MLX5_PFAULT_SUBTYPE_RDMA:
1626 			/* RDMA based event */
1627 			pfault->bytes_committed =
1628 				be32_to_cpu(pf_eqe->rdma.bytes_committed);
1629 			pfault->type =
1630 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1631 			pfault->token =
1632 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1633 				MLX5_24BIT_MASK;
1634 			pfault->rdma.r_key =
1635 				be32_to_cpu(pf_eqe->rdma.r_key);
1636 			pfault->rdma.packet_size =
1637 				be16_to_cpu(pf_eqe->rdma.packet_length);
1638 			pfault->rdma.rdma_op_len =
1639 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1640 			pfault->rdma.rdma_va =
1641 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1642 			mlx5_ib_dbg(
1643 				eq->dev,
1644 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1645 				eqe->sub_type, pfault->bytes_committed,
1646 				pfault->type, pfault->token,
1647 				pfault->rdma.r_key);
1648 			mlx5_ib_dbg(eq->dev,
1649 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1650 				    pfault->rdma.rdma_op_len,
1651 				    pfault->rdma.rdma_va);
1652 			break;
1653 
1654 		case MLX5_PFAULT_SUBTYPE_WQE:
1655 			/* WQE based event */
1656 			pfault->bytes_committed =
1657 				be32_to_cpu(pf_eqe->wqe.bytes_committed);
1658 			pfault->type =
1659 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1660 			pfault->token =
1661 				be32_to_cpu(pf_eqe->wqe.token);
1662 			pfault->wqe.wq_num =
1663 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1664 				MLX5_24BIT_MASK;
1665 			pfault->wqe.wqe_index =
1666 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1667 			pfault->wqe.packet_size =
1668 				be16_to_cpu(pf_eqe->wqe.packet_length);
1669 			mlx5_ib_dbg(
1670 				eq->dev,
1671 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1672 				eqe->sub_type, pfault->bytes_committed,
1673 				pfault->type, pfault->token, pfault->wqe.wq_num,
1674 				pfault->wqe.wqe_index);
1675 			break;
1676 
1677 		case MLX5_PFAULT_SUBTYPE_MEMORY:
1678 			/* Memory based event */
1679 			pfault->bytes_committed = 0;
1680 			pfault->token =
1681 				be32_to_cpu(pf_eqe->memory.token31_0) |
1682 				((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1683 				 << 32);
1684 			pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1685 			pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1686 			pfault->memory.fault_byte_count = (be32_to_cpu(
1687 				pf_eqe->memory.demand_fault_pages) >> 12) *
1688 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1689 			pfault->memory.prefetch_before_byte_count =
1690 				be16_to_cpu(
1691 					pf_eqe->memory.pre_demand_fault_pages) *
1692 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1693 			pfault->memory.prefetch_after_byte_count =
1694 				be16_to_cpu(
1695 					pf_eqe->memory.post_demand_fault_pages) *
1696 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1697 			pfault->memory.flags = pf_eqe->memory.flags;
1698 			mlx5_ib_dbg(
1699 				eq->dev,
1700 				"PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1701 				eqe->sub_type, pfault->token,
1702 				pfault->memory.mkey,
1703 				pfault->memory.fault_byte_count,
1704 				pfault->memory.va, pfault->memory.flags);
1705 			mlx5_ib_dbg(
1706 				eq->dev,
1707 				"PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1708 				pfault->memory.prefetch_before_byte_count,
1709 				pfault->memory.prefetch_after_byte_count);
1710 			break;
1711 
1712 		default:
1713 			mlx5_ib_warn(eq->dev,
1714 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1715 				     eqe->sub_type);
1716 			/* Unsupported page faults should still be
1717 			 * resolved by the page fault handler
1718 			 */
1719 		}
1720 
1721 		pfault->eq = eq;
1722 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1723 		queue_work(eq->wq, &pfault->work);
1724 
1725 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1726 	}
1727 
1728 	mlx5_eq_update_ci(eq->core, cc, 1);
1729 }
1730 
1731 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1732 			     void *data)
1733 {
1734 	struct mlx5_ib_pf_eq *eq =
1735 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1736 	unsigned long flags;
1737 
1738 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1739 		mlx5_ib_eq_pf_process(eq);
1740 		spin_unlock_irqrestore(&eq->lock, flags);
1741 	} else {
1742 		schedule_work(&eq->work);
1743 	}
1744 
1745 	return IRQ_HANDLED;
1746 }
1747 
1748 /* mempool_refill() was proposed but unfortunately wasn't accepted
1749  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1750  * Cheap workaround.
1751  */
1752 static void mempool_refill(mempool_t *pool)
1753 {
1754 	while (pool->curr_nr < pool->min_nr)
1755 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1756 }
1757 
1758 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1759 {
1760 	struct mlx5_ib_pf_eq *eq =
1761 		container_of(work, struct mlx5_ib_pf_eq, work);
1762 
1763 	mempool_refill(eq->pool);
1764 
1765 	spin_lock_irq(&eq->lock);
1766 	mlx5_ib_eq_pf_process(eq);
1767 	spin_unlock_irq(&eq->lock);
1768 }
1769 
1770 enum {
1771 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1772 	MLX5_IB_NUM_PF_DRAIN	= 64,
1773 };
1774 
1775 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1776 {
1777 	struct mlx5_eq_param param = {};
1778 	int err = 0;
1779 
1780 	mutex_lock(&dev->odp_eq_mutex);
1781 	if (eq->core)
1782 		goto unlock;
1783 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1784 	spin_lock_init(&eq->lock);
1785 	eq->dev = dev;
1786 
1787 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1788 					       sizeof(struct mlx5_pagefault));
1789 	if (!eq->pool) {
1790 		err = -ENOMEM;
1791 		goto unlock;
1792 	}
1793 
1794 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1795 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1796 				 MLX5_NUM_CMD_EQE);
1797 	if (!eq->wq) {
1798 		err = -ENOMEM;
1799 		goto err_mempool;
1800 	}
1801 
1802 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1803 	param = (struct mlx5_eq_param) {
1804 		.nent = MLX5_IB_NUM_PF_EQE,
1805 	};
1806 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1807 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1808 	if (IS_ERR(eq->core)) {
1809 		err = PTR_ERR(eq->core);
1810 		goto err_wq;
1811 	}
1812 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1813 	if (err) {
1814 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1815 		goto err_eq;
1816 	}
1817 
1818 	mutex_unlock(&dev->odp_eq_mutex);
1819 	return 0;
1820 err_eq:
1821 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1822 err_wq:
1823 	eq->core = NULL;
1824 	destroy_workqueue(eq->wq);
1825 err_mempool:
1826 	mempool_destroy(eq->pool);
1827 unlock:
1828 	mutex_unlock(&dev->odp_eq_mutex);
1829 	return err;
1830 }
1831 
1832 static int
1833 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1834 {
1835 	int err;
1836 
1837 	if (!eq->core)
1838 		return 0;
1839 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1840 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1841 	cancel_work_sync(&eq->work);
1842 	destroy_workqueue(eq->wq);
1843 	mempool_destroy(eq->pool);
1844 
1845 	return err;
1846 }
1847 
1848 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1849 {
1850 	struct mlx5r_cache_rb_key rb_key = {
1851 		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1852 		.ndescs = mlx5_imr_ksm_entries,
1853 	};
1854 	struct mlx5_cache_ent *ent;
1855 
1856 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1857 		return 0;
1858 
1859 	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1860 	if (IS_ERR(ent))
1861 		return PTR_ERR(ent);
1862 
1863 	return 0;
1864 }
1865 
1866 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1867 	.advise_mr = mlx5_ib_advise_mr,
1868 };
1869 
1870 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1871 {
1872 	internal_fill_odp_caps(dev);
1873 
1874 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1875 		return 0;
1876 
1877 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1878 
1879 	mutex_init(&dev->odp_eq_mutex);
1880 	return 0;
1881 }
1882 
1883 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1884 {
1885 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1886 		return;
1887 
1888 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1889 }
1890 
1891 int mlx5_ib_odp_init(void)
1892 {
1893 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1894 				       MLX5_IMR_MTT_BITS);
1895 
1896 	return 0;
1897 }
1898 
1899 struct prefetch_mr_work {
1900 	struct work_struct work;
1901 	u32 pf_flags;
1902 	u32 num_sge;
1903 	struct {
1904 		u64 io_virt;
1905 		struct mlx5_ib_mr *mr;
1906 		size_t length;
1907 	} frags[];
1908 };
1909 
1910 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1911 {
1912 	u32 i;
1913 
1914 	for (i = 0; i < work->num_sge; ++i)
1915 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1916 
1917 	kvfree(work);
1918 }
1919 
1920 static struct mlx5_ib_mr *
1921 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1922 		    u32 lkey)
1923 {
1924 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1925 	struct mlx5_ib_mr *mr = NULL;
1926 	struct mlx5_ib_mkey *mmkey;
1927 
1928 	xa_lock(&dev->odp_mkeys);
1929 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1930 	if (!mmkey || mmkey->key != lkey) {
1931 		mr = ERR_PTR(-ENOENT);
1932 		goto end;
1933 	}
1934 	if (mmkey->type != MLX5_MKEY_MR) {
1935 		mr = ERR_PTR(-EINVAL);
1936 		goto end;
1937 	}
1938 
1939 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1940 
1941 	if (mr->ibmr.pd != pd) {
1942 		mr = ERR_PTR(-EPERM);
1943 		goto end;
1944 	}
1945 
1946 	/* prefetch with write-access must be supported by the MR */
1947 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1948 	    !mr->umem->writable) {
1949 		mr = ERR_PTR(-EPERM);
1950 		goto end;
1951 	}
1952 
1953 	refcount_inc(&mmkey->usecount);
1954 end:
1955 	xa_unlock(&dev->odp_mkeys);
1956 	return mr;
1957 }
1958 
1959 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1960 {
1961 	struct prefetch_mr_work *work =
1962 		container_of(w, struct prefetch_mr_work, work);
1963 	u32 bytes_mapped = 0;
1964 	int ret;
1965 	u32 i;
1966 
1967 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1968 	WARN_ON(!work->num_sge);
1969 	for (i = 0; i < work->num_sge; ++i) {
1970 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1971 				   work->frags[i].length, &bytes_mapped,
1972 				   work->pf_flags, false);
1973 		if (ret <= 0)
1974 			continue;
1975 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1976 	}
1977 
1978 	destroy_prefetch_work(work);
1979 }
1980 
1981 static int init_prefetch_work(struct ib_pd *pd,
1982 			       enum ib_uverbs_advise_mr_advice advice,
1983 			       u32 pf_flags, struct prefetch_mr_work *work,
1984 			       struct ib_sge *sg_list, u32 num_sge)
1985 {
1986 	u32 i;
1987 
1988 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1989 	work->pf_flags = pf_flags;
1990 
1991 	for (i = 0; i < num_sge; ++i) {
1992 		struct mlx5_ib_mr *mr;
1993 
1994 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1995 		if (IS_ERR(mr)) {
1996 			work->num_sge = i;
1997 			return PTR_ERR(mr);
1998 		}
1999 		work->frags[i].io_virt = sg_list[i].addr;
2000 		work->frags[i].length = sg_list[i].length;
2001 		work->frags[i].mr = mr;
2002 	}
2003 	work->num_sge = num_sge;
2004 	return 0;
2005 }
2006 
2007 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
2008 				    enum ib_uverbs_advise_mr_advice advice,
2009 				    u32 pf_flags, struct ib_sge *sg_list,
2010 				    u32 num_sge)
2011 {
2012 	u32 bytes_mapped = 0;
2013 	int ret = 0;
2014 	u32 i;
2015 
2016 	for (i = 0; i < num_sge; ++i) {
2017 		struct mlx5_ib_mr *mr;
2018 
2019 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2020 		if (IS_ERR(mr))
2021 			return PTR_ERR(mr);
2022 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2023 				   &bytes_mapped, pf_flags, false);
2024 		if (ret < 0) {
2025 			mlx5r_deref_odp_mkey(&mr->mmkey);
2026 			return ret;
2027 		}
2028 		mlx5_update_odp_stats(mr, prefetch, ret);
2029 		mlx5r_deref_odp_mkey(&mr->mmkey);
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2036 			       enum ib_uverbs_advise_mr_advice advice,
2037 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
2038 {
2039 	u32 pf_flags = 0;
2040 	struct prefetch_mr_work *work;
2041 	int rc;
2042 
2043 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2044 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2045 
2046 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2047 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2048 
2049 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2050 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2051 						num_sge);
2052 
2053 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2054 	if (!work)
2055 		return -ENOMEM;
2056 
2057 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2058 	if (rc) {
2059 		destroy_prefetch_work(work);
2060 		return rc;
2061 	}
2062 	queue_work(system_unbound_wq, &work->work);
2063 	return 0;
2064 }
2065