1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem_odp.h> 34 #include <linux/kernel.h> 35 #include <linux/dma-buf.h> 36 #include <linux/dma-resv.h> 37 38 #include "mlx5_ib.h" 39 #include "cmd.h" 40 #include "umr.h" 41 #include "qp.h" 42 43 #include <linux/mlx5/eq.h> 44 45 /* Contains the details of a pagefault. */ 46 struct mlx5_pagefault { 47 u32 bytes_committed; 48 u64 token; 49 u8 event_subtype; 50 u8 type; 51 union { 52 /* Initiator or send message responder pagefault details. */ 53 struct { 54 /* Received packet size, only valid for responders. */ 55 u32 packet_size; 56 /* 57 * Number of resource holding WQE, depends on type. 58 */ 59 u32 wq_num; 60 /* 61 * WQE index. Refers to either the send queue or 62 * receive queue, according to event_subtype. 63 */ 64 u16 wqe_index; 65 } wqe; 66 /* RDMA responder pagefault details */ 67 struct { 68 u32 r_key; 69 /* 70 * Received packet size, minimal size page fault 71 * resolution required for forward progress. 72 */ 73 u32 packet_size; 74 u32 rdma_op_len; 75 u64 rdma_va; 76 } rdma; 77 struct { 78 u64 va; 79 u32 mkey; 80 u32 fault_byte_count; 81 u32 prefetch_before_byte_count; 82 u32 prefetch_after_byte_count; 83 u8 flags; 84 } memory; 85 }; 86 87 struct mlx5_ib_pf_eq *eq; 88 struct work_struct work; 89 }; 90 91 #define MAX_PREFETCH_LEN (4*1024*1024U) 92 93 /* Timeout in ms to wait for an active mmu notifier to complete when handling 94 * a pagefault. */ 95 #define MMU_NOTIFIER_TIMEOUT 1000 96 97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 102 103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 104 105 static u64 mlx5_imr_ksm_entries; 106 107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 108 struct mlx5_ib_mr *imr, int flags) 109 { 110 struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev; 111 struct mlx5_klm *end = pklm + nentries; 112 int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0; 113 __be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ? 114 cpu_to_be32(imr->null_mmkey.key) : 115 mr_to_mdev(imr)->mkeys.null_mkey; 116 u64 va = 117 MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0; 118 119 if (flags & MLX5_IB_UPD_XLT_ZAP) { 120 for (; pklm != end; pklm++, idx++, va += step) { 121 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 122 pklm->key = key; 123 pklm->va = cpu_to_be64(va); 124 } 125 return; 126 } 127 128 /* 129 * The locking here is pretty subtle. Ideally the implicit_children 130 * xarray would be protected by the umem_mutex, however that is not 131 * possible. Instead this uses a weaker update-then-lock pattern: 132 * 133 * xa_store() 134 * mutex_lock(umem_mutex) 135 * mlx5r_umr_update_xlt() 136 * mutex_unlock(umem_mutex) 137 * destroy lkey 138 * 139 * ie any change the xarray must be followed by the locked update_xlt 140 * before destroying. 141 * 142 * The umem_mutex provides the acquire/release semantic needed to make 143 * the xa_store() visible to a racing thread. 144 */ 145 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 146 147 for (; pklm != end; pklm++, idx++, va += step) { 148 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 149 150 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 151 if (mtt) { 152 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 153 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 154 } else { 155 pklm->key = key; 156 pklm->va = cpu_to_be64(va); 157 } 158 } 159 } 160 161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma) 162 { 163 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; 164 165 if (umem_dma & ODP_READ_ALLOWED_BIT) 166 mtt_entry |= MLX5_IB_MTT_READ; 167 if (umem_dma & ODP_WRITE_ALLOWED_BIT) 168 mtt_entry |= MLX5_IB_MTT_WRITE; 169 170 return mtt_entry; 171 } 172 173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, 174 struct mlx5_ib_mr *mr, int flags) 175 { 176 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 177 dma_addr_t pa; 178 size_t i; 179 180 if (flags & MLX5_IB_UPD_XLT_ZAP) 181 return; 182 183 for (i = 0; i < nentries; i++) { 184 pa = odp->dma_list[idx + i]; 185 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); 186 } 187 } 188 189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, 190 struct mlx5_ib_mr *mr, int flags) 191 { 192 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 193 populate_klm(xlt, idx, nentries, mr, flags); 194 } else { 195 populate_mtt(xlt, idx, nentries, mr, flags); 196 } 197 } 198 199 /* 200 * This must be called after the mr has been removed from implicit_children. 201 * NOTE: The MR does not necessarily have to be 202 * empty here, parallel page faults could have raced with the free process and 203 * added pages to it. 204 */ 205 static void free_implicit_child_mr_work(struct work_struct *work) 206 { 207 struct mlx5_ib_mr *mr = 208 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 209 struct mlx5_ib_mr *imr = mr->parent; 210 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 211 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 212 213 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 214 215 mutex_lock(&odp_imr->umem_mutex); 216 mlx5r_umr_update_xlt(mr->parent, 217 ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0, 218 MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); 219 mutex_unlock(&odp_imr->umem_mutex); 220 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 221 222 mlx5r_deref_odp_mkey(&imr->mmkey); 223 } 224 225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 226 { 227 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 228 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 229 struct mlx5_ib_mr *imr = mr->parent; 230 231 /* 232 * If userspace is racing freeing the parent implicit ODP MR then we can 233 * loose the race with parent destruction. In this case 234 * mlx5_ib_free_odp_mr() will free everything in the implicit_children 235 * xarray so NOP is fine. This child MR cannot be destroyed here because 236 * we are under its umem_mutex. 237 */ 238 if (!refcount_inc_not_zero(&imr->mmkey.usecount)) 239 return; 240 241 xa_lock(&imr->implicit_children); 242 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) != 243 mr) { 244 xa_unlock(&imr->implicit_children); 245 mlx5r_deref_odp_mkey(&imr->mmkey); 246 return; 247 } 248 249 if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault)) 250 __xa_erase(&mr_to_mdev(mr)->odp_mkeys, 251 mlx5_base_mkey(mr->mmkey.key)); 252 xa_unlock(&imr->implicit_children); 253 254 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 255 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 256 queue_work(system_unbound_wq, &mr->odp_destroy.work); 257 } 258 259 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 260 const struct mmu_notifier_range *range, 261 unsigned long cur_seq) 262 { 263 struct ib_umem_odp *umem_odp = 264 container_of(mni, struct ib_umem_odp, notifier); 265 struct mlx5_ib_mr *mr; 266 const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1; 267 u64 idx = 0, blk_start_idx = 0; 268 u64 invalidations = 0; 269 unsigned long start; 270 unsigned long end; 271 int in_block = 0; 272 u64 addr; 273 274 if (!mmu_notifier_range_blockable(range)) 275 return false; 276 277 mutex_lock(&umem_odp->umem_mutex); 278 mmu_interval_set_seq(mni, cur_seq); 279 /* 280 * If npages is zero then umem_odp->private may not be setup yet. This 281 * does not complete until after the first page is mapped for DMA. 282 */ 283 if (!umem_odp->npages) 284 goto out; 285 mr = umem_odp->private; 286 if (!mr) 287 goto out; 288 289 start = max_t(u64, ib_umem_start(umem_odp), range->start); 290 end = min_t(u64, ib_umem_end(umem_odp), range->end); 291 292 /* 293 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 294 * while we are doing the invalidation, no page fault will attempt to 295 * overwrite the same MTTs. Concurent invalidations might race us, 296 * but they will write 0s as well, so no difference in the end result. 297 */ 298 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 299 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 300 /* 301 * Strive to write the MTTs in chunks, but avoid overwriting 302 * non-existing MTTs. The huristic here can be improved to 303 * estimate the cost of another UMR vs. the cost of bigger 304 * UMR. 305 */ 306 if (umem_odp->dma_list[idx] & 307 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 308 if (!in_block) { 309 blk_start_idx = idx; 310 in_block = 1; 311 } 312 } else { 313 u64 umr_offset = idx & umr_block_mask; 314 315 if (in_block && umr_offset == 0) { 316 mlx5r_umr_update_xlt(mr, blk_start_idx, 317 idx - blk_start_idx, 0, 318 MLX5_IB_UPD_XLT_ZAP | 319 MLX5_IB_UPD_XLT_ATOMIC); 320 in_block = 0; 321 /* Count page invalidations */ 322 invalidations += idx - blk_start_idx + 1; 323 } 324 } 325 } 326 if (in_block) { 327 mlx5r_umr_update_xlt(mr, blk_start_idx, 328 idx - blk_start_idx + 1, 0, 329 MLX5_IB_UPD_XLT_ZAP | 330 MLX5_IB_UPD_XLT_ATOMIC); 331 /* Count page invalidations */ 332 invalidations += idx - blk_start_idx + 1; 333 } 334 335 mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations); 336 337 /* 338 * We are now sure that the device will not access the 339 * memory. We can safely unmap it, and mark it as dirty if 340 * needed. 341 */ 342 343 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 344 345 if (unlikely(!umem_odp->npages && mr->parent)) 346 destroy_unused_implicit_child_mr(mr); 347 out: 348 mutex_unlock(&umem_odp->umem_mutex); 349 return true; 350 } 351 352 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 353 .invalidate = mlx5_ib_invalidate_range, 354 }; 355 356 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev) 357 { 358 struct ib_odp_caps *caps = &dev->odp_caps; 359 360 memset(caps, 0, sizeof(*caps)); 361 362 if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0)) 363 return; 364 365 caps->general_caps = IB_ODP_SUPPORT; 366 367 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 368 dev->odp_max_size = U64_MAX; 369 else 370 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 371 372 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send)) 373 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 374 375 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive)) 376 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 377 378 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send)) 379 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 380 381 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive)) 382 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 383 384 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write)) 385 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 386 387 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read)) 388 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 389 390 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic)) 391 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 392 393 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive)) 394 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 395 396 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send)) 397 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 398 399 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive)) 400 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 401 402 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write)) 403 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 404 405 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read)) 406 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 407 408 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic)) 409 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 410 411 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive)) 412 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 413 414 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 415 MLX5_CAP_GEN(dev->mdev, null_mkey) && 416 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 417 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 418 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 419 } 420 421 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 422 struct mlx5_pagefault *pfault, 423 int error) 424 { 425 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 426 pfault->wqe.wq_num : pfault->token; 427 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; 428 void *info; 429 int err; 430 431 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 432 433 if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) { 434 info = MLX5_ADDR_OF(page_fault_resume_in, in, 435 page_fault_info.mem_page_fault_info); 436 MLX5_SET(mem_page_fault_info, info, fault_token_31_0, 437 pfault->token & 0xffffffff); 438 MLX5_SET(mem_page_fault_info, info, fault_token_47_32, 439 (pfault->token >> 32) & 0xffff); 440 MLX5_SET(mem_page_fault_info, info, error, !!error); 441 } else { 442 info = MLX5_ADDR_OF(page_fault_resume_in, in, 443 page_fault_info.trans_page_fault_info); 444 MLX5_SET(trans_page_fault_info, info, page_fault_type, 445 pfault->type); 446 MLX5_SET(trans_page_fault_info, info, fault_token, 447 pfault->token); 448 MLX5_SET(trans_page_fault_info, info, wq_number, wq_num); 449 MLX5_SET(trans_page_fault_info, info, error, !!error); 450 } 451 452 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); 453 if (err) 454 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 455 wq_num, err); 456 } 457 458 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 459 unsigned long idx) 460 { 461 struct mlx5_ib_dev *dev = mr_to_mdev(imr); 462 struct ib_umem_odp *odp; 463 struct mlx5_ib_mr *mr; 464 struct mlx5_ib_mr *ret; 465 int err; 466 467 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 468 idx * MLX5_IMR_MTT_SIZE, 469 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 470 if (IS_ERR(odp)) 471 return ERR_CAST(odp); 472 473 mr = mlx5_mr_cache_alloc(dev, imr->access_flags, 474 MLX5_MKC_ACCESS_MODE_MTT, 475 MLX5_IMR_MTT_ENTRIES); 476 if (IS_ERR(mr)) { 477 ib_umem_odp_release(odp); 478 return mr; 479 } 480 481 mr->access_flags = imr->access_flags; 482 mr->ibmr.pd = imr->ibmr.pd; 483 mr->ibmr.device = &mr_to_mdev(imr)->ib_dev; 484 mr->umem = &odp->umem; 485 mr->ibmr.lkey = mr->mmkey.key; 486 mr->ibmr.rkey = mr->mmkey.key; 487 mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE; 488 mr->parent = imr; 489 odp->private = mr; 490 491 /* 492 * First refcount is owned by the xarray and second refconut 493 * is returned to the caller. 494 */ 495 refcount_set(&mr->mmkey.usecount, 2); 496 497 err = mlx5r_umr_update_xlt(mr, 0, 498 MLX5_IMR_MTT_ENTRIES, 499 PAGE_SHIFT, 500 MLX5_IB_UPD_XLT_ZAP | 501 MLX5_IB_UPD_XLT_ENABLE); 502 if (err) { 503 ret = ERR_PTR(err); 504 goto out_mr; 505 } 506 507 xa_lock(&imr->implicit_children); 508 ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 509 GFP_KERNEL); 510 if (unlikely(ret)) { 511 if (xa_is_err(ret)) { 512 ret = ERR_PTR(xa_err(ret)); 513 goto out_lock; 514 } 515 /* 516 * Another thread beat us to creating the child mr, use 517 * theirs. 518 */ 519 refcount_inc(&ret->mmkey.usecount); 520 goto out_lock; 521 } 522 523 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) { 524 ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key), 525 &mr->mmkey, GFP_KERNEL); 526 if (xa_is_err(ret)) { 527 ret = ERR_PTR(xa_err(ret)); 528 __xa_erase(&imr->implicit_children, idx); 529 goto out_lock; 530 } 531 mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD; 532 } 533 xa_unlock(&imr->implicit_children); 534 mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr); 535 return mr; 536 537 out_lock: 538 xa_unlock(&imr->implicit_children); 539 out_mr: 540 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 541 return ret; 542 } 543 544 /* 545 * When using memory scheme ODP, implicit MRs can't use the reserved null mkey 546 * and each implicit MR needs to assign a private null mkey to get the page 547 * faults on. 548 * The null mkey is created with the properties to enable getting the page 549 * fault for every time it is accessed and having all relevant access flags. 550 */ 551 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev, 552 struct mlx5_ib_mr *imr, 553 struct mlx5_ib_pd *pd) 554 { 555 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64; 556 void *mkc; 557 u32 *in; 558 int err; 559 560 in = kzalloc(inlen, GFP_KERNEL); 561 if (!in) 562 return -ENOMEM; 563 564 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4); 565 MLX5_SET(create_mkey_in, in, pg_access, 1); 566 567 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 568 MLX5_SET(mkc, mkc, a, 1); 569 MLX5_SET(mkc, mkc, rw, 1); 570 MLX5_SET(mkc, mkc, rr, 1); 571 MLX5_SET(mkc, mkc, lw, 1); 572 MLX5_SET(mkc, mkc, lr, 1); 573 MLX5_SET(mkc, mkc, free, 0); 574 MLX5_SET(mkc, mkc, umr_en, 0); 575 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 576 577 MLX5_SET(mkc, mkc, translations_octword_size, 4); 578 MLX5_SET(mkc, mkc, log_page_size, 61); 579 MLX5_SET(mkc, mkc, length64, 1); 580 MLX5_SET(mkc, mkc, pd, pd->pdn); 581 MLX5_SET64(mkc, mkc, start_addr, 0); 582 MLX5_SET(mkc, mkc, qpn, 0xffffff); 583 584 err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen); 585 if (err) 586 goto free_in; 587 588 imr->null_mmkey.type = MLX5_MKEY_NULL; 589 590 free_in: 591 kfree(in); 592 return err; 593 } 594 595 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 596 int access_flags) 597 { 598 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 599 struct ib_umem_odp *umem_odp; 600 struct mlx5_ib_mr *imr; 601 int err; 602 603 if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE)) 604 return ERR_PTR(-EOPNOTSUPP); 605 606 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); 607 if (IS_ERR(umem_odp)) 608 return ERR_CAST(umem_odp); 609 610 imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM, 611 mlx5_imr_ksm_entries); 612 if (IS_ERR(imr)) { 613 ib_umem_odp_release(umem_odp); 614 return imr; 615 } 616 617 imr->access_flags = access_flags; 618 imr->ibmr.pd = &pd->ibpd; 619 imr->ibmr.iova = 0; 620 imr->umem = &umem_odp->umem; 621 imr->ibmr.lkey = imr->mmkey.key; 622 imr->ibmr.rkey = imr->mmkey.key; 623 imr->ibmr.device = &dev->ib_dev; 624 imr->is_odp_implicit = true; 625 xa_init(&imr->implicit_children); 626 627 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) { 628 err = alloc_implicit_mr_null_mkey(dev, imr, pd); 629 if (err) 630 goto out_mr; 631 632 err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey); 633 if (err) 634 goto out_mr; 635 } 636 637 err = mlx5r_umr_update_xlt(imr, 0, 638 mlx5_imr_ksm_entries, 639 MLX5_KSM_PAGE_SHIFT, 640 MLX5_IB_UPD_XLT_INDIRECT | 641 MLX5_IB_UPD_XLT_ZAP | 642 MLX5_IB_UPD_XLT_ENABLE); 643 if (err) 644 goto out_mr; 645 646 err = mlx5r_store_odp_mkey(dev, &imr->mmkey); 647 if (err) 648 goto out_mr; 649 650 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 651 return imr; 652 out_mr: 653 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 654 mlx5_ib_dereg_mr(&imr->ibmr, NULL); 655 return ERR_PTR(err); 656 } 657 658 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr) 659 { 660 struct mlx5_ib_mr *mtt; 661 unsigned long idx; 662 663 /* 664 * If this is an implicit MR it is already invalidated so we can just 665 * delete the children mkeys. 666 */ 667 xa_for_each(&mr->implicit_children, idx, mtt) { 668 xa_erase(&mr->implicit_children, idx); 669 mlx5_ib_dereg_mr(&mtt->ibmr, NULL); 670 } 671 672 if (mr->null_mmkey.key) { 673 xa_erase(&mr_to_mdev(mr)->odp_mkeys, 674 mlx5_base_mkey(mr->null_mmkey.key)); 675 676 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, 677 mr->null_mmkey.key); 678 } 679 } 680 681 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 682 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2) 683 #define MLX5_PF_FLAGS_ENABLE BIT(3) 684 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 685 u64 user_va, size_t bcnt, u32 *bytes_mapped, 686 u32 flags) 687 { 688 int page_shift, ret, np; 689 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 690 u64 access_mask; 691 u64 start_idx; 692 bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT); 693 u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC; 694 695 if (flags & MLX5_PF_FLAGS_ENABLE) 696 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 697 698 page_shift = odp->page_shift; 699 start_idx = (user_va - ib_umem_start(odp)) >> page_shift; 700 access_mask = ODP_READ_ALLOWED_BIT; 701 702 if (odp->umem.writable && !downgrade) 703 access_mask |= ODP_WRITE_ALLOWED_BIT; 704 705 np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault); 706 if (np < 0) 707 return np; 708 709 /* 710 * No need to check whether the MTTs really belong to this MR, since 711 * ib_umem_odp_map_dma_and_lock already checks this. 712 */ 713 ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags); 714 mutex_unlock(&odp->umem_mutex); 715 716 if (ret < 0) { 717 if (ret != -EAGAIN) 718 mlx5_ib_err(mr_to_mdev(mr), 719 "Failed to update mkey page tables\n"); 720 goto out; 721 } 722 723 if (bytes_mapped) { 724 u32 new_mappings = (np << page_shift) - 725 (user_va - round_down(user_va, 1 << page_shift)); 726 727 *bytes_mapped += min_t(u32, new_mappings, bcnt); 728 } 729 730 return np << (page_shift - PAGE_SHIFT); 731 732 out: 733 return ret; 734 } 735 736 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 737 struct ib_umem_odp *odp_imr, u64 user_va, 738 size_t bcnt, u32 *bytes_mapped, u32 flags) 739 { 740 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 741 unsigned long upd_start_idx = end_idx + 1; 742 unsigned long upd_len = 0; 743 unsigned long npages = 0; 744 int err; 745 int ret; 746 747 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 748 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 749 return -EFAULT; 750 751 /* Fault each child mr that intersects with our interval. */ 752 while (bcnt) { 753 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 754 struct ib_umem_odp *umem_odp; 755 struct mlx5_ib_mr *mtt; 756 u64 len; 757 758 xa_lock(&imr->implicit_children); 759 mtt = xa_load(&imr->implicit_children, idx); 760 if (unlikely(!mtt)) { 761 xa_unlock(&imr->implicit_children); 762 mtt = implicit_get_child_mr(imr, idx); 763 if (IS_ERR(mtt)) { 764 ret = PTR_ERR(mtt); 765 goto out; 766 } 767 upd_start_idx = min(upd_start_idx, idx); 768 upd_len = idx - upd_start_idx + 1; 769 } else { 770 refcount_inc(&mtt->mmkey.usecount); 771 xa_unlock(&imr->implicit_children); 772 } 773 774 umem_odp = to_ib_umem_odp(mtt->umem); 775 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 776 user_va; 777 778 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 779 bytes_mapped, flags); 780 781 mlx5r_deref_odp_mkey(&mtt->mmkey); 782 783 if (ret < 0) 784 goto out; 785 user_va += len; 786 bcnt -= len; 787 npages += ret; 788 } 789 790 ret = npages; 791 792 /* 793 * Any time the implicit_children are changed we must perform an 794 * update of the xlt before exiting to ensure the HW and the 795 * implicit_children remains synchronized. 796 */ 797 out: 798 if (likely(!upd_len)) 799 return ret; 800 801 /* 802 * Notice this is not strictly ordered right, the KSM is updated after 803 * the implicit_children is updated, so a parallel page fault could 804 * see a MR that is not yet visible in the KSM. This is similar to a 805 * parallel page fault seeing a MR that is being concurrently removed 806 * from the KSM. Both of these improbable situations are resolved 807 * safely by resuming the HW and then taking another page fault. The 808 * next pagefault handler will see the new information. 809 */ 810 mutex_lock(&odp_imr->umem_mutex); 811 err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0, 812 MLX5_IB_UPD_XLT_INDIRECT | 813 MLX5_IB_UPD_XLT_ATOMIC); 814 mutex_unlock(&odp_imr->umem_mutex); 815 if (err) { 816 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n"); 817 return err; 818 } 819 return ret; 820 } 821 822 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt, 823 u32 *bytes_mapped, u32 flags) 824 { 825 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem); 826 u32 xlt_flags = 0; 827 int err; 828 unsigned long page_size; 829 830 if (flags & MLX5_PF_FLAGS_ENABLE) 831 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 832 833 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL); 834 err = ib_umem_dmabuf_map_pages(umem_dmabuf); 835 if (err) { 836 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 837 return err; 838 } 839 840 page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf); 841 if (!page_size) { 842 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 843 err = -EINVAL; 844 } else { 845 if (mr->data_direct) 846 err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags); 847 else 848 err = mlx5r_umr_update_mr_pas(mr, xlt_flags); 849 } 850 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 851 852 if (err) 853 return err; 854 855 if (bytes_mapped) 856 *bytes_mapped += bcnt; 857 858 return ib_umem_num_pages(mr->umem); 859 } 860 861 /* 862 * Returns: 863 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 864 * not accessible, or the MR is no longer valid. 865 * -EAGAIN/-ENOMEM: The operation should be retried 866 * 867 * -EINVAL/others: General internal malfunction 868 * >0: Number of pages mapped 869 */ 870 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 871 u32 *bytes_mapped, u32 flags, bool permissive_fault) 872 { 873 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 874 875 if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault) 876 return -EFAULT; 877 878 if (mr->umem->is_dmabuf) 879 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags); 880 881 if (!odp->is_implicit_odp) { 882 u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova; 883 u64 user_va; 884 885 if (check_add_overflow(offset, (u64)odp->umem.address, 886 &user_va)) 887 return -EFAULT; 888 889 if (permissive_fault) { 890 if (user_va < ib_umem_start(odp)) 891 user_va = ib_umem_start(odp); 892 if ((user_va + bcnt) > ib_umem_end(odp)) 893 bcnt = ib_umem_end(odp) - user_va; 894 } else if (unlikely(user_va >= ib_umem_end(odp) || 895 ib_umem_end(odp) - user_va < bcnt)) 896 return -EFAULT; 897 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, 898 flags); 899 } 900 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 901 flags); 902 } 903 904 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr) 905 { 906 int ret; 907 908 ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address, 909 mr->umem->length, NULL, 910 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE); 911 return ret >= 0 ? 0 : ret; 912 } 913 914 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr) 915 { 916 int ret; 917 918 ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL, 919 MLX5_PF_FLAGS_ENABLE); 920 921 return ret >= 0 ? 0 : ret; 922 } 923 924 struct pf_frame { 925 struct pf_frame *next; 926 u32 key; 927 u64 io_virt; 928 size_t bcnt; 929 int depth; 930 }; 931 932 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key) 933 { 934 if (!mmkey) 935 return false; 936 if (mmkey->type == MLX5_MKEY_MW || 937 mmkey->type == MLX5_MKEY_INDIRECT_DEVX) 938 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 939 return mmkey->key == key; 940 } 941 942 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key) 943 { 944 struct mlx5_ib_mkey *mmkey; 945 946 xa_lock(&dev->odp_mkeys); 947 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 948 if (!mmkey) { 949 mmkey = ERR_PTR(-ENOENT); 950 goto out; 951 } 952 if (!mkey_is_eq(mmkey, key)) { 953 mmkey = ERR_PTR(-EFAULT); 954 goto out; 955 } 956 refcount_inc(&mmkey->usecount); 957 out: 958 xa_unlock(&dev->odp_mkeys); 959 960 return mmkey; 961 } 962 963 /* 964 * Handle a single data segment in a page-fault WQE or RDMA region. 965 * 966 * Returns zero on success. The caller may continue to the next data segment. 967 * Can return the following error codes: 968 * -EAGAIN to designate a temporary error. The caller will abort handling the 969 * page fault and resolve it. 970 * -EFAULT when there's an error mapping the requested pages. The caller will 971 * abort the page fault handling. 972 */ 973 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 974 struct ib_pd *pd, u32 key, 975 u64 io_virt, size_t bcnt, 976 u32 *bytes_committed, 977 u32 *bytes_mapped) 978 { 979 int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range; 980 struct pf_frame *head = NULL, *frame; 981 struct mlx5_ib_mkey *mmkey; 982 struct mlx5_ib_mr *mr; 983 struct mlx5_klm *pklm; 984 u32 *out = NULL; 985 size_t offset; 986 987 io_virt += *bytes_committed; 988 bcnt -= *bytes_committed; 989 next_mr: 990 mmkey = find_odp_mkey(dev, key); 991 if (IS_ERR(mmkey)) { 992 ret = PTR_ERR(mmkey); 993 if (ret == -ENOENT) { 994 mlx5_ib_dbg( 995 dev, 996 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 997 key); 998 if (bytes_mapped) 999 *bytes_mapped += bcnt; 1000 /* 1001 * The user could specify a SGL with multiple lkeys and 1002 * only some of them are ODP. Treat the non-ODP ones as 1003 * fully faulted. 1004 */ 1005 ret = 0; 1006 } 1007 goto end; 1008 } 1009 1010 switch (mmkey->type) { 1011 case MLX5_MKEY_MR: 1012 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1013 1014 pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) - 1015 (io_virt & PAGE_MASK)) >> 1016 PAGE_SHIFT; 1017 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false); 1018 if (ret < 0) 1019 goto end; 1020 1021 mlx5_update_odp_stats_with_handled(mr, faults, ret); 1022 1023 if (ret < pages_in_range) { 1024 ret = -EFAULT; 1025 goto end; 1026 } 1027 1028 ret = 0; 1029 break; 1030 1031 case MLX5_MKEY_MW: 1032 case MLX5_MKEY_INDIRECT_DEVX: 1033 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 1034 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 1035 ret = -EFAULT; 1036 goto end; 1037 } 1038 1039 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 1040 sizeof(*pklm) * (mmkey->ndescs - 2); 1041 1042 if (outlen > cur_outlen) { 1043 kfree(out); 1044 out = kzalloc(outlen, GFP_KERNEL); 1045 if (!out) { 1046 ret = -ENOMEM; 1047 goto end; 1048 } 1049 cur_outlen = outlen; 1050 } 1051 1052 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 1053 bsf0_klm0_pas_mtt0_1); 1054 1055 ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen); 1056 if (ret) 1057 goto end; 1058 1059 offset = io_virt - MLX5_GET64(query_mkey_out, out, 1060 memory_key_mkey_entry.start_addr); 1061 1062 for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) { 1063 if (offset >= be32_to_cpu(pklm->bcount)) { 1064 offset -= be32_to_cpu(pklm->bcount); 1065 continue; 1066 } 1067 1068 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1069 if (!frame) { 1070 ret = -ENOMEM; 1071 goto end; 1072 } 1073 1074 frame->key = be32_to_cpu(pklm->key); 1075 frame->io_virt = be64_to_cpu(pklm->va) + offset; 1076 frame->bcnt = min_t(size_t, bcnt, 1077 be32_to_cpu(pklm->bcount) - offset); 1078 frame->depth = depth + 1; 1079 frame->next = head; 1080 head = frame; 1081 1082 bcnt -= frame->bcnt; 1083 offset = 0; 1084 } 1085 break; 1086 1087 default: 1088 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 1089 ret = -EFAULT; 1090 goto end; 1091 } 1092 1093 if (head) { 1094 frame = head; 1095 head = frame->next; 1096 1097 key = frame->key; 1098 io_virt = frame->io_virt; 1099 bcnt = frame->bcnt; 1100 depth = frame->depth; 1101 kfree(frame); 1102 1103 mlx5r_deref_odp_mkey(mmkey); 1104 goto next_mr; 1105 } 1106 1107 end: 1108 if (!IS_ERR(mmkey)) 1109 mlx5r_deref_odp_mkey(mmkey); 1110 while (head) { 1111 frame = head; 1112 head = frame->next; 1113 kfree(frame); 1114 } 1115 kfree(out); 1116 1117 *bytes_committed = 0; 1118 return ret; 1119 } 1120 1121 /* 1122 * Parse a series of data segments for page fault handling. 1123 * 1124 * @dev: Pointer to mlx5 IB device 1125 * @pfault: contains page fault information. 1126 * @wqe: points at the first data segment in the WQE. 1127 * @wqe_end: points after the end of the WQE. 1128 * @bytes_mapped: receives the number of bytes that the function was able to 1129 * map. This allows the caller to decide intelligently whether 1130 * enough memory was mapped to resolve the page fault 1131 * successfully (e.g. enough for the next MTU, or the entire 1132 * WQE). 1133 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus 1134 * the committed bytes). 1135 * @receive_queue: receive WQE end of sg list 1136 * 1137 * Returns zero for success or a negative error code. 1138 */ 1139 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 1140 struct mlx5_pagefault *pfault, 1141 void *wqe, 1142 void *wqe_end, u32 *bytes_mapped, 1143 u32 *total_wqe_bytes, bool receive_queue) 1144 { 1145 int ret = 0; 1146 u64 io_virt; 1147 __be32 key; 1148 u32 byte_count; 1149 size_t bcnt; 1150 int inline_segment; 1151 1152 if (bytes_mapped) 1153 *bytes_mapped = 0; 1154 if (total_wqe_bytes) 1155 *total_wqe_bytes = 0; 1156 1157 while (wqe < wqe_end) { 1158 struct mlx5_wqe_data_seg *dseg = wqe; 1159 1160 io_virt = be64_to_cpu(dseg->addr); 1161 key = dseg->lkey; 1162 byte_count = be32_to_cpu(dseg->byte_count); 1163 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1164 bcnt = byte_count & ~MLX5_INLINE_SEG; 1165 1166 if (inline_segment) { 1167 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1168 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1169 16); 1170 } else { 1171 wqe += sizeof(*dseg); 1172 } 1173 1174 /* receive WQE end of sg list. */ 1175 if (receive_queue && bcnt == 0 && 1176 key == dev->mkeys.terminate_scatter_list_mkey && 1177 io_virt == 0) 1178 break; 1179 1180 if (!inline_segment && total_wqe_bytes) { 1181 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1182 pfault->bytes_committed); 1183 } 1184 1185 /* A zero length data segment designates a length of 2GB. */ 1186 if (bcnt == 0) 1187 bcnt = 1U << 31; 1188 1189 if (inline_segment || bcnt <= pfault->bytes_committed) { 1190 pfault->bytes_committed -= 1191 min_t(size_t, bcnt, 1192 pfault->bytes_committed); 1193 continue; 1194 } 1195 1196 ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key), 1197 io_virt, bcnt, 1198 &pfault->bytes_committed, 1199 bytes_mapped); 1200 if (ret < 0) 1201 break; 1202 } 1203 1204 return ret; 1205 } 1206 1207 /* 1208 * Parse initiator WQE. Advances the wqe pointer to point at the 1209 * scatter-gather list, and set wqe_end to the end of the WQE. 1210 */ 1211 static int mlx5_ib_mr_initiator_pfault_handler( 1212 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1213 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1214 { 1215 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1216 u16 wqe_index = pfault->wqe.wqe_index; 1217 struct mlx5_base_av *av; 1218 unsigned ds, opcode; 1219 u32 qpn = qp->trans_qp.base.mqp.qpn; 1220 1221 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1222 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1223 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1224 ds, wqe_length); 1225 return -EFAULT; 1226 } 1227 1228 if (ds == 0) { 1229 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1230 wqe_index, qpn); 1231 return -EFAULT; 1232 } 1233 1234 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1235 *wqe += sizeof(*ctrl); 1236 1237 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1238 MLX5_WQE_CTRL_OPCODE_MASK; 1239 1240 if (qp->type == IB_QPT_XRC_INI) 1241 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1242 1243 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { 1244 av = *wqe; 1245 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1246 *wqe += sizeof(struct mlx5_av); 1247 else 1248 *wqe += sizeof(struct mlx5_base_av); 1249 } 1250 1251 switch (opcode) { 1252 case MLX5_OPCODE_RDMA_WRITE: 1253 case MLX5_OPCODE_RDMA_WRITE_IMM: 1254 case MLX5_OPCODE_RDMA_READ: 1255 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1256 break; 1257 case MLX5_OPCODE_ATOMIC_CS: 1258 case MLX5_OPCODE_ATOMIC_FA: 1259 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1260 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1261 break; 1262 } 1263 1264 return 0; 1265 } 1266 1267 /* 1268 * Parse responder WQE and set wqe_end to the end of the WQE. 1269 */ 1270 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1271 struct mlx5_ib_srq *srq, 1272 void **wqe, void **wqe_end, 1273 int wqe_length) 1274 { 1275 int wqe_size = 1 << srq->msrq.wqe_shift; 1276 1277 if (wqe_size > wqe_length) { 1278 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1279 return -EFAULT; 1280 } 1281 1282 *wqe_end = *wqe + wqe_size; 1283 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1284 1285 return 0; 1286 } 1287 1288 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1289 struct mlx5_ib_qp *qp, 1290 void *wqe, void **wqe_end, 1291 int wqe_length) 1292 { 1293 struct mlx5_ib_wq *wq = &qp->rq; 1294 int wqe_size = 1 << wq->wqe_shift; 1295 1296 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { 1297 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1298 return -EFAULT; 1299 } 1300 1301 if (wqe_size > wqe_length) { 1302 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1303 return -EFAULT; 1304 } 1305 1306 *wqe_end = wqe + wqe_size; 1307 1308 return 0; 1309 } 1310 1311 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1312 u32 wq_num, int pf_type) 1313 { 1314 struct mlx5_core_rsc_common *common = NULL; 1315 struct mlx5_core_srq *srq; 1316 1317 switch (pf_type) { 1318 case MLX5_WQE_PF_TYPE_RMP: 1319 srq = mlx5_cmd_get_srq(dev, wq_num); 1320 if (srq) 1321 common = &srq->common; 1322 break; 1323 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1324 case MLX5_WQE_PF_TYPE_RESP: 1325 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1326 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); 1327 break; 1328 default: 1329 break; 1330 } 1331 1332 return common; 1333 } 1334 1335 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1336 { 1337 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1338 1339 return to_mibqp(mqp); 1340 } 1341 1342 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1343 { 1344 struct mlx5_core_srq *msrq = 1345 container_of(res, struct mlx5_core_srq, common); 1346 1347 return to_mibsrq(msrq); 1348 } 1349 1350 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1351 struct mlx5_pagefault *pfault) 1352 { 1353 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1354 u16 wqe_index = pfault->wqe.wqe_index; 1355 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1356 u32 bytes_mapped, total_wqe_bytes; 1357 struct mlx5_core_rsc_common *res; 1358 int resume_with_error = 1; 1359 struct mlx5_ib_qp *qp; 1360 size_t bytes_copied; 1361 int ret = 0; 1362 1363 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1364 if (!res) { 1365 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1366 return; 1367 } 1368 1369 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1370 res->res != MLX5_RES_XSRQ) { 1371 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1372 pfault->type); 1373 goto resolve_page_fault; 1374 } 1375 1376 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1377 if (!wqe_start) { 1378 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1379 goto resolve_page_fault; 1380 } 1381 1382 wqe = wqe_start; 1383 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1384 if (qp && sq) { 1385 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1386 &bytes_copied); 1387 if (ret) 1388 goto read_user; 1389 ret = mlx5_ib_mr_initiator_pfault_handler( 1390 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1391 } else if (qp && !sq) { 1392 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1393 &bytes_copied); 1394 if (ret) 1395 goto read_user; 1396 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1397 dev, qp, wqe, &wqe_end, bytes_copied); 1398 } else if (!qp) { 1399 struct mlx5_ib_srq *srq = res_to_srq(res); 1400 1401 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1402 &bytes_copied); 1403 if (ret) 1404 goto read_user; 1405 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1406 dev, srq, &wqe, &wqe_end, bytes_copied); 1407 } 1408 1409 if (ret < 0 || wqe >= wqe_end) 1410 goto resolve_page_fault; 1411 1412 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1413 &total_wqe_bytes, !sq); 1414 if (ret == -EAGAIN) 1415 goto out; 1416 1417 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1418 goto resolve_page_fault; 1419 1420 out: 1421 ret = 0; 1422 resume_with_error = 0; 1423 1424 read_user: 1425 if (ret) 1426 mlx5_ib_err( 1427 dev, 1428 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n", 1429 ret, wqe_index, pfault->token); 1430 1431 resolve_page_fault: 1432 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1433 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1434 pfault->wqe.wq_num, resume_with_error, 1435 pfault->type); 1436 mlx5_core_res_put(res); 1437 free_page((unsigned long)wqe_start); 1438 } 1439 1440 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1441 struct mlx5_pagefault *pfault) 1442 { 1443 u64 address; 1444 u32 length; 1445 u32 prefetch_len = pfault->bytes_committed; 1446 int prefetch_activated = 0; 1447 u32 rkey = pfault->rdma.r_key; 1448 int ret; 1449 1450 /* The RDMA responder handler handles the page fault in two parts. 1451 * First it brings the necessary pages for the current packet 1452 * (and uses the pfault context), and then (after resuming the QP) 1453 * prefetches more pages. The second operation cannot use the pfault 1454 * context and therefore uses the dummy_pfault context allocated on 1455 * the stack */ 1456 pfault->rdma.rdma_va += pfault->bytes_committed; 1457 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1458 pfault->rdma.rdma_op_len); 1459 pfault->bytes_committed = 0; 1460 1461 address = pfault->rdma.rdma_va; 1462 length = pfault->rdma.rdma_op_len; 1463 1464 /* For some operations, the hardware cannot tell the exact message 1465 * length, and in those cases it reports zero. Use prefetch 1466 * logic. */ 1467 if (length == 0) { 1468 prefetch_activated = 1; 1469 length = pfault->rdma.packet_size; 1470 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1471 } 1472 1473 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1474 &pfault->bytes_committed, NULL); 1475 if (ret == -EAGAIN) { 1476 /* We're racing with an invalidation, don't prefetch */ 1477 prefetch_activated = 0; 1478 } else if (ret < 0) { 1479 mlx5_ib_page_fault_resume(dev, pfault, 1); 1480 if (ret != -ENOENT) 1481 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n", 1482 ret, pfault->token, pfault->type); 1483 return; 1484 } 1485 1486 mlx5_ib_page_fault_resume(dev, pfault, 0); 1487 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n", 1488 pfault->token, pfault->type, 1489 prefetch_activated); 1490 1491 /* At this point, there might be a new pagefault already arriving in 1492 * the eq, switch to the dummy pagefault for the rest of the 1493 * processing. We're still OK with the objects being alive as the 1494 * work-queue is being fenced. */ 1495 1496 if (prefetch_activated) { 1497 u32 bytes_committed = 0; 1498 1499 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1500 prefetch_len, 1501 &bytes_committed, NULL); 1502 if (ret < 0 && ret != -EAGAIN) { 1503 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n", 1504 ret, pfault->token, address, prefetch_len); 1505 } 1506 } 1507 } 1508 1509 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7) 1510 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev, 1511 struct mlx5_pagefault *pfault) 1512 { 1513 u64 prefetch_va = 1514 pfault->memory.va - pfault->memory.prefetch_before_byte_count; 1515 size_t prefetch_size = pfault->memory.prefetch_before_byte_count + 1516 pfault->memory.fault_byte_count + 1517 pfault->memory.prefetch_after_byte_count; 1518 struct mlx5_ib_mkey *mmkey; 1519 struct mlx5_ib_mr *mr, *child_mr; 1520 int ret = 0; 1521 1522 mmkey = find_odp_mkey(dev, pfault->memory.mkey); 1523 if (IS_ERR(mmkey)) 1524 goto err; 1525 1526 switch (mmkey->type) { 1527 case MLX5_MKEY_IMPLICIT_CHILD: 1528 child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1529 mr = child_mr->parent; 1530 break; 1531 case MLX5_MKEY_NULL: 1532 mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey); 1533 break; 1534 default: 1535 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1536 break; 1537 } 1538 1539 /* If prefetch fails, handle only demanded page fault */ 1540 ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true); 1541 if (ret < 0) { 1542 ret = pagefault_mr(mr, pfault->memory.va, 1543 pfault->memory.fault_byte_count, NULL, 0, 1544 true); 1545 if (ret < 0) 1546 goto err; 1547 } 1548 1549 mlx5_update_odp_stats_with_handled(mr, faults, ret); 1550 mlx5r_deref_odp_mkey(mmkey); 1551 1552 if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST) 1553 mlx5_ib_page_fault_resume(dev, pfault, 0); 1554 1555 mlx5_ib_dbg( 1556 dev, 1557 "PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n", 1558 pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ? 1559 "" : 1560 "without resume cmd", 1561 pfault->token, pfault->memory.mkey, pfault->memory.va, 1562 pfault->memory.fault_byte_count); 1563 1564 return; 1565 1566 err: 1567 if (!IS_ERR(mmkey)) 1568 mlx5r_deref_odp_mkey(mmkey); 1569 mlx5_ib_page_fault_resume(dev, pfault, 1); 1570 mlx5_ib_dbg( 1571 dev, 1572 "PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n", 1573 pfault->token, pfault->memory.mkey, pfault->memory.va, 1574 pfault->memory.fault_byte_count, ret); 1575 } 1576 1577 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1578 { 1579 u8 event_subtype = pfault->event_subtype; 1580 1581 switch (event_subtype) { 1582 case MLX5_PFAULT_SUBTYPE_WQE: 1583 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1584 break; 1585 case MLX5_PFAULT_SUBTYPE_RDMA: 1586 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1587 break; 1588 case MLX5_PFAULT_SUBTYPE_MEMORY: 1589 mlx5_ib_mr_memory_pfault_handler(dev, pfault); 1590 break; 1591 default: 1592 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1593 event_subtype); 1594 mlx5_ib_page_fault_resume(dev, pfault, 1); 1595 } 1596 } 1597 1598 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1599 { 1600 struct mlx5_pagefault *pfault = container_of(work, 1601 struct mlx5_pagefault, 1602 work); 1603 struct mlx5_ib_pf_eq *eq = pfault->eq; 1604 1605 mlx5_ib_pfault(eq->dev, pfault); 1606 mempool_free(pfault, eq->pool); 1607 } 1608 1609 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096 1610 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1611 { 1612 struct mlx5_eqe_page_fault *pf_eqe; 1613 struct mlx5_pagefault *pfault; 1614 struct mlx5_eqe *eqe; 1615 int cc = 0; 1616 1617 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1618 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1619 if (!pfault) { 1620 schedule_work(&eq->work); 1621 break; 1622 } 1623 1624 pf_eqe = &eqe->data.page_fault; 1625 pfault->event_subtype = eqe->sub_type; 1626 1627 switch (eqe->sub_type) { 1628 case MLX5_PFAULT_SUBTYPE_RDMA: 1629 /* RDMA based event */ 1630 pfault->bytes_committed = 1631 be32_to_cpu(pf_eqe->rdma.bytes_committed); 1632 pfault->type = 1633 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1634 pfault->token = 1635 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1636 MLX5_24BIT_MASK; 1637 pfault->rdma.r_key = 1638 be32_to_cpu(pf_eqe->rdma.r_key); 1639 pfault->rdma.packet_size = 1640 be16_to_cpu(pf_eqe->rdma.packet_length); 1641 pfault->rdma.rdma_op_len = 1642 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1643 pfault->rdma.rdma_va = 1644 be64_to_cpu(pf_eqe->rdma.rdma_va); 1645 mlx5_ib_dbg( 1646 eq->dev, 1647 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n", 1648 eqe->sub_type, pfault->bytes_committed, 1649 pfault->type, pfault->token, 1650 pfault->rdma.r_key); 1651 mlx5_ib_dbg(eq->dev, 1652 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1653 pfault->rdma.rdma_op_len, 1654 pfault->rdma.rdma_va); 1655 break; 1656 1657 case MLX5_PFAULT_SUBTYPE_WQE: 1658 /* WQE based event */ 1659 pfault->bytes_committed = 1660 be32_to_cpu(pf_eqe->wqe.bytes_committed); 1661 pfault->type = 1662 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1663 pfault->token = 1664 be32_to_cpu(pf_eqe->wqe.token); 1665 pfault->wqe.wq_num = 1666 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1667 MLX5_24BIT_MASK; 1668 pfault->wqe.wqe_index = 1669 be16_to_cpu(pf_eqe->wqe.wqe_index); 1670 pfault->wqe.packet_size = 1671 be16_to_cpu(pf_eqe->wqe.packet_length); 1672 mlx5_ib_dbg( 1673 eq->dev, 1674 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1675 eqe->sub_type, pfault->bytes_committed, 1676 pfault->type, pfault->token, pfault->wqe.wq_num, 1677 pfault->wqe.wqe_index); 1678 break; 1679 1680 case MLX5_PFAULT_SUBTYPE_MEMORY: 1681 /* Memory based event */ 1682 pfault->bytes_committed = 0; 1683 pfault->token = 1684 be32_to_cpu(pf_eqe->memory.token31_0) | 1685 ((u64)be16_to_cpu(pf_eqe->memory.token47_32) 1686 << 32); 1687 pfault->memory.va = be64_to_cpu(pf_eqe->memory.va); 1688 pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey); 1689 pfault->memory.fault_byte_count = (be32_to_cpu( 1690 pf_eqe->memory.demand_fault_pages) >> 12) * 1691 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1692 pfault->memory.prefetch_before_byte_count = 1693 be16_to_cpu( 1694 pf_eqe->memory.pre_demand_fault_pages) * 1695 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1696 pfault->memory.prefetch_after_byte_count = 1697 be16_to_cpu( 1698 pf_eqe->memory.post_demand_fault_pages) * 1699 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1700 pfault->memory.flags = pf_eqe->memory.flags; 1701 mlx5_ib_dbg( 1702 eq->dev, 1703 "PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n", 1704 eqe->sub_type, pfault->token, 1705 pfault->memory.mkey, 1706 pfault->memory.fault_byte_count, 1707 pfault->memory.va, pfault->memory.flags); 1708 mlx5_ib_dbg( 1709 eq->dev, 1710 "PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n", 1711 pfault->memory.prefetch_before_byte_count, 1712 pfault->memory.prefetch_after_byte_count); 1713 break; 1714 1715 default: 1716 mlx5_ib_warn(eq->dev, 1717 "Unsupported page fault event sub-type: 0x%02hhx\n", 1718 eqe->sub_type); 1719 /* Unsupported page faults should still be 1720 * resolved by the page fault handler 1721 */ 1722 } 1723 1724 pfault->eq = eq; 1725 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1726 queue_work(eq->wq, &pfault->work); 1727 1728 cc = mlx5_eq_update_cc(eq->core, ++cc); 1729 } 1730 1731 mlx5_eq_update_ci(eq->core, cc, 1); 1732 } 1733 1734 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1735 void *data) 1736 { 1737 struct mlx5_ib_pf_eq *eq = 1738 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1739 unsigned long flags; 1740 1741 if (spin_trylock_irqsave(&eq->lock, flags)) { 1742 mlx5_ib_eq_pf_process(eq); 1743 spin_unlock_irqrestore(&eq->lock, flags); 1744 } else { 1745 schedule_work(&eq->work); 1746 } 1747 1748 return IRQ_HANDLED; 1749 } 1750 1751 /* mempool_refill() was proposed but unfortunately wasn't accepted 1752 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1753 * Cheap workaround. 1754 */ 1755 static void mempool_refill(mempool_t *pool) 1756 { 1757 while (pool->curr_nr < pool->min_nr) 1758 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1759 } 1760 1761 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1762 { 1763 struct mlx5_ib_pf_eq *eq = 1764 container_of(work, struct mlx5_ib_pf_eq, work); 1765 1766 mempool_refill(eq->pool); 1767 1768 spin_lock_irq(&eq->lock); 1769 mlx5_ib_eq_pf_process(eq); 1770 spin_unlock_irq(&eq->lock); 1771 } 1772 1773 enum { 1774 MLX5_IB_NUM_PF_EQE = 0x1000, 1775 MLX5_IB_NUM_PF_DRAIN = 64, 1776 }; 1777 1778 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1779 { 1780 struct mlx5_eq_param param = {}; 1781 int err = 0; 1782 1783 mutex_lock(&dev->odp_eq_mutex); 1784 if (eq->core) 1785 goto unlock; 1786 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1787 spin_lock_init(&eq->lock); 1788 eq->dev = dev; 1789 1790 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1791 sizeof(struct mlx5_pagefault)); 1792 if (!eq->pool) { 1793 err = -ENOMEM; 1794 goto unlock; 1795 } 1796 1797 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1798 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1799 MLX5_NUM_CMD_EQE); 1800 if (!eq->wq) { 1801 err = -ENOMEM; 1802 goto err_mempool; 1803 } 1804 1805 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1806 param = (struct mlx5_eq_param) { 1807 .nent = MLX5_IB_NUM_PF_EQE, 1808 }; 1809 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1810 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1811 if (IS_ERR(eq->core)) { 1812 err = PTR_ERR(eq->core); 1813 goto err_wq; 1814 } 1815 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1816 if (err) { 1817 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1818 goto err_eq; 1819 } 1820 1821 mutex_unlock(&dev->odp_eq_mutex); 1822 return 0; 1823 err_eq: 1824 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1825 err_wq: 1826 eq->core = NULL; 1827 destroy_workqueue(eq->wq); 1828 err_mempool: 1829 mempool_destroy(eq->pool); 1830 unlock: 1831 mutex_unlock(&dev->odp_eq_mutex); 1832 return err; 1833 } 1834 1835 static int 1836 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1837 { 1838 int err; 1839 1840 if (!eq->core) 1841 return 0; 1842 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1843 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1844 cancel_work_sync(&eq->work); 1845 destroy_workqueue(eq->wq); 1846 mempool_destroy(eq->pool); 1847 1848 return err; 1849 } 1850 1851 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev) 1852 { 1853 struct mlx5r_cache_rb_key rb_key = { 1854 .access_mode = MLX5_MKC_ACCESS_MODE_KSM, 1855 .ndescs = mlx5_imr_ksm_entries, 1856 }; 1857 struct mlx5_cache_ent *ent; 1858 1859 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1860 return 0; 1861 1862 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true); 1863 if (IS_ERR(ent)) 1864 return PTR_ERR(ent); 1865 1866 return 0; 1867 } 1868 1869 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1870 .advise_mr = mlx5_ib_advise_mr, 1871 }; 1872 1873 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1874 { 1875 internal_fill_odp_caps(dev); 1876 1877 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1878 return 0; 1879 1880 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1881 1882 mutex_init(&dev->odp_eq_mutex); 1883 return 0; 1884 } 1885 1886 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1887 { 1888 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1889 return; 1890 1891 mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq); 1892 } 1893 1894 int mlx5_ib_odp_init(void) 1895 { 1896 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1897 MLX5_IMR_MTT_BITS); 1898 1899 return 0; 1900 } 1901 1902 struct prefetch_mr_work { 1903 struct work_struct work; 1904 u32 pf_flags; 1905 u32 num_sge; 1906 struct { 1907 u64 io_virt; 1908 struct mlx5_ib_mr *mr; 1909 size_t length; 1910 } frags[]; 1911 }; 1912 1913 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1914 { 1915 u32 i; 1916 1917 for (i = 0; i < work->num_sge; ++i) 1918 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey); 1919 1920 kvfree(work); 1921 } 1922 1923 static struct mlx5_ib_mr * 1924 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1925 u32 lkey) 1926 { 1927 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1928 struct mlx5_ib_mr *mr = NULL; 1929 struct mlx5_ib_mkey *mmkey; 1930 1931 xa_lock(&dev->odp_mkeys); 1932 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1933 if (!mmkey || mmkey->key != lkey) { 1934 mr = ERR_PTR(-ENOENT); 1935 goto end; 1936 } 1937 if (mmkey->type != MLX5_MKEY_MR) { 1938 mr = ERR_PTR(-EINVAL); 1939 goto end; 1940 } 1941 1942 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1943 1944 if (mr->ibmr.pd != pd) { 1945 mr = ERR_PTR(-EPERM); 1946 goto end; 1947 } 1948 1949 /* prefetch with write-access must be supported by the MR */ 1950 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1951 !mr->umem->writable) { 1952 mr = ERR_PTR(-EPERM); 1953 goto end; 1954 } 1955 1956 refcount_inc(&mmkey->usecount); 1957 end: 1958 xa_unlock(&dev->odp_mkeys); 1959 return mr; 1960 } 1961 1962 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1963 { 1964 struct prefetch_mr_work *work = 1965 container_of(w, struct prefetch_mr_work, work); 1966 u32 bytes_mapped = 0; 1967 int ret; 1968 u32 i; 1969 1970 /* We rely on IB/core that work is executed if we have num_sge != 0 only. */ 1971 WARN_ON(!work->num_sge); 1972 for (i = 0; i < work->num_sge; ++i) { 1973 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1974 work->frags[i].length, &bytes_mapped, 1975 work->pf_flags, false); 1976 if (ret <= 0) 1977 continue; 1978 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret); 1979 } 1980 1981 destroy_prefetch_work(work); 1982 } 1983 1984 static int init_prefetch_work(struct ib_pd *pd, 1985 enum ib_uverbs_advise_mr_advice advice, 1986 u32 pf_flags, struct prefetch_mr_work *work, 1987 struct ib_sge *sg_list, u32 num_sge) 1988 { 1989 u32 i; 1990 1991 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1992 work->pf_flags = pf_flags; 1993 1994 for (i = 0; i < num_sge; ++i) { 1995 struct mlx5_ib_mr *mr; 1996 1997 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1998 if (IS_ERR(mr)) { 1999 work->num_sge = i; 2000 return PTR_ERR(mr); 2001 } 2002 work->frags[i].io_virt = sg_list[i].addr; 2003 work->frags[i].length = sg_list[i].length; 2004 work->frags[i].mr = mr; 2005 } 2006 work->num_sge = num_sge; 2007 return 0; 2008 } 2009 2010 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 2011 enum ib_uverbs_advise_mr_advice advice, 2012 u32 pf_flags, struct ib_sge *sg_list, 2013 u32 num_sge) 2014 { 2015 u32 bytes_mapped = 0; 2016 int ret = 0; 2017 u32 i; 2018 2019 for (i = 0; i < num_sge; ++i) { 2020 struct mlx5_ib_mr *mr; 2021 2022 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 2023 if (IS_ERR(mr)) 2024 return PTR_ERR(mr); 2025 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 2026 &bytes_mapped, pf_flags, false); 2027 if (ret < 0) { 2028 mlx5r_deref_odp_mkey(&mr->mmkey); 2029 return ret; 2030 } 2031 mlx5_update_odp_stats(mr, prefetch, ret); 2032 mlx5r_deref_odp_mkey(&mr->mmkey); 2033 } 2034 2035 return 0; 2036 } 2037 2038 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 2039 enum ib_uverbs_advise_mr_advice advice, 2040 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2041 { 2042 u32 pf_flags = 0; 2043 struct prefetch_mr_work *work; 2044 int rc; 2045 2046 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 2047 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 2048 2049 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 2050 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT; 2051 2052 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 2053 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 2054 num_sge); 2055 2056 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 2057 if (!work) 2058 return -ENOMEM; 2059 2060 rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge); 2061 if (rc) { 2062 destroy_prefetch_work(work); 2063 return rc; 2064 } 2065 queue_work(system_unbound_wq, &work->work); 2066 return 0; 2067 } 2068