xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision d9996de40b121d976a17515aada54c54350e3f21)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem_odp.h>
34 #include <linux/kernel.h>
35 #include <linux/dma-buf.h>
36 #include <linux/dma-resv.h>
37 
38 #include "mlx5_ib.h"
39 #include "cmd.h"
40 #include "umr.h"
41 #include "qp.h"
42 
43 #include <linux/mlx5/eq.h>
44 
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47 	u32			bytes_committed;
48 	u64			token;
49 	u8			event_subtype;
50 	u8			type;
51 	union {
52 		/* Initiator or send message responder pagefault details. */
53 		struct {
54 			/* Received packet size, only valid for responders. */
55 			u32	packet_size;
56 			/*
57 			 * Number of resource holding WQE, depends on type.
58 			 */
59 			u32	wq_num;
60 			/*
61 			 * WQE index. Refers to either the send queue or
62 			 * receive queue, according to event_subtype.
63 			 */
64 			u16	wqe_index;
65 		} wqe;
66 		/* RDMA responder pagefault details */
67 		struct {
68 			u32	r_key;
69 			/*
70 			 * Received packet size, minimal size page fault
71 			 * resolution required for forward progress.
72 			 */
73 			u32	packet_size;
74 			u32	rdma_op_len;
75 			u64	rdma_va;
76 		} rdma;
77 		struct {
78 			u64	va;
79 			u32	mkey;
80 			u32	fault_byte_count;
81 			u32     prefetch_before_byte_count;
82 			u32     prefetch_after_byte_count;
83 			u8	flags;
84 		} memory;
85 	};
86 
87 	struct mlx5_ib_pf_eq	*eq;
88 	struct work_struct	work;
89 };
90 
91 #define MAX_PREFETCH_LEN (4*1024*1024U)
92 
93 /* Timeout in ms to wait for an active mmu notifier to complete when handling
94  * a pagefault. */
95 #define MMU_NOTIFIER_TIMEOUT 1000
96 
97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
102 
103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
104 
105 static u64 mlx5_imr_ksm_entries;
106 
107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
108 			struct mlx5_ib_mr *imr, int flags)
109 {
110 	struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev;
111 	struct mlx5_klm *end = pklm + nentries;
112 	int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0;
113 	__be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ?
114 			     cpu_to_be32(imr->null_mmkey.key) :
115 			     mr_to_mdev(imr)->mkeys.null_mkey;
116 	u64 va =
117 		MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0;
118 
119 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
120 		for (; pklm != end; pklm++, idx++, va += step) {
121 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
122 			pklm->key = key;
123 			pklm->va = cpu_to_be64(va);
124 		}
125 		return;
126 	}
127 
128 	/*
129 	 * The locking here is pretty subtle. Ideally the implicit_children
130 	 * xarray would be protected by the umem_mutex, however that is not
131 	 * possible. Instead this uses a weaker update-then-lock pattern:
132 	 *
133 	 *    xa_store()
134 	 *    mutex_lock(umem_mutex)
135 	 *     mlx5r_umr_update_xlt()
136 	 *    mutex_unlock(umem_mutex)
137 	 *    destroy lkey
138 	 *
139 	 * ie any change the xarray must be followed by the locked update_xlt
140 	 * before destroying.
141 	 *
142 	 * The umem_mutex provides the acquire/release semantic needed to make
143 	 * the xa_store() visible to a racing thread.
144 	 */
145 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
146 
147 	for (; pklm != end; pklm++, idx++, va += step) {
148 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
149 
150 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
151 		if (mtt) {
152 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
153 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
154 		} else {
155 			pklm->key = key;
156 			pklm->va = cpu_to_be64(va);
157 		}
158 	}
159 }
160 
161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
162 {
163 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
164 
165 	if (umem_dma & ODP_READ_ALLOWED_BIT)
166 		mtt_entry |= MLX5_IB_MTT_READ;
167 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
168 		mtt_entry |= MLX5_IB_MTT_WRITE;
169 
170 	return mtt_entry;
171 }
172 
173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
174 			 struct mlx5_ib_mr *mr, int flags)
175 {
176 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
177 	dma_addr_t pa;
178 	size_t i;
179 
180 	if (flags & MLX5_IB_UPD_XLT_ZAP)
181 		return;
182 
183 	for (i = 0; i < nentries; i++) {
184 		pa = odp->dma_list[idx + i];
185 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
186 	}
187 }
188 
189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
190 			   struct mlx5_ib_mr *mr, int flags)
191 {
192 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
193 		populate_klm(xlt, idx, nentries, mr, flags);
194 	} else {
195 		populate_mtt(xlt, idx, nentries, mr, flags);
196 	}
197 }
198 
199 /*
200  * This must be called after the mr has been removed from implicit_children.
201  * NOTE: The MR does not necessarily have to be
202  * empty here, parallel page faults could have raced with the free process and
203  * added pages to it.
204  */
205 static void free_implicit_child_mr_work(struct work_struct *work)
206 {
207 	struct mlx5_ib_mr *mr =
208 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
209 	struct mlx5_ib_mr *imr = mr->parent;
210 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
211 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
212 
213 	mlx5r_deref_wait_odp_mkey(&mr->mmkey);
214 
215 	mutex_lock(&odp_imr->umem_mutex);
216 	mlx5r_umr_update_xlt(mr->parent,
217 			     ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0,
218 			     MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
219 	mutex_unlock(&odp_imr->umem_mutex);
220 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
221 
222 	mlx5r_deref_odp_mkey(&imr->mmkey);
223 }
224 
225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
226 {
227 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
228 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
229 	struct mlx5_ib_mr *imr = mr->parent;
230 
231 	if (!refcount_inc_not_zero(&imr->mmkey.usecount))
232 		return;
233 
234 	xa_erase(&imr->implicit_children, idx);
235 	if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault))
236 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
237 			 mlx5_base_mkey(mr->mmkey.key));
238 
239 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
240 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
241 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
242 }
243 
244 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
245 				     const struct mmu_notifier_range *range,
246 				     unsigned long cur_seq)
247 {
248 	struct ib_umem_odp *umem_odp =
249 		container_of(mni, struct ib_umem_odp, notifier);
250 	struct mlx5_ib_mr *mr;
251 	const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1;
252 	u64 idx = 0, blk_start_idx = 0;
253 	u64 invalidations = 0;
254 	unsigned long start;
255 	unsigned long end;
256 	int in_block = 0;
257 	u64 addr;
258 
259 	if (!mmu_notifier_range_blockable(range))
260 		return false;
261 
262 	mutex_lock(&umem_odp->umem_mutex);
263 	mmu_interval_set_seq(mni, cur_seq);
264 	/*
265 	 * If npages is zero then umem_odp->private may not be setup yet. This
266 	 * does not complete until after the first page is mapped for DMA.
267 	 */
268 	if (!umem_odp->npages)
269 		goto out;
270 	mr = umem_odp->private;
271 
272 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
273 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
274 
275 	/*
276 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
277 	 * while we are doing the invalidation, no page fault will attempt to
278 	 * overwrite the same MTTs.  Concurent invalidations might race us,
279 	 * but they will write 0s as well, so no difference in the end result.
280 	 */
281 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
282 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
283 		/*
284 		 * Strive to write the MTTs in chunks, but avoid overwriting
285 		 * non-existing MTTs. The huristic here can be improved to
286 		 * estimate the cost of another UMR vs. the cost of bigger
287 		 * UMR.
288 		 */
289 		if (umem_odp->dma_list[idx] &
290 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
291 			if (!in_block) {
292 				blk_start_idx = idx;
293 				in_block = 1;
294 			}
295 
296 			/* Count page invalidations */
297 			invalidations += idx - blk_start_idx + 1;
298 		} else {
299 			u64 umr_offset = idx & umr_block_mask;
300 
301 			if (in_block && umr_offset == 0) {
302 				mlx5r_umr_update_xlt(mr, blk_start_idx,
303 						     idx - blk_start_idx, 0,
304 						     MLX5_IB_UPD_XLT_ZAP |
305 						     MLX5_IB_UPD_XLT_ATOMIC);
306 				in_block = 0;
307 			}
308 		}
309 	}
310 	if (in_block)
311 		mlx5r_umr_update_xlt(mr, blk_start_idx,
312 				     idx - blk_start_idx + 1, 0,
313 				     MLX5_IB_UPD_XLT_ZAP |
314 				     MLX5_IB_UPD_XLT_ATOMIC);
315 
316 	mlx5_update_odp_stats(mr, invalidations, invalidations);
317 
318 	/*
319 	 * We are now sure that the device will not access the
320 	 * memory. We can safely unmap it, and mark it as dirty if
321 	 * needed.
322 	 */
323 
324 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
325 
326 	if (unlikely(!umem_odp->npages && mr->parent))
327 		destroy_unused_implicit_child_mr(mr);
328 out:
329 	mutex_unlock(&umem_odp->umem_mutex);
330 	return true;
331 }
332 
333 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
334 	.invalidate = mlx5_ib_invalidate_range,
335 };
336 
337 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
338 {
339 	struct ib_odp_caps *caps = &dev->odp_caps;
340 
341 	memset(caps, 0, sizeof(*caps));
342 
343 	if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0))
344 		return;
345 
346 	caps->general_caps = IB_ODP_SUPPORT;
347 
348 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
349 		dev->odp_max_size = U64_MAX;
350 	else
351 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
352 
353 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send))
354 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
355 
356 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive))
357 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
358 
359 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send))
360 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
361 
362 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive))
363 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
364 
365 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write))
366 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
367 
368 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read))
369 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
370 
371 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic))
372 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
373 
374 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive))
375 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
376 
377 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send))
378 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
379 
380 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive))
381 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
382 
383 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write))
384 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
385 
386 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read))
387 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
388 
389 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic))
390 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
391 
392 	if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive))
393 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
394 
395 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
396 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
397 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
398 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
399 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
400 }
401 
402 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
403 				      struct mlx5_pagefault *pfault,
404 				      int error)
405 {
406 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
407 		     pfault->wqe.wq_num : pfault->token;
408 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
409 	void *info;
410 	int err;
411 
412 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
413 
414 	if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) {
415 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
416 				    page_fault_info.mem_page_fault_info);
417 		MLX5_SET(mem_page_fault_info, info, fault_token_31_0,
418 			 pfault->token & 0xffffffff);
419 		MLX5_SET(mem_page_fault_info, info, fault_token_47_32,
420 			 (pfault->token >> 32) & 0xffff);
421 		MLX5_SET(mem_page_fault_info, info, error, !!error);
422 	} else {
423 		info = MLX5_ADDR_OF(page_fault_resume_in, in,
424 				    page_fault_info.trans_page_fault_info);
425 		MLX5_SET(trans_page_fault_info, info, page_fault_type,
426 			 pfault->type);
427 		MLX5_SET(trans_page_fault_info, info, fault_token,
428 			 pfault->token);
429 		MLX5_SET(trans_page_fault_info, info, wq_number, wq_num);
430 		MLX5_SET(trans_page_fault_info, info, error, !!error);
431 	}
432 
433 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
434 	if (err)
435 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
436 			    wq_num, err);
437 }
438 
439 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
440 						unsigned long idx)
441 {
442 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
443 	struct ib_umem_odp *odp;
444 	struct mlx5_ib_mr *mr;
445 	struct mlx5_ib_mr *ret;
446 	int err;
447 
448 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
449 				      idx * MLX5_IMR_MTT_SIZE,
450 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
451 	if (IS_ERR(odp))
452 		return ERR_CAST(odp);
453 
454 	mr = mlx5_mr_cache_alloc(dev, imr->access_flags,
455 				 MLX5_MKC_ACCESS_MODE_MTT,
456 				 MLX5_IMR_MTT_ENTRIES);
457 	if (IS_ERR(mr)) {
458 		ib_umem_odp_release(odp);
459 		return mr;
460 	}
461 
462 	mr->access_flags = imr->access_flags;
463 	mr->ibmr.pd = imr->ibmr.pd;
464 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
465 	mr->umem = &odp->umem;
466 	mr->ibmr.lkey = mr->mmkey.key;
467 	mr->ibmr.rkey = mr->mmkey.key;
468 	mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
469 	mr->parent = imr;
470 	odp->private = mr;
471 
472 	/*
473 	 * First refcount is owned by the xarray and second refconut
474 	 * is returned to the caller.
475 	 */
476 	refcount_set(&mr->mmkey.usecount, 2);
477 
478 	err = mlx5r_umr_update_xlt(mr, 0,
479 				   MLX5_IMR_MTT_ENTRIES,
480 				   PAGE_SHIFT,
481 				   MLX5_IB_UPD_XLT_ZAP |
482 				   MLX5_IB_UPD_XLT_ENABLE);
483 	if (err) {
484 		ret = ERR_PTR(err);
485 		goto out_mr;
486 	}
487 
488 	xa_lock(&imr->implicit_children);
489 	ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
490 			   GFP_KERNEL);
491 	if (unlikely(ret)) {
492 		if (xa_is_err(ret)) {
493 			ret = ERR_PTR(xa_err(ret));
494 			goto out_lock;
495 		}
496 		/*
497 		 * Another thread beat us to creating the child mr, use
498 		 * theirs.
499 		 */
500 		refcount_inc(&ret->mmkey.usecount);
501 		goto out_lock;
502 	}
503 	xa_unlock(&imr->implicit_children);
504 
505 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
506 		ret = xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key),
507 			       &mr->mmkey, GFP_KERNEL);
508 		if (xa_is_err(ret)) {
509 			ret = ERR_PTR(xa_err(ret));
510 			xa_erase(&imr->implicit_children, idx);
511 			goto out_mr;
512 		}
513 		mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD;
514 	}
515 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
516 	return mr;
517 
518 out_lock:
519 	xa_unlock(&imr->implicit_children);
520 out_mr:
521 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
522 	return ret;
523 }
524 
525 /*
526  * When using memory scheme ODP, implicit MRs can't use the reserved null mkey
527  * and each implicit MR needs to assign a private null mkey to get the page
528  * faults on.
529  * The null mkey is created with the properties to enable getting the page
530  * fault for every time it is accessed and having all relevant access flags.
531  */
532 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev,
533 				       struct mlx5_ib_mr *imr,
534 				       struct mlx5_ib_pd *pd)
535 {
536 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64;
537 	void *mkc;
538 	u32 *in;
539 	int err;
540 
541 	in = kzalloc(inlen, GFP_KERNEL);
542 	if (!in)
543 		return -ENOMEM;
544 
545 	MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4);
546 	MLX5_SET(create_mkey_in, in, pg_access, 1);
547 
548 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
549 	MLX5_SET(mkc, mkc, a, 1);
550 	MLX5_SET(mkc, mkc, rw, 1);
551 	MLX5_SET(mkc, mkc, rr, 1);
552 	MLX5_SET(mkc, mkc, lw, 1);
553 	MLX5_SET(mkc, mkc, lr, 1);
554 	MLX5_SET(mkc, mkc, free, 0);
555 	MLX5_SET(mkc, mkc, umr_en, 0);
556 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
557 
558 	MLX5_SET(mkc, mkc, translations_octword_size, 4);
559 	MLX5_SET(mkc, mkc, log_page_size, 61);
560 	MLX5_SET(mkc, mkc, length64, 1);
561 	MLX5_SET(mkc, mkc, pd, pd->pdn);
562 	MLX5_SET64(mkc, mkc, start_addr, 0);
563 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
564 
565 	err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen);
566 	if (err)
567 		goto free_in;
568 
569 	imr->null_mmkey.type = MLX5_MKEY_NULL;
570 
571 free_in:
572 	kfree(in);
573 	return err;
574 }
575 
576 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
577 					     int access_flags)
578 {
579 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
580 	struct ib_umem_odp *umem_odp;
581 	struct mlx5_ib_mr *imr;
582 	int err;
583 
584 	if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
585 		return ERR_PTR(-EOPNOTSUPP);
586 
587 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
588 	if (IS_ERR(umem_odp))
589 		return ERR_CAST(umem_odp);
590 
591 	imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM,
592 				  mlx5_imr_ksm_entries);
593 	if (IS_ERR(imr)) {
594 		ib_umem_odp_release(umem_odp);
595 		return imr;
596 	}
597 
598 	imr->access_flags = access_flags;
599 	imr->ibmr.pd = &pd->ibpd;
600 	imr->ibmr.iova = 0;
601 	imr->umem = &umem_odp->umem;
602 	imr->ibmr.lkey = imr->mmkey.key;
603 	imr->ibmr.rkey = imr->mmkey.key;
604 	imr->ibmr.device = &dev->ib_dev;
605 	imr->is_odp_implicit = true;
606 	xa_init(&imr->implicit_children);
607 
608 	if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) {
609 		err = alloc_implicit_mr_null_mkey(dev, imr, pd);
610 		if (err)
611 			goto out_mr;
612 
613 		err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey);
614 		if (err)
615 			goto out_mr;
616 	}
617 
618 	err = mlx5r_umr_update_xlt(imr, 0,
619 				   mlx5_imr_ksm_entries,
620 				   MLX5_KSM_PAGE_SHIFT,
621 				   MLX5_IB_UPD_XLT_INDIRECT |
622 				   MLX5_IB_UPD_XLT_ZAP |
623 				   MLX5_IB_UPD_XLT_ENABLE);
624 	if (err)
625 		goto out_mr;
626 
627 	err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
628 	if (err)
629 		goto out_mr;
630 
631 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
632 	return imr;
633 out_mr:
634 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
635 	mlx5_ib_dereg_mr(&imr->ibmr, NULL);
636 	return ERR_PTR(err);
637 }
638 
639 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
640 {
641 	struct mlx5_ib_mr *mtt;
642 	unsigned long idx;
643 
644 	/*
645 	 * If this is an implicit MR it is already invalidated so we can just
646 	 * delete the children mkeys.
647 	 */
648 	xa_for_each(&mr->implicit_children, idx, mtt) {
649 		xa_erase(&mr->implicit_children, idx);
650 		mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
651 	}
652 
653 	if (mr->null_mmkey.key) {
654 		xa_erase(&mr_to_mdev(mr)->odp_mkeys,
655 			 mlx5_base_mkey(mr->null_mmkey.key));
656 
657 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev,
658 				       mr->null_mmkey.key);
659 	}
660 }
661 
662 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
663 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
664 #define MLX5_PF_FLAGS_ENABLE BIT(3)
665 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
666 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
667 			     u32 flags)
668 {
669 	int page_shift, ret, np;
670 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
671 	u64 access_mask;
672 	u64 start_idx;
673 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
674 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
675 
676 	if (flags & MLX5_PF_FLAGS_ENABLE)
677 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
678 
679 	page_shift = odp->page_shift;
680 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
681 	access_mask = ODP_READ_ALLOWED_BIT;
682 
683 	if (odp->umem.writable && !downgrade)
684 		access_mask |= ODP_WRITE_ALLOWED_BIT;
685 
686 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
687 	if (np < 0)
688 		return np;
689 
690 	/*
691 	 * No need to check whether the MTTs really belong to this MR, since
692 	 * ib_umem_odp_map_dma_and_lock already checks this.
693 	 */
694 	ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
695 	mutex_unlock(&odp->umem_mutex);
696 
697 	if (ret < 0) {
698 		if (ret != -EAGAIN)
699 			mlx5_ib_err(mr_to_mdev(mr),
700 				    "Failed to update mkey page tables\n");
701 		goto out;
702 	}
703 
704 	if (bytes_mapped) {
705 		u32 new_mappings = (np << page_shift) -
706 			(user_va - round_down(user_va, 1 << page_shift));
707 
708 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
709 	}
710 
711 	return np << (page_shift - PAGE_SHIFT);
712 
713 out:
714 	return ret;
715 }
716 
717 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
718 				 struct ib_umem_odp *odp_imr, u64 user_va,
719 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
720 {
721 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
722 	unsigned long upd_start_idx = end_idx + 1;
723 	unsigned long upd_len = 0;
724 	unsigned long npages = 0;
725 	int err;
726 	int ret;
727 
728 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
729 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
730 		return -EFAULT;
731 
732 	/* Fault each child mr that intersects with our interval. */
733 	while (bcnt) {
734 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
735 		struct ib_umem_odp *umem_odp;
736 		struct mlx5_ib_mr *mtt;
737 		u64 len;
738 
739 		xa_lock(&imr->implicit_children);
740 		mtt = xa_load(&imr->implicit_children, idx);
741 		if (unlikely(!mtt)) {
742 			xa_unlock(&imr->implicit_children);
743 			mtt = implicit_get_child_mr(imr, idx);
744 			if (IS_ERR(mtt)) {
745 				ret = PTR_ERR(mtt);
746 				goto out;
747 			}
748 			upd_start_idx = min(upd_start_idx, idx);
749 			upd_len = idx - upd_start_idx + 1;
750 		} else {
751 			refcount_inc(&mtt->mmkey.usecount);
752 			xa_unlock(&imr->implicit_children);
753 		}
754 
755 		umem_odp = to_ib_umem_odp(mtt->umem);
756 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
757 		      user_va;
758 
759 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
760 					bytes_mapped, flags);
761 
762 		mlx5r_deref_odp_mkey(&mtt->mmkey);
763 
764 		if (ret < 0)
765 			goto out;
766 		user_va += len;
767 		bcnt -= len;
768 		npages += ret;
769 	}
770 
771 	ret = npages;
772 
773 	/*
774 	 * Any time the implicit_children are changed we must perform an
775 	 * update of the xlt before exiting to ensure the HW and the
776 	 * implicit_children remains synchronized.
777 	 */
778 out:
779 	if (likely(!upd_len))
780 		return ret;
781 
782 	/*
783 	 * Notice this is not strictly ordered right, the KSM is updated after
784 	 * the implicit_children is updated, so a parallel page fault could
785 	 * see a MR that is not yet visible in the KSM.  This is similar to a
786 	 * parallel page fault seeing a MR that is being concurrently removed
787 	 * from the KSM. Both of these improbable situations are resolved
788 	 * safely by resuming the HW and then taking another page fault. The
789 	 * next pagefault handler will see the new information.
790 	 */
791 	mutex_lock(&odp_imr->umem_mutex);
792 	err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0,
793 				   MLX5_IB_UPD_XLT_INDIRECT |
794 					  MLX5_IB_UPD_XLT_ATOMIC);
795 	mutex_unlock(&odp_imr->umem_mutex);
796 	if (err) {
797 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
798 		return err;
799 	}
800 	return ret;
801 }
802 
803 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
804 			       u32 *bytes_mapped, u32 flags)
805 {
806 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
807 	u32 xlt_flags = 0;
808 	int err;
809 	unsigned long page_size;
810 
811 	if (flags & MLX5_PF_FLAGS_ENABLE)
812 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
813 
814 	dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
815 	err = ib_umem_dmabuf_map_pages(umem_dmabuf);
816 	if (err) {
817 		dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
818 		return err;
819 	}
820 
821 	page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf);
822 	if (!page_size) {
823 		ib_umem_dmabuf_unmap_pages(umem_dmabuf);
824 		err = -EINVAL;
825 	} else {
826 		if (mr->data_direct)
827 			err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags);
828 		else
829 			err = mlx5r_umr_update_mr_pas(mr, xlt_flags);
830 	}
831 	dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
832 
833 	if (err)
834 		return err;
835 
836 	if (bytes_mapped)
837 		*bytes_mapped += bcnt;
838 
839 	return ib_umem_num_pages(mr->umem);
840 }
841 
842 /*
843  * Returns:
844  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
845  *           not accessible, or the MR is no longer valid.
846  *  -EAGAIN/-ENOMEM: The operation should be retried
847  *
848  *  -EINVAL/others: General internal malfunction
849  *  >0: Number of pages mapped
850  */
851 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
852 			u32 *bytes_mapped, u32 flags, bool permissive_fault)
853 {
854 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
855 
856 	if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault)
857 		return -EFAULT;
858 
859 	if (mr->umem->is_dmabuf)
860 		return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
861 
862 	if (!odp->is_implicit_odp) {
863 		u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova;
864 		u64 user_va;
865 
866 		if (check_add_overflow(offset, (u64)odp->umem.address,
867 				       &user_va))
868 			return -EFAULT;
869 
870 		if (permissive_fault) {
871 			if (user_va < ib_umem_start(odp))
872 				user_va = ib_umem_start(odp);
873 			if ((user_va + bcnt) > ib_umem_end(odp))
874 				bcnt = ib_umem_end(odp) - user_va;
875 		} else if (unlikely(user_va >= ib_umem_end(odp) ||
876 				    ib_umem_end(odp) - user_va < bcnt))
877 			return -EFAULT;
878 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
879 					 flags);
880 	}
881 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
882 				     flags);
883 }
884 
885 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
886 {
887 	int ret;
888 
889 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
890 				mr->umem->length, NULL,
891 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
892 	return ret >= 0 ? 0 : ret;
893 }
894 
895 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
896 {
897 	int ret;
898 
899 	ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
900 				  MLX5_PF_FLAGS_ENABLE);
901 
902 	return ret >= 0 ? 0 : ret;
903 }
904 
905 struct pf_frame {
906 	struct pf_frame *next;
907 	u32 key;
908 	u64 io_virt;
909 	size_t bcnt;
910 	int depth;
911 };
912 
913 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
914 {
915 	if (!mmkey)
916 		return false;
917 	if (mmkey->type == MLX5_MKEY_MW ||
918 	    mmkey->type == MLX5_MKEY_INDIRECT_DEVX)
919 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
920 	return mmkey->key == key;
921 }
922 
923 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key)
924 {
925 	struct mlx5_ib_mkey *mmkey;
926 
927 	xa_lock(&dev->odp_mkeys);
928 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
929 	if (!mmkey) {
930 		mmkey = ERR_PTR(-ENOENT);
931 		goto out;
932 	}
933 	if (!mkey_is_eq(mmkey, key)) {
934 		mmkey = ERR_PTR(-EFAULT);
935 		goto out;
936 	}
937 	refcount_inc(&mmkey->usecount);
938 out:
939 	xa_unlock(&dev->odp_mkeys);
940 
941 	return mmkey;
942 }
943 
944 /*
945  * Handle a single data segment in a page-fault WQE or RDMA region.
946  *
947  * Returns number of OS pages retrieved on success. The caller may continue to
948  * the next data segment.
949  * Can return the following error codes:
950  * -EAGAIN to designate a temporary error. The caller will abort handling the
951  *  page fault and resolve it.
952  * -EFAULT when there's an error mapping the requested pages. The caller will
953  *  abort the page fault handling.
954  */
955 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
956 					 struct ib_pd *pd, u32 key,
957 					 u64 io_virt, size_t bcnt,
958 					 u32 *bytes_committed,
959 					 u32 *bytes_mapped)
960 {
961 	int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
962 	struct pf_frame *head = NULL, *frame;
963 	struct mlx5_ib_mkey *mmkey;
964 	struct mlx5_ib_mr *mr;
965 	struct mlx5_klm *pklm;
966 	u32 *out = NULL;
967 	size_t offset;
968 
969 	io_virt += *bytes_committed;
970 	bcnt -= *bytes_committed;
971 next_mr:
972 	mmkey = find_odp_mkey(dev, key);
973 	if (IS_ERR(mmkey)) {
974 		ret = PTR_ERR(mmkey);
975 		if (ret == -ENOENT) {
976 			mlx5_ib_dbg(
977 				dev,
978 				"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
979 				key);
980 			if (bytes_mapped)
981 				*bytes_mapped += bcnt;
982 			/*
983 			 * The user could specify a SGL with multiple lkeys and
984 			 * only some of them are ODP. Treat the non-ODP ones as
985 			 * fully faulted.
986 			 */
987 			ret = 0;
988 		}
989 		goto end;
990 	}
991 
992 	switch (mmkey->type) {
993 	case MLX5_MKEY_MR:
994 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
995 
996 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false);
997 		if (ret < 0)
998 			goto end;
999 
1000 		mlx5_update_odp_stats(mr, faults, ret);
1001 
1002 		npages += ret;
1003 		ret = 0;
1004 		break;
1005 
1006 	case MLX5_MKEY_MW:
1007 	case MLX5_MKEY_INDIRECT_DEVX:
1008 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
1009 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
1010 			ret = -EFAULT;
1011 			goto end;
1012 		}
1013 
1014 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1015 			sizeof(*pklm) * (mmkey->ndescs - 2);
1016 
1017 		if (outlen > cur_outlen) {
1018 			kfree(out);
1019 			out = kzalloc(outlen, GFP_KERNEL);
1020 			if (!out) {
1021 				ret = -ENOMEM;
1022 				goto end;
1023 			}
1024 			cur_outlen = outlen;
1025 		}
1026 
1027 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1028 						       bsf0_klm0_pas_mtt0_1);
1029 
1030 		ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
1031 		if (ret)
1032 			goto end;
1033 
1034 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
1035 					      memory_key_mkey_entry.start_addr);
1036 
1037 		for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
1038 			if (offset >= be32_to_cpu(pklm->bcount)) {
1039 				offset -= be32_to_cpu(pklm->bcount);
1040 				continue;
1041 			}
1042 
1043 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1044 			if (!frame) {
1045 				ret = -ENOMEM;
1046 				goto end;
1047 			}
1048 
1049 			frame->key = be32_to_cpu(pklm->key);
1050 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
1051 			frame->bcnt = min_t(size_t, bcnt,
1052 					    be32_to_cpu(pklm->bcount) - offset);
1053 			frame->depth = depth + 1;
1054 			frame->next = head;
1055 			head = frame;
1056 
1057 			bcnt -= frame->bcnt;
1058 			offset = 0;
1059 		}
1060 		break;
1061 
1062 	default:
1063 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1064 		ret = -EFAULT;
1065 		goto end;
1066 	}
1067 
1068 	if (head) {
1069 		frame = head;
1070 		head = frame->next;
1071 
1072 		key = frame->key;
1073 		io_virt = frame->io_virt;
1074 		bcnt = frame->bcnt;
1075 		depth = frame->depth;
1076 		kfree(frame);
1077 
1078 		mlx5r_deref_odp_mkey(mmkey);
1079 		goto next_mr;
1080 	}
1081 
1082 end:
1083 	if (!IS_ERR(mmkey))
1084 		mlx5r_deref_odp_mkey(mmkey);
1085 	while (head) {
1086 		frame = head;
1087 		head = frame->next;
1088 		kfree(frame);
1089 	}
1090 	kfree(out);
1091 
1092 	*bytes_committed = 0;
1093 	return ret ? ret : npages;
1094 }
1095 
1096 /*
1097  * Parse a series of data segments for page fault handling.
1098  *
1099  * @dev:  Pointer to mlx5 IB device
1100  * @pfault: contains page fault information.
1101  * @wqe: points at the first data segment in the WQE.
1102  * @wqe_end: points after the end of the WQE.
1103  * @bytes_mapped: receives the number of bytes that the function was able to
1104  *                map. This allows the caller to decide intelligently whether
1105  *                enough memory was mapped to resolve the page fault
1106  *                successfully (e.g. enough for the next MTU, or the entire
1107  *                WQE).
1108  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1109  *                   the committed bytes).
1110  * @receive_queue: receive WQE end of sg list
1111  *
1112  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1113  * negative error code.
1114  */
1115 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1116 				   struct mlx5_pagefault *pfault,
1117 				   void *wqe,
1118 				   void *wqe_end, u32 *bytes_mapped,
1119 				   u32 *total_wqe_bytes, bool receive_queue)
1120 {
1121 	int ret = 0, npages = 0;
1122 	u64 io_virt;
1123 	__be32 key;
1124 	u32 byte_count;
1125 	size_t bcnt;
1126 	int inline_segment;
1127 
1128 	if (bytes_mapped)
1129 		*bytes_mapped = 0;
1130 	if (total_wqe_bytes)
1131 		*total_wqe_bytes = 0;
1132 
1133 	while (wqe < wqe_end) {
1134 		struct mlx5_wqe_data_seg *dseg = wqe;
1135 
1136 		io_virt = be64_to_cpu(dseg->addr);
1137 		key = dseg->lkey;
1138 		byte_count = be32_to_cpu(dseg->byte_count);
1139 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1140 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1141 
1142 		if (inline_segment) {
1143 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1144 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1145 				     16);
1146 		} else {
1147 			wqe += sizeof(*dseg);
1148 		}
1149 
1150 		/* receive WQE end of sg list. */
1151 		if (receive_queue && bcnt == 0 &&
1152 		    key == dev->mkeys.terminate_scatter_list_mkey &&
1153 		    io_virt == 0)
1154 			break;
1155 
1156 		if (!inline_segment && total_wqe_bytes) {
1157 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1158 					pfault->bytes_committed);
1159 		}
1160 
1161 		/* A zero length data segment designates a length of 2GB. */
1162 		if (bcnt == 0)
1163 			bcnt = 1U << 31;
1164 
1165 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1166 			pfault->bytes_committed -=
1167 				min_t(size_t, bcnt,
1168 				      pfault->bytes_committed);
1169 			continue;
1170 		}
1171 
1172 		ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key),
1173 						    io_virt, bcnt,
1174 						    &pfault->bytes_committed,
1175 						    bytes_mapped);
1176 		if (ret < 0)
1177 			break;
1178 		npages += ret;
1179 	}
1180 
1181 	return ret < 0 ? ret : npages;
1182 }
1183 
1184 /*
1185  * Parse initiator WQE. Advances the wqe pointer to point at the
1186  * scatter-gather list, and set wqe_end to the end of the WQE.
1187  */
1188 static int mlx5_ib_mr_initiator_pfault_handler(
1189 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1190 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1191 {
1192 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1193 	u16 wqe_index = pfault->wqe.wqe_index;
1194 	struct mlx5_base_av *av;
1195 	unsigned ds, opcode;
1196 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1197 
1198 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1199 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1200 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1201 			    ds, wqe_length);
1202 		return -EFAULT;
1203 	}
1204 
1205 	if (ds == 0) {
1206 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1207 			    wqe_index, qpn);
1208 		return -EFAULT;
1209 	}
1210 
1211 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1212 	*wqe += sizeof(*ctrl);
1213 
1214 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1215 		 MLX5_WQE_CTRL_OPCODE_MASK;
1216 
1217 	if (qp->type == IB_QPT_XRC_INI)
1218 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1219 
1220 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1221 		av = *wqe;
1222 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1223 			*wqe += sizeof(struct mlx5_av);
1224 		else
1225 			*wqe += sizeof(struct mlx5_base_av);
1226 	}
1227 
1228 	switch (opcode) {
1229 	case MLX5_OPCODE_RDMA_WRITE:
1230 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1231 	case MLX5_OPCODE_RDMA_READ:
1232 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1233 		break;
1234 	case MLX5_OPCODE_ATOMIC_CS:
1235 	case MLX5_OPCODE_ATOMIC_FA:
1236 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1237 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1238 		break;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Parse responder WQE and set wqe_end to the end of the WQE.
1246  */
1247 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1248 						   struct mlx5_ib_srq *srq,
1249 						   void **wqe, void **wqe_end,
1250 						   int wqe_length)
1251 {
1252 	int wqe_size = 1 << srq->msrq.wqe_shift;
1253 
1254 	if (wqe_size > wqe_length) {
1255 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1256 		return -EFAULT;
1257 	}
1258 
1259 	*wqe_end = *wqe + wqe_size;
1260 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1261 
1262 	return 0;
1263 }
1264 
1265 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1266 						  struct mlx5_ib_qp *qp,
1267 						  void *wqe, void **wqe_end,
1268 						  int wqe_length)
1269 {
1270 	struct mlx5_ib_wq *wq = &qp->rq;
1271 	int wqe_size = 1 << wq->wqe_shift;
1272 
1273 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1274 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1275 		return -EFAULT;
1276 	}
1277 
1278 	if (wqe_size > wqe_length) {
1279 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1280 		return -EFAULT;
1281 	}
1282 
1283 	*wqe_end = wqe + wqe_size;
1284 
1285 	return 0;
1286 }
1287 
1288 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1289 						       u32 wq_num, int pf_type)
1290 {
1291 	struct mlx5_core_rsc_common *common = NULL;
1292 	struct mlx5_core_srq *srq;
1293 
1294 	switch (pf_type) {
1295 	case MLX5_WQE_PF_TYPE_RMP:
1296 		srq = mlx5_cmd_get_srq(dev, wq_num);
1297 		if (srq)
1298 			common = &srq->common;
1299 		break;
1300 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1301 	case MLX5_WQE_PF_TYPE_RESP:
1302 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1303 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1304 		break;
1305 	default:
1306 		break;
1307 	}
1308 
1309 	return common;
1310 }
1311 
1312 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1313 {
1314 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1315 
1316 	return to_mibqp(mqp);
1317 }
1318 
1319 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1320 {
1321 	struct mlx5_core_srq *msrq =
1322 		container_of(res, struct mlx5_core_srq, common);
1323 
1324 	return to_mibsrq(msrq);
1325 }
1326 
1327 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1328 					  struct mlx5_pagefault *pfault)
1329 {
1330 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1331 	u16 wqe_index = pfault->wqe.wqe_index;
1332 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1333 	u32 bytes_mapped, total_wqe_bytes;
1334 	struct mlx5_core_rsc_common *res;
1335 	int resume_with_error = 1;
1336 	struct mlx5_ib_qp *qp;
1337 	size_t bytes_copied;
1338 	int ret = 0;
1339 
1340 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1341 	if (!res) {
1342 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1343 		return;
1344 	}
1345 
1346 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1347 	    res->res != MLX5_RES_XSRQ) {
1348 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1349 			    pfault->type);
1350 		goto resolve_page_fault;
1351 	}
1352 
1353 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1354 	if (!wqe_start) {
1355 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1356 		goto resolve_page_fault;
1357 	}
1358 
1359 	wqe = wqe_start;
1360 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1361 	if (qp && sq) {
1362 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1363 					  &bytes_copied);
1364 		if (ret)
1365 			goto read_user;
1366 		ret = mlx5_ib_mr_initiator_pfault_handler(
1367 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1368 	} else if (qp && !sq) {
1369 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1370 					  &bytes_copied);
1371 		if (ret)
1372 			goto read_user;
1373 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1374 			dev, qp, wqe, &wqe_end, bytes_copied);
1375 	} else if (!qp) {
1376 		struct mlx5_ib_srq *srq = res_to_srq(res);
1377 
1378 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1379 					   &bytes_copied);
1380 		if (ret)
1381 			goto read_user;
1382 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1383 			dev, srq, &wqe, &wqe_end, bytes_copied);
1384 	}
1385 
1386 	if (ret < 0 || wqe >= wqe_end)
1387 		goto resolve_page_fault;
1388 
1389 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1390 				      &total_wqe_bytes, !sq);
1391 	if (ret == -EAGAIN)
1392 		goto out;
1393 
1394 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1395 		goto resolve_page_fault;
1396 
1397 out:
1398 	ret = 0;
1399 	resume_with_error = 0;
1400 
1401 read_user:
1402 	if (ret)
1403 		mlx5_ib_err(
1404 			dev,
1405 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n",
1406 			ret, wqe_index, pfault->token);
1407 
1408 resolve_page_fault:
1409 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1410 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1411 		    pfault->wqe.wq_num, resume_with_error,
1412 		    pfault->type);
1413 	mlx5_core_res_put(res);
1414 	free_page((unsigned long)wqe_start);
1415 }
1416 
1417 static int pages_in_range(u64 address, u32 length)
1418 {
1419 	return (ALIGN(address + length, PAGE_SIZE) -
1420 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1421 }
1422 
1423 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1424 					   struct mlx5_pagefault *pfault)
1425 {
1426 	u64 address;
1427 	u32 length;
1428 	u32 prefetch_len = pfault->bytes_committed;
1429 	int prefetch_activated = 0;
1430 	u32 rkey = pfault->rdma.r_key;
1431 	int ret;
1432 
1433 	/* The RDMA responder handler handles the page fault in two parts.
1434 	 * First it brings the necessary pages for the current packet
1435 	 * (and uses the pfault context), and then (after resuming the QP)
1436 	 * prefetches more pages. The second operation cannot use the pfault
1437 	 * context and therefore uses the dummy_pfault context allocated on
1438 	 * the stack */
1439 	pfault->rdma.rdma_va += pfault->bytes_committed;
1440 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1441 					 pfault->rdma.rdma_op_len);
1442 	pfault->bytes_committed = 0;
1443 
1444 	address = pfault->rdma.rdma_va;
1445 	length  = pfault->rdma.rdma_op_len;
1446 
1447 	/* For some operations, the hardware cannot tell the exact message
1448 	 * length, and in those cases it reports zero. Use prefetch
1449 	 * logic. */
1450 	if (length == 0) {
1451 		prefetch_activated = 1;
1452 		length = pfault->rdma.packet_size;
1453 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1454 	}
1455 
1456 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1457 					    &pfault->bytes_committed, NULL);
1458 	if (ret == -EAGAIN) {
1459 		/* We're racing with an invalidation, don't prefetch */
1460 		prefetch_activated = 0;
1461 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1462 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1463 		if (ret != -ENOENT)
1464 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n",
1465 				    ret, pfault->token, pfault->type);
1466 		return;
1467 	}
1468 
1469 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1470 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n",
1471 		    pfault->token, pfault->type,
1472 		    prefetch_activated);
1473 
1474 	/* At this point, there might be a new pagefault already arriving in
1475 	 * the eq, switch to the dummy pagefault for the rest of the
1476 	 * processing. We're still OK with the objects being alive as the
1477 	 * work-queue is being fenced. */
1478 
1479 	if (prefetch_activated) {
1480 		u32 bytes_committed = 0;
1481 
1482 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1483 						    prefetch_len,
1484 						    &bytes_committed, NULL);
1485 		if (ret < 0 && ret != -EAGAIN) {
1486 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n",
1487 				    ret, pfault->token, address, prefetch_len);
1488 		}
1489 	}
1490 }
1491 
1492 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7)
1493 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev,
1494 					     struct mlx5_pagefault *pfault)
1495 {
1496 	u64 prefetch_va =
1497 		pfault->memory.va - pfault->memory.prefetch_before_byte_count;
1498 	size_t prefetch_size = pfault->memory.prefetch_before_byte_count +
1499 			       pfault->memory.fault_byte_count +
1500 			       pfault->memory.prefetch_after_byte_count;
1501 	struct mlx5_ib_mkey *mmkey;
1502 	struct mlx5_ib_mr *mr, *child_mr;
1503 	int ret = 0;
1504 
1505 	mmkey = find_odp_mkey(dev, pfault->memory.mkey);
1506 	if (IS_ERR(mmkey))
1507 		goto err;
1508 
1509 	switch (mmkey->type) {
1510 	case MLX5_MKEY_IMPLICIT_CHILD:
1511 		child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1512 		mr = child_mr->parent;
1513 		break;
1514 	case MLX5_MKEY_NULL:
1515 		mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey);
1516 		break;
1517 	default:
1518 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1519 		break;
1520 	}
1521 
1522 	/* If prefetch fails, handle only demanded page fault */
1523 	ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true);
1524 	if (ret < 0) {
1525 		ret = pagefault_mr(mr, pfault->memory.va,
1526 				   pfault->memory.fault_byte_count, NULL, 0,
1527 				   true);
1528 		if (ret < 0)
1529 			goto err;
1530 	}
1531 
1532 	mlx5_update_odp_stats(mr, faults, ret);
1533 	mlx5r_deref_odp_mkey(mmkey);
1534 
1535 	if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST)
1536 		mlx5_ib_page_fault_resume(dev, pfault, 0);
1537 
1538 	mlx5_ib_dbg(
1539 		dev,
1540 		"PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n",
1541 		pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ?
1542 			"" :
1543 			"without resume cmd",
1544 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1545 		pfault->memory.fault_byte_count);
1546 
1547 	return;
1548 
1549 err:
1550 	if (!IS_ERR(mmkey))
1551 		mlx5r_deref_odp_mkey(mmkey);
1552 	mlx5_ib_page_fault_resume(dev, pfault, 1);
1553 	mlx5_ib_dbg(
1554 		dev,
1555 		"PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n",
1556 		pfault->token, pfault->memory.mkey, pfault->memory.va,
1557 		pfault->memory.fault_byte_count, ret);
1558 }
1559 
1560 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1561 {
1562 	u8 event_subtype = pfault->event_subtype;
1563 
1564 	switch (event_subtype) {
1565 	case MLX5_PFAULT_SUBTYPE_WQE:
1566 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1567 		break;
1568 	case MLX5_PFAULT_SUBTYPE_RDMA:
1569 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1570 		break;
1571 	case MLX5_PFAULT_SUBTYPE_MEMORY:
1572 		mlx5_ib_mr_memory_pfault_handler(dev, pfault);
1573 		break;
1574 	default:
1575 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1576 			    event_subtype);
1577 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1578 	}
1579 }
1580 
1581 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1582 {
1583 	struct mlx5_pagefault *pfault = container_of(work,
1584 						     struct mlx5_pagefault,
1585 						     work);
1586 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1587 
1588 	mlx5_ib_pfault(eq->dev, pfault);
1589 	mempool_free(pfault, eq->pool);
1590 }
1591 
1592 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096
1593 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1594 {
1595 	struct mlx5_eqe_page_fault *pf_eqe;
1596 	struct mlx5_pagefault *pfault;
1597 	struct mlx5_eqe *eqe;
1598 	int cc = 0;
1599 
1600 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1601 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1602 		if (!pfault) {
1603 			schedule_work(&eq->work);
1604 			break;
1605 		}
1606 
1607 		pf_eqe = &eqe->data.page_fault;
1608 		pfault->event_subtype = eqe->sub_type;
1609 
1610 		switch (eqe->sub_type) {
1611 		case MLX5_PFAULT_SUBTYPE_RDMA:
1612 			/* RDMA based event */
1613 			pfault->bytes_committed =
1614 				be32_to_cpu(pf_eqe->rdma.bytes_committed);
1615 			pfault->type =
1616 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1617 			pfault->token =
1618 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1619 				MLX5_24BIT_MASK;
1620 			pfault->rdma.r_key =
1621 				be32_to_cpu(pf_eqe->rdma.r_key);
1622 			pfault->rdma.packet_size =
1623 				be16_to_cpu(pf_eqe->rdma.packet_length);
1624 			pfault->rdma.rdma_op_len =
1625 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1626 			pfault->rdma.rdma_va =
1627 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1628 			mlx5_ib_dbg(
1629 				eq->dev,
1630 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n",
1631 				eqe->sub_type, pfault->bytes_committed,
1632 				pfault->type, pfault->token,
1633 				pfault->rdma.r_key);
1634 			mlx5_ib_dbg(eq->dev,
1635 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1636 				    pfault->rdma.rdma_op_len,
1637 				    pfault->rdma.rdma_va);
1638 			break;
1639 
1640 		case MLX5_PFAULT_SUBTYPE_WQE:
1641 			/* WQE based event */
1642 			pfault->bytes_committed =
1643 				be32_to_cpu(pf_eqe->wqe.bytes_committed);
1644 			pfault->type =
1645 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1646 			pfault->token =
1647 				be32_to_cpu(pf_eqe->wqe.token);
1648 			pfault->wqe.wq_num =
1649 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1650 				MLX5_24BIT_MASK;
1651 			pfault->wqe.wqe_index =
1652 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1653 			pfault->wqe.packet_size =
1654 				be16_to_cpu(pf_eqe->wqe.packet_length);
1655 			mlx5_ib_dbg(
1656 				eq->dev,
1657 				"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1658 				eqe->sub_type, pfault->bytes_committed,
1659 				pfault->type, pfault->token, pfault->wqe.wq_num,
1660 				pfault->wqe.wqe_index);
1661 			break;
1662 
1663 		case MLX5_PFAULT_SUBTYPE_MEMORY:
1664 			/* Memory based event */
1665 			pfault->bytes_committed = 0;
1666 			pfault->token =
1667 				be32_to_cpu(pf_eqe->memory.token31_0) |
1668 				((u64)be16_to_cpu(pf_eqe->memory.token47_32)
1669 				 << 32);
1670 			pfault->memory.va = be64_to_cpu(pf_eqe->memory.va);
1671 			pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey);
1672 			pfault->memory.fault_byte_count = (be32_to_cpu(
1673 				pf_eqe->memory.demand_fault_pages) >> 12) *
1674 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1675 			pfault->memory.prefetch_before_byte_count =
1676 				be16_to_cpu(
1677 					pf_eqe->memory.pre_demand_fault_pages) *
1678 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1679 			pfault->memory.prefetch_after_byte_count =
1680 				be16_to_cpu(
1681 					pf_eqe->memory.post_demand_fault_pages) *
1682 				MEMORY_SCHEME_PAGE_FAULT_GRANULARITY;
1683 			pfault->memory.flags = pf_eqe->memory.flags;
1684 			mlx5_ib_dbg(
1685 				eq->dev,
1686 				"PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n",
1687 				eqe->sub_type, pfault->token,
1688 				pfault->memory.mkey,
1689 				pfault->memory.fault_byte_count,
1690 				pfault->memory.va, pfault->memory.flags);
1691 			mlx5_ib_dbg(
1692 				eq->dev,
1693 				"PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n",
1694 				pfault->memory.prefetch_before_byte_count,
1695 				pfault->memory.prefetch_after_byte_count);
1696 			break;
1697 
1698 		default:
1699 			mlx5_ib_warn(eq->dev,
1700 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1701 				     eqe->sub_type);
1702 			/* Unsupported page faults should still be
1703 			 * resolved by the page fault handler
1704 			 */
1705 		}
1706 
1707 		pfault->eq = eq;
1708 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1709 		queue_work(eq->wq, &pfault->work);
1710 
1711 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1712 	}
1713 
1714 	mlx5_eq_update_ci(eq->core, cc, 1);
1715 }
1716 
1717 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1718 			     void *data)
1719 {
1720 	struct mlx5_ib_pf_eq *eq =
1721 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1722 	unsigned long flags;
1723 
1724 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1725 		mlx5_ib_eq_pf_process(eq);
1726 		spin_unlock_irqrestore(&eq->lock, flags);
1727 	} else {
1728 		schedule_work(&eq->work);
1729 	}
1730 
1731 	return IRQ_HANDLED;
1732 }
1733 
1734 /* mempool_refill() was proposed but unfortunately wasn't accepted
1735  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1736  * Cheap workaround.
1737  */
1738 static void mempool_refill(mempool_t *pool)
1739 {
1740 	while (pool->curr_nr < pool->min_nr)
1741 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1742 }
1743 
1744 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1745 {
1746 	struct mlx5_ib_pf_eq *eq =
1747 		container_of(work, struct mlx5_ib_pf_eq, work);
1748 
1749 	mempool_refill(eq->pool);
1750 
1751 	spin_lock_irq(&eq->lock);
1752 	mlx5_ib_eq_pf_process(eq);
1753 	spin_unlock_irq(&eq->lock);
1754 }
1755 
1756 enum {
1757 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1758 	MLX5_IB_NUM_PF_DRAIN	= 64,
1759 };
1760 
1761 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1762 {
1763 	struct mlx5_eq_param param = {};
1764 	int err = 0;
1765 
1766 	mutex_lock(&dev->odp_eq_mutex);
1767 	if (eq->core)
1768 		goto unlock;
1769 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1770 	spin_lock_init(&eq->lock);
1771 	eq->dev = dev;
1772 
1773 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1774 					       sizeof(struct mlx5_pagefault));
1775 	if (!eq->pool) {
1776 		err = -ENOMEM;
1777 		goto unlock;
1778 	}
1779 
1780 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1781 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1782 				 MLX5_NUM_CMD_EQE);
1783 	if (!eq->wq) {
1784 		err = -ENOMEM;
1785 		goto err_mempool;
1786 	}
1787 
1788 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1789 	param = (struct mlx5_eq_param) {
1790 		.nent = MLX5_IB_NUM_PF_EQE,
1791 	};
1792 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1793 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1794 	if (IS_ERR(eq->core)) {
1795 		err = PTR_ERR(eq->core);
1796 		goto err_wq;
1797 	}
1798 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1799 	if (err) {
1800 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1801 		goto err_eq;
1802 	}
1803 
1804 	mutex_unlock(&dev->odp_eq_mutex);
1805 	return 0;
1806 err_eq:
1807 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1808 err_wq:
1809 	eq->core = NULL;
1810 	destroy_workqueue(eq->wq);
1811 err_mempool:
1812 	mempool_destroy(eq->pool);
1813 unlock:
1814 	mutex_unlock(&dev->odp_eq_mutex);
1815 	return err;
1816 }
1817 
1818 static int
1819 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1820 {
1821 	int err;
1822 
1823 	if (!eq->core)
1824 		return 0;
1825 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1826 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1827 	cancel_work_sync(&eq->work);
1828 	destroy_workqueue(eq->wq);
1829 	mempool_destroy(eq->pool);
1830 
1831 	return err;
1832 }
1833 
1834 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev)
1835 {
1836 	struct mlx5r_cache_rb_key rb_key = {
1837 		.access_mode = MLX5_MKC_ACCESS_MODE_KSM,
1838 		.ndescs = mlx5_imr_ksm_entries,
1839 	};
1840 	struct mlx5_cache_ent *ent;
1841 
1842 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1843 		return 0;
1844 
1845 	ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
1846 	if (IS_ERR(ent))
1847 		return PTR_ERR(ent);
1848 
1849 	return 0;
1850 }
1851 
1852 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1853 	.advise_mr = mlx5_ib_advise_mr,
1854 };
1855 
1856 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1857 {
1858 	internal_fill_odp_caps(dev);
1859 
1860 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1861 		return 0;
1862 
1863 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1864 
1865 	mutex_init(&dev->odp_eq_mutex);
1866 	return 0;
1867 }
1868 
1869 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1870 {
1871 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1872 		return;
1873 
1874 	mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1875 }
1876 
1877 int mlx5_ib_odp_init(void)
1878 {
1879 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1880 				       MLX5_IMR_MTT_BITS);
1881 
1882 	return 0;
1883 }
1884 
1885 struct prefetch_mr_work {
1886 	struct work_struct work;
1887 	u32 pf_flags;
1888 	u32 num_sge;
1889 	struct {
1890 		u64 io_virt;
1891 		struct mlx5_ib_mr *mr;
1892 		size_t length;
1893 	} frags[];
1894 };
1895 
1896 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1897 {
1898 	u32 i;
1899 
1900 	for (i = 0; i < work->num_sge; ++i)
1901 		mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1902 
1903 	kvfree(work);
1904 }
1905 
1906 static struct mlx5_ib_mr *
1907 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1908 		    u32 lkey)
1909 {
1910 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1911 	struct mlx5_ib_mr *mr = NULL;
1912 	struct mlx5_ib_mkey *mmkey;
1913 
1914 	xa_lock(&dev->odp_mkeys);
1915 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1916 	if (!mmkey || mmkey->key != lkey) {
1917 		mr = ERR_PTR(-ENOENT);
1918 		goto end;
1919 	}
1920 	if (mmkey->type != MLX5_MKEY_MR) {
1921 		mr = ERR_PTR(-EINVAL);
1922 		goto end;
1923 	}
1924 
1925 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1926 
1927 	if (mr->ibmr.pd != pd) {
1928 		mr = ERR_PTR(-EPERM);
1929 		goto end;
1930 	}
1931 
1932 	/* prefetch with write-access must be supported by the MR */
1933 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1934 	    !mr->umem->writable) {
1935 		mr = ERR_PTR(-EPERM);
1936 		goto end;
1937 	}
1938 
1939 	refcount_inc(&mmkey->usecount);
1940 end:
1941 	xa_unlock(&dev->odp_mkeys);
1942 	return mr;
1943 }
1944 
1945 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1946 {
1947 	struct prefetch_mr_work *work =
1948 		container_of(w, struct prefetch_mr_work, work);
1949 	u32 bytes_mapped = 0;
1950 	int ret;
1951 	u32 i;
1952 
1953 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1954 	WARN_ON(!work->num_sge);
1955 	for (i = 0; i < work->num_sge; ++i) {
1956 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1957 				   work->frags[i].length, &bytes_mapped,
1958 				   work->pf_flags, false);
1959 		if (ret <= 0)
1960 			continue;
1961 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1962 	}
1963 
1964 	destroy_prefetch_work(work);
1965 }
1966 
1967 static int init_prefetch_work(struct ib_pd *pd,
1968 			       enum ib_uverbs_advise_mr_advice advice,
1969 			       u32 pf_flags, struct prefetch_mr_work *work,
1970 			       struct ib_sge *sg_list, u32 num_sge)
1971 {
1972 	u32 i;
1973 
1974 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1975 	work->pf_flags = pf_flags;
1976 
1977 	for (i = 0; i < num_sge; ++i) {
1978 		struct mlx5_ib_mr *mr;
1979 
1980 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1981 		if (IS_ERR(mr)) {
1982 			work->num_sge = i;
1983 			return PTR_ERR(mr);
1984 		}
1985 		work->frags[i].io_virt = sg_list[i].addr;
1986 		work->frags[i].length = sg_list[i].length;
1987 		work->frags[i].mr = mr;
1988 	}
1989 	work->num_sge = num_sge;
1990 	return 0;
1991 }
1992 
1993 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1994 				    enum ib_uverbs_advise_mr_advice advice,
1995 				    u32 pf_flags, struct ib_sge *sg_list,
1996 				    u32 num_sge)
1997 {
1998 	u32 bytes_mapped = 0;
1999 	int ret = 0;
2000 	u32 i;
2001 
2002 	for (i = 0; i < num_sge; ++i) {
2003 		struct mlx5_ib_mr *mr;
2004 
2005 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
2006 		if (IS_ERR(mr))
2007 			return PTR_ERR(mr);
2008 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
2009 				   &bytes_mapped, pf_flags, false);
2010 		if (ret < 0) {
2011 			mlx5r_deref_odp_mkey(&mr->mmkey);
2012 			return ret;
2013 		}
2014 		mlx5_update_odp_stats(mr, prefetch, ret);
2015 		mlx5r_deref_odp_mkey(&mr->mmkey);
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
2022 			       enum ib_uverbs_advise_mr_advice advice,
2023 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
2024 {
2025 	u32 pf_flags = 0;
2026 	struct prefetch_mr_work *work;
2027 	int rc;
2028 
2029 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
2030 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
2031 
2032 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
2033 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
2034 
2035 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
2036 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
2037 						num_sge);
2038 
2039 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
2040 	if (!work)
2041 		return -ENOMEM;
2042 
2043 	rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge);
2044 	if (rc) {
2045 		destroy_prefetch_work(work);
2046 		return rc;
2047 	}
2048 	queue_work(system_unbound_wq, &work->work);
2049 	return 0;
2050 }
2051