xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision 88a8e278ff0b6b461bf39d4ace17384e976a3f3f)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 
40 #include <linux/mlx5/eq.h>
41 
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 	u32			bytes_committed;
45 	u32			token;
46 	u8			event_subtype;
47 	u8			type;
48 	union {
49 		/* Initiator or send message responder pagefault details. */
50 		struct {
51 			/* Received packet size, only valid for responders. */
52 			u32	packet_size;
53 			/*
54 			 * Number of resource holding WQE, depends on type.
55 			 */
56 			u32	wq_num;
57 			/*
58 			 * WQE index. Refers to either the send queue or
59 			 * receive queue, according to event_subtype.
60 			 */
61 			u16	wqe_index;
62 		} wqe;
63 		/* RDMA responder pagefault details */
64 		struct {
65 			u32	r_key;
66 			/*
67 			 * Received packet size, minimal size page fault
68 			 * resolution required for forward progress.
69 			 */
70 			u32	packet_size;
71 			u32	rdma_op_len;
72 			u64	rdma_va;
73 		} rdma;
74 	};
75 
76 	struct mlx5_ib_pf_eq	*eq;
77 	struct work_struct	work;
78 };
79 
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
81 
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83  * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
85 
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
91 
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
93 
94 static u64 mlx5_imr_ksm_entries;
95 
96 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
97 			struct mlx5_ib_mr *imr, int flags)
98 {
99 	struct mlx5_klm *end = pklm + nentries;
100 
101 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
102 		for (; pklm != end; pklm++, idx++) {
103 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
104 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
105 			pklm->va = 0;
106 		}
107 		return;
108 	}
109 
110 	/*
111 	 * The locking here is pretty subtle. Ideally the implicit_children
112 	 * xarray would be protected by the umem_mutex, however that is not
113 	 * possible. Instead this uses a weaker update-then-lock pattern:
114 	 *
115 	 *  srcu_read_lock()
116 	 *    xa_store()
117 	 *    mutex_lock(umem_mutex)
118 	 *     mlx5_ib_update_xlt()
119 	 *    mutex_unlock(umem_mutex)
120 	 *    destroy lkey
121 	 *
122 	 * ie any change the xarray must be followed by the locked update_xlt
123 	 * before destroying.
124 	 *
125 	 * The umem_mutex provides the acquire/release semantic needed to make
126 	 * the xa_store() visible to a racing thread. While SRCU is not
127 	 * technically required, using it gives consistent use of the SRCU
128 	 * locking around the xarray.
129 	 */
130 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131 	lockdep_assert_held(&imr->dev->odp_srcu);
132 
133 	for (; pklm != end; pklm++, idx++) {
134 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
135 
136 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
137 		if (mtt) {
138 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
139 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
140 		} else {
141 			pklm->key = cpu_to_be32(imr->dev->null_mkey);
142 			pklm->va = 0;
143 		}
144 	}
145 }
146 
147 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
148 {
149 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
150 
151 	if (umem_dma & ODP_READ_ALLOWED_BIT)
152 		mtt_entry |= MLX5_IB_MTT_READ;
153 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
154 		mtt_entry |= MLX5_IB_MTT_WRITE;
155 
156 	return mtt_entry;
157 }
158 
159 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
160 			 struct mlx5_ib_mr *mr, int flags)
161 {
162 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
163 	dma_addr_t pa;
164 	size_t i;
165 
166 	if (flags & MLX5_IB_UPD_XLT_ZAP)
167 		return;
168 
169 	for (i = 0; i < nentries; i++) {
170 		pa = odp->dma_list[idx + i];
171 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
172 	}
173 }
174 
175 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
176 			   struct mlx5_ib_mr *mr, int flags)
177 {
178 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
179 		populate_klm(xlt, idx, nentries, mr, flags);
180 	} else {
181 		populate_mtt(xlt, idx, nentries, mr, flags);
182 	}
183 }
184 
185 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
186 {
187 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
188 
189 	/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
190 	mutex_lock(&odp->umem_mutex);
191 	if (odp->npages) {
192 		mlx5_mr_cache_invalidate(mr);
193 		ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
194 					    ib_umem_end(odp));
195 		WARN_ON(odp->npages);
196 	}
197 	odp->private = NULL;
198 	mutex_unlock(&odp->umem_mutex);
199 
200 	if (!mr->cache_ent) {
201 		mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
202 		WARN_ON(mr->descs);
203 	}
204 }
205 
206 /*
207  * This must be called after the mr has been removed from implicit_children
208  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
209  * empty here, parallel page faults could have raced with the free process and
210  * added pages to it.
211  */
212 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
213 {
214 	struct mlx5_ib_mr *imr = mr->parent;
215 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
216 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
217 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
218 	int srcu_key;
219 
220 	/* implicit_child_mr's are not allowed to have deferred work */
221 	WARN_ON(atomic_read(&mr->num_deferred_work));
222 
223 	if (need_imr_xlt) {
224 		srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
225 		mutex_lock(&odp_imr->umem_mutex);
226 		mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
227 				   MLX5_IB_UPD_XLT_INDIRECT |
228 				   MLX5_IB_UPD_XLT_ATOMIC);
229 		mutex_unlock(&odp_imr->umem_mutex);
230 		srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
231 	}
232 
233 	dma_fence_odp_mr(mr);
234 
235 	mr->parent = NULL;
236 	mlx5_mr_cache_free(mr->dev, mr);
237 	ib_umem_odp_release(odp);
238 	if (atomic_dec_and_test(&imr->num_deferred_work))
239 		wake_up(&imr->q_deferred_work);
240 }
241 
242 static void free_implicit_child_mr_work(struct work_struct *work)
243 {
244 	struct mlx5_ib_mr *mr =
245 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
246 
247 	free_implicit_child_mr(mr, true);
248 }
249 
250 static void free_implicit_child_mr_rcu(struct rcu_head *head)
251 {
252 	struct mlx5_ib_mr *mr =
253 		container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
254 
255 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
256 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
257 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
258 }
259 
260 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
261 {
262 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
263 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
264 	struct mlx5_ib_mr *imr = mr->parent;
265 
266 	xa_lock(&imr->implicit_children);
267 	/*
268 	 * This can race with mlx5_ib_free_implicit_mr(), the first one to
269 	 * reach the xa lock wins the race and destroys the MR.
270 	 */
271 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
272 	    mr)
273 		goto out_unlock;
274 
275 	atomic_inc(&imr->num_deferred_work);
276 	call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
277 		  free_implicit_child_mr_rcu);
278 
279 out_unlock:
280 	xa_unlock(&imr->implicit_children);
281 }
282 
283 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
284 				     const struct mmu_notifier_range *range,
285 				     unsigned long cur_seq)
286 {
287 	struct ib_umem_odp *umem_odp =
288 		container_of(mni, struct ib_umem_odp, notifier);
289 	struct mlx5_ib_mr *mr;
290 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
291 				    sizeof(struct mlx5_mtt)) - 1;
292 	u64 idx = 0, blk_start_idx = 0;
293 	u64 invalidations = 0;
294 	unsigned long start;
295 	unsigned long end;
296 	int in_block = 0;
297 	u64 addr;
298 
299 	if (!mmu_notifier_range_blockable(range))
300 		return false;
301 
302 	mutex_lock(&umem_odp->umem_mutex);
303 	mmu_interval_set_seq(mni, cur_seq);
304 	/*
305 	 * If npages is zero then umem_odp->private may not be setup yet. This
306 	 * does not complete until after the first page is mapped for DMA.
307 	 */
308 	if (!umem_odp->npages)
309 		goto out;
310 	mr = umem_odp->private;
311 
312 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
313 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
314 
315 	/*
316 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
317 	 * while we are doing the invalidation, no page fault will attempt to
318 	 * overwrite the same MTTs.  Concurent invalidations might race us,
319 	 * but they will write 0s as well, so no difference in the end result.
320 	 */
321 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
322 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
323 		/*
324 		 * Strive to write the MTTs in chunks, but avoid overwriting
325 		 * non-existing MTTs. The huristic here can be improved to
326 		 * estimate the cost of another UMR vs. the cost of bigger
327 		 * UMR.
328 		 */
329 		if (umem_odp->dma_list[idx] &
330 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
331 			if (!in_block) {
332 				blk_start_idx = idx;
333 				in_block = 1;
334 			}
335 
336 			/* Count page invalidations */
337 			invalidations += idx - blk_start_idx + 1;
338 		} else {
339 			u64 umr_offset = idx & umr_block_mask;
340 
341 			if (in_block && umr_offset == 0) {
342 				mlx5_ib_update_xlt(mr, blk_start_idx,
343 						   idx - blk_start_idx, 0,
344 						   MLX5_IB_UPD_XLT_ZAP |
345 						   MLX5_IB_UPD_XLT_ATOMIC);
346 				in_block = 0;
347 			}
348 		}
349 	}
350 	if (in_block)
351 		mlx5_ib_update_xlt(mr, blk_start_idx,
352 				   idx - blk_start_idx + 1, 0,
353 				   MLX5_IB_UPD_XLT_ZAP |
354 				   MLX5_IB_UPD_XLT_ATOMIC);
355 
356 	mlx5_update_odp_stats(mr, invalidations, invalidations);
357 
358 	/*
359 	 * We are now sure that the device will not access the
360 	 * memory. We can safely unmap it, and mark it as dirty if
361 	 * needed.
362 	 */
363 
364 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
365 
366 	if (unlikely(!umem_odp->npages && mr->parent))
367 		destroy_unused_implicit_child_mr(mr);
368 out:
369 	mutex_unlock(&umem_odp->umem_mutex);
370 	return true;
371 }
372 
373 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
374 	.invalidate = mlx5_ib_invalidate_range,
375 };
376 
377 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
378 {
379 	struct ib_odp_caps *caps = &dev->odp_caps;
380 
381 	memset(caps, 0, sizeof(*caps));
382 
383 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
384 	    !mlx5_ib_can_use_umr(dev, true, 0))
385 		return;
386 
387 	caps->general_caps = IB_ODP_SUPPORT;
388 
389 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
390 		dev->odp_max_size = U64_MAX;
391 	else
392 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
393 
394 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
395 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
396 
397 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
398 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
399 
400 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
401 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
402 
403 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
404 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
405 
406 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
407 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
408 
409 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
410 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
411 
412 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
413 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
414 
415 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
416 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
417 
418 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
419 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
420 
421 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
422 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
423 
424 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
425 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
426 
427 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
428 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
429 
430 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
431 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
432 
433 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
434 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
435 
436 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
437 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
438 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
439 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
440 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
441 }
442 
443 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
444 				      struct mlx5_pagefault *pfault,
445 				      int error)
446 {
447 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
448 		     pfault->wqe.wq_num : pfault->token;
449 	u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
450 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)]   = { };
451 	int err;
452 
453 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457 	MLX5_SET(page_fault_resume_in, in, error, !!error);
458 
459 	err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
460 	if (err)
461 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462 			    wq_num, err);
463 }
464 
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466 						unsigned long idx)
467 {
468 	struct ib_umem_odp *odp;
469 	struct mlx5_ib_mr *mr;
470 	struct mlx5_ib_mr *ret;
471 	int err;
472 
473 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474 				      idx * MLX5_IMR_MTT_SIZE,
475 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476 	if (IS_ERR(odp))
477 		return ERR_CAST(odp);
478 
479 	ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
480 	if (IS_ERR(mr))
481 		goto out_umem;
482 
483 	mr->ibmr.pd = imr->ibmr.pd;
484 	mr->access_flags = imr->access_flags;
485 	mr->umem = &odp->umem;
486 	mr->ibmr.lkey = mr->mmkey.key;
487 	mr->ibmr.rkey = mr->mmkey.key;
488 	mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
489 	mr->parent = imr;
490 	odp->private = mr;
491 
492 	err = mlx5_ib_update_xlt(mr, 0,
493 				 MLX5_IMR_MTT_ENTRIES,
494 				 PAGE_SHIFT,
495 				 MLX5_IB_UPD_XLT_ZAP |
496 				 MLX5_IB_UPD_XLT_ENABLE);
497 	if (err) {
498 		ret = ERR_PTR(err);
499 		goto out_mr;
500 	}
501 
502 	/*
503 	 * Once the store to either xarray completes any error unwind has to
504 	 * use synchronize_srcu(). Avoid this with xa_reserve()
505 	 */
506 	ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507 			 GFP_KERNEL);
508 	if (unlikely(ret)) {
509 		if (xa_is_err(ret)) {
510 			ret = ERR_PTR(xa_err(ret));
511 			goto out_mr;
512 		}
513 		/*
514 		 * Another thread beat us to creating the child mr, use
515 		 * theirs.
516 		 */
517 		goto out_mr;
518 	}
519 
520 	mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
521 	return mr;
522 
523 out_mr:
524 	mlx5_mr_cache_free(imr->dev, mr);
525 out_umem:
526 	ib_umem_odp_release(odp);
527 	return ret;
528 }
529 
530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
531 					     struct ib_udata *udata,
532 					     int access_flags)
533 {
534 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
535 	struct ib_umem_odp *umem_odp;
536 	struct mlx5_ib_mr *imr;
537 	int err;
538 
539 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
540 	if (IS_ERR(umem_odp))
541 		return ERR_CAST(umem_odp);
542 
543 	imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
544 	if (IS_ERR(imr)) {
545 		err = PTR_ERR(imr);
546 		goto out_umem;
547 	}
548 
549 	imr->ibmr.pd = &pd->ibpd;
550 	imr->access_flags = access_flags;
551 	imr->mmkey.iova = 0;
552 	imr->umem = &umem_odp->umem;
553 	imr->ibmr.lkey = imr->mmkey.key;
554 	imr->ibmr.rkey = imr->mmkey.key;
555 	imr->umem = &umem_odp->umem;
556 	imr->is_odp_implicit = true;
557 	atomic_set(&imr->num_deferred_work, 0);
558 	init_waitqueue_head(&imr->q_deferred_work);
559 	xa_init(&imr->implicit_children);
560 
561 	err = mlx5_ib_update_xlt(imr, 0,
562 				 mlx5_imr_ksm_entries,
563 				 MLX5_KSM_PAGE_SHIFT,
564 				 MLX5_IB_UPD_XLT_INDIRECT |
565 				 MLX5_IB_UPD_XLT_ZAP |
566 				 MLX5_IB_UPD_XLT_ENABLE);
567 	if (err)
568 		goto out_mr;
569 
570 	err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
571 			      &imr->mmkey, GFP_KERNEL));
572 	if (err)
573 		goto out_mr;
574 
575 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
576 	return imr;
577 out_mr:
578 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
579 	mlx5_mr_cache_free(dev, imr);
580 out_umem:
581 	ib_umem_odp_release(umem_odp);
582 	return ERR_PTR(err);
583 }
584 
585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
586 {
587 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
588 	struct mlx5_ib_dev *dev = imr->dev;
589 	struct list_head destroy_list;
590 	struct mlx5_ib_mr *mtt;
591 	struct mlx5_ib_mr *tmp;
592 	unsigned long idx;
593 
594 	INIT_LIST_HEAD(&destroy_list);
595 
596 	xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
597 	/*
598 	 * This stops the SRCU protected page fault path from touching either
599 	 * the imr or any children. The page fault path can only reach the
600 	 * children xarray via the imr.
601 	 */
602 	synchronize_srcu(&dev->odp_srcu);
603 
604 	xa_lock(&imr->implicit_children);
605 	xa_for_each (&imr->implicit_children, idx, mtt) {
606 		__xa_erase(&imr->implicit_children, idx);
607 		list_add(&mtt->odp_destroy.elm, &destroy_list);
608 	}
609 	xa_unlock(&imr->implicit_children);
610 
611 	/*
612 	 * num_deferred_work can only be incremented inside the odp_srcu, or
613 	 * under xa_lock while the child is in the xarray. Thus at this point
614 	 * it is only decreasing, and all work holding it is now on the wq.
615 	 */
616 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
617 
618 	/*
619 	 * Fence the imr before we destroy the children. This allows us to
620 	 * skip updating the XLT of the imr during destroy of the child mkey
621 	 * the imr points to.
622 	 */
623 	mlx5_mr_cache_invalidate(imr);
624 
625 	list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
626 		free_implicit_child_mr(mtt, false);
627 
628 	mlx5_mr_cache_free(dev, imr);
629 	ib_umem_odp_release(odp_imr);
630 }
631 
632 /**
633  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
634  * @mr: to fence
635  *
636  * On return no parallel threads will be touching this MR and no DMA will be
637  * active.
638  */
639 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
640 {
641 	/* Prevent new page faults and prefetch requests from succeeding */
642 	xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
643 
644 	/* Wait for all running page-fault handlers to finish. */
645 	synchronize_srcu(&mr->dev->odp_srcu);
646 
647 	wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
648 
649 	dma_fence_odp_mr(mr);
650 }
651 
652 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
653 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
654 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
655 			     u32 flags)
656 {
657 	int page_shift, ret, np;
658 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
659 	unsigned long current_seq;
660 	u64 access_mask;
661 	u64 start_idx;
662 
663 	page_shift = odp->page_shift;
664 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
665 	access_mask = ODP_READ_ALLOWED_BIT;
666 
667 	if (odp->umem.writable && !downgrade)
668 		access_mask |= ODP_WRITE_ALLOWED_BIT;
669 
670 	current_seq = mmu_interval_read_begin(&odp->notifier);
671 
672 	np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
673 				       current_seq);
674 	if (np < 0)
675 		return np;
676 
677 	mutex_lock(&odp->umem_mutex);
678 	if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
679 		/*
680 		 * No need to check whether the MTTs really belong to
681 		 * this MR, since ib_umem_odp_map_dma_pages already
682 		 * checks this.
683 		 */
684 		ret = mlx5_ib_update_xlt(mr, start_idx, np,
685 					 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
686 	} else {
687 		ret = -EAGAIN;
688 	}
689 	mutex_unlock(&odp->umem_mutex);
690 
691 	if (ret < 0) {
692 		if (ret != -EAGAIN)
693 			mlx5_ib_err(mr->dev,
694 				    "Failed to update mkey page tables\n");
695 		goto out;
696 	}
697 
698 	if (bytes_mapped) {
699 		u32 new_mappings = (np << page_shift) -
700 			(user_va - round_down(user_va, 1 << page_shift));
701 
702 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
703 	}
704 
705 	return np << (page_shift - PAGE_SHIFT);
706 
707 out:
708 	return ret;
709 }
710 
711 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
712 				 struct ib_umem_odp *odp_imr, u64 user_va,
713 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
714 {
715 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
716 	unsigned long upd_start_idx = end_idx + 1;
717 	unsigned long upd_len = 0;
718 	unsigned long npages = 0;
719 	int err;
720 	int ret;
721 
722 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
723 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
724 		return -EFAULT;
725 
726 	/* Fault each child mr that intersects with our interval. */
727 	while (bcnt) {
728 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
729 		struct ib_umem_odp *umem_odp;
730 		struct mlx5_ib_mr *mtt;
731 		u64 len;
732 
733 		mtt = xa_load(&imr->implicit_children, idx);
734 		if (unlikely(!mtt)) {
735 			mtt = implicit_get_child_mr(imr, idx);
736 			if (IS_ERR(mtt)) {
737 				ret = PTR_ERR(mtt);
738 				goto out;
739 			}
740 			upd_start_idx = min(upd_start_idx, idx);
741 			upd_len = idx - upd_start_idx + 1;
742 		}
743 
744 		umem_odp = to_ib_umem_odp(mtt->umem);
745 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
746 		      user_va;
747 
748 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
749 					bytes_mapped, flags);
750 		if (ret < 0)
751 			goto out;
752 		user_va += len;
753 		bcnt -= len;
754 		npages += ret;
755 	}
756 
757 	ret = npages;
758 
759 	/*
760 	 * Any time the implicit_children are changed we must perform an
761 	 * update of the xlt before exiting to ensure the HW and the
762 	 * implicit_children remains synchronized.
763 	 */
764 out:
765 	if (likely(!upd_len))
766 		return ret;
767 
768 	/*
769 	 * Notice this is not strictly ordered right, the KSM is updated after
770 	 * the implicit_children is updated, so a parallel page fault could
771 	 * see a MR that is not yet visible in the KSM.  This is similar to a
772 	 * parallel page fault seeing a MR that is being concurrently removed
773 	 * from the KSM. Both of these improbable situations are resolved
774 	 * safely by resuming the HW and then taking another page fault. The
775 	 * next pagefault handler will see the new information.
776 	 */
777 	mutex_lock(&odp_imr->umem_mutex);
778 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
779 				 MLX5_IB_UPD_XLT_INDIRECT |
780 					 MLX5_IB_UPD_XLT_ATOMIC);
781 	mutex_unlock(&odp_imr->umem_mutex);
782 	if (err) {
783 		mlx5_ib_err(imr->dev, "Failed to update PAS\n");
784 		return err;
785 	}
786 	return ret;
787 }
788 
789 /*
790  * Returns:
791  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
792  *           not accessible, or the MR is no longer valid.
793  *  -EAGAIN/-ENOMEM: The operation should be retried
794  *
795  *  -EINVAL/others: General internal malfunction
796  *  >0: Number of pages mapped
797  */
798 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
799 			u32 *bytes_mapped, u32 flags)
800 {
801 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
802 
803 	if (unlikely(io_virt < mr->mmkey.iova))
804 		return -EFAULT;
805 
806 	if (!odp->is_implicit_odp) {
807 		u64 user_va;
808 
809 		if (check_add_overflow(io_virt - mr->mmkey.iova,
810 				       (u64)odp->umem.address, &user_va))
811 			return -EFAULT;
812 		if (unlikely(user_va >= ib_umem_end(odp) ||
813 			     ib_umem_end(odp) - user_va < bcnt))
814 			return -EFAULT;
815 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
816 					 flags);
817 	}
818 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
819 				     flags);
820 }
821 
822 struct pf_frame {
823 	struct pf_frame *next;
824 	u32 key;
825 	u64 io_virt;
826 	size_t bcnt;
827 	int depth;
828 };
829 
830 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
831 {
832 	if (!mmkey)
833 		return false;
834 	if (mmkey->type == MLX5_MKEY_MW)
835 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
836 	return mmkey->key == key;
837 }
838 
839 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
840 {
841 	struct mlx5_ib_mw *mw;
842 	struct mlx5_ib_devx_mr *devx_mr;
843 
844 	if (mmkey->type == MLX5_MKEY_MW) {
845 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
846 		return mw->ndescs;
847 	}
848 
849 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
850 			       mmkey);
851 	return devx_mr->ndescs;
852 }
853 
854 /*
855  * Handle a single data segment in a page-fault WQE or RDMA region.
856  *
857  * Returns number of OS pages retrieved on success. The caller may continue to
858  * the next data segment.
859  * Can return the following error codes:
860  * -EAGAIN to designate a temporary error. The caller will abort handling the
861  *  page fault and resolve it.
862  * -EFAULT when there's an error mapping the requested pages. The caller will
863  *  abort the page fault handling.
864  */
865 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
866 					 struct ib_pd *pd, u32 key,
867 					 u64 io_virt, size_t bcnt,
868 					 u32 *bytes_committed,
869 					 u32 *bytes_mapped)
870 {
871 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
872 	struct pf_frame *head = NULL, *frame;
873 	struct mlx5_core_mkey *mmkey;
874 	struct mlx5_ib_mr *mr;
875 	struct mlx5_klm *pklm;
876 	u32 *out = NULL;
877 	size_t offset;
878 	int ndescs;
879 
880 	srcu_key = srcu_read_lock(&dev->odp_srcu);
881 
882 	io_virt += *bytes_committed;
883 	bcnt -= *bytes_committed;
884 
885 next_mr:
886 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
887 	if (!mmkey) {
888 		mlx5_ib_dbg(
889 			dev,
890 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
891 			key);
892 		if (bytes_mapped)
893 			*bytes_mapped += bcnt;
894 		/*
895 		 * The user could specify a SGL with multiple lkeys and only
896 		 * some of them are ODP. Treat the non-ODP ones as fully
897 		 * faulted.
898 		 */
899 		ret = 0;
900 		goto srcu_unlock;
901 	}
902 	if (!mkey_is_eq(mmkey, key)) {
903 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
904 		ret = -EFAULT;
905 		goto srcu_unlock;
906 	}
907 
908 	switch (mmkey->type) {
909 	case MLX5_MKEY_MR:
910 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
911 
912 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
913 		if (ret < 0)
914 			goto srcu_unlock;
915 
916 		/*
917 		 * When prefetching a page, page fault is generated
918 		 * in order to bring the page to the main memory.
919 		 * In the current flow, page faults are being counted.
920 		 */
921 		mlx5_update_odp_stats(mr, faults, ret);
922 
923 		npages += ret;
924 		ret = 0;
925 		break;
926 
927 	case MLX5_MKEY_MW:
928 	case MLX5_MKEY_INDIRECT_DEVX:
929 		ndescs = get_indirect_num_descs(mmkey);
930 
931 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
932 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
933 			ret = -EFAULT;
934 			goto srcu_unlock;
935 		}
936 
937 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
938 			sizeof(*pklm) * (ndescs - 2);
939 
940 		if (outlen > cur_outlen) {
941 			kfree(out);
942 			out = kzalloc(outlen, GFP_KERNEL);
943 			if (!out) {
944 				ret = -ENOMEM;
945 				goto srcu_unlock;
946 			}
947 			cur_outlen = outlen;
948 		}
949 
950 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
951 						       bsf0_klm0_pas_mtt0_1);
952 
953 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
954 		if (ret)
955 			goto srcu_unlock;
956 
957 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
958 					      memory_key_mkey_entry.start_addr);
959 
960 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
961 			if (offset >= be32_to_cpu(pklm->bcount)) {
962 				offset -= be32_to_cpu(pklm->bcount);
963 				continue;
964 			}
965 
966 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
967 			if (!frame) {
968 				ret = -ENOMEM;
969 				goto srcu_unlock;
970 			}
971 
972 			frame->key = be32_to_cpu(pklm->key);
973 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
974 			frame->bcnt = min_t(size_t, bcnt,
975 					    be32_to_cpu(pklm->bcount) - offset);
976 			frame->depth = depth + 1;
977 			frame->next = head;
978 			head = frame;
979 
980 			bcnt -= frame->bcnt;
981 			offset = 0;
982 		}
983 		break;
984 
985 	default:
986 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
987 		ret = -EFAULT;
988 		goto srcu_unlock;
989 	}
990 
991 	if (head) {
992 		frame = head;
993 		head = frame->next;
994 
995 		key = frame->key;
996 		io_virt = frame->io_virt;
997 		bcnt = frame->bcnt;
998 		depth = frame->depth;
999 		kfree(frame);
1000 
1001 		goto next_mr;
1002 	}
1003 
1004 srcu_unlock:
1005 	while (head) {
1006 		frame = head;
1007 		head = frame->next;
1008 		kfree(frame);
1009 	}
1010 	kfree(out);
1011 
1012 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1013 	*bytes_committed = 0;
1014 	return ret ? ret : npages;
1015 }
1016 
1017 /**
1018  * Parse a series of data segments for page fault handling.
1019  *
1020  * @pfault contains page fault information.
1021  * @wqe points at the first data segment in the WQE.
1022  * @wqe_end points after the end of the WQE.
1023  * @bytes_mapped receives the number of bytes that the function was able to
1024  *               map. This allows the caller to decide intelligently whether
1025  *               enough memory was mapped to resolve the page fault
1026  *               successfully (e.g. enough for the next MTU, or the entire
1027  *               WQE).
1028  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1029  *                  the committed bytes).
1030  *
1031  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1032  * negative error code.
1033  */
1034 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1035 				   struct mlx5_pagefault *pfault,
1036 				   void *wqe,
1037 				   void *wqe_end, u32 *bytes_mapped,
1038 				   u32 *total_wqe_bytes, bool receive_queue)
1039 {
1040 	int ret = 0, npages = 0;
1041 	u64 io_virt;
1042 	u32 key;
1043 	u32 byte_count;
1044 	size_t bcnt;
1045 	int inline_segment;
1046 
1047 	if (bytes_mapped)
1048 		*bytes_mapped = 0;
1049 	if (total_wqe_bytes)
1050 		*total_wqe_bytes = 0;
1051 
1052 	while (wqe < wqe_end) {
1053 		struct mlx5_wqe_data_seg *dseg = wqe;
1054 
1055 		io_virt = be64_to_cpu(dseg->addr);
1056 		key = be32_to_cpu(dseg->lkey);
1057 		byte_count = be32_to_cpu(dseg->byte_count);
1058 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1059 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1060 
1061 		if (inline_segment) {
1062 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1063 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1064 				     16);
1065 		} else {
1066 			wqe += sizeof(*dseg);
1067 		}
1068 
1069 		/* receive WQE end of sg list. */
1070 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1071 		    io_virt == 0)
1072 			break;
1073 
1074 		if (!inline_segment && total_wqe_bytes) {
1075 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1076 					pfault->bytes_committed);
1077 		}
1078 
1079 		/* A zero length data segment designates a length of 2GB. */
1080 		if (bcnt == 0)
1081 			bcnt = 1U << 31;
1082 
1083 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1084 			pfault->bytes_committed -=
1085 				min_t(size_t, bcnt,
1086 				      pfault->bytes_committed);
1087 			continue;
1088 		}
1089 
1090 		ret = pagefault_single_data_segment(dev, NULL, key,
1091 						    io_virt, bcnt,
1092 						    &pfault->bytes_committed,
1093 						    bytes_mapped);
1094 		if (ret < 0)
1095 			break;
1096 		npages += ret;
1097 	}
1098 
1099 	return ret < 0 ? ret : npages;
1100 }
1101 
1102 /*
1103  * Parse initiator WQE. Advances the wqe pointer to point at the
1104  * scatter-gather list, and set wqe_end to the end of the WQE.
1105  */
1106 static int mlx5_ib_mr_initiator_pfault_handler(
1107 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1108 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1109 {
1110 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1111 	u16 wqe_index = pfault->wqe.wqe_index;
1112 	struct mlx5_base_av *av;
1113 	unsigned ds, opcode;
1114 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1115 
1116 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1117 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1118 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1119 			    ds, wqe_length);
1120 		return -EFAULT;
1121 	}
1122 
1123 	if (ds == 0) {
1124 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1125 			    wqe_index, qpn);
1126 		return -EFAULT;
1127 	}
1128 
1129 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1130 	*wqe += sizeof(*ctrl);
1131 
1132 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1133 		 MLX5_WQE_CTRL_OPCODE_MASK;
1134 
1135 	if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1136 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1137 
1138 	if (qp->ibqp.qp_type == IB_QPT_UD ||
1139 	    qp->qp_sub_type == MLX5_IB_QPT_DCI) {
1140 		av = *wqe;
1141 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1142 			*wqe += sizeof(struct mlx5_av);
1143 		else
1144 			*wqe += sizeof(struct mlx5_base_av);
1145 	}
1146 
1147 	switch (opcode) {
1148 	case MLX5_OPCODE_RDMA_WRITE:
1149 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1150 	case MLX5_OPCODE_RDMA_READ:
1151 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1152 		break;
1153 	case MLX5_OPCODE_ATOMIC_CS:
1154 	case MLX5_OPCODE_ATOMIC_FA:
1155 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1156 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1157 		break;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Parse responder WQE and set wqe_end to the end of the WQE.
1165  */
1166 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1167 						   struct mlx5_ib_srq *srq,
1168 						   void **wqe, void **wqe_end,
1169 						   int wqe_length)
1170 {
1171 	int wqe_size = 1 << srq->msrq.wqe_shift;
1172 
1173 	if (wqe_size > wqe_length) {
1174 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1175 		return -EFAULT;
1176 	}
1177 
1178 	*wqe_end = *wqe + wqe_size;
1179 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1180 
1181 	return 0;
1182 }
1183 
1184 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1185 						  struct mlx5_ib_qp *qp,
1186 						  void *wqe, void **wqe_end,
1187 						  int wqe_length)
1188 {
1189 	struct mlx5_ib_wq *wq = &qp->rq;
1190 	int wqe_size = 1 << wq->wqe_shift;
1191 
1192 	if (qp->wq_sig) {
1193 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1194 		return -EFAULT;
1195 	}
1196 
1197 	if (wqe_size > wqe_length) {
1198 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1199 		return -EFAULT;
1200 	}
1201 
1202 	*wqe_end = wqe + wqe_size;
1203 
1204 	return 0;
1205 }
1206 
1207 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1208 						       u32 wq_num, int pf_type)
1209 {
1210 	struct mlx5_core_rsc_common *common = NULL;
1211 	struct mlx5_core_srq *srq;
1212 
1213 	switch (pf_type) {
1214 	case MLX5_WQE_PF_TYPE_RMP:
1215 		srq = mlx5_cmd_get_srq(dev, wq_num);
1216 		if (srq)
1217 			common = &srq->common;
1218 		break;
1219 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1220 	case MLX5_WQE_PF_TYPE_RESP:
1221 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1222 		common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1223 		break;
1224 	default:
1225 		break;
1226 	}
1227 
1228 	return common;
1229 }
1230 
1231 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1232 {
1233 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1234 
1235 	return to_mibqp(mqp);
1236 }
1237 
1238 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1239 {
1240 	struct mlx5_core_srq *msrq =
1241 		container_of(res, struct mlx5_core_srq, common);
1242 
1243 	return to_mibsrq(msrq);
1244 }
1245 
1246 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1247 					  struct mlx5_pagefault *pfault)
1248 {
1249 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1250 	u16 wqe_index = pfault->wqe.wqe_index;
1251 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1252 	u32 bytes_mapped, total_wqe_bytes;
1253 	struct mlx5_core_rsc_common *res;
1254 	int resume_with_error = 1;
1255 	struct mlx5_ib_qp *qp;
1256 	size_t bytes_copied;
1257 	int ret = 0;
1258 
1259 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1260 	if (!res) {
1261 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1262 		return;
1263 	}
1264 
1265 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1266 	    res->res != MLX5_RES_XSRQ) {
1267 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1268 			    pfault->type);
1269 		goto resolve_page_fault;
1270 	}
1271 
1272 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1273 	if (!wqe_start) {
1274 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1275 		goto resolve_page_fault;
1276 	}
1277 
1278 	wqe = wqe_start;
1279 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1280 	if (qp && sq) {
1281 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1282 					  &bytes_copied);
1283 		if (ret)
1284 			goto read_user;
1285 		ret = mlx5_ib_mr_initiator_pfault_handler(
1286 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1287 	} else if (qp && !sq) {
1288 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1289 					  &bytes_copied);
1290 		if (ret)
1291 			goto read_user;
1292 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1293 			dev, qp, wqe, &wqe_end, bytes_copied);
1294 	} else if (!qp) {
1295 		struct mlx5_ib_srq *srq = res_to_srq(res);
1296 
1297 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1298 					   &bytes_copied);
1299 		if (ret)
1300 			goto read_user;
1301 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1302 			dev, srq, &wqe, &wqe_end, bytes_copied);
1303 	}
1304 
1305 	if (ret < 0 || wqe >= wqe_end)
1306 		goto resolve_page_fault;
1307 
1308 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1309 				      &total_wqe_bytes, !sq);
1310 	if (ret == -EAGAIN)
1311 		goto out;
1312 
1313 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1314 		goto resolve_page_fault;
1315 
1316 out:
1317 	ret = 0;
1318 	resume_with_error = 0;
1319 
1320 read_user:
1321 	if (ret)
1322 		mlx5_ib_err(
1323 			dev,
1324 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1325 			ret, wqe_index, pfault->token);
1326 
1327 resolve_page_fault:
1328 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1329 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1330 		    pfault->wqe.wq_num, resume_with_error,
1331 		    pfault->type);
1332 	mlx5_core_res_put(res);
1333 	free_page((unsigned long)wqe_start);
1334 }
1335 
1336 static int pages_in_range(u64 address, u32 length)
1337 {
1338 	return (ALIGN(address + length, PAGE_SIZE) -
1339 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1340 }
1341 
1342 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1343 					   struct mlx5_pagefault *pfault)
1344 {
1345 	u64 address;
1346 	u32 length;
1347 	u32 prefetch_len = pfault->bytes_committed;
1348 	int prefetch_activated = 0;
1349 	u32 rkey = pfault->rdma.r_key;
1350 	int ret;
1351 
1352 	/* The RDMA responder handler handles the page fault in two parts.
1353 	 * First it brings the necessary pages for the current packet
1354 	 * (and uses the pfault context), and then (after resuming the QP)
1355 	 * prefetches more pages. The second operation cannot use the pfault
1356 	 * context and therefore uses the dummy_pfault context allocated on
1357 	 * the stack */
1358 	pfault->rdma.rdma_va += pfault->bytes_committed;
1359 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1360 					 pfault->rdma.rdma_op_len);
1361 	pfault->bytes_committed = 0;
1362 
1363 	address = pfault->rdma.rdma_va;
1364 	length  = pfault->rdma.rdma_op_len;
1365 
1366 	/* For some operations, the hardware cannot tell the exact message
1367 	 * length, and in those cases it reports zero. Use prefetch
1368 	 * logic. */
1369 	if (length == 0) {
1370 		prefetch_activated = 1;
1371 		length = pfault->rdma.packet_size;
1372 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1373 	}
1374 
1375 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1376 					    &pfault->bytes_committed, NULL);
1377 	if (ret == -EAGAIN) {
1378 		/* We're racing with an invalidation, don't prefetch */
1379 		prefetch_activated = 0;
1380 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1381 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1382 		if (ret != -ENOENT)
1383 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1384 				    ret, pfault->token, pfault->type);
1385 		return;
1386 	}
1387 
1388 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1389 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1390 		    pfault->token, pfault->type,
1391 		    prefetch_activated);
1392 
1393 	/* At this point, there might be a new pagefault already arriving in
1394 	 * the eq, switch to the dummy pagefault for the rest of the
1395 	 * processing. We're still OK with the objects being alive as the
1396 	 * work-queue is being fenced. */
1397 
1398 	if (prefetch_activated) {
1399 		u32 bytes_committed = 0;
1400 
1401 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1402 						    prefetch_len,
1403 						    &bytes_committed, NULL);
1404 		if (ret < 0 && ret != -EAGAIN) {
1405 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1406 				    ret, pfault->token, address, prefetch_len);
1407 		}
1408 	}
1409 }
1410 
1411 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1412 {
1413 	u8 event_subtype = pfault->event_subtype;
1414 
1415 	switch (event_subtype) {
1416 	case MLX5_PFAULT_SUBTYPE_WQE:
1417 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1418 		break;
1419 	case MLX5_PFAULT_SUBTYPE_RDMA:
1420 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1421 		break;
1422 	default:
1423 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1424 			    event_subtype);
1425 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1426 	}
1427 }
1428 
1429 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1430 {
1431 	struct mlx5_pagefault *pfault = container_of(work,
1432 						     struct mlx5_pagefault,
1433 						     work);
1434 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1435 
1436 	mlx5_ib_pfault(eq->dev, pfault);
1437 	mempool_free(pfault, eq->pool);
1438 }
1439 
1440 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1441 {
1442 	struct mlx5_eqe_page_fault *pf_eqe;
1443 	struct mlx5_pagefault *pfault;
1444 	struct mlx5_eqe *eqe;
1445 	int cc = 0;
1446 
1447 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1448 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1449 		if (!pfault) {
1450 			schedule_work(&eq->work);
1451 			break;
1452 		}
1453 
1454 		pf_eqe = &eqe->data.page_fault;
1455 		pfault->event_subtype = eqe->sub_type;
1456 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1457 
1458 		mlx5_ib_dbg(eq->dev,
1459 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1460 			    eqe->sub_type, pfault->bytes_committed);
1461 
1462 		switch (eqe->sub_type) {
1463 		case MLX5_PFAULT_SUBTYPE_RDMA:
1464 			/* RDMA based event */
1465 			pfault->type =
1466 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1467 			pfault->token =
1468 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1469 				MLX5_24BIT_MASK;
1470 			pfault->rdma.r_key =
1471 				be32_to_cpu(pf_eqe->rdma.r_key);
1472 			pfault->rdma.packet_size =
1473 				be16_to_cpu(pf_eqe->rdma.packet_length);
1474 			pfault->rdma.rdma_op_len =
1475 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1476 			pfault->rdma.rdma_va =
1477 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1478 			mlx5_ib_dbg(eq->dev,
1479 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1480 				    pfault->type, pfault->token,
1481 				    pfault->rdma.r_key);
1482 			mlx5_ib_dbg(eq->dev,
1483 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1484 				    pfault->rdma.rdma_op_len,
1485 				    pfault->rdma.rdma_va);
1486 			break;
1487 
1488 		case MLX5_PFAULT_SUBTYPE_WQE:
1489 			/* WQE based event */
1490 			pfault->type =
1491 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1492 			pfault->token =
1493 				be32_to_cpu(pf_eqe->wqe.token);
1494 			pfault->wqe.wq_num =
1495 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1496 				MLX5_24BIT_MASK;
1497 			pfault->wqe.wqe_index =
1498 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1499 			pfault->wqe.packet_size =
1500 				be16_to_cpu(pf_eqe->wqe.packet_length);
1501 			mlx5_ib_dbg(eq->dev,
1502 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1503 				    pfault->type, pfault->token,
1504 				    pfault->wqe.wq_num,
1505 				    pfault->wqe.wqe_index);
1506 			break;
1507 
1508 		default:
1509 			mlx5_ib_warn(eq->dev,
1510 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1511 				     eqe->sub_type);
1512 			/* Unsupported page faults should still be
1513 			 * resolved by the page fault handler
1514 			 */
1515 		}
1516 
1517 		pfault->eq = eq;
1518 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1519 		queue_work(eq->wq, &pfault->work);
1520 
1521 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1522 	}
1523 
1524 	mlx5_eq_update_ci(eq->core, cc, 1);
1525 }
1526 
1527 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1528 			     void *data)
1529 {
1530 	struct mlx5_ib_pf_eq *eq =
1531 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1532 	unsigned long flags;
1533 
1534 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1535 		mlx5_ib_eq_pf_process(eq);
1536 		spin_unlock_irqrestore(&eq->lock, flags);
1537 	} else {
1538 		schedule_work(&eq->work);
1539 	}
1540 
1541 	return IRQ_HANDLED;
1542 }
1543 
1544 /* mempool_refill() was proposed but unfortunately wasn't accepted
1545  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1546  * Cheap workaround.
1547  */
1548 static void mempool_refill(mempool_t *pool)
1549 {
1550 	while (pool->curr_nr < pool->min_nr)
1551 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1552 }
1553 
1554 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1555 {
1556 	struct mlx5_ib_pf_eq *eq =
1557 		container_of(work, struct mlx5_ib_pf_eq, work);
1558 
1559 	mempool_refill(eq->pool);
1560 
1561 	spin_lock_irq(&eq->lock);
1562 	mlx5_ib_eq_pf_process(eq);
1563 	spin_unlock_irq(&eq->lock);
1564 }
1565 
1566 enum {
1567 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1568 	MLX5_IB_NUM_PF_DRAIN	= 64,
1569 };
1570 
1571 static int
1572 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1573 {
1574 	struct mlx5_eq_param param = {};
1575 	int err;
1576 
1577 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1578 	spin_lock_init(&eq->lock);
1579 	eq->dev = dev;
1580 
1581 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1582 					       sizeof(struct mlx5_pagefault));
1583 	if (!eq->pool)
1584 		return -ENOMEM;
1585 
1586 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1587 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1588 				 MLX5_NUM_CMD_EQE);
1589 	if (!eq->wq) {
1590 		err = -ENOMEM;
1591 		goto err_mempool;
1592 	}
1593 
1594 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1595 	param = (struct mlx5_eq_param) {
1596 		.irq_index = 0,
1597 		.nent = MLX5_IB_NUM_PF_EQE,
1598 	};
1599 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1600 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1601 	if (IS_ERR(eq->core)) {
1602 		err = PTR_ERR(eq->core);
1603 		goto err_wq;
1604 	}
1605 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1606 	if (err) {
1607 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1608 		goto err_eq;
1609 	}
1610 
1611 	return 0;
1612 err_eq:
1613 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1614 err_wq:
1615 	destroy_workqueue(eq->wq);
1616 err_mempool:
1617 	mempool_destroy(eq->pool);
1618 	return err;
1619 }
1620 
1621 static int
1622 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1623 {
1624 	int err;
1625 
1626 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1627 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1628 	cancel_work_sync(&eq->work);
1629 	destroy_workqueue(eq->wq);
1630 	mempool_destroy(eq->pool);
1631 
1632 	return err;
1633 }
1634 
1635 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1636 {
1637 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1638 		return;
1639 
1640 	switch (ent->order - 2) {
1641 	case MLX5_IMR_MTT_CACHE_ENTRY:
1642 		ent->page = PAGE_SHIFT;
1643 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1644 			   sizeof(struct mlx5_mtt) /
1645 			   MLX5_IB_UMR_OCTOWORD;
1646 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1647 		ent->limit = 0;
1648 		break;
1649 
1650 	case MLX5_IMR_KSM_CACHE_ENTRY:
1651 		ent->page = MLX5_KSM_PAGE_SHIFT;
1652 		ent->xlt = mlx5_imr_ksm_entries *
1653 			   sizeof(struct mlx5_klm) /
1654 			   MLX5_IB_UMR_OCTOWORD;
1655 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1656 		ent->limit = 0;
1657 		break;
1658 	}
1659 }
1660 
1661 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1662 	.advise_mr = mlx5_ib_advise_mr,
1663 };
1664 
1665 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1666 {
1667 	int ret = 0;
1668 
1669 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1670 		return ret;
1671 
1672 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1673 
1674 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1675 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1676 		if (ret) {
1677 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1678 			return ret;
1679 		}
1680 	}
1681 
1682 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1683 
1684 	return ret;
1685 }
1686 
1687 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1688 {
1689 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1690 		return;
1691 
1692 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1693 }
1694 
1695 int mlx5_ib_odp_init(void)
1696 {
1697 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1698 				       MLX5_IMR_MTT_BITS);
1699 
1700 	return 0;
1701 }
1702 
1703 struct prefetch_mr_work {
1704 	struct work_struct work;
1705 	u32 pf_flags;
1706 	u32 num_sge;
1707 	struct {
1708 		u64 io_virt;
1709 		struct mlx5_ib_mr *mr;
1710 		size_t length;
1711 	} frags[];
1712 };
1713 
1714 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1715 {
1716 	u32 i;
1717 
1718 	for (i = 0; i < work->num_sge; ++i)
1719 		if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1720 			wake_up(&work->frags[i].mr->q_deferred_work);
1721 	kvfree(work);
1722 }
1723 
1724 static struct mlx5_ib_mr *
1725 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1726 		    u32 lkey)
1727 {
1728 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1729 	struct mlx5_core_mkey *mmkey;
1730 	struct ib_umem_odp *odp;
1731 	struct mlx5_ib_mr *mr;
1732 
1733 	lockdep_assert_held(&dev->odp_srcu);
1734 
1735 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1736 	if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1737 		return NULL;
1738 
1739 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1740 
1741 	if (mr->ibmr.pd != pd)
1742 		return NULL;
1743 
1744 	odp = to_ib_umem_odp(mr->umem);
1745 
1746 	/* prefetch with write-access must be supported by the MR */
1747 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1748 	    !odp->umem.writable)
1749 		return NULL;
1750 
1751 	return mr;
1752 }
1753 
1754 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1755 {
1756 	struct prefetch_mr_work *work =
1757 		container_of(w, struct prefetch_mr_work, work);
1758 	u32 bytes_mapped = 0;
1759 	u32 i;
1760 
1761 	for (i = 0; i < work->num_sge; ++i)
1762 		pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1763 			     work->frags[i].length, &bytes_mapped,
1764 			     work->pf_flags);
1765 
1766 	destroy_prefetch_work(work);
1767 }
1768 
1769 static bool init_prefetch_work(struct ib_pd *pd,
1770 			       enum ib_uverbs_advise_mr_advice advice,
1771 			       u32 pf_flags, struct prefetch_mr_work *work,
1772 			       struct ib_sge *sg_list, u32 num_sge)
1773 {
1774 	u32 i;
1775 
1776 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1777 	work->pf_flags = pf_flags;
1778 
1779 	for (i = 0; i < num_sge; ++i) {
1780 		work->frags[i].io_virt = sg_list[i].addr;
1781 		work->frags[i].length = sg_list[i].length;
1782 		work->frags[i].mr =
1783 			get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1784 		if (!work->frags[i].mr) {
1785 			work->num_sge = i - 1;
1786 			if (i)
1787 				destroy_prefetch_work(work);
1788 			return false;
1789 		}
1790 
1791 		/* Keep the MR pointer will valid outside the SRCU */
1792 		atomic_inc(&work->frags[i].mr->num_deferred_work);
1793 	}
1794 	work->num_sge = num_sge;
1795 	return true;
1796 }
1797 
1798 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1799 				    enum ib_uverbs_advise_mr_advice advice,
1800 				    u32 pf_flags, struct ib_sge *sg_list,
1801 				    u32 num_sge)
1802 {
1803 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1804 	u32 bytes_mapped = 0;
1805 	int srcu_key;
1806 	int ret = 0;
1807 	u32 i;
1808 
1809 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1810 	for (i = 0; i < num_sge; ++i) {
1811 		struct mlx5_ib_mr *mr;
1812 
1813 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1814 		if (!mr) {
1815 			ret = -ENOENT;
1816 			goto out;
1817 		}
1818 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1819 				   &bytes_mapped, pf_flags);
1820 		if (ret < 0)
1821 			goto out;
1822 	}
1823 	ret = 0;
1824 
1825 out:
1826 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1827 	return ret;
1828 }
1829 
1830 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1831 			       enum ib_uverbs_advise_mr_advice advice,
1832 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1833 {
1834 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1835 	u32 pf_flags = 0;
1836 	struct prefetch_mr_work *work;
1837 	int srcu_key;
1838 
1839 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1840 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1841 
1842 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1843 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1844 						num_sge);
1845 
1846 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1847 	if (!work)
1848 		return -ENOMEM;
1849 
1850 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1851 	if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1852 		srcu_read_unlock(&dev->odp_srcu, srcu_key);
1853 		return -EINVAL;
1854 	}
1855 	queue_work(system_unbound_wq, &work->work);
1856 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1857 	return 0;
1858 }
1859