xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 
37 #include "mlx5_ib.h"
38 #include "cmd.h"
39 #include "qp.h"
40 
41 #include <linux/mlx5/eq.h>
42 
43 /* Contains the details of a pagefault. */
44 struct mlx5_pagefault {
45 	u32			bytes_committed;
46 	u32			token;
47 	u8			event_subtype;
48 	u8			type;
49 	union {
50 		/* Initiator or send message responder pagefault details. */
51 		struct {
52 			/* Received packet size, only valid for responders. */
53 			u32	packet_size;
54 			/*
55 			 * Number of resource holding WQE, depends on type.
56 			 */
57 			u32	wq_num;
58 			/*
59 			 * WQE index. Refers to either the send queue or
60 			 * receive queue, according to event_subtype.
61 			 */
62 			u16	wqe_index;
63 		} wqe;
64 		/* RDMA responder pagefault details */
65 		struct {
66 			u32	r_key;
67 			/*
68 			 * Received packet size, minimal size page fault
69 			 * resolution required for forward progress.
70 			 */
71 			u32	packet_size;
72 			u32	rdma_op_len;
73 			u64	rdma_va;
74 		} rdma;
75 	};
76 
77 	struct mlx5_ib_pf_eq	*eq;
78 	struct work_struct	work;
79 };
80 
81 #define MAX_PREFETCH_LEN (4*1024*1024U)
82 
83 /* Timeout in ms to wait for an active mmu notifier to complete when handling
84  * a pagefault. */
85 #define MMU_NOTIFIER_TIMEOUT 1000
86 
87 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
88 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
89 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
90 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
91 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92 
93 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94 
95 static u64 mlx5_imr_ksm_entries;
96 
97 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
98 			struct mlx5_ib_mr *imr, int flags)
99 {
100 	struct mlx5_klm *end = pklm + nentries;
101 
102 	if (flags & MLX5_IB_UPD_XLT_ZAP) {
103 		for (; pklm != end; pklm++, idx++) {
104 			pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
105 			pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
106 			pklm->va = 0;
107 		}
108 		return;
109 	}
110 
111 	/*
112 	 * The locking here is pretty subtle. Ideally the implicit_children
113 	 * xarray would be protected by the umem_mutex, however that is not
114 	 * possible. Instead this uses a weaker update-then-lock pattern:
115 	 *
116 	 *  srcu_read_lock()
117 	 *    xa_store()
118 	 *    mutex_lock(umem_mutex)
119 	 *     mlx5_ib_update_xlt()
120 	 *    mutex_unlock(umem_mutex)
121 	 *    destroy lkey
122 	 *
123 	 * ie any change the xarray must be followed by the locked update_xlt
124 	 * before destroying.
125 	 *
126 	 * The umem_mutex provides the acquire/release semantic needed to make
127 	 * the xa_store() visible to a racing thread. While SRCU is not
128 	 * technically required, using it gives consistent use of the SRCU
129 	 * locking around the xarray.
130 	 */
131 	lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
132 	lockdep_assert_held(&mr_to_mdev(imr)->odp_srcu);
133 
134 	for (; pklm != end; pklm++, idx++) {
135 		struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136 
137 		pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
138 		if (mtt) {
139 			pklm->key = cpu_to_be32(mtt->ibmr.lkey);
140 			pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
141 		} else {
142 			pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
143 			pklm->va = 0;
144 		}
145 	}
146 }
147 
148 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 {
150 	u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151 
152 	if (umem_dma & ODP_READ_ALLOWED_BIT)
153 		mtt_entry |= MLX5_IB_MTT_READ;
154 	if (umem_dma & ODP_WRITE_ALLOWED_BIT)
155 		mtt_entry |= MLX5_IB_MTT_WRITE;
156 
157 	return mtt_entry;
158 }
159 
160 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
161 			 struct mlx5_ib_mr *mr, int flags)
162 {
163 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
164 	dma_addr_t pa;
165 	size_t i;
166 
167 	if (flags & MLX5_IB_UPD_XLT_ZAP)
168 		return;
169 
170 	for (i = 0; i < nentries; i++) {
171 		pa = odp->dma_list[idx + i];
172 		pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
173 	}
174 }
175 
176 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
177 			   struct mlx5_ib_mr *mr, int flags)
178 {
179 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
180 		populate_klm(xlt, idx, nentries, mr, flags);
181 	} else {
182 		populate_mtt(xlt, idx, nentries, mr, flags);
183 	}
184 }
185 
186 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 {
188 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189 
190 	/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
191 	mutex_lock(&odp->umem_mutex);
192 	if (odp->npages) {
193 		mlx5_mr_cache_invalidate(mr);
194 		ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
195 					    ib_umem_end(odp));
196 		WARN_ON(odp->npages);
197 	}
198 	odp->private = NULL;
199 	mutex_unlock(&odp->umem_mutex);
200 
201 	if (!mr->cache_ent) {
202 		mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey);
203 		WARN_ON(mr->descs);
204 	}
205 }
206 
207 /*
208  * This must be called after the mr has been removed from implicit_children
209  * and the SRCU synchronized.  NOTE: The MR does not necessarily have to be
210  * empty here, parallel page faults could have raced with the free process and
211  * added pages to it.
212  */
213 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 {
215 	struct mlx5_ib_mr *imr = mr->parent;
216 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
217 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
218 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
219 	int srcu_key;
220 
221 	/* implicit_child_mr's are not allowed to have deferred work */
222 	WARN_ON(atomic_read(&mr->num_deferred_work));
223 
224 	if (need_imr_xlt) {
225 		srcu_key = srcu_read_lock(&mr_to_mdev(mr)->odp_srcu);
226 		mutex_lock(&odp_imr->umem_mutex);
227 		mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
228 				   MLX5_IB_UPD_XLT_INDIRECT |
229 				   MLX5_IB_UPD_XLT_ATOMIC);
230 		mutex_unlock(&odp_imr->umem_mutex);
231 		srcu_read_unlock(&mr_to_mdev(mr)->odp_srcu, srcu_key);
232 	}
233 
234 	dma_fence_odp_mr(mr);
235 
236 	mr->parent = NULL;
237 	mlx5_mr_cache_free(mr_to_mdev(mr), mr);
238 	ib_umem_odp_release(odp);
239 	if (atomic_dec_and_test(&imr->num_deferred_work))
240 		wake_up(&imr->q_deferred_work);
241 }
242 
243 static void free_implicit_child_mr_work(struct work_struct *work)
244 {
245 	struct mlx5_ib_mr *mr =
246 		container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247 
248 	free_implicit_child_mr(mr, true);
249 }
250 
251 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 {
253 	struct mlx5_ib_mr *mr =
254 		container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255 
256 	/* Freeing a MR is a sleeping operation, so bounce to a work queue */
257 	INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
258 	queue_work(system_unbound_wq, &mr->odp_destroy.work);
259 }
260 
261 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 {
263 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
264 	unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
265 	struct mlx5_ib_mr *imr = mr->parent;
266 
267 	xa_lock(&imr->implicit_children);
268 	/*
269 	 * This can race with mlx5_ib_free_implicit_mr(), the first one to
270 	 * reach the xa lock wins the race and destroys the MR.
271 	 */
272 	if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273 	    mr)
274 		goto out_unlock;
275 
276 	atomic_inc(&imr->num_deferred_work);
277 	call_srcu(&mr_to_mdev(mr)->odp_srcu, &mr->odp_destroy.rcu,
278 		  free_implicit_child_mr_rcu);
279 
280 out_unlock:
281 	xa_unlock(&imr->implicit_children);
282 }
283 
284 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
285 				     const struct mmu_notifier_range *range,
286 				     unsigned long cur_seq)
287 {
288 	struct ib_umem_odp *umem_odp =
289 		container_of(mni, struct ib_umem_odp, notifier);
290 	struct mlx5_ib_mr *mr;
291 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
292 				    sizeof(struct mlx5_mtt)) - 1;
293 	u64 idx = 0, blk_start_idx = 0;
294 	u64 invalidations = 0;
295 	unsigned long start;
296 	unsigned long end;
297 	int in_block = 0;
298 	u64 addr;
299 
300 	if (!mmu_notifier_range_blockable(range))
301 		return false;
302 
303 	mutex_lock(&umem_odp->umem_mutex);
304 	mmu_interval_set_seq(mni, cur_seq);
305 	/*
306 	 * If npages is zero then umem_odp->private may not be setup yet. This
307 	 * does not complete until after the first page is mapped for DMA.
308 	 */
309 	if (!umem_odp->npages)
310 		goto out;
311 	mr = umem_odp->private;
312 
313 	start = max_t(u64, ib_umem_start(umem_odp), range->start);
314 	end = min_t(u64, ib_umem_end(umem_odp), range->end);
315 
316 	/*
317 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
318 	 * while we are doing the invalidation, no page fault will attempt to
319 	 * overwrite the same MTTs.  Concurent invalidations might race us,
320 	 * but they will write 0s as well, so no difference in the end result.
321 	 */
322 	for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
323 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324 		/*
325 		 * Strive to write the MTTs in chunks, but avoid overwriting
326 		 * non-existing MTTs. The huristic here can be improved to
327 		 * estimate the cost of another UMR vs. the cost of bigger
328 		 * UMR.
329 		 */
330 		if (umem_odp->dma_list[idx] &
331 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
332 			if (!in_block) {
333 				blk_start_idx = idx;
334 				in_block = 1;
335 			}
336 
337 			/* Count page invalidations */
338 			invalidations += idx - blk_start_idx + 1;
339 		} else {
340 			u64 umr_offset = idx & umr_block_mask;
341 
342 			if (in_block && umr_offset == 0) {
343 				mlx5_ib_update_xlt(mr, blk_start_idx,
344 						   idx - blk_start_idx, 0,
345 						   MLX5_IB_UPD_XLT_ZAP |
346 						   MLX5_IB_UPD_XLT_ATOMIC);
347 				in_block = 0;
348 			}
349 		}
350 	}
351 	if (in_block)
352 		mlx5_ib_update_xlt(mr, blk_start_idx,
353 				   idx - blk_start_idx + 1, 0,
354 				   MLX5_IB_UPD_XLT_ZAP |
355 				   MLX5_IB_UPD_XLT_ATOMIC);
356 
357 	mlx5_update_odp_stats(mr, invalidations, invalidations);
358 
359 	/*
360 	 * We are now sure that the device will not access the
361 	 * memory. We can safely unmap it, and mark it as dirty if
362 	 * needed.
363 	 */
364 
365 	ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366 
367 	if (unlikely(!umem_odp->npages && mr->parent))
368 		destroy_unused_implicit_child_mr(mr);
369 out:
370 	mutex_unlock(&umem_odp->umem_mutex);
371 	return true;
372 }
373 
374 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
375 	.invalidate = mlx5_ib_invalidate_range,
376 };
377 
378 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 {
380 	struct ib_odp_caps *caps = &dev->odp_caps;
381 
382 	memset(caps, 0, sizeof(*caps));
383 
384 	if (!MLX5_CAP_GEN(dev->mdev, pg) ||
385 	    !mlx5_ib_can_load_pas_with_umr(dev, 0))
386 		return;
387 
388 	caps->general_caps = IB_ODP_SUPPORT;
389 
390 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
391 		dev->odp_max_size = U64_MAX;
392 	else
393 		dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394 
395 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
396 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397 
398 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
399 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400 
401 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
402 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403 
404 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
405 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406 
407 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
408 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409 
410 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
411 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412 
413 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
414 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415 
416 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
417 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418 
419 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
420 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421 
422 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
423 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424 
425 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
426 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427 
428 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
429 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430 
431 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
432 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433 
434 	if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
435 		caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436 
437 	if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
438 	    MLX5_CAP_GEN(dev->mdev, null_mkey) &&
439 	    MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
440 	    !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
441 		caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
442 }
443 
444 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
445 				      struct mlx5_pagefault *pfault,
446 				      int error)
447 {
448 	int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
449 		     pfault->wqe.wq_num : pfault->token;
450 	u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
451 	int err;
452 
453 	MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454 	MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455 	MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456 	MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457 	MLX5_SET(page_fault_resume_in, in, error, !!error);
458 
459 	err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
460 	if (err)
461 		mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462 			    wq_num, err);
463 }
464 
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466 						unsigned long idx)
467 {
468 	struct ib_umem_odp *odp;
469 	struct mlx5_ib_mr *mr;
470 	struct mlx5_ib_mr *ret;
471 	int err;
472 
473 	odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474 				      idx * MLX5_IMR_MTT_SIZE,
475 				      MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476 	if (IS_ERR(odp))
477 		return ERR_CAST(odp);
478 
479 	ret = mr = mlx5_mr_cache_alloc(
480 		mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags);
481 	if (IS_ERR(mr))
482 		goto out_umem;
483 
484 	mr->ibmr.pd = imr->ibmr.pd;
485 	mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
486 	mr->umem = &odp->umem;
487 	mr->ibmr.lkey = mr->mmkey.key;
488 	mr->ibmr.rkey = mr->mmkey.key;
489 	mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
490 	mr->parent = imr;
491 	odp->private = mr;
492 
493 	err = mlx5_ib_update_xlt(mr, 0,
494 				 MLX5_IMR_MTT_ENTRIES,
495 				 PAGE_SHIFT,
496 				 MLX5_IB_UPD_XLT_ZAP |
497 				 MLX5_IB_UPD_XLT_ENABLE);
498 	if (err) {
499 		ret = ERR_PTR(err);
500 		goto out_mr;
501 	}
502 
503 	/*
504 	 * Once the store to either xarray completes any error unwind has to
505 	 * use synchronize_srcu(). Avoid this with xa_reserve()
506 	 */
507 	ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
508 			 GFP_KERNEL);
509 	if (unlikely(ret)) {
510 		if (xa_is_err(ret)) {
511 			ret = ERR_PTR(xa_err(ret));
512 			goto out_mr;
513 		}
514 		/*
515 		 * Another thread beat us to creating the child mr, use
516 		 * theirs.
517 		 */
518 		goto out_mr;
519 	}
520 
521 	mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
522 	return mr;
523 
524 out_mr:
525 	mlx5_mr_cache_free(mr_to_mdev(imr), mr);
526 out_umem:
527 	ib_umem_odp_release(odp);
528 	return ret;
529 }
530 
531 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
532 					     struct ib_udata *udata,
533 					     int access_flags)
534 {
535 	struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
536 	struct ib_umem_odp *umem_odp;
537 	struct mlx5_ib_mr *imr;
538 	int err;
539 
540 	if (!mlx5_ib_can_load_pas_with_umr(dev,
541 					   MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
542 		return ERR_PTR(-EOPNOTSUPP);
543 
544 	umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
545 	if (IS_ERR(umem_odp))
546 		return ERR_CAST(umem_odp);
547 
548 	imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
549 	if (IS_ERR(imr)) {
550 		err = PTR_ERR(imr);
551 		goto out_umem;
552 	}
553 
554 	imr->ibmr.pd = &pd->ibpd;
555 	imr->mmkey.iova = 0;
556 	imr->umem = &umem_odp->umem;
557 	imr->ibmr.lkey = imr->mmkey.key;
558 	imr->ibmr.rkey = imr->mmkey.key;
559 	imr->ibmr.device = &dev->ib_dev;
560 	imr->umem = &umem_odp->umem;
561 	imr->is_odp_implicit = true;
562 	atomic_set(&imr->num_deferred_work, 0);
563 	init_waitqueue_head(&imr->q_deferred_work);
564 	xa_init(&imr->implicit_children);
565 
566 	err = mlx5_ib_update_xlt(imr, 0,
567 				 mlx5_imr_ksm_entries,
568 				 MLX5_KSM_PAGE_SHIFT,
569 				 MLX5_IB_UPD_XLT_INDIRECT |
570 				 MLX5_IB_UPD_XLT_ZAP |
571 				 MLX5_IB_UPD_XLT_ENABLE);
572 	if (err)
573 		goto out_mr;
574 
575 	err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
576 			      &imr->mmkey, GFP_KERNEL));
577 	if (err)
578 		goto out_mr;
579 
580 	mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
581 	return imr;
582 out_mr:
583 	mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
584 	mlx5_mr_cache_free(dev, imr);
585 out_umem:
586 	ib_umem_odp_release(umem_odp);
587 	return ERR_PTR(err);
588 }
589 
590 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
591 {
592 	struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
593 	struct mlx5_ib_dev *dev = mr_to_mdev(imr);
594 	struct list_head destroy_list;
595 	struct mlx5_ib_mr *mtt;
596 	struct mlx5_ib_mr *tmp;
597 	unsigned long idx;
598 
599 	INIT_LIST_HEAD(&destroy_list);
600 
601 	xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
602 	/*
603 	 * This stops the SRCU protected page fault path from touching either
604 	 * the imr or any children. The page fault path can only reach the
605 	 * children xarray via the imr.
606 	 */
607 	synchronize_srcu(&dev->odp_srcu);
608 
609 	/*
610 	 * All work on the prefetch list must be completed, xa_erase() prevented
611 	 * new work from being created.
612 	 */
613 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
614 
615 	/*
616 	 * At this point it is forbidden for any other thread to enter
617 	 * pagefault_mr() on this imr. It is already forbidden to call
618 	 * pagefault_mr() on an implicit child. Due to this additions to
619 	 * implicit_children are prevented.
620 	 */
621 
622 	/*
623 	 * Block destroy_unused_implicit_child_mr() from incrementing
624 	 * num_deferred_work.
625 	 */
626 	xa_lock(&imr->implicit_children);
627 	xa_for_each (&imr->implicit_children, idx, mtt) {
628 		__xa_erase(&imr->implicit_children, idx);
629 		list_add(&mtt->odp_destroy.elm, &destroy_list);
630 	}
631 	xa_unlock(&imr->implicit_children);
632 
633 	/*
634 	 * Wait for any concurrent destroy_unused_implicit_child_mr() to
635 	 * complete.
636 	 */
637 	wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
638 
639 	/*
640 	 * Fence the imr before we destroy the children. This allows us to
641 	 * skip updating the XLT of the imr during destroy of the child mkey
642 	 * the imr points to.
643 	 */
644 	mlx5_mr_cache_invalidate(imr);
645 
646 	list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
647 		free_implicit_child_mr(mtt, false);
648 
649 	mlx5_mr_cache_free(dev, imr);
650 	ib_umem_odp_release(odp_imr);
651 }
652 
653 /**
654  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
655  * @mr: to fence
656  *
657  * On return no parallel threads will be touching this MR and no DMA will be
658  * active.
659  */
660 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
661 {
662 	/* Prevent new page faults and prefetch requests from succeeding */
663 	xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
664 
665 	/* Wait for all running page-fault handlers to finish. */
666 	synchronize_srcu(&mr_to_mdev(mr)->odp_srcu);
667 
668 	wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
669 
670 	dma_fence_odp_mr(mr);
671 }
672 
673 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
674 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
675 #define MLX5_PF_FLAGS_ENABLE BIT(3)
676 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
677 			     u64 user_va, size_t bcnt, u32 *bytes_mapped,
678 			     u32 flags)
679 {
680 	int page_shift, ret, np;
681 	bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
682 	u64 access_mask;
683 	u64 start_idx;
684 	bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
685 	u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
686 
687 	if (flags & MLX5_PF_FLAGS_ENABLE)
688 		xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
689 
690 	page_shift = odp->page_shift;
691 	start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
692 	access_mask = ODP_READ_ALLOWED_BIT;
693 
694 	if (odp->umem.writable && !downgrade)
695 		access_mask |= ODP_WRITE_ALLOWED_BIT;
696 
697 	np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
698 	if (np < 0)
699 		return np;
700 
701 	/*
702 	 * No need to check whether the MTTs really belong to this MR, since
703 	 * ib_umem_odp_map_dma_and_lock already checks this.
704 	 */
705 	ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
706 	mutex_unlock(&odp->umem_mutex);
707 
708 	if (ret < 0) {
709 		if (ret != -EAGAIN)
710 			mlx5_ib_err(mr_to_mdev(mr),
711 				    "Failed to update mkey page tables\n");
712 		goto out;
713 	}
714 
715 	if (bytes_mapped) {
716 		u32 new_mappings = (np << page_shift) -
717 			(user_va - round_down(user_va, 1 << page_shift));
718 
719 		*bytes_mapped += min_t(u32, new_mappings, bcnt);
720 	}
721 
722 	return np << (page_shift - PAGE_SHIFT);
723 
724 out:
725 	return ret;
726 }
727 
728 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
729 				 struct ib_umem_odp *odp_imr, u64 user_va,
730 				 size_t bcnt, u32 *bytes_mapped, u32 flags)
731 {
732 	unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
733 	unsigned long upd_start_idx = end_idx + 1;
734 	unsigned long upd_len = 0;
735 	unsigned long npages = 0;
736 	int err;
737 	int ret;
738 
739 	if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
740 		     mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
741 		return -EFAULT;
742 
743 	/* Fault each child mr that intersects with our interval. */
744 	while (bcnt) {
745 		unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
746 		struct ib_umem_odp *umem_odp;
747 		struct mlx5_ib_mr *mtt;
748 		u64 len;
749 
750 		mtt = xa_load(&imr->implicit_children, idx);
751 		if (unlikely(!mtt)) {
752 			mtt = implicit_get_child_mr(imr, idx);
753 			if (IS_ERR(mtt)) {
754 				ret = PTR_ERR(mtt);
755 				goto out;
756 			}
757 			upd_start_idx = min(upd_start_idx, idx);
758 			upd_len = idx - upd_start_idx + 1;
759 		}
760 
761 		umem_odp = to_ib_umem_odp(mtt->umem);
762 		len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
763 		      user_va;
764 
765 		ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
766 					bytes_mapped, flags);
767 		if (ret < 0)
768 			goto out;
769 		user_va += len;
770 		bcnt -= len;
771 		npages += ret;
772 	}
773 
774 	ret = npages;
775 
776 	/*
777 	 * Any time the implicit_children are changed we must perform an
778 	 * update of the xlt before exiting to ensure the HW and the
779 	 * implicit_children remains synchronized.
780 	 */
781 out:
782 	if (likely(!upd_len))
783 		return ret;
784 
785 	/*
786 	 * Notice this is not strictly ordered right, the KSM is updated after
787 	 * the implicit_children is updated, so a parallel page fault could
788 	 * see a MR that is not yet visible in the KSM.  This is similar to a
789 	 * parallel page fault seeing a MR that is being concurrently removed
790 	 * from the KSM. Both of these improbable situations are resolved
791 	 * safely by resuming the HW and then taking another page fault. The
792 	 * next pagefault handler will see the new information.
793 	 */
794 	mutex_lock(&odp_imr->umem_mutex);
795 	err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
796 				 MLX5_IB_UPD_XLT_INDIRECT |
797 					 MLX5_IB_UPD_XLT_ATOMIC);
798 	mutex_unlock(&odp_imr->umem_mutex);
799 	if (err) {
800 		mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
801 		return err;
802 	}
803 	return ret;
804 }
805 
806 /*
807  * Returns:
808  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
809  *           not accessible, or the MR is no longer valid.
810  *  -EAGAIN/-ENOMEM: The operation should be retried
811  *
812  *  -EINVAL/others: General internal malfunction
813  *  >0: Number of pages mapped
814  */
815 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
816 			u32 *bytes_mapped, u32 flags)
817 {
818 	struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
819 
820 	lockdep_assert_held(&mr_to_mdev(mr)->odp_srcu);
821 	if (unlikely(io_virt < mr->mmkey.iova))
822 		return -EFAULT;
823 
824 	if (!odp->is_implicit_odp) {
825 		u64 user_va;
826 
827 		if (check_add_overflow(io_virt - mr->mmkey.iova,
828 				       (u64)odp->umem.address, &user_va))
829 			return -EFAULT;
830 		if (unlikely(user_va >= ib_umem_end(odp) ||
831 			     ib_umem_end(odp) - user_va < bcnt))
832 			return -EFAULT;
833 		return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
834 					 flags);
835 	}
836 	return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
837 				     flags);
838 }
839 
840 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
841 {
842 	int ret;
843 
844 	ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
845 				mr->umem->length, NULL,
846 				MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
847 	return ret >= 0 ? 0 : ret;
848 }
849 
850 struct pf_frame {
851 	struct pf_frame *next;
852 	u32 key;
853 	u64 io_virt;
854 	size_t bcnt;
855 	int depth;
856 };
857 
858 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
859 {
860 	if (!mmkey)
861 		return false;
862 	if (mmkey->type == MLX5_MKEY_MW)
863 		return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
864 	return mmkey->key == key;
865 }
866 
867 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
868 {
869 	struct mlx5_ib_mw *mw;
870 	struct mlx5_ib_devx_mr *devx_mr;
871 
872 	if (mmkey->type == MLX5_MKEY_MW) {
873 		mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
874 		return mw->ndescs;
875 	}
876 
877 	devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
878 			       mmkey);
879 	return devx_mr->ndescs;
880 }
881 
882 /*
883  * Handle a single data segment in a page-fault WQE or RDMA region.
884  *
885  * Returns number of OS pages retrieved on success. The caller may continue to
886  * the next data segment.
887  * Can return the following error codes:
888  * -EAGAIN to designate a temporary error. The caller will abort handling the
889  *  page fault and resolve it.
890  * -EFAULT when there's an error mapping the requested pages. The caller will
891  *  abort the page fault handling.
892  */
893 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
894 					 struct ib_pd *pd, u32 key,
895 					 u64 io_virt, size_t bcnt,
896 					 u32 *bytes_committed,
897 					 u32 *bytes_mapped)
898 {
899 	int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
900 	struct pf_frame *head = NULL, *frame;
901 	struct mlx5_core_mkey *mmkey;
902 	struct mlx5_ib_mr *mr;
903 	struct mlx5_klm *pklm;
904 	u32 *out = NULL;
905 	size_t offset;
906 	int ndescs;
907 
908 	srcu_key = srcu_read_lock(&dev->odp_srcu);
909 
910 	io_virt += *bytes_committed;
911 	bcnt -= *bytes_committed;
912 
913 next_mr:
914 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
915 	if (!mmkey) {
916 		mlx5_ib_dbg(
917 			dev,
918 			"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
919 			key);
920 		if (bytes_mapped)
921 			*bytes_mapped += bcnt;
922 		/*
923 		 * The user could specify a SGL with multiple lkeys and only
924 		 * some of them are ODP. Treat the non-ODP ones as fully
925 		 * faulted.
926 		 */
927 		ret = 0;
928 		goto srcu_unlock;
929 	}
930 	if (!mkey_is_eq(mmkey, key)) {
931 		mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
932 		ret = -EFAULT;
933 		goto srcu_unlock;
934 	}
935 
936 	switch (mmkey->type) {
937 	case MLX5_MKEY_MR:
938 		mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
939 
940 		ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
941 		if (ret < 0)
942 			goto srcu_unlock;
943 
944 		mlx5_update_odp_stats(mr, faults, ret);
945 
946 		npages += ret;
947 		ret = 0;
948 		break;
949 
950 	case MLX5_MKEY_MW:
951 	case MLX5_MKEY_INDIRECT_DEVX:
952 		ndescs = get_indirect_num_descs(mmkey);
953 
954 		if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
955 			mlx5_ib_dbg(dev, "indirection level exceeded\n");
956 			ret = -EFAULT;
957 			goto srcu_unlock;
958 		}
959 
960 		outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
961 			sizeof(*pklm) * (ndescs - 2);
962 
963 		if (outlen > cur_outlen) {
964 			kfree(out);
965 			out = kzalloc(outlen, GFP_KERNEL);
966 			if (!out) {
967 				ret = -ENOMEM;
968 				goto srcu_unlock;
969 			}
970 			cur_outlen = outlen;
971 		}
972 
973 		pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
974 						       bsf0_klm0_pas_mtt0_1);
975 
976 		ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
977 		if (ret)
978 			goto srcu_unlock;
979 
980 		offset = io_virt - MLX5_GET64(query_mkey_out, out,
981 					      memory_key_mkey_entry.start_addr);
982 
983 		for (i = 0; bcnt && i < ndescs; i++, pklm++) {
984 			if (offset >= be32_to_cpu(pklm->bcount)) {
985 				offset -= be32_to_cpu(pklm->bcount);
986 				continue;
987 			}
988 
989 			frame = kzalloc(sizeof(*frame), GFP_KERNEL);
990 			if (!frame) {
991 				ret = -ENOMEM;
992 				goto srcu_unlock;
993 			}
994 
995 			frame->key = be32_to_cpu(pklm->key);
996 			frame->io_virt = be64_to_cpu(pklm->va) + offset;
997 			frame->bcnt = min_t(size_t, bcnt,
998 					    be32_to_cpu(pklm->bcount) - offset);
999 			frame->depth = depth + 1;
1000 			frame->next = head;
1001 			head = frame;
1002 
1003 			bcnt -= frame->bcnt;
1004 			offset = 0;
1005 		}
1006 		break;
1007 
1008 	default:
1009 		mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1010 		ret = -EFAULT;
1011 		goto srcu_unlock;
1012 	}
1013 
1014 	if (head) {
1015 		frame = head;
1016 		head = frame->next;
1017 
1018 		key = frame->key;
1019 		io_virt = frame->io_virt;
1020 		bcnt = frame->bcnt;
1021 		depth = frame->depth;
1022 		kfree(frame);
1023 
1024 		goto next_mr;
1025 	}
1026 
1027 srcu_unlock:
1028 	while (head) {
1029 		frame = head;
1030 		head = frame->next;
1031 		kfree(frame);
1032 	}
1033 	kfree(out);
1034 
1035 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1036 	*bytes_committed = 0;
1037 	return ret ? ret : npages;
1038 }
1039 
1040 /**
1041  * Parse a series of data segments for page fault handling.
1042  *
1043  * @pfault contains page fault information.
1044  * @wqe points at the first data segment in the WQE.
1045  * @wqe_end points after the end of the WQE.
1046  * @bytes_mapped receives the number of bytes that the function was able to
1047  *               map. This allows the caller to decide intelligently whether
1048  *               enough memory was mapped to resolve the page fault
1049  *               successfully (e.g. enough for the next MTU, or the entire
1050  *               WQE).
1051  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1052  *                  the committed bytes).
1053  *
1054  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1055  * negative error code.
1056  */
1057 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1058 				   struct mlx5_pagefault *pfault,
1059 				   void *wqe,
1060 				   void *wqe_end, u32 *bytes_mapped,
1061 				   u32 *total_wqe_bytes, bool receive_queue)
1062 {
1063 	int ret = 0, npages = 0;
1064 	u64 io_virt;
1065 	u32 key;
1066 	u32 byte_count;
1067 	size_t bcnt;
1068 	int inline_segment;
1069 
1070 	if (bytes_mapped)
1071 		*bytes_mapped = 0;
1072 	if (total_wqe_bytes)
1073 		*total_wqe_bytes = 0;
1074 
1075 	while (wqe < wqe_end) {
1076 		struct mlx5_wqe_data_seg *dseg = wqe;
1077 
1078 		io_virt = be64_to_cpu(dseg->addr);
1079 		key = be32_to_cpu(dseg->lkey);
1080 		byte_count = be32_to_cpu(dseg->byte_count);
1081 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1082 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
1083 
1084 		if (inline_segment) {
1085 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1086 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1087 				     16);
1088 		} else {
1089 			wqe += sizeof(*dseg);
1090 		}
1091 
1092 		/* receive WQE end of sg list. */
1093 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1094 		    io_virt == 0)
1095 			break;
1096 
1097 		if (!inline_segment && total_wqe_bytes) {
1098 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1099 					pfault->bytes_committed);
1100 		}
1101 
1102 		/* A zero length data segment designates a length of 2GB. */
1103 		if (bcnt == 0)
1104 			bcnt = 1U << 31;
1105 
1106 		if (inline_segment || bcnt <= pfault->bytes_committed) {
1107 			pfault->bytes_committed -=
1108 				min_t(size_t, bcnt,
1109 				      pfault->bytes_committed);
1110 			continue;
1111 		}
1112 
1113 		ret = pagefault_single_data_segment(dev, NULL, key,
1114 						    io_virt, bcnt,
1115 						    &pfault->bytes_committed,
1116 						    bytes_mapped);
1117 		if (ret < 0)
1118 			break;
1119 		npages += ret;
1120 	}
1121 
1122 	return ret < 0 ? ret : npages;
1123 }
1124 
1125 /*
1126  * Parse initiator WQE. Advances the wqe pointer to point at the
1127  * scatter-gather list, and set wqe_end to the end of the WQE.
1128  */
1129 static int mlx5_ib_mr_initiator_pfault_handler(
1130 	struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1131 	struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1132 {
1133 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1134 	u16 wqe_index = pfault->wqe.wqe_index;
1135 	struct mlx5_base_av *av;
1136 	unsigned ds, opcode;
1137 	u32 qpn = qp->trans_qp.base.mqp.qpn;
1138 
1139 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1140 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1141 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1142 			    ds, wqe_length);
1143 		return -EFAULT;
1144 	}
1145 
1146 	if (ds == 0) {
1147 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1148 			    wqe_index, qpn);
1149 		return -EFAULT;
1150 	}
1151 
1152 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1153 	*wqe += sizeof(*ctrl);
1154 
1155 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1156 		 MLX5_WQE_CTRL_OPCODE_MASK;
1157 
1158 	if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1159 		*wqe += sizeof(struct mlx5_wqe_xrc_seg);
1160 
1161 	if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1162 		av = *wqe;
1163 		if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1164 			*wqe += sizeof(struct mlx5_av);
1165 		else
1166 			*wqe += sizeof(struct mlx5_base_av);
1167 	}
1168 
1169 	switch (opcode) {
1170 	case MLX5_OPCODE_RDMA_WRITE:
1171 	case MLX5_OPCODE_RDMA_WRITE_IMM:
1172 	case MLX5_OPCODE_RDMA_READ:
1173 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1174 		break;
1175 	case MLX5_OPCODE_ATOMIC_CS:
1176 	case MLX5_OPCODE_ATOMIC_FA:
1177 		*wqe += sizeof(struct mlx5_wqe_raddr_seg);
1178 		*wqe += sizeof(struct mlx5_wqe_atomic_seg);
1179 		break;
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 /*
1186  * Parse responder WQE and set wqe_end to the end of the WQE.
1187  */
1188 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1189 						   struct mlx5_ib_srq *srq,
1190 						   void **wqe, void **wqe_end,
1191 						   int wqe_length)
1192 {
1193 	int wqe_size = 1 << srq->msrq.wqe_shift;
1194 
1195 	if (wqe_size > wqe_length) {
1196 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1197 		return -EFAULT;
1198 	}
1199 
1200 	*wqe_end = *wqe + wqe_size;
1201 	*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1202 
1203 	return 0;
1204 }
1205 
1206 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1207 						  struct mlx5_ib_qp *qp,
1208 						  void *wqe, void **wqe_end,
1209 						  int wqe_length)
1210 {
1211 	struct mlx5_ib_wq *wq = &qp->rq;
1212 	int wqe_size = 1 << wq->wqe_shift;
1213 
1214 	if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1215 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1216 		return -EFAULT;
1217 	}
1218 
1219 	if (wqe_size > wqe_length) {
1220 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1221 		return -EFAULT;
1222 	}
1223 
1224 	*wqe_end = wqe + wqe_size;
1225 
1226 	return 0;
1227 }
1228 
1229 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1230 						       u32 wq_num, int pf_type)
1231 {
1232 	struct mlx5_core_rsc_common *common = NULL;
1233 	struct mlx5_core_srq *srq;
1234 
1235 	switch (pf_type) {
1236 	case MLX5_WQE_PF_TYPE_RMP:
1237 		srq = mlx5_cmd_get_srq(dev, wq_num);
1238 		if (srq)
1239 			common = &srq->common;
1240 		break;
1241 	case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1242 	case MLX5_WQE_PF_TYPE_RESP:
1243 	case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1244 		common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1245 		break;
1246 	default:
1247 		break;
1248 	}
1249 
1250 	return common;
1251 }
1252 
1253 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1254 {
1255 	struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1256 
1257 	return to_mibqp(mqp);
1258 }
1259 
1260 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1261 {
1262 	struct mlx5_core_srq *msrq =
1263 		container_of(res, struct mlx5_core_srq, common);
1264 
1265 	return to_mibsrq(msrq);
1266 }
1267 
1268 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1269 					  struct mlx5_pagefault *pfault)
1270 {
1271 	bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1272 	u16 wqe_index = pfault->wqe.wqe_index;
1273 	void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1274 	u32 bytes_mapped, total_wqe_bytes;
1275 	struct mlx5_core_rsc_common *res;
1276 	int resume_with_error = 1;
1277 	struct mlx5_ib_qp *qp;
1278 	size_t bytes_copied;
1279 	int ret = 0;
1280 
1281 	res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1282 	if (!res) {
1283 		mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1284 		return;
1285 	}
1286 
1287 	if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1288 	    res->res != MLX5_RES_XSRQ) {
1289 		mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1290 			    pfault->type);
1291 		goto resolve_page_fault;
1292 	}
1293 
1294 	wqe_start = (void *)__get_free_page(GFP_KERNEL);
1295 	if (!wqe_start) {
1296 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1297 		goto resolve_page_fault;
1298 	}
1299 
1300 	wqe = wqe_start;
1301 	qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1302 	if (qp && sq) {
1303 		ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1304 					  &bytes_copied);
1305 		if (ret)
1306 			goto read_user;
1307 		ret = mlx5_ib_mr_initiator_pfault_handler(
1308 			dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1309 	} else if (qp && !sq) {
1310 		ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1311 					  &bytes_copied);
1312 		if (ret)
1313 			goto read_user;
1314 		ret = mlx5_ib_mr_responder_pfault_handler_rq(
1315 			dev, qp, wqe, &wqe_end, bytes_copied);
1316 	} else if (!qp) {
1317 		struct mlx5_ib_srq *srq = res_to_srq(res);
1318 
1319 		ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1320 					   &bytes_copied);
1321 		if (ret)
1322 			goto read_user;
1323 		ret = mlx5_ib_mr_responder_pfault_handler_srq(
1324 			dev, srq, &wqe, &wqe_end, bytes_copied);
1325 	}
1326 
1327 	if (ret < 0 || wqe >= wqe_end)
1328 		goto resolve_page_fault;
1329 
1330 	ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1331 				      &total_wqe_bytes, !sq);
1332 	if (ret == -EAGAIN)
1333 		goto out;
1334 
1335 	if (ret < 0 || total_wqe_bytes > bytes_mapped)
1336 		goto resolve_page_fault;
1337 
1338 out:
1339 	ret = 0;
1340 	resume_with_error = 0;
1341 
1342 read_user:
1343 	if (ret)
1344 		mlx5_ib_err(
1345 			dev,
1346 			"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1347 			ret, wqe_index, pfault->token);
1348 
1349 resolve_page_fault:
1350 	mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1351 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1352 		    pfault->wqe.wq_num, resume_with_error,
1353 		    pfault->type);
1354 	mlx5_core_res_put(res);
1355 	free_page((unsigned long)wqe_start);
1356 }
1357 
1358 static int pages_in_range(u64 address, u32 length)
1359 {
1360 	return (ALIGN(address + length, PAGE_SIZE) -
1361 		(address & PAGE_MASK)) >> PAGE_SHIFT;
1362 }
1363 
1364 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1365 					   struct mlx5_pagefault *pfault)
1366 {
1367 	u64 address;
1368 	u32 length;
1369 	u32 prefetch_len = pfault->bytes_committed;
1370 	int prefetch_activated = 0;
1371 	u32 rkey = pfault->rdma.r_key;
1372 	int ret;
1373 
1374 	/* The RDMA responder handler handles the page fault in two parts.
1375 	 * First it brings the necessary pages for the current packet
1376 	 * (and uses the pfault context), and then (after resuming the QP)
1377 	 * prefetches more pages. The second operation cannot use the pfault
1378 	 * context and therefore uses the dummy_pfault context allocated on
1379 	 * the stack */
1380 	pfault->rdma.rdma_va += pfault->bytes_committed;
1381 	pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1382 					 pfault->rdma.rdma_op_len);
1383 	pfault->bytes_committed = 0;
1384 
1385 	address = pfault->rdma.rdma_va;
1386 	length  = pfault->rdma.rdma_op_len;
1387 
1388 	/* For some operations, the hardware cannot tell the exact message
1389 	 * length, and in those cases it reports zero. Use prefetch
1390 	 * logic. */
1391 	if (length == 0) {
1392 		prefetch_activated = 1;
1393 		length = pfault->rdma.packet_size;
1394 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1395 	}
1396 
1397 	ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1398 					    &pfault->bytes_committed, NULL);
1399 	if (ret == -EAGAIN) {
1400 		/* We're racing with an invalidation, don't prefetch */
1401 		prefetch_activated = 0;
1402 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
1403 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1404 		if (ret != -ENOENT)
1405 			mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1406 				    ret, pfault->token, pfault->type);
1407 		return;
1408 	}
1409 
1410 	mlx5_ib_page_fault_resume(dev, pfault, 0);
1411 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1412 		    pfault->token, pfault->type,
1413 		    prefetch_activated);
1414 
1415 	/* At this point, there might be a new pagefault already arriving in
1416 	 * the eq, switch to the dummy pagefault for the rest of the
1417 	 * processing. We're still OK with the objects being alive as the
1418 	 * work-queue is being fenced. */
1419 
1420 	if (prefetch_activated) {
1421 		u32 bytes_committed = 0;
1422 
1423 		ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1424 						    prefetch_len,
1425 						    &bytes_committed, NULL);
1426 		if (ret < 0 && ret != -EAGAIN) {
1427 			mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1428 				    ret, pfault->token, address, prefetch_len);
1429 		}
1430 	}
1431 }
1432 
1433 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1434 {
1435 	u8 event_subtype = pfault->event_subtype;
1436 
1437 	switch (event_subtype) {
1438 	case MLX5_PFAULT_SUBTYPE_WQE:
1439 		mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1440 		break;
1441 	case MLX5_PFAULT_SUBTYPE_RDMA:
1442 		mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1443 		break;
1444 	default:
1445 		mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1446 			    event_subtype);
1447 		mlx5_ib_page_fault_resume(dev, pfault, 1);
1448 	}
1449 }
1450 
1451 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1452 {
1453 	struct mlx5_pagefault *pfault = container_of(work,
1454 						     struct mlx5_pagefault,
1455 						     work);
1456 	struct mlx5_ib_pf_eq *eq = pfault->eq;
1457 
1458 	mlx5_ib_pfault(eq->dev, pfault);
1459 	mempool_free(pfault, eq->pool);
1460 }
1461 
1462 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1463 {
1464 	struct mlx5_eqe_page_fault *pf_eqe;
1465 	struct mlx5_pagefault *pfault;
1466 	struct mlx5_eqe *eqe;
1467 	int cc = 0;
1468 
1469 	while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1470 		pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1471 		if (!pfault) {
1472 			schedule_work(&eq->work);
1473 			break;
1474 		}
1475 
1476 		pf_eqe = &eqe->data.page_fault;
1477 		pfault->event_subtype = eqe->sub_type;
1478 		pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1479 
1480 		mlx5_ib_dbg(eq->dev,
1481 			    "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1482 			    eqe->sub_type, pfault->bytes_committed);
1483 
1484 		switch (eqe->sub_type) {
1485 		case MLX5_PFAULT_SUBTYPE_RDMA:
1486 			/* RDMA based event */
1487 			pfault->type =
1488 				be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1489 			pfault->token =
1490 				be32_to_cpu(pf_eqe->rdma.pftype_token) &
1491 				MLX5_24BIT_MASK;
1492 			pfault->rdma.r_key =
1493 				be32_to_cpu(pf_eqe->rdma.r_key);
1494 			pfault->rdma.packet_size =
1495 				be16_to_cpu(pf_eqe->rdma.packet_length);
1496 			pfault->rdma.rdma_op_len =
1497 				be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1498 			pfault->rdma.rdma_va =
1499 				be64_to_cpu(pf_eqe->rdma.rdma_va);
1500 			mlx5_ib_dbg(eq->dev,
1501 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1502 				    pfault->type, pfault->token,
1503 				    pfault->rdma.r_key);
1504 			mlx5_ib_dbg(eq->dev,
1505 				    "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1506 				    pfault->rdma.rdma_op_len,
1507 				    pfault->rdma.rdma_va);
1508 			break;
1509 
1510 		case MLX5_PFAULT_SUBTYPE_WQE:
1511 			/* WQE based event */
1512 			pfault->type =
1513 				(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1514 			pfault->token =
1515 				be32_to_cpu(pf_eqe->wqe.token);
1516 			pfault->wqe.wq_num =
1517 				be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1518 				MLX5_24BIT_MASK;
1519 			pfault->wqe.wqe_index =
1520 				be16_to_cpu(pf_eqe->wqe.wqe_index);
1521 			pfault->wqe.packet_size =
1522 				be16_to_cpu(pf_eqe->wqe.packet_length);
1523 			mlx5_ib_dbg(eq->dev,
1524 				    "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1525 				    pfault->type, pfault->token,
1526 				    pfault->wqe.wq_num,
1527 				    pfault->wqe.wqe_index);
1528 			break;
1529 
1530 		default:
1531 			mlx5_ib_warn(eq->dev,
1532 				     "Unsupported page fault event sub-type: 0x%02hhx\n",
1533 				     eqe->sub_type);
1534 			/* Unsupported page faults should still be
1535 			 * resolved by the page fault handler
1536 			 */
1537 		}
1538 
1539 		pfault->eq = eq;
1540 		INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1541 		queue_work(eq->wq, &pfault->work);
1542 
1543 		cc = mlx5_eq_update_cc(eq->core, ++cc);
1544 	}
1545 
1546 	mlx5_eq_update_ci(eq->core, cc, 1);
1547 }
1548 
1549 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1550 			     void *data)
1551 {
1552 	struct mlx5_ib_pf_eq *eq =
1553 		container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1554 	unsigned long flags;
1555 
1556 	if (spin_trylock_irqsave(&eq->lock, flags)) {
1557 		mlx5_ib_eq_pf_process(eq);
1558 		spin_unlock_irqrestore(&eq->lock, flags);
1559 	} else {
1560 		schedule_work(&eq->work);
1561 	}
1562 
1563 	return IRQ_HANDLED;
1564 }
1565 
1566 /* mempool_refill() was proposed but unfortunately wasn't accepted
1567  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1568  * Cheap workaround.
1569  */
1570 static void mempool_refill(mempool_t *pool)
1571 {
1572 	while (pool->curr_nr < pool->min_nr)
1573 		mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1574 }
1575 
1576 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1577 {
1578 	struct mlx5_ib_pf_eq *eq =
1579 		container_of(work, struct mlx5_ib_pf_eq, work);
1580 
1581 	mempool_refill(eq->pool);
1582 
1583 	spin_lock_irq(&eq->lock);
1584 	mlx5_ib_eq_pf_process(eq);
1585 	spin_unlock_irq(&eq->lock);
1586 }
1587 
1588 enum {
1589 	MLX5_IB_NUM_PF_EQE	= 0x1000,
1590 	MLX5_IB_NUM_PF_DRAIN	= 64,
1591 };
1592 
1593 static int
1594 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1595 {
1596 	struct mlx5_eq_param param = {};
1597 	int err;
1598 
1599 	INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1600 	spin_lock_init(&eq->lock);
1601 	eq->dev = dev;
1602 
1603 	eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1604 					       sizeof(struct mlx5_pagefault));
1605 	if (!eq->pool)
1606 		return -ENOMEM;
1607 
1608 	eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1609 				 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1610 				 MLX5_NUM_CMD_EQE);
1611 	if (!eq->wq) {
1612 		err = -ENOMEM;
1613 		goto err_mempool;
1614 	}
1615 
1616 	eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1617 	param = (struct mlx5_eq_param) {
1618 		.irq_index = 0,
1619 		.nent = MLX5_IB_NUM_PF_EQE,
1620 	};
1621 	param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1622 	eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1623 	if (IS_ERR(eq->core)) {
1624 		err = PTR_ERR(eq->core);
1625 		goto err_wq;
1626 	}
1627 	err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1628 	if (err) {
1629 		mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1630 		goto err_eq;
1631 	}
1632 
1633 	return 0;
1634 err_eq:
1635 	mlx5_eq_destroy_generic(dev->mdev, eq->core);
1636 err_wq:
1637 	destroy_workqueue(eq->wq);
1638 err_mempool:
1639 	mempool_destroy(eq->pool);
1640 	return err;
1641 }
1642 
1643 static int
1644 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1645 {
1646 	int err;
1647 
1648 	mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1649 	err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1650 	cancel_work_sync(&eq->work);
1651 	destroy_workqueue(eq->wq);
1652 	mempool_destroy(eq->pool);
1653 
1654 	return err;
1655 }
1656 
1657 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1658 {
1659 	if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1660 		return;
1661 
1662 	switch (ent->order - 2) {
1663 	case MLX5_IMR_MTT_CACHE_ENTRY:
1664 		ent->page = PAGE_SHIFT;
1665 		ent->xlt = MLX5_IMR_MTT_ENTRIES *
1666 			   sizeof(struct mlx5_mtt) /
1667 			   MLX5_IB_UMR_OCTOWORD;
1668 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1669 		ent->limit = 0;
1670 		break;
1671 
1672 	case MLX5_IMR_KSM_CACHE_ENTRY:
1673 		ent->page = MLX5_KSM_PAGE_SHIFT;
1674 		ent->xlt = mlx5_imr_ksm_entries *
1675 			   sizeof(struct mlx5_klm) /
1676 			   MLX5_IB_UMR_OCTOWORD;
1677 		ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1678 		ent->limit = 0;
1679 		break;
1680 	}
1681 }
1682 
1683 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1684 	.advise_mr = mlx5_ib_advise_mr,
1685 };
1686 
1687 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1688 {
1689 	int ret = 0;
1690 
1691 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1692 		return ret;
1693 
1694 	ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1695 
1696 	if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1697 		ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1698 		if (ret) {
1699 			mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1700 			return ret;
1701 		}
1702 	}
1703 
1704 	ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1705 
1706 	return ret;
1707 }
1708 
1709 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1710 {
1711 	if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1712 		return;
1713 
1714 	mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1715 }
1716 
1717 int mlx5_ib_odp_init(void)
1718 {
1719 	mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1720 				       MLX5_IMR_MTT_BITS);
1721 
1722 	return 0;
1723 }
1724 
1725 struct prefetch_mr_work {
1726 	struct work_struct work;
1727 	u32 pf_flags;
1728 	u32 num_sge;
1729 	struct {
1730 		u64 io_virt;
1731 		struct mlx5_ib_mr *mr;
1732 		size_t length;
1733 	} frags[];
1734 };
1735 
1736 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1737 {
1738 	u32 i;
1739 
1740 	for (i = 0; i < work->num_sge; ++i)
1741 		if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1742 			wake_up(&work->frags[i].mr->q_deferred_work);
1743 	kvfree(work);
1744 }
1745 
1746 static struct mlx5_ib_mr *
1747 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1748 		    u32 lkey)
1749 {
1750 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1751 	struct mlx5_core_mkey *mmkey;
1752 	struct ib_umem_odp *odp;
1753 	struct mlx5_ib_mr *mr;
1754 
1755 	lockdep_assert_held(&dev->odp_srcu);
1756 
1757 	mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1758 	if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1759 		return NULL;
1760 
1761 	mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1762 
1763 	if (mr->ibmr.pd != pd)
1764 		return NULL;
1765 
1766 	odp = to_ib_umem_odp(mr->umem);
1767 
1768 	/* prefetch with write-access must be supported by the MR */
1769 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1770 	    !odp->umem.writable)
1771 		return NULL;
1772 
1773 	return mr;
1774 }
1775 
1776 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1777 {
1778 	struct prefetch_mr_work *work =
1779 		container_of(w, struct prefetch_mr_work, work);
1780 	struct mlx5_ib_dev *dev;
1781 	u32 bytes_mapped = 0;
1782 	int srcu_key;
1783 	int ret;
1784 	u32 i;
1785 
1786 	/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1787 	WARN_ON(!work->num_sge);
1788 	dev = mr_to_mdev(work->frags[0].mr);
1789 	/* SRCU should be held when calling to mlx5_odp_populate_xlt() */
1790 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1791 	for (i = 0; i < work->num_sge; ++i) {
1792 		ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1793 				   work->frags[i].length, &bytes_mapped,
1794 				   work->pf_flags);
1795 		if (ret <= 0)
1796 			continue;
1797 		mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1798 	}
1799 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1800 
1801 	destroy_prefetch_work(work);
1802 }
1803 
1804 static bool init_prefetch_work(struct ib_pd *pd,
1805 			       enum ib_uverbs_advise_mr_advice advice,
1806 			       u32 pf_flags, struct prefetch_mr_work *work,
1807 			       struct ib_sge *sg_list, u32 num_sge)
1808 {
1809 	u32 i;
1810 
1811 	INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1812 	work->pf_flags = pf_flags;
1813 
1814 	for (i = 0; i < num_sge; ++i) {
1815 		work->frags[i].io_virt = sg_list[i].addr;
1816 		work->frags[i].length = sg_list[i].length;
1817 		work->frags[i].mr =
1818 			get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1819 		if (!work->frags[i].mr) {
1820 			work->num_sge = i;
1821 			return false;
1822 		}
1823 
1824 		/* Keep the MR pointer will valid outside the SRCU */
1825 		atomic_inc(&work->frags[i].mr->num_deferred_work);
1826 	}
1827 	work->num_sge = num_sge;
1828 	return true;
1829 }
1830 
1831 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1832 				    enum ib_uverbs_advise_mr_advice advice,
1833 				    u32 pf_flags, struct ib_sge *sg_list,
1834 				    u32 num_sge)
1835 {
1836 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1837 	u32 bytes_mapped = 0;
1838 	int srcu_key;
1839 	int ret = 0;
1840 	u32 i;
1841 
1842 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1843 	for (i = 0; i < num_sge; ++i) {
1844 		struct mlx5_ib_mr *mr;
1845 
1846 		mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1847 		if (!mr) {
1848 			ret = -ENOENT;
1849 			goto out;
1850 		}
1851 		ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1852 				   &bytes_mapped, pf_flags);
1853 		if (ret < 0)
1854 			goto out;
1855 		mlx5_update_odp_stats(mr, prefetch, ret);
1856 	}
1857 	ret = 0;
1858 
1859 out:
1860 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1861 	return ret;
1862 }
1863 
1864 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1865 			       enum ib_uverbs_advise_mr_advice advice,
1866 			       u32 flags, struct ib_sge *sg_list, u32 num_sge)
1867 {
1868 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1869 	u32 pf_flags = 0;
1870 	struct prefetch_mr_work *work;
1871 	int srcu_key;
1872 
1873 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1874 		pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1875 
1876 	if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1877 		pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1878 
1879 	if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1880 		return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1881 						num_sge);
1882 
1883 	work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1884 	if (!work)
1885 		return -ENOMEM;
1886 
1887 	srcu_key = srcu_read_lock(&dev->odp_srcu);
1888 	if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1889 		srcu_read_unlock(&dev->odp_srcu, srcu_key);
1890 		destroy_prefetch_work(work);
1891 		return -EINVAL;
1892 	}
1893 	queue_work(system_unbound_wq, &work->work);
1894 	srcu_read_unlock(&dev->odp_srcu, srcu_key);
1895 	return 0;
1896 }
1897