xref: /linux/drivers/infiniband/hw/mlx5/odp.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 
36 #include "mlx5_ib.h"
37 
38 #define MAX_PREFETCH_LEN (4*1024*1024U)
39 
40 /* Timeout in ms to wait for an active mmu notifier to complete when handling
41  * a pagefault. */
42 #define MMU_NOTIFIER_TIMEOUT 1000
43 
44 struct workqueue_struct *mlx5_ib_page_fault_wq;
45 
46 void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
47 			      unsigned long end)
48 {
49 	struct mlx5_ib_mr *mr;
50 	const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(u64)) - 1;
51 	u64 idx = 0, blk_start_idx = 0;
52 	int in_block = 0;
53 	u64 addr;
54 
55 	if (!umem || !umem->odp_data) {
56 		pr_err("invalidation called on NULL umem or non-ODP umem\n");
57 		return;
58 	}
59 
60 	mr = umem->odp_data->private;
61 
62 	if (!mr || !mr->ibmr.pd)
63 		return;
64 
65 	start = max_t(u64, ib_umem_start(umem), start);
66 	end = min_t(u64, ib_umem_end(umem), end);
67 
68 	/*
69 	 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
70 	 * while we are doing the invalidation, no page fault will attempt to
71 	 * overwrite the same MTTs.  Concurent invalidations might race us,
72 	 * but they will write 0s as well, so no difference in the end result.
73 	 */
74 
75 	for (addr = start; addr < end; addr += (u64)umem->page_size) {
76 		idx = (addr - ib_umem_start(umem)) / PAGE_SIZE;
77 		/*
78 		 * Strive to write the MTTs in chunks, but avoid overwriting
79 		 * non-existing MTTs. The huristic here can be improved to
80 		 * estimate the cost of another UMR vs. the cost of bigger
81 		 * UMR.
82 		 */
83 		if (umem->odp_data->dma_list[idx] &
84 		    (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
85 			if (!in_block) {
86 				blk_start_idx = idx;
87 				in_block = 1;
88 			}
89 		} else {
90 			u64 umr_offset = idx & umr_block_mask;
91 
92 			if (in_block && umr_offset == 0) {
93 				mlx5_ib_update_mtt(mr, blk_start_idx,
94 						   idx - blk_start_idx, 1);
95 				in_block = 0;
96 			}
97 		}
98 	}
99 	if (in_block)
100 		mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx + 1,
101 				   1);
102 
103 	/*
104 	 * We are now sure that the device will not access the
105 	 * memory. We can safely unmap it, and mark it as dirty if
106 	 * needed.
107 	 */
108 
109 	ib_umem_odp_unmap_dma_pages(umem, start, end);
110 }
111 
112 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
113 {
114 	struct ib_odp_caps *caps = &dev->odp_caps;
115 
116 	memset(caps, 0, sizeof(*caps));
117 
118 	if (!MLX5_CAP_GEN(dev->mdev, pg))
119 		return;
120 
121 	caps->general_caps = IB_ODP_SUPPORT;
122 
123 	if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
124 		caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
125 
126 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
127 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
128 
129 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
130 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
131 
132 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
133 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
134 
135 	if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
136 		caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
137 
138 	return;
139 }
140 
141 static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev,
142 						   u32 key)
143 {
144 	u32 base_key = mlx5_base_mkey(key);
145 	struct mlx5_core_mkey *mmkey = __mlx5_mr_lookup(dev->mdev, base_key);
146 	struct mlx5_ib_mr *mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
147 
148 	if (!mmkey || mmkey->key != key || !mr->live)
149 		return NULL;
150 
151 	return container_of(mmkey, struct mlx5_ib_mr, mmkey);
152 }
153 
154 static void mlx5_ib_page_fault_resume(struct mlx5_ib_qp *qp,
155 				      struct mlx5_ib_pfault *pfault,
156 				      int error)
157 {
158 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
159 	u32 qpn = qp->trans_qp.base.mqp.qpn;
160 	int ret = mlx5_core_page_fault_resume(dev->mdev,
161 					      qpn,
162 					      pfault->mpfault.flags,
163 					      error);
164 	if (ret)
165 		pr_err("Failed to resolve the page fault on QP 0x%x\n", qpn);
166 }
167 
168 /*
169  * Handle a single data segment in a page-fault WQE.
170  *
171  * Returns number of pages retrieved on success. The caller will continue to
172  * the next data segment.
173  * Can return the following error codes:
174  * -EAGAIN to designate a temporary error. The caller will abort handling the
175  *  page fault and resolve it.
176  * -EFAULT when there's an error mapping the requested pages. The caller will
177  *  abort the page fault handling and possibly move the QP to an error state.
178  * On other errors the QP should also be closed with an error.
179  */
180 static int pagefault_single_data_segment(struct mlx5_ib_qp *qp,
181 					 struct mlx5_ib_pfault *pfault,
182 					 u32 key, u64 io_virt, size_t bcnt,
183 					 u32 *bytes_mapped)
184 {
185 	struct mlx5_ib_dev *mib_dev = to_mdev(qp->ibqp.pd->device);
186 	int srcu_key;
187 	unsigned int current_seq;
188 	u64 start_idx;
189 	int npages = 0, ret = 0;
190 	struct mlx5_ib_mr *mr;
191 	u64 access_mask = ODP_READ_ALLOWED_BIT;
192 
193 	srcu_key = srcu_read_lock(&mib_dev->mr_srcu);
194 	mr = mlx5_ib_odp_find_mr_lkey(mib_dev, key);
195 	/*
196 	 * If we didn't find the MR, it means the MR was closed while we were
197 	 * handling the ODP event. In this case we return -EFAULT so that the
198 	 * QP will be closed.
199 	 */
200 	if (!mr || !mr->ibmr.pd) {
201 		pr_err("Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n",
202 		       key);
203 		ret = -EFAULT;
204 		goto srcu_unlock;
205 	}
206 	if (!mr->umem->odp_data) {
207 		pr_debug("skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
208 			 key);
209 		if (bytes_mapped)
210 			*bytes_mapped +=
211 				(bcnt - pfault->mpfault.bytes_committed);
212 		goto srcu_unlock;
213 	}
214 	if (mr->ibmr.pd != qp->ibqp.pd) {
215 		pr_err("Page-fault with different PDs for QP and MR.\n");
216 		ret = -EFAULT;
217 		goto srcu_unlock;
218 	}
219 
220 	current_seq = ACCESS_ONCE(mr->umem->odp_data->notifiers_seq);
221 	/*
222 	 * Ensure the sequence number is valid for some time before we call
223 	 * gup.
224 	 */
225 	smp_rmb();
226 
227 	/*
228 	 * Avoid branches - this code will perform correctly
229 	 * in all iterations (in iteration 2 and above,
230 	 * bytes_committed == 0).
231 	 */
232 	io_virt += pfault->mpfault.bytes_committed;
233 	bcnt -= pfault->mpfault.bytes_committed;
234 
235 	start_idx = (io_virt - (mr->mmkey.iova & PAGE_MASK)) >> PAGE_SHIFT;
236 
237 	if (mr->umem->writable)
238 		access_mask |= ODP_WRITE_ALLOWED_BIT;
239 	npages = ib_umem_odp_map_dma_pages(mr->umem, io_virt, bcnt,
240 					   access_mask, current_seq);
241 	if (npages < 0) {
242 		ret = npages;
243 		goto srcu_unlock;
244 	}
245 
246 	if (npages > 0) {
247 		mutex_lock(&mr->umem->odp_data->umem_mutex);
248 		if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
249 			/*
250 			 * No need to check whether the MTTs really belong to
251 			 * this MR, since ib_umem_odp_map_dma_pages already
252 			 * checks this.
253 			 */
254 			ret = mlx5_ib_update_mtt(mr, start_idx, npages, 0);
255 		} else {
256 			ret = -EAGAIN;
257 		}
258 		mutex_unlock(&mr->umem->odp_data->umem_mutex);
259 		if (ret < 0) {
260 			if (ret != -EAGAIN)
261 				pr_err("Failed to update mkey page tables\n");
262 			goto srcu_unlock;
263 		}
264 
265 		if (bytes_mapped) {
266 			u32 new_mappings = npages * PAGE_SIZE -
267 				(io_virt - round_down(io_virt, PAGE_SIZE));
268 			*bytes_mapped += min_t(u32, new_mappings, bcnt);
269 		}
270 	}
271 
272 srcu_unlock:
273 	if (ret == -EAGAIN) {
274 		if (!mr->umem->odp_data->dying) {
275 			struct ib_umem_odp *odp_data = mr->umem->odp_data;
276 			unsigned long timeout =
277 				msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
278 
279 			if (!wait_for_completion_timeout(
280 					&odp_data->notifier_completion,
281 					timeout)) {
282 				pr_warn("timeout waiting for mmu notifier completion\n");
283 			}
284 		} else {
285 			/* The MR is being killed, kill the QP as well. */
286 			ret = -EFAULT;
287 		}
288 	}
289 	srcu_read_unlock(&mib_dev->mr_srcu, srcu_key);
290 	pfault->mpfault.bytes_committed = 0;
291 	return ret ? ret : npages;
292 }
293 
294 /**
295  * Parse a series of data segments for page fault handling.
296  *
297  * @qp the QP on which the fault occurred.
298  * @pfault contains page fault information.
299  * @wqe points at the first data segment in the WQE.
300  * @wqe_end points after the end of the WQE.
301  * @bytes_mapped receives the number of bytes that the function was able to
302  *               map. This allows the caller to decide intelligently whether
303  *               enough memory was mapped to resolve the page fault
304  *               successfully (e.g. enough for the next MTU, or the entire
305  *               WQE).
306  * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
307  *                  the committed bytes).
308  *
309  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
310  * negative error code.
311  */
312 static int pagefault_data_segments(struct mlx5_ib_qp *qp,
313 				   struct mlx5_ib_pfault *pfault, void *wqe,
314 				   void *wqe_end, u32 *bytes_mapped,
315 				   u32 *total_wqe_bytes, int receive_queue)
316 {
317 	int ret = 0, npages = 0;
318 	u64 io_virt;
319 	u32 key;
320 	u32 byte_count;
321 	size_t bcnt;
322 	int inline_segment;
323 
324 	/* Skip SRQ next-WQE segment. */
325 	if (receive_queue && qp->ibqp.srq)
326 		wqe += sizeof(struct mlx5_wqe_srq_next_seg);
327 
328 	if (bytes_mapped)
329 		*bytes_mapped = 0;
330 	if (total_wqe_bytes)
331 		*total_wqe_bytes = 0;
332 
333 	while (wqe < wqe_end) {
334 		struct mlx5_wqe_data_seg *dseg = wqe;
335 
336 		io_virt = be64_to_cpu(dseg->addr);
337 		key = be32_to_cpu(dseg->lkey);
338 		byte_count = be32_to_cpu(dseg->byte_count);
339 		inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
340 		bcnt	       = byte_count & ~MLX5_INLINE_SEG;
341 
342 		if (inline_segment) {
343 			bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
344 			wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
345 				     16);
346 		} else {
347 			wqe += sizeof(*dseg);
348 		}
349 
350 		/* receive WQE end of sg list. */
351 		if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
352 		    io_virt == 0)
353 			break;
354 
355 		if (!inline_segment && total_wqe_bytes) {
356 			*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
357 					pfault->mpfault.bytes_committed);
358 		}
359 
360 		/* A zero length data segment designates a length of 2GB. */
361 		if (bcnt == 0)
362 			bcnt = 1U << 31;
363 
364 		if (inline_segment || bcnt <= pfault->mpfault.bytes_committed) {
365 			pfault->mpfault.bytes_committed -=
366 				min_t(size_t, bcnt,
367 				      pfault->mpfault.bytes_committed);
368 			continue;
369 		}
370 
371 		ret = pagefault_single_data_segment(qp, pfault, key, io_virt,
372 						    bcnt, bytes_mapped);
373 		if (ret < 0)
374 			break;
375 		npages += ret;
376 	}
377 
378 	return ret < 0 ? ret : npages;
379 }
380 
381 /*
382  * Parse initiator WQE. Advances the wqe pointer to point at the
383  * scatter-gather list, and set wqe_end to the end of the WQE.
384  */
385 static int mlx5_ib_mr_initiator_pfault_handler(
386 	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
387 	void **wqe, void **wqe_end, int wqe_length)
388 {
389 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
390 	struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
391 	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
392 	unsigned ds, opcode;
393 #if defined(DEBUG)
394 	u32 ctrl_wqe_index, ctrl_qpn;
395 #endif
396 	u32 qpn = qp->trans_qp.base.mqp.qpn;
397 
398 	ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
399 	if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
400 		mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
401 			    ds, wqe_length);
402 		return -EFAULT;
403 	}
404 
405 	if (ds == 0) {
406 		mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
407 			    wqe_index, qpn);
408 		return -EFAULT;
409 	}
410 
411 #if defined(DEBUG)
412 	ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
413 			MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
414 			MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
415 	if (wqe_index != ctrl_wqe_index) {
416 		mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
417 			    wqe_index, qpn,
418 			    ctrl_wqe_index);
419 		return -EFAULT;
420 	}
421 
422 	ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
423 		MLX5_WQE_CTRL_QPN_SHIFT;
424 	if (qpn != ctrl_qpn) {
425 		mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
426 			    wqe_index, qpn,
427 			    ctrl_qpn);
428 		return -EFAULT;
429 	}
430 #endif /* DEBUG */
431 
432 	*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
433 	*wqe += sizeof(*ctrl);
434 
435 	opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
436 		 MLX5_WQE_CTRL_OPCODE_MASK;
437 	switch (qp->ibqp.qp_type) {
438 	case IB_QPT_RC:
439 		switch (opcode) {
440 		case MLX5_OPCODE_SEND:
441 		case MLX5_OPCODE_SEND_IMM:
442 		case MLX5_OPCODE_SEND_INVAL:
443 			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
444 			      IB_ODP_SUPPORT_SEND))
445 				goto invalid_transport_or_opcode;
446 			break;
447 		case MLX5_OPCODE_RDMA_WRITE:
448 		case MLX5_OPCODE_RDMA_WRITE_IMM:
449 			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
450 			      IB_ODP_SUPPORT_WRITE))
451 				goto invalid_transport_or_opcode;
452 			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
453 			break;
454 		case MLX5_OPCODE_RDMA_READ:
455 			if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
456 			      IB_ODP_SUPPORT_READ))
457 				goto invalid_transport_or_opcode;
458 			*wqe += sizeof(struct mlx5_wqe_raddr_seg);
459 			break;
460 		default:
461 			goto invalid_transport_or_opcode;
462 		}
463 		break;
464 	case IB_QPT_UD:
465 		switch (opcode) {
466 		case MLX5_OPCODE_SEND:
467 		case MLX5_OPCODE_SEND_IMM:
468 			if (!(dev->odp_caps.per_transport_caps.ud_odp_caps &
469 			      IB_ODP_SUPPORT_SEND))
470 				goto invalid_transport_or_opcode;
471 			*wqe += sizeof(struct mlx5_wqe_datagram_seg);
472 			break;
473 		default:
474 			goto invalid_transport_or_opcode;
475 		}
476 		break;
477 	default:
478 invalid_transport_or_opcode:
479 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode or transport. transport: 0x%x opcode: 0x%x.\n",
480 			    qp->ibqp.qp_type, opcode);
481 		return -EFAULT;
482 	}
483 
484 	return 0;
485 }
486 
487 /*
488  * Parse responder WQE. Advances the wqe pointer to point at the
489  * scatter-gather list, and set wqe_end to the end of the WQE.
490  */
491 static int mlx5_ib_mr_responder_pfault_handler(
492 	struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault,
493 	void **wqe, void **wqe_end, int wqe_length)
494 {
495 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
496 	struct mlx5_ib_wq *wq = &qp->rq;
497 	int wqe_size = 1 << wq->wqe_shift;
498 
499 	if (qp->ibqp.srq) {
500 		mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
501 		return -EFAULT;
502 	}
503 
504 	if (qp->wq_sig) {
505 		mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
506 		return -EFAULT;
507 	}
508 
509 	if (wqe_size > wqe_length) {
510 		mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
511 		return -EFAULT;
512 	}
513 
514 	switch (qp->ibqp.qp_type) {
515 	case IB_QPT_RC:
516 		if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
517 		      IB_ODP_SUPPORT_RECV))
518 			goto invalid_transport_or_opcode;
519 		break;
520 	default:
521 invalid_transport_or_opcode:
522 		mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
523 			    qp->ibqp.qp_type);
524 		return -EFAULT;
525 	}
526 
527 	*wqe_end = *wqe + wqe_size;
528 
529 	return 0;
530 }
531 
532 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_qp *qp,
533 					  struct mlx5_ib_pfault *pfault)
534 {
535 	struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device);
536 	int ret;
537 	void *wqe, *wqe_end;
538 	u32 bytes_mapped, total_wqe_bytes;
539 	char *buffer = NULL;
540 	int resume_with_error = 0;
541 	u16 wqe_index = pfault->mpfault.wqe.wqe_index;
542 	int requestor = pfault->mpfault.flags & MLX5_PFAULT_REQUESTOR;
543 	u32 qpn = qp->trans_qp.base.mqp.qpn;
544 
545 	buffer = (char *)__get_free_page(GFP_KERNEL);
546 	if (!buffer) {
547 		mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
548 		resume_with_error = 1;
549 		goto resolve_page_fault;
550 	}
551 
552 	ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
553 				    PAGE_SIZE, &qp->trans_qp.base);
554 	if (ret < 0) {
555 		mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%x, wqe_index=%x, qpn=%x\n",
556 			    -ret, wqe_index, qpn);
557 		resume_with_error = 1;
558 		goto resolve_page_fault;
559 	}
560 
561 	wqe = buffer;
562 	if (requestor)
563 		ret = mlx5_ib_mr_initiator_pfault_handler(qp, pfault, &wqe,
564 							  &wqe_end, ret);
565 	else
566 		ret = mlx5_ib_mr_responder_pfault_handler(qp, pfault, &wqe,
567 							  &wqe_end, ret);
568 	if (ret < 0) {
569 		resume_with_error = 1;
570 		goto resolve_page_fault;
571 	}
572 
573 	if (wqe >= wqe_end) {
574 		mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
575 		resume_with_error = 1;
576 		goto resolve_page_fault;
577 	}
578 
579 	ret = pagefault_data_segments(qp, pfault, wqe, wqe_end, &bytes_mapped,
580 				      &total_wqe_bytes, !requestor);
581 	if (ret == -EAGAIN) {
582 		goto resolve_page_fault;
583 	} else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
584 		mlx5_ib_err(dev, "Error getting user pages for page fault. Error: 0x%x\n",
585 			    -ret);
586 		resume_with_error = 1;
587 		goto resolve_page_fault;
588 	}
589 
590 resolve_page_fault:
591 	mlx5_ib_page_fault_resume(qp, pfault, resume_with_error);
592 	mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, flags: 0x%x\n",
593 		    qpn, resume_with_error,
594 		    pfault->mpfault.flags);
595 
596 	free_page((unsigned long)buffer);
597 }
598 
599 static int pages_in_range(u64 address, u32 length)
600 {
601 	return (ALIGN(address + length, PAGE_SIZE) -
602 		(address & PAGE_MASK)) >> PAGE_SHIFT;
603 }
604 
605 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_qp *qp,
606 					   struct mlx5_ib_pfault *pfault)
607 {
608 	struct mlx5_pagefault *mpfault = &pfault->mpfault;
609 	u64 address;
610 	u32 length;
611 	u32 prefetch_len = mpfault->bytes_committed;
612 	int prefetch_activated = 0;
613 	u32 rkey = mpfault->rdma.r_key;
614 	int ret;
615 
616 	/* The RDMA responder handler handles the page fault in two parts.
617 	 * First it brings the necessary pages for the current packet
618 	 * (and uses the pfault context), and then (after resuming the QP)
619 	 * prefetches more pages. The second operation cannot use the pfault
620 	 * context and therefore uses the dummy_pfault context allocated on
621 	 * the stack */
622 	struct mlx5_ib_pfault dummy_pfault = {};
623 
624 	dummy_pfault.mpfault.bytes_committed = 0;
625 
626 	mpfault->rdma.rdma_va += mpfault->bytes_committed;
627 	mpfault->rdma.rdma_op_len -= min(mpfault->bytes_committed,
628 					 mpfault->rdma.rdma_op_len);
629 	mpfault->bytes_committed = 0;
630 
631 	address = mpfault->rdma.rdma_va;
632 	length  = mpfault->rdma.rdma_op_len;
633 
634 	/* For some operations, the hardware cannot tell the exact message
635 	 * length, and in those cases it reports zero. Use prefetch
636 	 * logic. */
637 	if (length == 0) {
638 		prefetch_activated = 1;
639 		length = mpfault->rdma.packet_size;
640 		prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
641 	}
642 
643 	ret = pagefault_single_data_segment(qp, pfault, rkey, address, length,
644 					    NULL);
645 	if (ret == -EAGAIN) {
646 		/* We're racing with an invalidation, don't prefetch */
647 		prefetch_activated = 0;
648 	} else if (ret < 0 || pages_in_range(address, length) > ret) {
649 		mlx5_ib_page_fault_resume(qp, pfault, 1);
650 		return;
651 	}
652 
653 	mlx5_ib_page_fault_resume(qp, pfault, 0);
654 
655 	/* At this point, there might be a new pagefault already arriving in
656 	 * the eq, switch to the dummy pagefault for the rest of the
657 	 * processing. We're still OK with the objects being alive as the
658 	 * work-queue is being fenced. */
659 
660 	if (prefetch_activated) {
661 		ret = pagefault_single_data_segment(qp, &dummy_pfault, rkey,
662 						    address,
663 						    prefetch_len,
664 						    NULL);
665 		if (ret < 0) {
666 			pr_warn("Prefetch failed (ret = %d, prefetch_activated = %d) for QPN %d, address: 0x%.16llx, length = 0x%.16x\n",
667 				ret, prefetch_activated,
668 				qp->ibqp.qp_num, address, prefetch_len);
669 		}
670 	}
671 }
672 
673 void mlx5_ib_mr_pfault_handler(struct mlx5_ib_qp *qp,
674 			       struct mlx5_ib_pfault *pfault)
675 {
676 	u8 event_subtype = pfault->mpfault.event_subtype;
677 
678 	switch (event_subtype) {
679 	case MLX5_PFAULT_SUBTYPE_WQE:
680 		mlx5_ib_mr_wqe_pfault_handler(qp, pfault);
681 		break;
682 	case MLX5_PFAULT_SUBTYPE_RDMA:
683 		mlx5_ib_mr_rdma_pfault_handler(qp, pfault);
684 		break;
685 	default:
686 		pr_warn("Invalid page fault event subtype: 0x%x\n",
687 			event_subtype);
688 		mlx5_ib_page_fault_resume(qp, pfault, 1);
689 		break;
690 	}
691 }
692 
693 static void mlx5_ib_qp_pfault_action(struct work_struct *work)
694 {
695 	struct mlx5_ib_pfault *pfault = container_of(work,
696 						     struct mlx5_ib_pfault,
697 						     work);
698 	enum mlx5_ib_pagefault_context context =
699 		mlx5_ib_get_pagefault_context(&pfault->mpfault);
700 	struct mlx5_ib_qp *qp = container_of(pfault, struct mlx5_ib_qp,
701 					     pagefaults[context]);
702 	mlx5_ib_mr_pfault_handler(qp, pfault);
703 }
704 
705 void mlx5_ib_qp_disable_pagefaults(struct mlx5_ib_qp *qp)
706 {
707 	unsigned long flags;
708 
709 	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
710 	qp->disable_page_faults = 1;
711 	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
712 
713 	/*
714 	 * Note that at this point, we are guarenteed that no more
715 	 * work queue elements will be posted to the work queue with
716 	 * the QP we are closing.
717 	 */
718 	flush_workqueue(mlx5_ib_page_fault_wq);
719 }
720 
721 void mlx5_ib_qp_enable_pagefaults(struct mlx5_ib_qp *qp)
722 {
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&qp->disable_page_faults_lock, flags);
726 	qp->disable_page_faults = 0;
727 	spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags);
728 }
729 
730 static void mlx5_ib_pfault_handler(struct mlx5_core_qp *qp,
731 				   struct mlx5_pagefault *pfault)
732 {
733 	/*
734 	 * Note that we will only get one fault event per QP per context
735 	 * (responder/initiator, read/write), until we resolve the page fault
736 	 * with the mlx5_ib_page_fault_resume command. Since this function is
737 	 * called from within the work element, there is no risk of missing
738 	 * events.
739 	 */
740 	struct mlx5_ib_qp *mibqp = to_mibqp(qp);
741 	enum mlx5_ib_pagefault_context context =
742 		mlx5_ib_get_pagefault_context(pfault);
743 	struct mlx5_ib_pfault *qp_pfault = &mibqp->pagefaults[context];
744 
745 	qp_pfault->mpfault = *pfault;
746 
747 	/* No need to stop interrupts here since we are in an interrupt */
748 	spin_lock(&mibqp->disable_page_faults_lock);
749 	if (!mibqp->disable_page_faults)
750 		queue_work(mlx5_ib_page_fault_wq, &qp_pfault->work);
751 	spin_unlock(&mibqp->disable_page_faults_lock);
752 }
753 
754 void mlx5_ib_odp_create_qp(struct mlx5_ib_qp *qp)
755 {
756 	int i;
757 
758 	qp->disable_page_faults = 1;
759 	spin_lock_init(&qp->disable_page_faults_lock);
760 
761 	qp->trans_qp.base.mqp.pfault_handler = mlx5_ib_pfault_handler;
762 
763 	for (i = 0; i < MLX5_IB_PAGEFAULT_CONTEXTS; ++i)
764 		INIT_WORK(&qp->pagefaults[i].work, mlx5_ib_qp_pfault_action);
765 }
766 
767 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *ibdev)
768 {
769 	int ret;
770 
771 	ret = init_srcu_struct(&ibdev->mr_srcu);
772 	if (ret)
773 		return ret;
774 
775 	return 0;
776 }
777 
778 void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *ibdev)
779 {
780 	cleanup_srcu_struct(&ibdev->mr_srcu);
781 }
782 
783 int __init mlx5_ib_odp_init(void)
784 {
785 	mlx5_ib_page_fault_wq =
786 		create_singlethread_workqueue("mlx5_ib_page_faults");
787 	if (!mlx5_ib_page_fault_wq)
788 		return -ENOMEM;
789 
790 	return 0;
791 }
792 
793 void mlx5_ib_odp_cleanup(void)
794 {
795 	destroy_workqueue(mlx5_ib_page_fault_wq);
796 }
797