1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <rdma/ib_umem_odp.h> 34 #include <linux/kernel.h> 35 #include <linux/dma-buf.h> 36 #include <linux/dma-resv.h> 37 38 #include "mlx5_ib.h" 39 #include "cmd.h" 40 #include "umr.h" 41 #include "qp.h" 42 43 #include <linux/mlx5/eq.h> 44 45 /* Contains the details of a pagefault. */ 46 struct mlx5_pagefault { 47 u32 bytes_committed; 48 u64 token; 49 u8 event_subtype; 50 u8 type; 51 union { 52 /* Initiator or send message responder pagefault details. */ 53 struct { 54 /* Received packet size, only valid for responders. */ 55 u32 packet_size; 56 /* 57 * Number of resource holding WQE, depends on type. 58 */ 59 u32 wq_num; 60 /* 61 * WQE index. Refers to either the send queue or 62 * receive queue, according to event_subtype. 63 */ 64 u16 wqe_index; 65 } wqe; 66 /* RDMA responder pagefault details */ 67 struct { 68 u32 r_key; 69 /* 70 * Received packet size, minimal size page fault 71 * resolution required for forward progress. 72 */ 73 u32 packet_size; 74 u32 rdma_op_len; 75 u64 rdma_va; 76 } rdma; 77 struct { 78 u64 va; 79 u32 mkey; 80 u32 fault_byte_count; 81 u32 prefetch_before_byte_count; 82 u32 prefetch_after_byte_count; 83 u8 flags; 84 } memory; 85 }; 86 87 struct mlx5_ib_pf_eq *eq; 88 struct work_struct work; 89 }; 90 91 #define MAX_PREFETCH_LEN (4*1024*1024U) 92 93 /* Timeout in ms to wait for an active mmu notifier to complete when handling 94 * a pagefault. */ 95 #define MMU_NOTIFIER_TIMEOUT 1000 96 97 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) 98 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) 99 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) 100 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) 101 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) 102 103 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT 104 105 static u64 mlx5_imr_ksm_entries; 106 107 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, 108 struct mlx5_ib_mr *imr, int flags) 109 { 110 struct mlx5_core_dev *dev = mr_to_mdev(imr)->mdev; 111 struct mlx5_klm *end = pklm + nentries; 112 int step = MLX5_CAP_ODP(dev, mem_page_fault) ? MLX5_IMR_MTT_SIZE : 0; 113 __be32 key = MLX5_CAP_ODP(dev, mem_page_fault) ? 114 cpu_to_be32(imr->null_mmkey.key) : 115 mr_to_mdev(imr)->mkeys.null_mkey; 116 u64 va = 117 MLX5_CAP_ODP(dev, mem_page_fault) ? idx * MLX5_IMR_MTT_SIZE : 0; 118 119 if (flags & MLX5_IB_UPD_XLT_ZAP) { 120 for (; pklm != end; pklm++, idx++, va += step) { 121 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 122 pklm->key = key; 123 pklm->va = cpu_to_be64(va); 124 } 125 return; 126 } 127 128 /* 129 * The locking here is pretty subtle. Ideally the implicit_children 130 * xarray would be protected by the umem_mutex, however that is not 131 * possible. Instead this uses a weaker update-then-lock pattern: 132 * 133 * xa_store() 134 * mutex_lock(umem_mutex) 135 * mlx5r_umr_update_xlt() 136 * mutex_unlock(umem_mutex) 137 * destroy lkey 138 * 139 * ie any change the xarray must be followed by the locked update_xlt 140 * before destroying. 141 * 142 * The umem_mutex provides the acquire/release semantic needed to make 143 * the xa_store() visible to a racing thread. 144 */ 145 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); 146 147 for (; pklm != end; pklm++, idx++, va += step) { 148 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); 149 150 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); 151 if (mtt) { 152 pklm->key = cpu_to_be32(mtt->ibmr.lkey); 153 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); 154 } else { 155 pklm->key = key; 156 pklm->va = cpu_to_be64(va); 157 } 158 } 159 } 160 161 static u64 umem_dma_to_mtt(dma_addr_t umem_dma) 162 { 163 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; 164 165 if (umem_dma & ODP_READ_ALLOWED_BIT) 166 mtt_entry |= MLX5_IB_MTT_READ; 167 if (umem_dma & ODP_WRITE_ALLOWED_BIT) 168 mtt_entry |= MLX5_IB_MTT_WRITE; 169 170 return mtt_entry; 171 } 172 173 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, 174 struct mlx5_ib_mr *mr, int flags) 175 { 176 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 177 dma_addr_t pa; 178 size_t i; 179 180 if (flags & MLX5_IB_UPD_XLT_ZAP) 181 return; 182 183 for (i = 0; i < nentries; i++) { 184 pa = odp->dma_list[idx + i]; 185 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); 186 } 187 } 188 189 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, 190 struct mlx5_ib_mr *mr, int flags) 191 { 192 if (flags & MLX5_IB_UPD_XLT_INDIRECT) { 193 populate_klm(xlt, idx, nentries, mr, flags); 194 } else { 195 populate_mtt(xlt, idx, nentries, mr, flags); 196 } 197 } 198 199 /* 200 * This must be called after the mr has been removed from implicit_children. 201 * NOTE: The MR does not necessarily have to be 202 * empty here, parallel page faults could have raced with the free process and 203 * added pages to it. 204 */ 205 static void free_implicit_child_mr_work(struct work_struct *work) 206 { 207 struct mlx5_ib_mr *mr = 208 container_of(work, struct mlx5_ib_mr, odp_destroy.work); 209 struct mlx5_ib_mr *imr = mr->parent; 210 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); 211 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 212 213 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 214 215 mutex_lock(&odp_imr->umem_mutex); 216 mlx5r_umr_update_xlt(mr->parent, 217 ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT, 1, 0, 218 MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); 219 mutex_unlock(&odp_imr->umem_mutex); 220 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 221 222 mlx5r_deref_odp_mkey(&imr->mmkey); 223 } 224 225 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) 226 { 227 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 228 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; 229 struct mlx5_ib_mr *imr = mr->parent; 230 231 /* 232 * If userspace is racing freeing the parent implicit ODP MR then we can 233 * loose the race with parent destruction. In this case 234 * mlx5_ib_free_odp_mr() will free everything in the implicit_children 235 * xarray so NOP is fine. This child MR cannot be destroyed here because 236 * we are under its umem_mutex. 237 */ 238 if (!refcount_inc_not_zero(&imr->mmkey.usecount)) 239 return; 240 241 xa_lock(&imr->implicit_children); 242 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_KERNEL) != 243 mr) { 244 xa_unlock(&imr->implicit_children); 245 mlx5r_deref_odp_mkey(&imr->mmkey); 246 return; 247 } 248 249 if (MLX5_CAP_ODP(mr_to_mdev(mr)->mdev, mem_page_fault)) 250 __xa_erase(&mr_to_mdev(mr)->odp_mkeys, 251 mlx5_base_mkey(mr->mmkey.key)); 252 xa_unlock(&imr->implicit_children); 253 254 /* Freeing a MR is a sleeping operation, so bounce to a work queue */ 255 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); 256 queue_work(system_unbound_wq, &mr->odp_destroy.work); 257 } 258 259 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, 260 const struct mmu_notifier_range *range, 261 unsigned long cur_seq) 262 { 263 struct ib_umem_odp *umem_odp = 264 container_of(mni, struct ib_umem_odp, notifier); 265 struct mlx5_ib_mr *mr; 266 const u64 umr_block_mask = MLX5_UMR_MTT_NUM_ENTRIES_ALIGNMENT - 1; 267 u64 idx = 0, blk_start_idx = 0; 268 u64 invalidations = 0; 269 unsigned long start; 270 unsigned long end; 271 int in_block = 0; 272 u64 addr; 273 274 if (!mmu_notifier_range_blockable(range)) 275 return false; 276 277 mutex_lock(&umem_odp->umem_mutex); 278 mmu_interval_set_seq(mni, cur_seq); 279 /* 280 * If npages is zero then umem_odp->private may not be setup yet. This 281 * does not complete until after the first page is mapped for DMA. 282 */ 283 if (!umem_odp->npages) 284 goto out; 285 mr = umem_odp->private; 286 if (!mr) 287 goto out; 288 289 start = max_t(u64, ib_umem_start(umem_odp), range->start); 290 end = min_t(u64, ib_umem_end(umem_odp), range->end); 291 292 /* 293 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that 294 * while we are doing the invalidation, no page fault will attempt to 295 * overwrite the same MTTs. Concurent invalidations might race us, 296 * but they will write 0s as well, so no difference in the end result. 297 */ 298 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { 299 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 300 /* 301 * Strive to write the MTTs in chunks, but avoid overwriting 302 * non-existing MTTs. The huristic here can be improved to 303 * estimate the cost of another UMR vs. the cost of bigger 304 * UMR. 305 */ 306 if (umem_odp->dma_list[idx] & 307 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { 308 if (!in_block) { 309 blk_start_idx = idx; 310 in_block = 1; 311 } 312 313 /* Count page invalidations */ 314 invalidations += idx - blk_start_idx + 1; 315 } else { 316 u64 umr_offset = idx & umr_block_mask; 317 318 if (in_block && umr_offset == 0) { 319 mlx5r_umr_update_xlt(mr, blk_start_idx, 320 idx - blk_start_idx, 0, 321 MLX5_IB_UPD_XLT_ZAP | 322 MLX5_IB_UPD_XLT_ATOMIC); 323 in_block = 0; 324 } 325 } 326 } 327 if (in_block) 328 mlx5r_umr_update_xlt(mr, blk_start_idx, 329 idx - blk_start_idx + 1, 0, 330 MLX5_IB_UPD_XLT_ZAP | 331 MLX5_IB_UPD_XLT_ATOMIC); 332 333 mlx5_update_odp_stats_with_handled(mr, invalidations, invalidations); 334 335 /* 336 * We are now sure that the device will not access the 337 * memory. We can safely unmap it, and mark it as dirty if 338 * needed. 339 */ 340 341 ib_umem_odp_unmap_dma_pages(umem_odp, start, end); 342 343 if (unlikely(!umem_odp->npages && mr->parent)) 344 destroy_unused_implicit_child_mr(mr); 345 out: 346 mutex_unlock(&umem_odp->umem_mutex); 347 return true; 348 } 349 350 const struct mmu_interval_notifier_ops mlx5_mn_ops = { 351 .invalidate = mlx5_ib_invalidate_range, 352 }; 353 354 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev) 355 { 356 struct ib_odp_caps *caps = &dev->odp_caps; 357 358 memset(caps, 0, sizeof(*caps)); 359 360 if (!MLX5_CAP_GEN(dev->mdev, pg) || !mlx5r_umr_can_load_pas(dev, 0)) 361 return; 362 363 caps->general_caps = IB_ODP_SUPPORT; 364 365 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 366 dev->odp_max_size = U64_MAX; 367 else 368 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); 369 370 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.send)) 371 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; 372 373 if (MLX5_CAP_ODP_SCHEME(dev->mdev, ud_odp_caps.srq_receive)) 374 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 375 376 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.send)) 377 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; 378 379 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.receive)) 380 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; 381 382 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.write)) 383 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; 384 385 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.read)) 386 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; 387 388 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.atomic)) 389 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 390 391 if (MLX5_CAP_ODP_SCHEME(dev->mdev, rc_odp_caps.srq_receive)) 392 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 393 394 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.send)) 395 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; 396 397 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.receive)) 398 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; 399 400 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.write)) 401 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; 402 403 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.read)) 404 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; 405 406 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.atomic)) 407 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; 408 409 if (MLX5_CAP_ODP_SCHEME(dev->mdev, xrc_odp_caps.srq_receive)) 410 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; 411 412 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && 413 MLX5_CAP_GEN(dev->mdev, null_mkey) && 414 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && 415 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) 416 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; 417 } 418 419 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, 420 struct mlx5_pagefault *pfault, 421 int error) 422 { 423 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? 424 pfault->wqe.wq_num : pfault->token; 425 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; 426 void *info; 427 int err; 428 429 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); 430 431 if (pfault->event_subtype == MLX5_PFAULT_SUBTYPE_MEMORY) { 432 info = MLX5_ADDR_OF(page_fault_resume_in, in, 433 page_fault_info.mem_page_fault_info); 434 MLX5_SET(mem_page_fault_info, info, fault_token_31_0, 435 pfault->token & 0xffffffff); 436 MLX5_SET(mem_page_fault_info, info, fault_token_47_32, 437 (pfault->token >> 32) & 0xffff); 438 MLX5_SET(mem_page_fault_info, info, error, !!error); 439 } else { 440 info = MLX5_ADDR_OF(page_fault_resume_in, in, 441 page_fault_info.trans_page_fault_info); 442 MLX5_SET(trans_page_fault_info, info, page_fault_type, 443 pfault->type); 444 MLX5_SET(trans_page_fault_info, info, fault_token, 445 pfault->token); 446 MLX5_SET(trans_page_fault_info, info, wq_number, wq_num); 447 MLX5_SET(trans_page_fault_info, info, error, !!error); 448 } 449 450 err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); 451 if (err) 452 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", 453 wq_num, err); 454 } 455 456 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, 457 unsigned long idx) 458 { 459 struct mlx5_ib_dev *dev = mr_to_mdev(imr); 460 struct ib_umem_odp *odp; 461 struct mlx5_ib_mr *mr; 462 struct mlx5_ib_mr *ret; 463 int err; 464 465 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), 466 idx * MLX5_IMR_MTT_SIZE, 467 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); 468 if (IS_ERR(odp)) 469 return ERR_CAST(odp); 470 471 mr = mlx5_mr_cache_alloc(dev, imr->access_flags, 472 MLX5_MKC_ACCESS_MODE_MTT, 473 MLX5_IMR_MTT_ENTRIES); 474 if (IS_ERR(mr)) { 475 ib_umem_odp_release(odp); 476 return mr; 477 } 478 479 mr->access_flags = imr->access_flags; 480 mr->ibmr.pd = imr->ibmr.pd; 481 mr->ibmr.device = &mr_to_mdev(imr)->ib_dev; 482 mr->umem = &odp->umem; 483 mr->ibmr.lkey = mr->mmkey.key; 484 mr->ibmr.rkey = mr->mmkey.key; 485 mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE; 486 mr->parent = imr; 487 odp->private = mr; 488 489 /* 490 * First refcount is owned by the xarray and second refconut 491 * is returned to the caller. 492 */ 493 refcount_set(&mr->mmkey.usecount, 2); 494 495 err = mlx5r_umr_update_xlt(mr, 0, 496 MLX5_IMR_MTT_ENTRIES, 497 PAGE_SHIFT, 498 MLX5_IB_UPD_XLT_ZAP | 499 MLX5_IB_UPD_XLT_ENABLE); 500 if (err) { 501 ret = ERR_PTR(err); 502 goto out_mr; 503 } 504 505 xa_lock(&imr->implicit_children); 506 ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, 507 GFP_KERNEL); 508 if (unlikely(ret)) { 509 if (xa_is_err(ret)) { 510 ret = ERR_PTR(xa_err(ret)); 511 goto out_lock; 512 } 513 /* 514 * Another thread beat us to creating the child mr, use 515 * theirs. 516 */ 517 refcount_inc(&ret->mmkey.usecount); 518 goto out_lock; 519 } 520 521 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) { 522 ret = __xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key), 523 &mr->mmkey, GFP_KERNEL); 524 if (xa_is_err(ret)) { 525 ret = ERR_PTR(xa_err(ret)); 526 __xa_erase(&imr->implicit_children, idx); 527 goto out_lock; 528 } 529 mr->mmkey.type = MLX5_MKEY_IMPLICIT_CHILD; 530 } 531 xa_unlock(&imr->implicit_children); 532 mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr); 533 return mr; 534 535 out_lock: 536 xa_unlock(&imr->implicit_children); 537 out_mr: 538 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 539 return ret; 540 } 541 542 /* 543 * When using memory scheme ODP, implicit MRs can't use the reserved null mkey 544 * and each implicit MR needs to assign a private null mkey to get the page 545 * faults on. 546 * The null mkey is created with the properties to enable getting the page 547 * fault for every time it is accessed and having all relevant access flags. 548 */ 549 static int alloc_implicit_mr_null_mkey(struct mlx5_ib_dev *dev, 550 struct mlx5_ib_mr *imr, 551 struct mlx5_ib_pd *pd) 552 { 553 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + 64; 554 void *mkc; 555 u32 *in; 556 int err; 557 558 in = kzalloc(inlen, GFP_KERNEL); 559 if (!in) 560 return -ENOMEM; 561 562 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 4); 563 MLX5_SET(create_mkey_in, in, pg_access, 1); 564 565 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 566 MLX5_SET(mkc, mkc, a, 1); 567 MLX5_SET(mkc, mkc, rw, 1); 568 MLX5_SET(mkc, mkc, rr, 1); 569 MLX5_SET(mkc, mkc, lw, 1); 570 MLX5_SET(mkc, mkc, lr, 1); 571 MLX5_SET(mkc, mkc, free, 0); 572 MLX5_SET(mkc, mkc, umr_en, 0); 573 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 574 575 MLX5_SET(mkc, mkc, translations_octword_size, 4); 576 MLX5_SET(mkc, mkc, log_page_size, 61); 577 MLX5_SET(mkc, mkc, length64, 1); 578 MLX5_SET(mkc, mkc, pd, pd->pdn); 579 MLX5_SET64(mkc, mkc, start_addr, 0); 580 MLX5_SET(mkc, mkc, qpn, 0xffffff); 581 582 err = mlx5_core_create_mkey(dev->mdev, &imr->null_mmkey.key, in, inlen); 583 if (err) 584 goto free_in; 585 586 imr->null_mmkey.type = MLX5_MKEY_NULL; 587 588 free_in: 589 kfree(in); 590 return err; 591 } 592 593 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, 594 int access_flags) 595 { 596 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); 597 struct ib_umem_odp *umem_odp; 598 struct mlx5_ib_mr *imr; 599 int err; 600 601 if (!mlx5r_umr_can_load_pas(dev, MLX5_IMR_MTT_ENTRIES * PAGE_SIZE)) 602 return ERR_PTR(-EOPNOTSUPP); 603 604 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); 605 if (IS_ERR(umem_odp)) 606 return ERR_CAST(umem_odp); 607 608 imr = mlx5_mr_cache_alloc(dev, access_flags, MLX5_MKC_ACCESS_MODE_KSM, 609 mlx5_imr_ksm_entries); 610 if (IS_ERR(imr)) { 611 ib_umem_odp_release(umem_odp); 612 return imr; 613 } 614 615 imr->access_flags = access_flags; 616 imr->ibmr.pd = &pd->ibpd; 617 imr->ibmr.iova = 0; 618 imr->umem = &umem_odp->umem; 619 imr->ibmr.lkey = imr->mmkey.key; 620 imr->ibmr.rkey = imr->mmkey.key; 621 imr->ibmr.device = &dev->ib_dev; 622 imr->is_odp_implicit = true; 623 xa_init(&imr->implicit_children); 624 625 if (MLX5_CAP_ODP(dev->mdev, mem_page_fault)) { 626 err = alloc_implicit_mr_null_mkey(dev, imr, pd); 627 if (err) 628 goto out_mr; 629 630 err = mlx5r_store_odp_mkey(dev, &imr->null_mmkey); 631 if (err) 632 goto out_mr; 633 } 634 635 err = mlx5r_umr_update_xlt(imr, 0, 636 mlx5_imr_ksm_entries, 637 MLX5_KSM_PAGE_SHIFT, 638 MLX5_IB_UPD_XLT_INDIRECT | 639 MLX5_IB_UPD_XLT_ZAP | 640 MLX5_IB_UPD_XLT_ENABLE); 641 if (err) 642 goto out_mr; 643 644 err = mlx5r_store_odp_mkey(dev, &imr->mmkey); 645 if (err) 646 goto out_mr; 647 648 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); 649 return imr; 650 out_mr: 651 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); 652 mlx5_ib_dereg_mr(&imr->ibmr, NULL); 653 return ERR_PTR(err); 654 } 655 656 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr) 657 { 658 struct mlx5_ib_mr *mtt; 659 unsigned long idx; 660 661 /* 662 * If this is an implicit MR it is already invalidated so we can just 663 * delete the children mkeys. 664 */ 665 xa_for_each(&mr->implicit_children, idx, mtt) { 666 xa_erase(&mr->implicit_children, idx); 667 mlx5_ib_dereg_mr(&mtt->ibmr, NULL); 668 } 669 670 if (mr->null_mmkey.key) { 671 xa_erase(&mr_to_mdev(mr)->odp_mkeys, 672 mlx5_base_mkey(mr->null_mmkey.key)); 673 674 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, 675 mr->null_mmkey.key); 676 } 677 } 678 679 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) 680 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2) 681 #define MLX5_PF_FLAGS_ENABLE BIT(3) 682 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, 683 u64 user_va, size_t bcnt, u32 *bytes_mapped, 684 u32 flags) 685 { 686 int page_shift, ret, np; 687 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; 688 u64 access_mask; 689 u64 start_idx; 690 bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT); 691 u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC; 692 693 if (flags & MLX5_PF_FLAGS_ENABLE) 694 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 695 696 page_shift = odp->page_shift; 697 start_idx = (user_va - ib_umem_start(odp)) >> page_shift; 698 access_mask = ODP_READ_ALLOWED_BIT; 699 700 if (odp->umem.writable && !downgrade) 701 access_mask |= ODP_WRITE_ALLOWED_BIT; 702 703 np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault); 704 if (np < 0) 705 return np; 706 707 /* 708 * No need to check whether the MTTs really belong to this MR, since 709 * ib_umem_odp_map_dma_and_lock already checks this. 710 */ 711 ret = mlx5r_umr_update_xlt(mr, start_idx, np, page_shift, xlt_flags); 712 mutex_unlock(&odp->umem_mutex); 713 714 if (ret < 0) { 715 if (ret != -EAGAIN) 716 mlx5_ib_err(mr_to_mdev(mr), 717 "Failed to update mkey page tables\n"); 718 goto out; 719 } 720 721 if (bytes_mapped) { 722 u32 new_mappings = (np << page_shift) - 723 (user_va - round_down(user_va, 1 << page_shift)); 724 725 *bytes_mapped += min_t(u32, new_mappings, bcnt); 726 } 727 728 return np << (page_shift - PAGE_SHIFT); 729 730 out: 731 return ret; 732 } 733 734 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, 735 struct ib_umem_odp *odp_imr, u64 user_va, 736 size_t bcnt, u32 *bytes_mapped, u32 flags) 737 { 738 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; 739 unsigned long upd_start_idx = end_idx + 1; 740 unsigned long upd_len = 0; 741 unsigned long npages = 0; 742 int err; 743 int ret; 744 745 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || 746 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) 747 return -EFAULT; 748 749 /* Fault each child mr that intersects with our interval. */ 750 while (bcnt) { 751 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; 752 struct ib_umem_odp *umem_odp; 753 struct mlx5_ib_mr *mtt; 754 u64 len; 755 756 xa_lock(&imr->implicit_children); 757 mtt = xa_load(&imr->implicit_children, idx); 758 if (unlikely(!mtt)) { 759 xa_unlock(&imr->implicit_children); 760 mtt = implicit_get_child_mr(imr, idx); 761 if (IS_ERR(mtt)) { 762 ret = PTR_ERR(mtt); 763 goto out; 764 } 765 upd_start_idx = min(upd_start_idx, idx); 766 upd_len = idx - upd_start_idx + 1; 767 } else { 768 refcount_inc(&mtt->mmkey.usecount); 769 xa_unlock(&imr->implicit_children); 770 } 771 772 umem_odp = to_ib_umem_odp(mtt->umem); 773 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - 774 user_va; 775 776 ret = pagefault_real_mr(mtt, umem_odp, user_va, len, 777 bytes_mapped, flags); 778 779 mlx5r_deref_odp_mkey(&mtt->mmkey); 780 781 if (ret < 0) 782 goto out; 783 user_va += len; 784 bcnt -= len; 785 npages += ret; 786 } 787 788 ret = npages; 789 790 /* 791 * Any time the implicit_children are changed we must perform an 792 * update of the xlt before exiting to ensure the HW and the 793 * implicit_children remains synchronized. 794 */ 795 out: 796 if (likely(!upd_len)) 797 return ret; 798 799 /* 800 * Notice this is not strictly ordered right, the KSM is updated after 801 * the implicit_children is updated, so a parallel page fault could 802 * see a MR that is not yet visible in the KSM. This is similar to a 803 * parallel page fault seeing a MR that is being concurrently removed 804 * from the KSM. Both of these improbable situations are resolved 805 * safely by resuming the HW and then taking another page fault. The 806 * next pagefault handler will see the new information. 807 */ 808 mutex_lock(&odp_imr->umem_mutex); 809 err = mlx5r_umr_update_xlt(imr, upd_start_idx, upd_len, 0, 810 MLX5_IB_UPD_XLT_INDIRECT | 811 MLX5_IB_UPD_XLT_ATOMIC); 812 mutex_unlock(&odp_imr->umem_mutex); 813 if (err) { 814 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n"); 815 return err; 816 } 817 return ret; 818 } 819 820 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt, 821 u32 *bytes_mapped, u32 flags) 822 { 823 struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem); 824 u32 xlt_flags = 0; 825 int err; 826 unsigned long page_size; 827 828 if (flags & MLX5_PF_FLAGS_ENABLE) 829 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; 830 831 dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL); 832 err = ib_umem_dmabuf_map_pages(umem_dmabuf); 833 if (err) { 834 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 835 return err; 836 } 837 838 page_size = mlx5_umem_dmabuf_find_best_pgsz(umem_dmabuf); 839 if (!page_size) { 840 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 841 err = -EINVAL; 842 } else { 843 if (mr->data_direct) 844 err = mlx5r_umr_update_data_direct_ksm_pas(mr, xlt_flags); 845 else 846 err = mlx5r_umr_update_mr_pas(mr, xlt_flags); 847 } 848 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv); 849 850 if (err) 851 return err; 852 853 if (bytes_mapped) 854 *bytes_mapped += bcnt; 855 856 return ib_umem_num_pages(mr->umem); 857 } 858 859 /* 860 * Returns: 861 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are 862 * not accessible, or the MR is no longer valid. 863 * -EAGAIN/-ENOMEM: The operation should be retried 864 * 865 * -EINVAL/others: General internal malfunction 866 * >0: Number of pages mapped 867 */ 868 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, 869 u32 *bytes_mapped, u32 flags, bool permissive_fault) 870 { 871 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 872 873 if (unlikely(io_virt < mr->ibmr.iova) && !permissive_fault) 874 return -EFAULT; 875 876 if (mr->umem->is_dmabuf) 877 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags); 878 879 if (!odp->is_implicit_odp) { 880 u64 offset = io_virt < mr->ibmr.iova ? 0 : io_virt - mr->ibmr.iova; 881 u64 user_va; 882 883 if (check_add_overflow(offset, (u64)odp->umem.address, 884 &user_va)) 885 return -EFAULT; 886 887 if (permissive_fault) { 888 if (user_va < ib_umem_start(odp)) 889 user_va = ib_umem_start(odp); 890 if ((user_va + bcnt) > ib_umem_end(odp)) 891 bcnt = ib_umem_end(odp) - user_va; 892 } else if (unlikely(user_va >= ib_umem_end(odp) || 893 ib_umem_end(odp) - user_va < bcnt)) 894 return -EFAULT; 895 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, 896 flags); 897 } 898 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, 899 flags); 900 } 901 902 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr) 903 { 904 int ret; 905 906 ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address, 907 mr->umem->length, NULL, 908 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE); 909 return ret >= 0 ? 0 : ret; 910 } 911 912 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr) 913 { 914 int ret; 915 916 ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL, 917 MLX5_PF_FLAGS_ENABLE); 918 919 return ret >= 0 ? 0 : ret; 920 } 921 922 struct pf_frame { 923 struct pf_frame *next; 924 u32 key; 925 u64 io_virt; 926 size_t bcnt; 927 int depth; 928 }; 929 930 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key) 931 { 932 if (!mmkey) 933 return false; 934 if (mmkey->type == MLX5_MKEY_MW || 935 mmkey->type == MLX5_MKEY_INDIRECT_DEVX) 936 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); 937 return mmkey->key == key; 938 } 939 940 static struct mlx5_ib_mkey *find_odp_mkey(struct mlx5_ib_dev *dev, u32 key) 941 { 942 struct mlx5_ib_mkey *mmkey; 943 944 xa_lock(&dev->odp_mkeys); 945 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); 946 if (!mmkey) { 947 mmkey = ERR_PTR(-ENOENT); 948 goto out; 949 } 950 if (!mkey_is_eq(mmkey, key)) { 951 mmkey = ERR_PTR(-EFAULT); 952 goto out; 953 } 954 refcount_inc(&mmkey->usecount); 955 out: 956 xa_unlock(&dev->odp_mkeys); 957 958 return mmkey; 959 } 960 961 /* 962 * Handle a single data segment in a page-fault WQE or RDMA region. 963 * 964 * Returns zero on success. The caller may continue to the next data segment. 965 * Can return the following error codes: 966 * -EAGAIN to designate a temporary error. The caller will abort handling the 967 * page fault and resolve it. 968 * -EFAULT when there's an error mapping the requested pages. The caller will 969 * abort the page fault handling. 970 */ 971 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, 972 struct ib_pd *pd, u32 key, 973 u64 io_virt, size_t bcnt, 974 u32 *bytes_committed, 975 u32 *bytes_mapped) 976 { 977 int ret, i, outlen, cur_outlen = 0, depth = 0, pages_in_range; 978 struct pf_frame *head = NULL, *frame; 979 struct mlx5_ib_mkey *mmkey; 980 struct mlx5_ib_mr *mr; 981 struct mlx5_klm *pklm; 982 u32 *out = NULL; 983 size_t offset; 984 985 io_virt += *bytes_committed; 986 bcnt -= *bytes_committed; 987 next_mr: 988 mmkey = find_odp_mkey(dev, key); 989 if (IS_ERR(mmkey)) { 990 ret = PTR_ERR(mmkey); 991 if (ret == -ENOENT) { 992 mlx5_ib_dbg( 993 dev, 994 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", 995 key); 996 if (bytes_mapped) 997 *bytes_mapped += bcnt; 998 /* 999 * The user could specify a SGL with multiple lkeys and 1000 * only some of them are ODP. Treat the non-ODP ones as 1001 * fully faulted. 1002 */ 1003 ret = 0; 1004 } 1005 goto end; 1006 } 1007 1008 switch (mmkey->type) { 1009 case MLX5_MKEY_MR: 1010 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1011 1012 pages_in_range = (ALIGN(io_virt + bcnt, PAGE_SIZE) - 1013 (io_virt & PAGE_MASK)) >> 1014 PAGE_SHIFT; 1015 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0, false); 1016 if (ret < 0) 1017 goto end; 1018 1019 mlx5_update_odp_stats_with_handled(mr, faults, ret); 1020 1021 if (ret < pages_in_range) { 1022 ret = -EFAULT; 1023 goto end; 1024 } 1025 1026 ret = 0; 1027 break; 1028 1029 case MLX5_MKEY_MW: 1030 case MLX5_MKEY_INDIRECT_DEVX: 1031 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { 1032 mlx5_ib_dbg(dev, "indirection level exceeded\n"); 1033 ret = -EFAULT; 1034 goto end; 1035 } 1036 1037 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + 1038 sizeof(*pklm) * (mmkey->ndescs - 2); 1039 1040 if (outlen > cur_outlen) { 1041 kfree(out); 1042 out = kzalloc(outlen, GFP_KERNEL); 1043 if (!out) { 1044 ret = -ENOMEM; 1045 goto end; 1046 } 1047 cur_outlen = outlen; 1048 } 1049 1050 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, 1051 bsf0_klm0_pas_mtt0_1); 1052 1053 ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen); 1054 if (ret) 1055 goto end; 1056 1057 offset = io_virt - MLX5_GET64(query_mkey_out, out, 1058 memory_key_mkey_entry.start_addr); 1059 1060 for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) { 1061 if (offset >= be32_to_cpu(pklm->bcount)) { 1062 offset -= be32_to_cpu(pklm->bcount); 1063 continue; 1064 } 1065 1066 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1067 if (!frame) { 1068 ret = -ENOMEM; 1069 goto end; 1070 } 1071 1072 frame->key = be32_to_cpu(pklm->key); 1073 frame->io_virt = be64_to_cpu(pklm->va) + offset; 1074 frame->bcnt = min_t(size_t, bcnt, 1075 be32_to_cpu(pklm->bcount) - offset); 1076 frame->depth = depth + 1; 1077 frame->next = head; 1078 head = frame; 1079 1080 bcnt -= frame->bcnt; 1081 offset = 0; 1082 } 1083 break; 1084 1085 default: 1086 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); 1087 ret = -EFAULT; 1088 goto end; 1089 } 1090 1091 if (head) { 1092 frame = head; 1093 head = frame->next; 1094 1095 key = frame->key; 1096 io_virt = frame->io_virt; 1097 bcnt = frame->bcnt; 1098 depth = frame->depth; 1099 kfree(frame); 1100 1101 mlx5r_deref_odp_mkey(mmkey); 1102 goto next_mr; 1103 } 1104 1105 end: 1106 if (!IS_ERR(mmkey)) 1107 mlx5r_deref_odp_mkey(mmkey); 1108 while (head) { 1109 frame = head; 1110 head = frame->next; 1111 kfree(frame); 1112 } 1113 kfree(out); 1114 1115 *bytes_committed = 0; 1116 return ret; 1117 } 1118 1119 /* 1120 * Parse a series of data segments for page fault handling. 1121 * 1122 * @dev: Pointer to mlx5 IB device 1123 * @pfault: contains page fault information. 1124 * @wqe: points at the first data segment in the WQE. 1125 * @wqe_end: points after the end of the WQE. 1126 * @bytes_mapped: receives the number of bytes that the function was able to 1127 * map. This allows the caller to decide intelligently whether 1128 * enough memory was mapped to resolve the page fault 1129 * successfully (e.g. enough for the next MTU, or the entire 1130 * WQE). 1131 * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus 1132 * the committed bytes). 1133 * @receive_queue: receive WQE end of sg list 1134 * 1135 * Returns zero for success or a negative error code. 1136 */ 1137 static int pagefault_data_segments(struct mlx5_ib_dev *dev, 1138 struct mlx5_pagefault *pfault, 1139 void *wqe, 1140 void *wqe_end, u32 *bytes_mapped, 1141 u32 *total_wqe_bytes, bool receive_queue) 1142 { 1143 int ret = 0; 1144 u64 io_virt; 1145 __be32 key; 1146 u32 byte_count; 1147 size_t bcnt; 1148 int inline_segment; 1149 1150 if (bytes_mapped) 1151 *bytes_mapped = 0; 1152 if (total_wqe_bytes) 1153 *total_wqe_bytes = 0; 1154 1155 while (wqe < wqe_end) { 1156 struct mlx5_wqe_data_seg *dseg = wqe; 1157 1158 io_virt = be64_to_cpu(dseg->addr); 1159 key = dseg->lkey; 1160 byte_count = be32_to_cpu(dseg->byte_count); 1161 inline_segment = !!(byte_count & MLX5_INLINE_SEG); 1162 bcnt = byte_count & ~MLX5_INLINE_SEG; 1163 1164 if (inline_segment) { 1165 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; 1166 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 1167 16); 1168 } else { 1169 wqe += sizeof(*dseg); 1170 } 1171 1172 /* receive WQE end of sg list. */ 1173 if (receive_queue && bcnt == 0 && 1174 key == dev->mkeys.terminate_scatter_list_mkey && 1175 io_virt == 0) 1176 break; 1177 1178 if (!inline_segment && total_wqe_bytes) { 1179 *total_wqe_bytes += bcnt - min_t(size_t, bcnt, 1180 pfault->bytes_committed); 1181 } 1182 1183 /* A zero length data segment designates a length of 2GB. */ 1184 if (bcnt == 0) 1185 bcnt = 1U << 31; 1186 1187 if (inline_segment || bcnt <= pfault->bytes_committed) { 1188 pfault->bytes_committed -= 1189 min_t(size_t, bcnt, 1190 pfault->bytes_committed); 1191 continue; 1192 } 1193 1194 ret = pagefault_single_data_segment(dev, NULL, be32_to_cpu(key), 1195 io_virt, bcnt, 1196 &pfault->bytes_committed, 1197 bytes_mapped); 1198 if (ret < 0) 1199 break; 1200 } 1201 1202 return ret; 1203 } 1204 1205 /* 1206 * Parse initiator WQE. Advances the wqe pointer to point at the 1207 * scatter-gather list, and set wqe_end to the end of the WQE. 1208 */ 1209 static int mlx5_ib_mr_initiator_pfault_handler( 1210 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, 1211 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) 1212 { 1213 struct mlx5_wqe_ctrl_seg *ctrl = *wqe; 1214 u16 wqe_index = pfault->wqe.wqe_index; 1215 struct mlx5_base_av *av; 1216 unsigned ds, opcode; 1217 u32 qpn = qp->trans_qp.base.mqp.qpn; 1218 1219 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; 1220 if (ds * MLX5_WQE_DS_UNITS > wqe_length) { 1221 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", 1222 ds, wqe_length); 1223 return -EFAULT; 1224 } 1225 1226 if (ds == 0) { 1227 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", 1228 wqe_index, qpn); 1229 return -EFAULT; 1230 } 1231 1232 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; 1233 *wqe += sizeof(*ctrl); 1234 1235 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & 1236 MLX5_WQE_CTRL_OPCODE_MASK; 1237 1238 if (qp->type == IB_QPT_XRC_INI) 1239 *wqe += sizeof(struct mlx5_wqe_xrc_seg); 1240 1241 if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { 1242 av = *wqe; 1243 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) 1244 *wqe += sizeof(struct mlx5_av); 1245 else 1246 *wqe += sizeof(struct mlx5_base_av); 1247 } 1248 1249 switch (opcode) { 1250 case MLX5_OPCODE_RDMA_WRITE: 1251 case MLX5_OPCODE_RDMA_WRITE_IMM: 1252 case MLX5_OPCODE_RDMA_READ: 1253 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1254 break; 1255 case MLX5_OPCODE_ATOMIC_CS: 1256 case MLX5_OPCODE_ATOMIC_FA: 1257 *wqe += sizeof(struct mlx5_wqe_raddr_seg); 1258 *wqe += sizeof(struct mlx5_wqe_atomic_seg); 1259 break; 1260 } 1261 1262 return 0; 1263 } 1264 1265 /* 1266 * Parse responder WQE and set wqe_end to the end of the WQE. 1267 */ 1268 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, 1269 struct mlx5_ib_srq *srq, 1270 void **wqe, void **wqe_end, 1271 int wqe_length) 1272 { 1273 int wqe_size = 1 << srq->msrq.wqe_shift; 1274 1275 if (wqe_size > wqe_length) { 1276 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1277 return -EFAULT; 1278 } 1279 1280 *wqe_end = *wqe + wqe_size; 1281 *wqe += sizeof(struct mlx5_wqe_srq_next_seg); 1282 1283 return 0; 1284 } 1285 1286 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, 1287 struct mlx5_ib_qp *qp, 1288 void *wqe, void **wqe_end, 1289 int wqe_length) 1290 { 1291 struct mlx5_ib_wq *wq = &qp->rq; 1292 int wqe_size = 1 << wq->wqe_shift; 1293 1294 if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { 1295 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); 1296 return -EFAULT; 1297 } 1298 1299 if (wqe_size > wqe_length) { 1300 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); 1301 return -EFAULT; 1302 } 1303 1304 *wqe_end = wqe + wqe_size; 1305 1306 return 0; 1307 } 1308 1309 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, 1310 u32 wq_num, int pf_type) 1311 { 1312 struct mlx5_core_rsc_common *common = NULL; 1313 struct mlx5_core_srq *srq; 1314 1315 switch (pf_type) { 1316 case MLX5_WQE_PF_TYPE_RMP: 1317 srq = mlx5_cmd_get_srq(dev, wq_num); 1318 if (srq) 1319 common = &srq->common; 1320 break; 1321 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: 1322 case MLX5_WQE_PF_TYPE_RESP: 1323 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: 1324 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); 1325 break; 1326 default: 1327 break; 1328 } 1329 1330 return common; 1331 } 1332 1333 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) 1334 { 1335 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; 1336 1337 return to_mibqp(mqp); 1338 } 1339 1340 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) 1341 { 1342 struct mlx5_core_srq *msrq = 1343 container_of(res, struct mlx5_core_srq, common); 1344 1345 return to_mibsrq(msrq); 1346 } 1347 1348 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, 1349 struct mlx5_pagefault *pfault) 1350 { 1351 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; 1352 u16 wqe_index = pfault->wqe.wqe_index; 1353 void *wqe, *wqe_start = NULL, *wqe_end = NULL; 1354 u32 bytes_mapped, total_wqe_bytes; 1355 struct mlx5_core_rsc_common *res; 1356 int resume_with_error = 1; 1357 struct mlx5_ib_qp *qp; 1358 size_t bytes_copied; 1359 int ret = 0; 1360 1361 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); 1362 if (!res) { 1363 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); 1364 return; 1365 } 1366 1367 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && 1368 res->res != MLX5_RES_XSRQ) { 1369 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", 1370 pfault->type); 1371 goto resolve_page_fault; 1372 } 1373 1374 wqe_start = (void *)__get_free_page(GFP_KERNEL); 1375 if (!wqe_start) { 1376 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); 1377 goto resolve_page_fault; 1378 } 1379 1380 wqe = wqe_start; 1381 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; 1382 if (qp && sq) { 1383 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, 1384 &bytes_copied); 1385 if (ret) 1386 goto read_user; 1387 ret = mlx5_ib_mr_initiator_pfault_handler( 1388 dev, pfault, qp, &wqe, &wqe_end, bytes_copied); 1389 } else if (qp && !sq) { 1390 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, 1391 &bytes_copied); 1392 if (ret) 1393 goto read_user; 1394 ret = mlx5_ib_mr_responder_pfault_handler_rq( 1395 dev, qp, wqe, &wqe_end, bytes_copied); 1396 } else if (!qp) { 1397 struct mlx5_ib_srq *srq = res_to_srq(res); 1398 1399 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, 1400 &bytes_copied); 1401 if (ret) 1402 goto read_user; 1403 ret = mlx5_ib_mr_responder_pfault_handler_srq( 1404 dev, srq, &wqe, &wqe_end, bytes_copied); 1405 } 1406 1407 if (ret < 0 || wqe >= wqe_end) 1408 goto resolve_page_fault; 1409 1410 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, 1411 &total_wqe_bytes, !sq); 1412 if (ret == -EAGAIN) 1413 goto out; 1414 1415 if (ret < 0 || total_wqe_bytes > bytes_mapped) 1416 goto resolve_page_fault; 1417 1418 out: 1419 ret = 0; 1420 resume_with_error = 0; 1421 1422 read_user: 1423 if (ret) 1424 mlx5_ib_err( 1425 dev, 1426 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %llx\n", 1427 ret, wqe_index, pfault->token); 1428 1429 resolve_page_fault: 1430 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); 1431 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", 1432 pfault->wqe.wq_num, resume_with_error, 1433 pfault->type); 1434 mlx5_core_res_put(res); 1435 free_page((unsigned long)wqe_start); 1436 } 1437 1438 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, 1439 struct mlx5_pagefault *pfault) 1440 { 1441 u64 address; 1442 u32 length; 1443 u32 prefetch_len = pfault->bytes_committed; 1444 int prefetch_activated = 0; 1445 u32 rkey = pfault->rdma.r_key; 1446 int ret; 1447 1448 /* The RDMA responder handler handles the page fault in two parts. 1449 * First it brings the necessary pages for the current packet 1450 * (and uses the pfault context), and then (after resuming the QP) 1451 * prefetches more pages. The second operation cannot use the pfault 1452 * context and therefore uses the dummy_pfault context allocated on 1453 * the stack */ 1454 pfault->rdma.rdma_va += pfault->bytes_committed; 1455 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, 1456 pfault->rdma.rdma_op_len); 1457 pfault->bytes_committed = 0; 1458 1459 address = pfault->rdma.rdma_va; 1460 length = pfault->rdma.rdma_op_len; 1461 1462 /* For some operations, the hardware cannot tell the exact message 1463 * length, and in those cases it reports zero. Use prefetch 1464 * logic. */ 1465 if (length == 0) { 1466 prefetch_activated = 1; 1467 length = pfault->rdma.packet_size; 1468 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); 1469 } 1470 1471 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, 1472 &pfault->bytes_committed, NULL); 1473 if (ret == -EAGAIN) { 1474 /* We're racing with an invalidation, don't prefetch */ 1475 prefetch_activated = 0; 1476 } else if (ret < 0) { 1477 mlx5_ib_page_fault_resume(dev, pfault, 1); 1478 if (ret != -ENOENT) 1479 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%llx, type: 0x%x\n", 1480 ret, pfault->token, pfault->type); 1481 return; 1482 } 1483 1484 mlx5_ib_page_fault_resume(dev, pfault, 0); 1485 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%llx, type: 0x%x, prefetch_activated: %d\n", 1486 pfault->token, pfault->type, 1487 prefetch_activated); 1488 1489 /* At this point, there might be a new pagefault already arriving in 1490 * the eq, switch to the dummy pagefault for the rest of the 1491 * processing. We're still OK with the objects being alive as the 1492 * work-queue is being fenced. */ 1493 1494 if (prefetch_activated) { 1495 u32 bytes_committed = 0; 1496 1497 ret = pagefault_single_data_segment(dev, NULL, rkey, address, 1498 prefetch_len, 1499 &bytes_committed, NULL); 1500 if (ret < 0 && ret != -EAGAIN) { 1501 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%llx, address: 0x%.16llx, length = 0x%.16x\n", 1502 ret, pfault->token, address, prefetch_len); 1503 } 1504 } 1505 } 1506 1507 #define MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST BIT(7) 1508 static void mlx5_ib_mr_memory_pfault_handler(struct mlx5_ib_dev *dev, 1509 struct mlx5_pagefault *pfault) 1510 { 1511 u64 prefetch_va = 1512 pfault->memory.va - pfault->memory.prefetch_before_byte_count; 1513 size_t prefetch_size = pfault->memory.prefetch_before_byte_count + 1514 pfault->memory.fault_byte_count + 1515 pfault->memory.prefetch_after_byte_count; 1516 struct mlx5_ib_mkey *mmkey; 1517 struct mlx5_ib_mr *mr, *child_mr; 1518 int ret = 0; 1519 1520 mmkey = find_odp_mkey(dev, pfault->memory.mkey); 1521 if (IS_ERR(mmkey)) 1522 goto err; 1523 1524 switch (mmkey->type) { 1525 case MLX5_MKEY_IMPLICIT_CHILD: 1526 child_mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1527 mr = child_mr->parent; 1528 break; 1529 case MLX5_MKEY_NULL: 1530 mr = container_of(mmkey, struct mlx5_ib_mr, null_mmkey); 1531 break; 1532 default: 1533 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1534 break; 1535 } 1536 1537 /* If prefetch fails, handle only demanded page fault */ 1538 ret = pagefault_mr(mr, prefetch_va, prefetch_size, NULL, 0, true); 1539 if (ret < 0) { 1540 ret = pagefault_mr(mr, pfault->memory.va, 1541 pfault->memory.fault_byte_count, NULL, 0, 1542 true); 1543 if (ret < 0) 1544 goto err; 1545 } 1546 1547 mlx5_update_odp_stats_with_handled(mr, faults, ret); 1548 mlx5r_deref_odp_mkey(mmkey); 1549 1550 if (pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST) 1551 mlx5_ib_page_fault_resume(dev, pfault, 0); 1552 1553 mlx5_ib_dbg( 1554 dev, 1555 "PAGE FAULT completed %s. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x\n", 1556 pfault->memory.flags & MLX5_MEMORY_PAGE_FAULT_FLAGS_LAST ? 1557 "" : 1558 "without resume cmd", 1559 pfault->token, pfault->memory.mkey, pfault->memory.va, 1560 pfault->memory.fault_byte_count); 1561 1562 return; 1563 1564 err: 1565 if (!IS_ERR(mmkey)) 1566 mlx5r_deref_odp_mkey(mmkey); 1567 mlx5_ib_page_fault_resume(dev, pfault, 1); 1568 mlx5_ib_dbg( 1569 dev, 1570 "PAGE FAULT error. token 0x%llx, mkey: 0x%x, va: 0x%llx, byte_count: 0x%x, err: %d\n", 1571 pfault->token, pfault->memory.mkey, pfault->memory.va, 1572 pfault->memory.fault_byte_count, ret); 1573 } 1574 1575 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) 1576 { 1577 u8 event_subtype = pfault->event_subtype; 1578 1579 switch (event_subtype) { 1580 case MLX5_PFAULT_SUBTYPE_WQE: 1581 mlx5_ib_mr_wqe_pfault_handler(dev, pfault); 1582 break; 1583 case MLX5_PFAULT_SUBTYPE_RDMA: 1584 mlx5_ib_mr_rdma_pfault_handler(dev, pfault); 1585 break; 1586 case MLX5_PFAULT_SUBTYPE_MEMORY: 1587 mlx5_ib_mr_memory_pfault_handler(dev, pfault); 1588 break; 1589 default: 1590 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", 1591 event_subtype); 1592 mlx5_ib_page_fault_resume(dev, pfault, 1); 1593 } 1594 } 1595 1596 static void mlx5_ib_eqe_pf_action(struct work_struct *work) 1597 { 1598 struct mlx5_pagefault *pfault = container_of(work, 1599 struct mlx5_pagefault, 1600 work); 1601 struct mlx5_ib_pf_eq *eq = pfault->eq; 1602 1603 mlx5_ib_pfault(eq->dev, pfault); 1604 mempool_free(pfault, eq->pool); 1605 } 1606 1607 #define MEMORY_SCHEME_PAGE_FAULT_GRANULARITY 4096 1608 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) 1609 { 1610 struct mlx5_eqe_page_fault *pf_eqe; 1611 struct mlx5_pagefault *pfault; 1612 struct mlx5_eqe *eqe; 1613 int cc = 0; 1614 1615 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { 1616 pfault = mempool_alloc(eq->pool, GFP_ATOMIC); 1617 if (!pfault) { 1618 schedule_work(&eq->work); 1619 break; 1620 } 1621 1622 pf_eqe = &eqe->data.page_fault; 1623 pfault->event_subtype = eqe->sub_type; 1624 1625 switch (eqe->sub_type) { 1626 case MLX5_PFAULT_SUBTYPE_RDMA: 1627 /* RDMA based event */ 1628 pfault->bytes_committed = 1629 be32_to_cpu(pf_eqe->rdma.bytes_committed); 1630 pfault->type = 1631 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; 1632 pfault->token = 1633 be32_to_cpu(pf_eqe->rdma.pftype_token) & 1634 MLX5_24BIT_MASK; 1635 pfault->rdma.r_key = 1636 be32_to_cpu(pf_eqe->rdma.r_key); 1637 pfault->rdma.packet_size = 1638 be16_to_cpu(pf_eqe->rdma.packet_length); 1639 pfault->rdma.rdma_op_len = 1640 be32_to_cpu(pf_eqe->rdma.rdma_op_len); 1641 pfault->rdma.rdma_va = 1642 be64_to_cpu(pf_eqe->rdma.rdma_va); 1643 mlx5_ib_dbg( 1644 eq->dev, 1645 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, r_key: 0x%08x\n", 1646 eqe->sub_type, pfault->bytes_committed, 1647 pfault->type, pfault->token, 1648 pfault->rdma.r_key); 1649 mlx5_ib_dbg(eq->dev, 1650 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", 1651 pfault->rdma.rdma_op_len, 1652 pfault->rdma.rdma_va); 1653 break; 1654 1655 case MLX5_PFAULT_SUBTYPE_WQE: 1656 /* WQE based event */ 1657 pfault->bytes_committed = 1658 be32_to_cpu(pf_eqe->wqe.bytes_committed); 1659 pfault->type = 1660 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; 1661 pfault->token = 1662 be32_to_cpu(pf_eqe->wqe.token); 1663 pfault->wqe.wq_num = 1664 be32_to_cpu(pf_eqe->wqe.pftype_wq) & 1665 MLX5_24BIT_MASK; 1666 pfault->wqe.wqe_index = 1667 be16_to_cpu(pf_eqe->wqe.wqe_index); 1668 pfault->wqe.packet_size = 1669 be16_to_cpu(pf_eqe->wqe.packet_length); 1670 mlx5_ib_dbg( 1671 eq->dev, 1672 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x, type:0x%x, token: 0x%06llx, wq_num: 0x%06x, wqe_index: 0x%04x\n", 1673 eqe->sub_type, pfault->bytes_committed, 1674 pfault->type, pfault->token, pfault->wqe.wq_num, 1675 pfault->wqe.wqe_index); 1676 break; 1677 1678 case MLX5_PFAULT_SUBTYPE_MEMORY: 1679 /* Memory based event */ 1680 pfault->bytes_committed = 0; 1681 pfault->token = 1682 be32_to_cpu(pf_eqe->memory.token31_0) | 1683 ((u64)be16_to_cpu(pf_eqe->memory.token47_32) 1684 << 32); 1685 pfault->memory.va = be64_to_cpu(pf_eqe->memory.va); 1686 pfault->memory.mkey = be32_to_cpu(pf_eqe->memory.mkey); 1687 pfault->memory.fault_byte_count = (be32_to_cpu( 1688 pf_eqe->memory.demand_fault_pages) >> 12) * 1689 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1690 pfault->memory.prefetch_before_byte_count = 1691 be16_to_cpu( 1692 pf_eqe->memory.pre_demand_fault_pages) * 1693 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1694 pfault->memory.prefetch_after_byte_count = 1695 be16_to_cpu( 1696 pf_eqe->memory.post_demand_fault_pages) * 1697 MEMORY_SCHEME_PAGE_FAULT_GRANULARITY; 1698 pfault->memory.flags = pf_eqe->memory.flags; 1699 mlx5_ib_dbg( 1700 eq->dev, 1701 "PAGE_FAULT: subtype: 0x%02x, token: 0x%06llx, mkey: 0x%06x, fault_byte_count: 0x%06x, va: 0x%016llx, flags: 0x%02x\n", 1702 eqe->sub_type, pfault->token, 1703 pfault->memory.mkey, 1704 pfault->memory.fault_byte_count, 1705 pfault->memory.va, pfault->memory.flags); 1706 mlx5_ib_dbg( 1707 eq->dev, 1708 "PAGE_FAULT: prefetch size: before: 0x%06x, after 0x%06x\n", 1709 pfault->memory.prefetch_before_byte_count, 1710 pfault->memory.prefetch_after_byte_count); 1711 break; 1712 1713 default: 1714 mlx5_ib_warn(eq->dev, 1715 "Unsupported page fault event sub-type: 0x%02hhx\n", 1716 eqe->sub_type); 1717 /* Unsupported page faults should still be 1718 * resolved by the page fault handler 1719 */ 1720 } 1721 1722 pfault->eq = eq; 1723 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); 1724 queue_work(eq->wq, &pfault->work); 1725 1726 cc = mlx5_eq_update_cc(eq->core, ++cc); 1727 } 1728 1729 mlx5_eq_update_ci(eq->core, cc, 1); 1730 } 1731 1732 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, 1733 void *data) 1734 { 1735 struct mlx5_ib_pf_eq *eq = 1736 container_of(nb, struct mlx5_ib_pf_eq, irq_nb); 1737 unsigned long flags; 1738 1739 if (spin_trylock_irqsave(&eq->lock, flags)) { 1740 mlx5_ib_eq_pf_process(eq); 1741 spin_unlock_irqrestore(&eq->lock, flags); 1742 } else { 1743 schedule_work(&eq->work); 1744 } 1745 1746 return IRQ_HANDLED; 1747 } 1748 1749 /* mempool_refill() was proposed but unfortunately wasn't accepted 1750 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html 1751 * Cheap workaround. 1752 */ 1753 static void mempool_refill(mempool_t *pool) 1754 { 1755 while (pool->curr_nr < pool->min_nr) 1756 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); 1757 } 1758 1759 static void mlx5_ib_eq_pf_action(struct work_struct *work) 1760 { 1761 struct mlx5_ib_pf_eq *eq = 1762 container_of(work, struct mlx5_ib_pf_eq, work); 1763 1764 mempool_refill(eq->pool); 1765 1766 spin_lock_irq(&eq->lock); 1767 mlx5_ib_eq_pf_process(eq); 1768 spin_unlock_irq(&eq->lock); 1769 } 1770 1771 enum { 1772 MLX5_IB_NUM_PF_EQE = 0x1000, 1773 MLX5_IB_NUM_PF_DRAIN = 64, 1774 }; 1775 1776 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1777 { 1778 struct mlx5_eq_param param = {}; 1779 int err = 0; 1780 1781 mutex_lock(&dev->odp_eq_mutex); 1782 if (eq->core) 1783 goto unlock; 1784 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); 1785 spin_lock_init(&eq->lock); 1786 eq->dev = dev; 1787 1788 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, 1789 sizeof(struct mlx5_pagefault)); 1790 if (!eq->pool) { 1791 err = -ENOMEM; 1792 goto unlock; 1793 } 1794 1795 eq->wq = alloc_workqueue("mlx5_ib_page_fault", 1796 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, 1797 MLX5_NUM_CMD_EQE); 1798 if (!eq->wq) { 1799 err = -ENOMEM; 1800 goto err_mempool; 1801 } 1802 1803 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; 1804 param = (struct mlx5_eq_param) { 1805 .nent = MLX5_IB_NUM_PF_EQE, 1806 }; 1807 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; 1808 eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); 1809 if (IS_ERR(eq->core)) { 1810 err = PTR_ERR(eq->core); 1811 goto err_wq; 1812 } 1813 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); 1814 if (err) { 1815 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); 1816 goto err_eq; 1817 } 1818 1819 mutex_unlock(&dev->odp_eq_mutex); 1820 return 0; 1821 err_eq: 1822 mlx5_eq_destroy_generic(dev->mdev, eq->core); 1823 err_wq: 1824 eq->core = NULL; 1825 destroy_workqueue(eq->wq); 1826 err_mempool: 1827 mempool_destroy(eq->pool); 1828 unlock: 1829 mutex_unlock(&dev->odp_eq_mutex); 1830 return err; 1831 } 1832 1833 static int 1834 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) 1835 { 1836 int err; 1837 1838 if (!eq->core) 1839 return 0; 1840 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); 1841 err = mlx5_eq_destroy_generic(dev->mdev, eq->core); 1842 cancel_work_sync(&eq->work); 1843 destroy_workqueue(eq->wq); 1844 mempool_destroy(eq->pool); 1845 1846 return err; 1847 } 1848 1849 int mlx5_odp_init_mkey_cache(struct mlx5_ib_dev *dev) 1850 { 1851 struct mlx5r_cache_rb_key rb_key = { 1852 .access_mode = MLX5_MKC_ACCESS_MODE_KSM, 1853 .ndescs = mlx5_imr_ksm_entries, 1854 }; 1855 struct mlx5_cache_ent *ent; 1856 1857 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1858 return 0; 1859 1860 ent = mlx5r_cache_create_ent_locked(dev, rb_key, true); 1861 if (IS_ERR(ent)) 1862 return PTR_ERR(ent); 1863 1864 return 0; 1865 } 1866 1867 static const struct ib_device_ops mlx5_ib_dev_odp_ops = { 1868 .advise_mr = mlx5_ib_advise_mr, 1869 }; 1870 1871 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) 1872 { 1873 internal_fill_odp_caps(dev); 1874 1875 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1876 return 0; 1877 1878 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); 1879 1880 mutex_init(&dev->odp_eq_mutex); 1881 return 0; 1882 } 1883 1884 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) 1885 { 1886 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) 1887 return; 1888 1889 mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq); 1890 } 1891 1892 int mlx5_ib_odp_init(void) 1893 { 1894 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - 1895 MLX5_IMR_MTT_BITS); 1896 1897 return 0; 1898 } 1899 1900 struct prefetch_mr_work { 1901 struct work_struct work; 1902 u32 pf_flags; 1903 u32 num_sge; 1904 struct { 1905 u64 io_virt; 1906 struct mlx5_ib_mr *mr; 1907 size_t length; 1908 } frags[]; 1909 }; 1910 1911 static void destroy_prefetch_work(struct prefetch_mr_work *work) 1912 { 1913 u32 i; 1914 1915 for (i = 0; i < work->num_sge; ++i) 1916 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey); 1917 1918 kvfree(work); 1919 } 1920 1921 static struct mlx5_ib_mr * 1922 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 1923 u32 lkey) 1924 { 1925 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1926 struct mlx5_ib_mr *mr = NULL; 1927 struct mlx5_ib_mkey *mmkey; 1928 1929 xa_lock(&dev->odp_mkeys); 1930 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); 1931 if (!mmkey || mmkey->key != lkey) { 1932 mr = ERR_PTR(-ENOENT); 1933 goto end; 1934 } 1935 if (mmkey->type != MLX5_MKEY_MR) { 1936 mr = ERR_PTR(-EINVAL); 1937 goto end; 1938 } 1939 1940 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); 1941 1942 if (mr->ibmr.pd != pd) { 1943 mr = ERR_PTR(-EPERM); 1944 goto end; 1945 } 1946 1947 /* prefetch with write-access must be supported by the MR */ 1948 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1949 !mr->umem->writable) { 1950 mr = ERR_PTR(-EPERM); 1951 goto end; 1952 } 1953 1954 refcount_inc(&mmkey->usecount); 1955 end: 1956 xa_unlock(&dev->odp_mkeys); 1957 return mr; 1958 } 1959 1960 static void mlx5_ib_prefetch_mr_work(struct work_struct *w) 1961 { 1962 struct prefetch_mr_work *work = 1963 container_of(w, struct prefetch_mr_work, work); 1964 u32 bytes_mapped = 0; 1965 int ret; 1966 u32 i; 1967 1968 /* We rely on IB/core that work is executed if we have num_sge != 0 only. */ 1969 WARN_ON(!work->num_sge); 1970 for (i = 0; i < work->num_sge; ++i) { 1971 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, 1972 work->frags[i].length, &bytes_mapped, 1973 work->pf_flags, false); 1974 if (ret <= 0) 1975 continue; 1976 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret); 1977 } 1978 1979 destroy_prefetch_work(work); 1980 } 1981 1982 static int init_prefetch_work(struct ib_pd *pd, 1983 enum ib_uverbs_advise_mr_advice advice, 1984 u32 pf_flags, struct prefetch_mr_work *work, 1985 struct ib_sge *sg_list, u32 num_sge) 1986 { 1987 u32 i; 1988 1989 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); 1990 work->pf_flags = pf_flags; 1991 1992 for (i = 0; i < num_sge; ++i) { 1993 struct mlx5_ib_mr *mr; 1994 1995 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 1996 if (IS_ERR(mr)) { 1997 work->num_sge = i; 1998 return PTR_ERR(mr); 1999 } 2000 work->frags[i].io_virt = sg_list[i].addr; 2001 work->frags[i].length = sg_list[i].length; 2002 work->frags[i].mr = mr; 2003 } 2004 work->num_sge = num_sge; 2005 return 0; 2006 } 2007 2008 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, 2009 enum ib_uverbs_advise_mr_advice advice, 2010 u32 pf_flags, struct ib_sge *sg_list, 2011 u32 num_sge) 2012 { 2013 u32 bytes_mapped = 0; 2014 int ret = 0; 2015 u32 i; 2016 2017 for (i = 0; i < num_sge; ++i) { 2018 struct mlx5_ib_mr *mr; 2019 2020 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); 2021 if (IS_ERR(mr)) 2022 return PTR_ERR(mr); 2023 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, 2024 &bytes_mapped, pf_flags, false); 2025 if (ret < 0) { 2026 mlx5r_deref_odp_mkey(&mr->mmkey); 2027 return ret; 2028 } 2029 mlx5_update_odp_stats(mr, prefetch, ret); 2030 mlx5r_deref_odp_mkey(&mr->mmkey); 2031 } 2032 2033 return 0; 2034 } 2035 2036 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, 2037 enum ib_uverbs_advise_mr_advice advice, 2038 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2039 { 2040 u32 pf_flags = 0; 2041 struct prefetch_mr_work *work; 2042 int rc; 2043 2044 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) 2045 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; 2046 2047 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 2048 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT; 2049 2050 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) 2051 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, 2052 num_sge); 2053 2054 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); 2055 if (!work) 2056 return -ENOMEM; 2057 2058 rc = init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge); 2059 if (rc) { 2060 destroy_prefetch_work(work); 2061 return rc; 2062 } 2063 queue_work(system_unbound_wq, &work->work); 2064 return 0; 2065 } 2066