1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2020, Intel Corporation. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 35 #include <linux/kref.h> 36 #include <linux/random.h> 37 #include <linux/debugfs.h> 38 #include <linux/export.h> 39 #include <linux/delay.h> 40 #include <linux/dma-buf.h> 41 #include <linux/dma-resv.h> 42 #include <rdma/ib_umem.h> 43 #include <rdma/ib_umem_odp.h> 44 #include <rdma/ib_verbs.h> 45 #include "dm.h" 46 #include "mlx5_ib.h" 47 48 /* 49 * We can't use an array for xlt_emergency_page because dma_map_single doesn't 50 * work on kernel modules memory 51 */ 52 void *xlt_emergency_page; 53 static DEFINE_MUTEX(xlt_emergency_page_mutex); 54 55 enum { 56 MAX_PENDING_REG_MR = 8, 57 }; 58 59 #define MLX5_UMR_ALIGN 2048 60 61 static void 62 create_mkey_callback(int status, struct mlx5_async_work *context); 63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 64 u64 iova, int access_flags, 65 unsigned int page_size, bool populate); 66 67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 68 struct ib_pd *pd) 69 { 70 struct mlx5_ib_dev *dev = to_mdev(pd->device); 71 bool ro_pci_enabled = pcie_relaxed_ordering_enabled(dev->mdev->pdev); 72 73 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 74 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 75 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 76 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 77 MLX5_SET(mkc, mkc, lr, 1); 78 79 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 80 MLX5_SET(mkc, mkc, relaxed_ordering_write, 81 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled); 82 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 83 MLX5_SET(mkc, mkc, relaxed_ordering_read, 84 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled); 85 86 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 87 MLX5_SET(mkc, mkc, qpn, 0xffffff); 88 MLX5_SET64(mkc, mkc, start_addr, start_addr); 89 } 90 91 static void 92 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 93 u32 *in) 94 { 95 u8 key = atomic_inc_return(&dev->mkey_var); 96 void *mkc; 97 98 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 99 MLX5_SET(mkc, mkc, mkey_7_0, key); 100 mkey->key = key; 101 } 102 103 static int 104 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 105 u32 *in, int inlen) 106 { 107 assign_mkey_variant(dev, mkey, in); 108 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen); 109 } 110 111 static int 112 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, 113 struct mlx5_core_mkey *mkey, 114 struct mlx5_async_ctx *async_ctx, 115 u32 *in, int inlen, u32 *out, int outlen, 116 struct mlx5_async_work *context) 117 { 118 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); 119 assign_mkey_variant(dev, mkey, in); 120 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, 121 create_mkey_callback, context); 122 } 123 124 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 125 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 126 127 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 128 { 129 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 130 } 131 132 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 133 { 134 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 135 136 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 137 } 138 139 static void create_mkey_callback(int status, struct mlx5_async_work *context) 140 { 141 struct mlx5_ib_mr *mr = 142 container_of(context, struct mlx5_ib_mr, cb_work); 143 struct mlx5_cache_ent *ent = mr->cache_ent; 144 struct mlx5_ib_dev *dev = ent->dev; 145 unsigned long flags; 146 147 if (status) { 148 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 149 kfree(mr); 150 spin_lock_irqsave(&ent->lock, flags); 151 ent->pending--; 152 WRITE_ONCE(dev->fill_delay, 1); 153 spin_unlock_irqrestore(&ent->lock, flags); 154 mod_timer(&dev->delay_timer, jiffies + HZ); 155 return; 156 } 157 158 mr->mmkey.type = MLX5_MKEY_MR; 159 mr->mmkey.key |= mlx5_idx_to_mkey( 160 MLX5_GET(create_mkey_out, mr->out, mkey_index)); 161 init_waitqueue_head(&mr->mmkey.wait); 162 163 WRITE_ONCE(dev->cache.last_add, jiffies); 164 165 spin_lock_irqsave(&ent->lock, flags); 166 list_add_tail(&mr->list, &ent->head); 167 ent->available_mrs++; 168 ent->total_mrs++; 169 /* If we are doing fill_to_high_water then keep going. */ 170 queue_adjust_cache_locked(ent); 171 ent->pending--; 172 spin_unlock_irqrestore(&ent->lock, flags); 173 } 174 175 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) 176 { 177 struct mlx5_ib_mr *mr; 178 179 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 180 if (!mr) 181 return NULL; 182 mr->cache_ent = ent; 183 184 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd); 185 MLX5_SET(mkc, mkc, free, 1); 186 MLX5_SET(mkc, mkc, umr_en, 1); 187 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 188 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); 189 190 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 191 MLX5_SET(mkc, mkc, log_page_size, ent->page); 192 return mr; 193 } 194 195 /* Asynchronously schedule new MRs to be populated in the cache. */ 196 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 197 { 198 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 199 struct mlx5_ib_mr *mr; 200 void *mkc; 201 u32 *in; 202 int err = 0; 203 int i; 204 205 in = kzalloc(inlen, GFP_KERNEL); 206 if (!in) 207 return -ENOMEM; 208 209 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 210 for (i = 0; i < num; i++) { 211 mr = alloc_cache_mr(ent, mkc); 212 if (!mr) { 213 err = -ENOMEM; 214 break; 215 } 216 spin_lock_irq(&ent->lock); 217 if (ent->pending >= MAX_PENDING_REG_MR) { 218 err = -EAGAIN; 219 spin_unlock_irq(&ent->lock); 220 kfree(mr); 221 break; 222 } 223 ent->pending++; 224 spin_unlock_irq(&ent->lock); 225 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, 226 &ent->dev->async_ctx, in, inlen, 227 mr->out, sizeof(mr->out), 228 &mr->cb_work); 229 if (err) { 230 spin_lock_irq(&ent->lock); 231 ent->pending--; 232 spin_unlock_irq(&ent->lock); 233 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 234 kfree(mr); 235 break; 236 } 237 } 238 239 kfree(in); 240 return err; 241 } 242 243 /* Synchronously create a MR in the cache */ 244 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) 245 { 246 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 247 struct mlx5_ib_mr *mr; 248 void *mkc; 249 u32 *in; 250 int err; 251 252 in = kzalloc(inlen, GFP_KERNEL); 253 if (!in) 254 return ERR_PTR(-ENOMEM); 255 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 256 257 mr = alloc_cache_mr(ent, mkc); 258 if (!mr) { 259 err = -ENOMEM; 260 goto free_in; 261 } 262 263 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen); 264 if (err) 265 goto free_mr; 266 267 mr->mmkey.type = MLX5_MKEY_MR; 268 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 269 spin_lock_irq(&ent->lock); 270 ent->total_mrs++; 271 spin_unlock_irq(&ent->lock); 272 kfree(in); 273 return mr; 274 free_mr: 275 kfree(mr); 276 free_in: 277 kfree(in); 278 return ERR_PTR(err); 279 } 280 281 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 282 { 283 struct mlx5_ib_mr *mr; 284 285 lockdep_assert_held(&ent->lock); 286 if (list_empty(&ent->head)) 287 return; 288 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 289 list_del(&mr->list); 290 ent->available_mrs--; 291 ent->total_mrs--; 292 spin_unlock_irq(&ent->lock); 293 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey); 294 kfree(mr); 295 spin_lock_irq(&ent->lock); 296 } 297 298 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 299 bool limit_fill) 300 { 301 int err; 302 303 lockdep_assert_held(&ent->lock); 304 305 while (true) { 306 if (limit_fill) 307 target = ent->limit * 2; 308 if (target == ent->available_mrs + ent->pending) 309 return 0; 310 if (target > ent->available_mrs + ent->pending) { 311 u32 todo = target - (ent->available_mrs + ent->pending); 312 313 spin_unlock_irq(&ent->lock); 314 err = add_keys(ent, todo); 315 if (err == -EAGAIN) 316 usleep_range(3000, 5000); 317 spin_lock_irq(&ent->lock); 318 if (err) { 319 if (err != -EAGAIN) 320 return err; 321 } else 322 return 0; 323 } else { 324 remove_cache_mr_locked(ent); 325 } 326 } 327 } 328 329 static ssize_t size_write(struct file *filp, const char __user *buf, 330 size_t count, loff_t *pos) 331 { 332 struct mlx5_cache_ent *ent = filp->private_data; 333 u32 target; 334 int err; 335 336 err = kstrtou32_from_user(buf, count, 0, &target); 337 if (err) 338 return err; 339 340 /* 341 * Target is the new value of total_mrs the user requests, however we 342 * cannot free MRs that are in use. Compute the target value for 343 * available_mrs. 344 */ 345 spin_lock_irq(&ent->lock); 346 if (target < ent->total_mrs - ent->available_mrs) { 347 err = -EINVAL; 348 goto err_unlock; 349 } 350 target = target - (ent->total_mrs - ent->available_mrs); 351 if (target < ent->limit || target > ent->limit*2) { 352 err = -EINVAL; 353 goto err_unlock; 354 } 355 err = resize_available_mrs(ent, target, false); 356 if (err) 357 goto err_unlock; 358 spin_unlock_irq(&ent->lock); 359 360 return count; 361 362 err_unlock: 363 spin_unlock_irq(&ent->lock); 364 return err; 365 } 366 367 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 368 loff_t *pos) 369 { 370 struct mlx5_cache_ent *ent = filp->private_data; 371 char lbuf[20]; 372 int err; 373 374 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); 375 if (err < 0) 376 return err; 377 378 return simple_read_from_buffer(buf, count, pos, lbuf, err); 379 } 380 381 static const struct file_operations size_fops = { 382 .owner = THIS_MODULE, 383 .open = simple_open, 384 .write = size_write, 385 .read = size_read, 386 }; 387 388 static ssize_t limit_write(struct file *filp, const char __user *buf, 389 size_t count, loff_t *pos) 390 { 391 struct mlx5_cache_ent *ent = filp->private_data; 392 u32 var; 393 int err; 394 395 err = kstrtou32_from_user(buf, count, 0, &var); 396 if (err) 397 return err; 398 399 /* 400 * Upon set we immediately fill the cache to high water mark implied by 401 * the limit. 402 */ 403 spin_lock_irq(&ent->lock); 404 ent->limit = var; 405 err = resize_available_mrs(ent, 0, true); 406 spin_unlock_irq(&ent->lock); 407 if (err) 408 return err; 409 return count; 410 } 411 412 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 413 loff_t *pos) 414 { 415 struct mlx5_cache_ent *ent = filp->private_data; 416 char lbuf[20]; 417 int err; 418 419 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 420 if (err < 0) 421 return err; 422 423 return simple_read_from_buffer(buf, count, pos, lbuf, err); 424 } 425 426 static const struct file_operations limit_fops = { 427 .owner = THIS_MODULE, 428 .open = simple_open, 429 .write = limit_write, 430 .read = limit_read, 431 }; 432 433 static bool someone_adding(struct mlx5_mr_cache *cache) 434 { 435 unsigned int i; 436 437 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 438 struct mlx5_cache_ent *ent = &cache->ent[i]; 439 bool ret; 440 441 spin_lock_irq(&ent->lock); 442 ret = ent->available_mrs < ent->limit; 443 spin_unlock_irq(&ent->lock); 444 if (ret) 445 return true; 446 } 447 return false; 448 } 449 450 /* 451 * Check if the bucket is outside the high/low water mark and schedule an async 452 * update. The cache refill has hysteresis, once the low water mark is hit it is 453 * refilled up to the high mark. 454 */ 455 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 456 { 457 lockdep_assert_held(&ent->lock); 458 459 if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) 460 return; 461 if (ent->available_mrs < ent->limit) { 462 ent->fill_to_high_water = true; 463 queue_work(ent->dev->cache.wq, &ent->work); 464 } else if (ent->fill_to_high_water && 465 ent->available_mrs + ent->pending < 2 * ent->limit) { 466 /* 467 * Once we start populating due to hitting a low water mark 468 * continue until we pass the high water mark. 469 */ 470 queue_work(ent->dev->cache.wq, &ent->work); 471 } else if (ent->available_mrs == 2 * ent->limit) { 472 ent->fill_to_high_water = false; 473 } else if (ent->available_mrs > 2 * ent->limit) { 474 /* Queue deletion of excess entries */ 475 ent->fill_to_high_water = false; 476 if (ent->pending) 477 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 478 msecs_to_jiffies(1000)); 479 else 480 queue_work(ent->dev->cache.wq, &ent->work); 481 } 482 } 483 484 static void __cache_work_func(struct mlx5_cache_ent *ent) 485 { 486 struct mlx5_ib_dev *dev = ent->dev; 487 struct mlx5_mr_cache *cache = &dev->cache; 488 int err; 489 490 spin_lock_irq(&ent->lock); 491 if (ent->disabled) 492 goto out; 493 494 if (ent->fill_to_high_water && 495 ent->available_mrs + ent->pending < 2 * ent->limit && 496 !READ_ONCE(dev->fill_delay)) { 497 spin_unlock_irq(&ent->lock); 498 err = add_keys(ent, 1); 499 spin_lock_irq(&ent->lock); 500 if (ent->disabled) 501 goto out; 502 if (err) { 503 /* 504 * EAGAIN only happens if pending is positive, so we 505 * will be rescheduled from reg_mr_callback(). The only 506 * failure path here is ENOMEM. 507 */ 508 if (err != -EAGAIN) { 509 mlx5_ib_warn( 510 dev, 511 "command failed order %d, err %d\n", 512 ent->order, err); 513 queue_delayed_work(cache->wq, &ent->dwork, 514 msecs_to_jiffies(1000)); 515 } 516 } 517 } else if (ent->available_mrs > 2 * ent->limit) { 518 bool need_delay; 519 520 /* 521 * The remove_cache_mr() logic is performed as garbage 522 * collection task. Such task is intended to be run when no 523 * other active processes are running. 524 * 525 * The need_resched() will return TRUE if there are user tasks 526 * to be activated in near future. 527 * 528 * In such case, we don't execute remove_cache_mr() and postpone 529 * the garbage collection work to try to run in next cycle, in 530 * order to free CPU resources to other tasks. 531 */ 532 spin_unlock_irq(&ent->lock); 533 need_delay = need_resched() || someone_adding(cache) || 534 !time_after(jiffies, 535 READ_ONCE(cache->last_add) + 300 * HZ); 536 spin_lock_irq(&ent->lock); 537 if (ent->disabled) 538 goto out; 539 if (need_delay) 540 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 541 remove_cache_mr_locked(ent); 542 queue_adjust_cache_locked(ent); 543 } 544 out: 545 spin_unlock_irq(&ent->lock); 546 } 547 548 static void delayed_cache_work_func(struct work_struct *work) 549 { 550 struct mlx5_cache_ent *ent; 551 552 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 553 __cache_work_func(ent); 554 } 555 556 static void cache_work_func(struct work_struct *work) 557 { 558 struct mlx5_cache_ent *ent; 559 560 ent = container_of(work, struct mlx5_cache_ent, work); 561 __cache_work_func(ent); 562 } 563 564 /* Allocate a special entry from the cache */ 565 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 566 unsigned int entry, int access_flags) 567 { 568 struct mlx5_mr_cache *cache = &dev->cache; 569 struct mlx5_cache_ent *ent; 570 struct mlx5_ib_mr *mr; 571 572 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || 573 entry >= ARRAY_SIZE(cache->ent))) 574 return ERR_PTR(-EINVAL); 575 576 /* Matches access in alloc_cache_mr() */ 577 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) 578 return ERR_PTR(-EOPNOTSUPP); 579 580 ent = &cache->ent[entry]; 581 spin_lock_irq(&ent->lock); 582 if (list_empty(&ent->head)) { 583 spin_unlock_irq(&ent->lock); 584 mr = create_cache_mr(ent); 585 if (IS_ERR(mr)) 586 return mr; 587 } else { 588 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 589 list_del(&mr->list); 590 ent->available_mrs--; 591 queue_adjust_cache_locked(ent); 592 spin_unlock_irq(&ent->lock); 593 594 mlx5_clear_mr(mr); 595 } 596 mr->access_flags = access_flags; 597 return mr; 598 } 599 600 /* Return a MR already available in the cache */ 601 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) 602 { 603 struct mlx5_ib_dev *dev = req_ent->dev; 604 struct mlx5_ib_mr *mr = NULL; 605 struct mlx5_cache_ent *ent = req_ent; 606 607 /* Try larger MR pools from the cache to satisfy the allocation */ 608 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) { 609 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order, 610 ent - dev->cache.ent); 611 612 spin_lock_irq(&ent->lock); 613 if (!list_empty(&ent->head)) { 614 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 615 list); 616 list_del(&mr->list); 617 ent->available_mrs--; 618 queue_adjust_cache_locked(ent); 619 spin_unlock_irq(&ent->lock); 620 mlx5_clear_mr(mr); 621 return mr; 622 } 623 queue_adjust_cache_locked(ent); 624 spin_unlock_irq(&ent->lock); 625 } 626 req_ent->miss++; 627 return NULL; 628 } 629 630 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 631 { 632 struct mlx5_cache_ent *ent = mr->cache_ent; 633 634 spin_lock_irq(&ent->lock); 635 list_add_tail(&mr->list, &ent->head); 636 ent->available_mrs++; 637 queue_adjust_cache_locked(ent); 638 spin_unlock_irq(&ent->lock); 639 } 640 641 static void clean_keys(struct mlx5_ib_dev *dev, int c) 642 { 643 struct mlx5_mr_cache *cache = &dev->cache; 644 struct mlx5_cache_ent *ent = &cache->ent[c]; 645 struct mlx5_ib_mr *tmp_mr; 646 struct mlx5_ib_mr *mr; 647 LIST_HEAD(del_list); 648 649 cancel_delayed_work(&ent->dwork); 650 while (1) { 651 spin_lock_irq(&ent->lock); 652 if (list_empty(&ent->head)) { 653 spin_unlock_irq(&ent->lock); 654 break; 655 } 656 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 657 list_move(&mr->list, &del_list); 658 ent->available_mrs--; 659 ent->total_mrs--; 660 spin_unlock_irq(&ent->lock); 661 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 662 } 663 664 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 665 list_del(&mr->list); 666 kfree(mr); 667 } 668 } 669 670 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 671 { 672 if (!mlx5_debugfs_root || dev->is_rep) 673 return; 674 675 debugfs_remove_recursive(dev->cache.root); 676 dev->cache.root = NULL; 677 } 678 679 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 680 { 681 struct mlx5_mr_cache *cache = &dev->cache; 682 struct mlx5_cache_ent *ent; 683 struct dentry *dir; 684 int i; 685 686 if (!mlx5_debugfs_root || dev->is_rep) 687 return; 688 689 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 690 691 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 692 ent = &cache->ent[i]; 693 sprintf(ent->name, "%d", ent->order); 694 dir = debugfs_create_dir(ent->name, cache->root); 695 debugfs_create_file("size", 0600, dir, ent, &size_fops); 696 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 697 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); 698 debugfs_create_u32("miss", 0600, dir, &ent->miss); 699 } 700 } 701 702 static void delay_time_func(struct timer_list *t) 703 { 704 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 705 706 WRITE_ONCE(dev->fill_delay, 0); 707 } 708 709 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 710 { 711 struct mlx5_mr_cache *cache = &dev->cache; 712 struct mlx5_cache_ent *ent; 713 int i; 714 715 mutex_init(&dev->slow_path_mutex); 716 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 717 if (!cache->wq) { 718 mlx5_ib_warn(dev, "failed to create work queue\n"); 719 return -ENOMEM; 720 } 721 722 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 723 timer_setup(&dev->delay_timer, delay_time_func, 0); 724 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 725 ent = &cache->ent[i]; 726 INIT_LIST_HEAD(&ent->head); 727 spin_lock_init(&ent->lock); 728 ent->order = i + 2; 729 ent->dev = dev; 730 ent->limit = 0; 731 732 INIT_WORK(&ent->work, cache_work_func); 733 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 734 735 if (i > MR_CACHE_LAST_STD_ENTRY) { 736 mlx5_odp_init_mr_cache_entry(ent); 737 continue; 738 } 739 740 if (ent->order > mr_cache_max_order(dev)) 741 continue; 742 743 ent->page = PAGE_SHIFT; 744 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 745 MLX5_IB_UMR_OCTOWORD; 746 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 747 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) && 748 !dev->is_rep && mlx5_core_is_pf(dev->mdev) && 749 mlx5_ib_can_load_pas_with_umr(dev, 0)) 750 ent->limit = dev->mdev->profile.mr_cache[i].limit; 751 else 752 ent->limit = 0; 753 spin_lock_irq(&ent->lock); 754 queue_adjust_cache_locked(ent); 755 spin_unlock_irq(&ent->lock); 756 } 757 758 mlx5_mr_cache_debugfs_init(dev); 759 760 return 0; 761 } 762 763 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 764 { 765 unsigned int i; 766 767 if (!dev->cache.wq) 768 return 0; 769 770 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 771 struct mlx5_cache_ent *ent = &dev->cache.ent[i]; 772 773 spin_lock_irq(&ent->lock); 774 ent->disabled = true; 775 spin_unlock_irq(&ent->lock); 776 cancel_work_sync(&ent->work); 777 cancel_delayed_work_sync(&ent->dwork); 778 } 779 780 mlx5_mr_cache_debugfs_cleanup(dev); 781 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 782 783 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 784 clean_keys(dev, i); 785 786 destroy_workqueue(dev->cache.wq); 787 del_timer_sync(&dev->delay_timer); 788 789 return 0; 790 } 791 792 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 793 { 794 struct mlx5_ib_dev *dev = to_mdev(pd->device); 795 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 796 struct mlx5_ib_mr *mr; 797 void *mkc; 798 u32 *in; 799 int err; 800 801 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 802 if (!mr) 803 return ERR_PTR(-ENOMEM); 804 805 in = kzalloc(inlen, GFP_KERNEL); 806 if (!in) { 807 err = -ENOMEM; 808 goto err_free; 809 } 810 811 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 812 813 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 814 MLX5_SET(mkc, mkc, length64, 1); 815 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0, 816 pd); 817 818 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 819 if (err) 820 goto err_in; 821 822 kfree(in); 823 mr->mmkey.type = MLX5_MKEY_MR; 824 mr->ibmr.lkey = mr->mmkey.key; 825 mr->ibmr.rkey = mr->mmkey.key; 826 mr->umem = NULL; 827 828 return &mr->ibmr; 829 830 err_in: 831 kfree(in); 832 833 err_free: 834 kfree(mr); 835 836 return ERR_PTR(err); 837 } 838 839 static int get_octo_len(u64 addr, u64 len, int page_shift) 840 { 841 u64 page_size = 1ULL << page_shift; 842 u64 offset; 843 int npages; 844 845 offset = addr & (page_size - 1); 846 npages = ALIGN(len + offset, page_size) >> page_shift; 847 return (npages + 1) / 2; 848 } 849 850 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 851 { 852 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 853 return MR_CACHE_LAST_STD_ENTRY + 2; 854 return MLX5_MAX_UMR_SHIFT; 855 } 856 857 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 858 { 859 struct mlx5_ib_umr_context *context = 860 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 861 862 context->status = wc->status; 863 complete(&context->done); 864 } 865 866 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 867 { 868 context->cqe.done = mlx5_ib_umr_done; 869 context->status = -1; 870 init_completion(&context->done); 871 } 872 873 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 874 struct mlx5_umr_wr *umrwr) 875 { 876 struct umr_common *umrc = &dev->umrc; 877 const struct ib_send_wr *bad; 878 int err; 879 struct mlx5_ib_umr_context umr_context; 880 881 mlx5_ib_init_umr_context(&umr_context); 882 umrwr->wr.wr_cqe = &umr_context.cqe; 883 884 down(&umrc->sem); 885 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 886 if (err) { 887 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 888 } else { 889 wait_for_completion(&umr_context.done); 890 if (umr_context.status != IB_WC_SUCCESS) { 891 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 892 umr_context.status); 893 err = -EFAULT; 894 } 895 } 896 up(&umrc->sem); 897 return err; 898 } 899 900 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, 901 unsigned int order) 902 { 903 struct mlx5_mr_cache *cache = &dev->cache; 904 905 if (order < cache->ent[0].order) 906 return &cache->ent[0]; 907 order = order - cache->ent[0].order; 908 if (order > MR_CACHE_LAST_STD_ENTRY) 909 return NULL; 910 return &cache->ent[order]; 911 } 912 913 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 914 u64 length, int access_flags) 915 { 916 mr->ibmr.lkey = mr->mmkey.key; 917 mr->ibmr.rkey = mr->mmkey.key; 918 mr->ibmr.length = length; 919 mr->ibmr.device = &dev->ib_dev; 920 mr->access_flags = access_flags; 921 } 922 923 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, 924 u64 iova) 925 { 926 /* 927 * The alignment of iova has already been checked upon entering 928 * UVERBS_METHOD_REG_DMABUF_MR 929 */ 930 umem->iova = iova; 931 return PAGE_SIZE; 932 } 933 934 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, 935 struct ib_umem *umem, u64 iova, 936 int access_flags) 937 { 938 struct mlx5_ib_dev *dev = to_mdev(pd->device); 939 struct mlx5_cache_ent *ent; 940 struct mlx5_ib_mr *mr; 941 unsigned int page_size; 942 943 if (umem->is_dmabuf) 944 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); 945 else 946 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, 947 0, iova); 948 if (WARN_ON(!page_size)) 949 return ERR_PTR(-EINVAL); 950 ent = mr_cache_ent_from_order( 951 dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size))); 952 /* 953 * Matches access in alloc_cache_mr(). If the MR can't come from the 954 * cache then synchronously create an uncached one. 955 */ 956 if (!ent || ent->limit == 0 || 957 !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) { 958 mutex_lock(&dev->slow_path_mutex); 959 mr = reg_create(pd, umem, iova, access_flags, page_size, false); 960 mutex_unlock(&dev->slow_path_mutex); 961 return mr; 962 } 963 964 mr = get_cache_mr(ent); 965 if (!mr) { 966 mr = create_cache_mr(ent); 967 /* 968 * The above already tried to do the same stuff as reg_create(), 969 * no reason to try it again. 970 */ 971 if (IS_ERR(mr)) 972 return mr; 973 } 974 975 mr->ibmr.pd = pd; 976 mr->umem = umem; 977 mr->mmkey.iova = iova; 978 mr->mmkey.size = umem->length; 979 mr->mmkey.pd = to_mpd(pd)->pdn; 980 mr->page_shift = order_base_2(page_size); 981 set_mr_fields(dev, mr, umem->length, access_flags); 982 983 return mr; 984 } 985 986 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 987 MLX5_UMR_MTT_ALIGNMENT) 988 #define MLX5_SPARE_UMR_CHUNK 0x10000 989 990 /* 991 * Allocate a temporary buffer to hold the per-page information to transfer to 992 * HW. For efficiency this should be as large as it can be, but buffer 993 * allocation failure is not allowed, so try smaller sizes. 994 */ 995 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask) 996 { 997 const size_t xlt_chunk_align = 998 MLX5_UMR_MTT_ALIGNMENT / ent_size; 999 size_t size; 1000 void *res = NULL; 1001 1002 static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0); 1003 1004 /* 1005 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the 1006 * allocation can't trigger any kind of reclaim. 1007 */ 1008 might_sleep(); 1009 1010 gfp_mask |= __GFP_ZERO | __GFP_NORETRY; 1011 1012 /* 1013 * If the system already has a suitable high order page then just use 1014 * that, but don't try hard to create one. This max is about 1M, so a 1015 * free x86 huge page will satisfy it. 1016 */ 1017 size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align), 1018 MLX5_MAX_UMR_CHUNK); 1019 *nents = size / ent_size; 1020 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1021 get_order(size)); 1022 if (res) 1023 return res; 1024 1025 if (size > MLX5_SPARE_UMR_CHUNK) { 1026 size = MLX5_SPARE_UMR_CHUNK; 1027 *nents = size / ent_size; 1028 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1029 get_order(size)); 1030 if (res) 1031 return res; 1032 } 1033 1034 *nents = PAGE_SIZE / ent_size; 1035 res = (void *)__get_free_page(gfp_mask); 1036 if (res) 1037 return res; 1038 1039 mutex_lock(&xlt_emergency_page_mutex); 1040 memset(xlt_emergency_page, 0, PAGE_SIZE); 1041 return xlt_emergency_page; 1042 } 1043 1044 static void mlx5_ib_free_xlt(void *xlt, size_t length) 1045 { 1046 if (xlt == xlt_emergency_page) { 1047 mutex_unlock(&xlt_emergency_page_mutex); 1048 return; 1049 } 1050 1051 free_pages((unsigned long)xlt, get_order(length)); 1052 } 1053 1054 /* 1055 * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for 1056 * submission. 1057 */ 1058 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr, 1059 struct mlx5_umr_wr *wr, struct ib_sge *sg, 1060 size_t nents, size_t ent_size, 1061 unsigned int flags) 1062 { 1063 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1064 struct device *ddev = &dev->mdev->pdev->dev; 1065 dma_addr_t dma; 1066 void *xlt; 1067 1068 xlt = mlx5_ib_alloc_xlt(&nents, ent_size, 1069 flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : 1070 GFP_KERNEL); 1071 sg->length = nents * ent_size; 1072 dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE); 1073 if (dma_mapping_error(ddev, dma)) { 1074 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1075 mlx5_ib_free_xlt(xlt, sg->length); 1076 return NULL; 1077 } 1078 sg->addr = dma; 1079 sg->lkey = dev->umrc.pd->local_dma_lkey; 1080 1081 memset(wr, 0, sizeof(*wr)); 1082 wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1083 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1084 wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1085 wr->wr.sg_list = sg; 1086 wr->wr.num_sge = 1; 1087 wr->wr.opcode = MLX5_IB_WR_UMR; 1088 wr->pd = mr->ibmr.pd; 1089 wr->mkey = mr->mmkey.key; 1090 wr->length = mr->mmkey.size; 1091 wr->virt_addr = mr->mmkey.iova; 1092 wr->access_flags = mr->access_flags; 1093 wr->page_shift = mr->page_shift; 1094 wr->xlt_size = sg->length; 1095 return xlt; 1096 } 1097 1098 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt, 1099 struct ib_sge *sg) 1100 { 1101 struct device *ddev = &dev->mdev->pdev->dev; 1102 1103 dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE); 1104 mlx5_ib_free_xlt(xlt, sg->length); 1105 } 1106 1107 static unsigned int xlt_wr_final_send_flags(unsigned int flags) 1108 { 1109 unsigned int res = 0; 1110 1111 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1112 res |= MLX5_IB_SEND_UMR_ENABLE_MR | 1113 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1114 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1115 if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS) 1116 res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1117 if (flags & MLX5_IB_UPD_XLT_ADDR) 1118 res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1119 return res; 1120 } 1121 1122 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 1123 int page_shift, int flags) 1124 { 1125 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1126 struct device *ddev = &dev->mdev->pdev->dev; 1127 void *xlt; 1128 struct mlx5_umr_wr wr; 1129 struct ib_sge sg; 1130 int err = 0; 1131 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 1132 ? sizeof(struct mlx5_klm) 1133 : sizeof(struct mlx5_mtt); 1134 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 1135 const int page_mask = page_align - 1; 1136 size_t pages_mapped = 0; 1137 size_t pages_to_map = 0; 1138 size_t pages_iter; 1139 size_t size_to_map = 0; 1140 size_t orig_sg_length; 1141 1142 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 1143 !umr_can_use_indirect_mkey(dev)) 1144 return -EPERM; 1145 1146 if (WARN_ON(!mr->umem->is_odp)) 1147 return -EINVAL; 1148 1149 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 1150 * so we need to align the offset and length accordingly 1151 */ 1152 if (idx & page_mask) { 1153 npages += idx & page_mask; 1154 idx &= ~page_mask; 1155 } 1156 pages_to_map = ALIGN(npages, page_align); 1157 1158 xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags); 1159 if (!xlt) 1160 return -ENOMEM; 1161 pages_iter = sg.length / desc_size; 1162 orig_sg_length = sg.length; 1163 1164 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { 1165 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 1166 size_t max_pages = ib_umem_odp_num_pages(odp) - idx; 1167 1168 pages_to_map = min_t(size_t, pages_to_map, max_pages); 1169 } 1170 1171 wr.page_shift = page_shift; 1172 1173 for (pages_mapped = 0; 1174 pages_mapped < pages_to_map && !err; 1175 pages_mapped += pages_iter, idx += pages_iter) { 1176 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1177 size_to_map = npages * desc_size; 1178 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1179 DMA_TO_DEVICE); 1180 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); 1181 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1182 DMA_TO_DEVICE); 1183 1184 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); 1185 1186 if (pages_mapped + pages_iter >= pages_to_map) 1187 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1188 1189 wr.offset = idx * desc_size; 1190 wr.xlt_size = sg.length; 1191 1192 err = mlx5_ib_post_send_wait(dev, &wr); 1193 } 1194 sg.length = orig_sg_length; 1195 mlx5_ib_unmap_free_xlt(dev, xlt, &sg); 1196 return err; 1197 } 1198 1199 /* 1200 * Send the DMA list to the HW for a normal MR using UMR. 1201 * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP 1202 * flag may be used. 1203 */ 1204 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags) 1205 { 1206 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1207 struct device *ddev = &dev->mdev->pdev->dev; 1208 struct ib_block_iter biter; 1209 struct mlx5_mtt *cur_mtt; 1210 struct mlx5_umr_wr wr; 1211 size_t orig_sg_length; 1212 struct mlx5_mtt *mtt; 1213 size_t final_size; 1214 struct ib_sge sg; 1215 int err = 0; 1216 1217 if (WARN_ON(mr->umem->is_odp)) 1218 return -EINVAL; 1219 1220 mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, 1221 ib_umem_num_dma_blocks(mr->umem, 1222 1 << mr->page_shift), 1223 sizeof(*mtt), flags); 1224 if (!mtt) 1225 return -ENOMEM; 1226 orig_sg_length = sg.length; 1227 1228 cur_mtt = mtt; 1229 rdma_for_each_block (mr->umem->sgt_append.sgt.sgl, &biter, 1230 mr->umem->sgt_append.sgt.nents, 1231 BIT(mr->page_shift)) { 1232 if (cur_mtt == (void *)mtt + sg.length) { 1233 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1234 DMA_TO_DEVICE); 1235 err = mlx5_ib_post_send_wait(dev, &wr); 1236 if (err) 1237 goto err; 1238 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1239 DMA_TO_DEVICE); 1240 wr.offset += sg.length; 1241 cur_mtt = mtt; 1242 } 1243 1244 cur_mtt->ptag = 1245 cpu_to_be64(rdma_block_iter_dma_address(&biter) | 1246 MLX5_IB_MTT_PRESENT); 1247 1248 if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP)) 1249 cur_mtt->ptag = 0; 1250 1251 cur_mtt++; 1252 } 1253 1254 final_size = (void *)cur_mtt - (void *)mtt; 1255 sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT); 1256 memset(cur_mtt, 0, sg.length - final_size); 1257 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1258 wr.xlt_size = sg.length; 1259 1260 dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE); 1261 err = mlx5_ib_post_send_wait(dev, &wr); 1262 1263 err: 1264 sg.length = orig_sg_length; 1265 mlx5_ib_unmap_free_xlt(dev, mtt, &sg); 1266 return err; 1267 } 1268 1269 /* 1270 * If ibmr is NULL it will be allocated by reg_create. 1271 * Else, the given ibmr will be used. 1272 */ 1273 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 1274 u64 iova, int access_flags, 1275 unsigned int page_size, bool populate) 1276 { 1277 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1278 struct mlx5_ib_mr *mr; 1279 __be64 *pas; 1280 void *mkc; 1281 int inlen; 1282 u32 *in; 1283 int err; 1284 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1285 1286 if (!page_size) 1287 return ERR_PTR(-EINVAL); 1288 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1289 if (!mr) 1290 return ERR_PTR(-ENOMEM); 1291 1292 mr->ibmr.pd = pd; 1293 mr->access_flags = access_flags; 1294 mr->page_shift = order_base_2(page_size); 1295 1296 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1297 if (populate) 1298 inlen += sizeof(*pas) * 1299 roundup(ib_umem_num_dma_blocks(umem, page_size), 2); 1300 in = kvzalloc(inlen, GFP_KERNEL); 1301 if (!in) { 1302 err = -ENOMEM; 1303 goto err_1; 1304 } 1305 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1306 if (populate) { 1307 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { 1308 err = -EINVAL; 1309 goto err_2; 1310 } 1311 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, 1312 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1313 } 1314 1315 /* The pg_access bit allows setting the access flags 1316 * in the page list submitted with the command. */ 1317 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1318 1319 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1320 set_mkc_access_pd_addr_fields(mkc, access_flags, iova, 1321 populate ? pd : dev->umrc.pd); 1322 MLX5_SET(mkc, mkc, free, !populate); 1323 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1324 MLX5_SET(mkc, mkc, umr_en, 1); 1325 1326 MLX5_SET64(mkc, mkc, len, umem->length); 1327 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1328 MLX5_SET(mkc, mkc, translations_octword_size, 1329 get_octo_len(iova, umem->length, mr->page_shift)); 1330 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); 1331 if (populate) { 1332 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1333 get_octo_len(iova, umem->length, mr->page_shift)); 1334 } 1335 1336 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1337 if (err) { 1338 mlx5_ib_warn(dev, "create mkey failed\n"); 1339 goto err_2; 1340 } 1341 mr->mmkey.type = MLX5_MKEY_MR; 1342 mr->desc_size = sizeof(struct mlx5_mtt); 1343 mr->umem = umem; 1344 set_mr_fields(dev, mr, umem->length, access_flags); 1345 kvfree(in); 1346 1347 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1348 1349 return mr; 1350 1351 err_2: 1352 kvfree(in); 1353 err_1: 1354 kfree(mr); 1355 return ERR_PTR(err); 1356 } 1357 1358 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1359 u64 length, int acc, int mode) 1360 { 1361 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1362 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1363 struct mlx5_ib_mr *mr; 1364 void *mkc; 1365 u32 *in; 1366 int err; 1367 1368 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1369 if (!mr) 1370 return ERR_PTR(-ENOMEM); 1371 1372 in = kzalloc(inlen, GFP_KERNEL); 1373 if (!in) { 1374 err = -ENOMEM; 1375 goto err_free; 1376 } 1377 1378 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1379 1380 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1381 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1382 MLX5_SET64(mkc, mkc, len, length); 1383 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1384 1385 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1386 if (err) 1387 goto err_in; 1388 1389 kfree(in); 1390 1391 set_mr_fields(dev, mr, length, acc); 1392 1393 return &mr->ibmr; 1394 1395 err_in: 1396 kfree(in); 1397 1398 err_free: 1399 kfree(mr); 1400 1401 return ERR_PTR(err); 1402 } 1403 1404 int mlx5_ib_advise_mr(struct ib_pd *pd, 1405 enum ib_uverbs_advise_mr_advice advice, 1406 u32 flags, 1407 struct ib_sge *sg_list, 1408 u32 num_sge, 1409 struct uverbs_attr_bundle *attrs) 1410 { 1411 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1412 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1413 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1414 return -EOPNOTSUPP; 1415 1416 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1417 sg_list, num_sge); 1418 } 1419 1420 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1421 struct ib_dm_mr_attr *attr, 1422 struct uverbs_attr_bundle *attrs) 1423 { 1424 struct mlx5_ib_dm *mdm = to_mdm(dm); 1425 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1426 u64 start_addr = mdm->dev_addr + attr->offset; 1427 int mode; 1428 1429 switch (mdm->type) { 1430 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1431 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1432 return ERR_PTR(-EINVAL); 1433 1434 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1435 start_addr -= pci_resource_start(dev->pdev, 0); 1436 break; 1437 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1438 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1439 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1440 return ERR_PTR(-EINVAL); 1441 1442 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1443 break; 1444 default: 1445 return ERR_PTR(-EINVAL); 1446 } 1447 1448 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1449 attr->access_flags, mode); 1450 } 1451 1452 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, 1453 u64 iova, int access_flags) 1454 { 1455 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1456 struct mlx5_ib_mr *mr = NULL; 1457 bool xlt_with_umr; 1458 int err; 1459 1460 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length); 1461 if (xlt_with_umr) { 1462 mr = alloc_cacheable_mr(pd, umem, iova, access_flags); 1463 } else { 1464 unsigned int page_size = mlx5_umem_find_best_pgsz( 1465 umem, mkc, log_page_size, 0, iova); 1466 1467 mutex_lock(&dev->slow_path_mutex); 1468 mr = reg_create(pd, umem, iova, access_flags, page_size, true); 1469 mutex_unlock(&dev->slow_path_mutex); 1470 } 1471 if (IS_ERR(mr)) { 1472 ib_umem_release(umem); 1473 return ERR_CAST(mr); 1474 } 1475 1476 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1477 1478 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1479 1480 if (xlt_with_umr) { 1481 /* 1482 * If the MR was created with reg_create then it will be 1483 * configured properly but left disabled. It is safe to go ahead 1484 * and configure it again via UMR while enabling it. 1485 */ 1486 err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); 1487 if (err) { 1488 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1489 return ERR_PTR(err); 1490 } 1491 } 1492 return &mr->ibmr; 1493 } 1494 1495 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, 1496 u64 iova, int access_flags, 1497 struct ib_udata *udata) 1498 { 1499 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1500 struct ib_umem_odp *odp; 1501 struct mlx5_ib_mr *mr; 1502 int err; 1503 1504 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1505 return ERR_PTR(-EOPNOTSUPP); 1506 1507 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq); 1508 if (err) 1509 return ERR_PTR(err); 1510 if (!start && length == U64_MAX) { 1511 if (iova != 0) 1512 return ERR_PTR(-EINVAL); 1513 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1514 return ERR_PTR(-EINVAL); 1515 1516 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags); 1517 if (IS_ERR(mr)) 1518 return ERR_CAST(mr); 1519 return &mr->ibmr; 1520 } 1521 1522 /* ODP requires xlt update via umr to work. */ 1523 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1524 return ERR_PTR(-EINVAL); 1525 1526 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 1527 &mlx5_mn_ops); 1528 if (IS_ERR(odp)) 1529 return ERR_CAST(odp); 1530 1531 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); 1532 if (IS_ERR(mr)) { 1533 ib_umem_release(&odp->umem); 1534 return ERR_CAST(mr); 1535 } 1536 1537 odp->private = mr; 1538 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1539 if (err) 1540 goto err_dereg_mr; 1541 1542 err = mlx5_ib_init_odp_mr(mr); 1543 if (err) 1544 goto err_dereg_mr; 1545 return &mr->ibmr; 1546 1547 err_dereg_mr: 1548 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1549 return ERR_PTR(err); 1550 } 1551 1552 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1553 u64 iova, int access_flags, 1554 struct ib_udata *udata) 1555 { 1556 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1557 struct ib_umem *umem; 1558 1559 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1560 return ERR_PTR(-EOPNOTSUPP); 1561 1562 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1563 start, iova, length, access_flags); 1564 1565 if (access_flags & IB_ACCESS_ON_DEMAND) 1566 return create_user_odp_mr(pd, start, length, iova, access_flags, 1567 udata); 1568 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); 1569 if (IS_ERR(umem)) 1570 return ERR_CAST(umem); 1571 return create_real_mr(pd, umem, iova, access_flags); 1572 } 1573 1574 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) 1575 { 1576 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; 1577 struct mlx5_ib_mr *mr = umem_dmabuf->private; 1578 1579 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); 1580 1581 if (!umem_dmabuf->sgt) 1582 return; 1583 1584 mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); 1585 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 1586 } 1587 1588 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { 1589 .allow_peer2peer = 1, 1590 .move_notify = mlx5_ib_dmabuf_invalidate_cb, 1591 }; 1592 1593 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, 1594 u64 length, u64 virt_addr, 1595 int fd, int access_flags, 1596 struct ib_udata *udata) 1597 { 1598 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1599 struct mlx5_ib_mr *mr = NULL; 1600 struct ib_umem_dmabuf *umem_dmabuf; 1601 int err; 1602 1603 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || 1604 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1605 return ERR_PTR(-EOPNOTSUPP); 1606 1607 mlx5_ib_dbg(dev, 1608 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", 1609 offset, virt_addr, length, fd, access_flags); 1610 1611 /* dmabuf requires xlt update via umr to work. */ 1612 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1613 return ERR_PTR(-EINVAL); 1614 1615 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, 1616 access_flags, 1617 &mlx5_ib_dmabuf_attach_ops); 1618 if (IS_ERR(umem_dmabuf)) { 1619 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", 1620 PTR_ERR(umem_dmabuf)); 1621 return ERR_CAST(umem_dmabuf); 1622 } 1623 1624 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, 1625 access_flags); 1626 if (IS_ERR(mr)) { 1627 ib_umem_release(&umem_dmabuf->umem); 1628 return ERR_CAST(mr); 1629 } 1630 1631 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1632 1633 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); 1634 umem_dmabuf->private = mr; 1635 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1636 if (err) 1637 goto err_dereg_mr; 1638 1639 err = mlx5_ib_init_dmabuf_mr(mr); 1640 if (err) 1641 goto err_dereg_mr; 1642 return &mr->ibmr; 1643 1644 err_dereg_mr: 1645 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1646 return ERR_PTR(err); 1647 } 1648 1649 /** 1650 * revoke_mr - Fence all DMA on the MR 1651 * @mr: The MR to fence 1652 * 1653 * Upon return the NIC will not be doing any DMA to the pages under the MR, 1654 * and any DMA in progress will be completed. Failure of this function 1655 * indicates the HW has failed catastrophically. 1656 */ 1657 static int revoke_mr(struct mlx5_ib_mr *mr) 1658 { 1659 struct mlx5_umr_wr umrwr = {}; 1660 1661 if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1662 return 0; 1663 1664 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1665 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1666 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1667 umrwr.pd = mr_to_mdev(mr)->umrc.pd; 1668 umrwr.mkey = mr->mmkey.key; 1669 umrwr.ignore_free_state = 1; 1670 1671 return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr); 1672 } 1673 1674 /* 1675 * True if the change in access flags can be done via UMR, only some access 1676 * flags can be updated. 1677 */ 1678 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, 1679 unsigned int current_access_flags, 1680 unsigned int target_access_flags) 1681 { 1682 unsigned int diffs = current_access_flags ^ target_access_flags; 1683 1684 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 1685 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING)) 1686 return false; 1687 return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags, 1688 target_access_flags); 1689 } 1690 1691 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1692 int access_flags) 1693 { 1694 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1695 struct mlx5_umr_wr umrwr = { 1696 .wr = { 1697 .send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE | 1698 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS, 1699 .opcode = MLX5_IB_WR_UMR, 1700 }, 1701 .mkey = mr->mmkey.key, 1702 .pd = pd, 1703 .access_flags = access_flags, 1704 }; 1705 int err; 1706 1707 err = mlx5_ib_post_send_wait(dev, &umrwr); 1708 if (err) 1709 return err; 1710 1711 mr->access_flags = access_flags; 1712 mr->mmkey.pd = to_mpd(pd)->pdn; 1713 return 0; 1714 } 1715 1716 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, 1717 struct ib_umem *new_umem, 1718 int new_access_flags, u64 iova, 1719 unsigned long *page_size) 1720 { 1721 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1722 1723 /* We only track the allocated sizes of MRs from the cache */ 1724 if (!mr->cache_ent) 1725 return false; 1726 if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length)) 1727 return false; 1728 1729 *page_size = 1730 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); 1731 if (WARN_ON(!*page_size)) 1732 return false; 1733 return (1ULL << mr->cache_ent->order) >= 1734 ib_umem_num_dma_blocks(new_umem, *page_size); 1735 } 1736 1737 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1738 int access_flags, int flags, struct ib_umem *new_umem, 1739 u64 iova, unsigned long page_size) 1740 { 1741 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1742 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; 1743 struct ib_umem *old_umem = mr->umem; 1744 int err; 1745 1746 /* 1747 * To keep everything simple the MR is revoked before we start to mess 1748 * with it. This ensure the change is atomic relative to any use of the 1749 * MR. 1750 */ 1751 err = revoke_mr(mr); 1752 if (err) 1753 return err; 1754 1755 if (flags & IB_MR_REREG_PD) { 1756 mr->ibmr.pd = pd; 1757 mr->mmkey.pd = to_mpd(pd)->pdn; 1758 upd_flags |= MLX5_IB_UPD_XLT_PD; 1759 } 1760 if (flags & IB_MR_REREG_ACCESS) { 1761 mr->access_flags = access_flags; 1762 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1763 } 1764 1765 mr->ibmr.length = new_umem->length; 1766 mr->mmkey.iova = iova; 1767 mr->mmkey.size = new_umem->length; 1768 mr->page_shift = order_base_2(page_size); 1769 mr->umem = new_umem; 1770 err = mlx5_ib_update_mr_pas(mr, upd_flags); 1771 if (err) { 1772 /* 1773 * The MR is revoked at this point so there is no issue to free 1774 * new_umem. 1775 */ 1776 mr->umem = old_umem; 1777 return err; 1778 } 1779 1780 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); 1781 ib_umem_release(old_umem); 1782 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); 1783 return 0; 1784 } 1785 1786 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1787 u64 length, u64 iova, int new_access_flags, 1788 struct ib_pd *new_pd, 1789 struct ib_udata *udata) 1790 { 1791 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1792 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1793 int err; 1794 1795 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1796 return ERR_PTR(-EOPNOTSUPP); 1797 1798 mlx5_ib_dbg( 1799 dev, 1800 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1801 start, iova, length, new_access_flags); 1802 1803 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) 1804 return ERR_PTR(-EOPNOTSUPP); 1805 1806 if (!(flags & IB_MR_REREG_ACCESS)) 1807 new_access_flags = mr->access_flags; 1808 if (!(flags & IB_MR_REREG_PD)) 1809 new_pd = ib_mr->pd; 1810 1811 if (!(flags & IB_MR_REREG_TRANS)) { 1812 struct ib_umem *umem; 1813 1814 /* Fast path for PD/access change */ 1815 if (can_use_umr_rereg_access(dev, mr->access_flags, 1816 new_access_flags)) { 1817 err = umr_rereg_pd_access(mr, new_pd, new_access_flags); 1818 if (err) 1819 return ERR_PTR(err); 1820 return NULL; 1821 } 1822 /* DM or ODP MR's don't have a normal umem so we can't re-use it */ 1823 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1824 goto recreate; 1825 1826 /* 1827 * Only one active MR can refer to a umem at one time, revoke 1828 * the old MR before assigning the umem to the new one. 1829 */ 1830 err = revoke_mr(mr); 1831 if (err) 1832 return ERR_PTR(err); 1833 umem = mr->umem; 1834 mr->umem = NULL; 1835 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1836 1837 return create_real_mr(new_pd, umem, mr->mmkey.iova, 1838 new_access_flags); 1839 } 1840 1841 /* 1842 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does 1843 * but the logic around releasing the umem is different 1844 */ 1845 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1846 goto recreate; 1847 1848 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && 1849 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { 1850 struct ib_umem *new_umem; 1851 unsigned long page_size; 1852 1853 new_umem = ib_umem_get(&dev->ib_dev, start, length, 1854 new_access_flags); 1855 if (IS_ERR(new_umem)) 1856 return ERR_CAST(new_umem); 1857 1858 /* Fast path for PAS change */ 1859 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, 1860 &page_size)) { 1861 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, 1862 new_umem, iova, page_size); 1863 if (err) { 1864 ib_umem_release(new_umem); 1865 return ERR_PTR(err); 1866 } 1867 return NULL; 1868 } 1869 return create_real_mr(new_pd, new_umem, iova, new_access_flags); 1870 } 1871 1872 /* 1873 * Everything else has no state we can preserve, just create a new MR 1874 * from scratch 1875 */ 1876 recreate: 1877 return mlx5_ib_reg_user_mr(new_pd, start, length, iova, 1878 new_access_flags, udata); 1879 } 1880 1881 static int 1882 mlx5_alloc_priv_descs(struct ib_device *device, 1883 struct mlx5_ib_mr *mr, 1884 int ndescs, 1885 int desc_size) 1886 { 1887 struct mlx5_ib_dev *dev = to_mdev(device); 1888 struct device *ddev = &dev->mdev->pdev->dev; 1889 int size = ndescs * desc_size; 1890 int add_size; 1891 int ret; 1892 1893 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1894 1895 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1896 if (!mr->descs_alloc) 1897 return -ENOMEM; 1898 1899 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1900 1901 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); 1902 if (dma_mapping_error(ddev, mr->desc_map)) { 1903 ret = -ENOMEM; 1904 goto err; 1905 } 1906 1907 return 0; 1908 err: 1909 kfree(mr->descs_alloc); 1910 1911 return ret; 1912 } 1913 1914 static void 1915 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1916 { 1917 if (!mr->umem && mr->descs) { 1918 struct ib_device *device = mr->ibmr.device; 1919 int size = mr->max_descs * mr->desc_size; 1920 struct mlx5_ib_dev *dev = to_mdev(device); 1921 1922 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, 1923 DMA_TO_DEVICE); 1924 kfree(mr->descs_alloc); 1925 mr->descs = NULL; 1926 } 1927 } 1928 1929 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1930 { 1931 struct mlx5_ib_mr *mr = to_mmr(ibmr); 1932 struct mlx5_ib_dev *dev = to_mdev(ibmr->device); 1933 int rc; 1934 1935 /* 1936 * Any async use of the mr must hold the refcount, once the refcount 1937 * goes to zero no other thread, such as ODP page faults, prefetch, any 1938 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it. 1939 */ 1940 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 1941 refcount_read(&mr->mmkey.usecount) != 0 && 1942 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))) 1943 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 1944 1945 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1946 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 1947 mr->sig, NULL, GFP_KERNEL); 1948 1949 if (mr->mtt_mr) { 1950 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 1951 if (rc) 1952 return rc; 1953 mr->mtt_mr = NULL; 1954 } 1955 if (mr->klm_mr) { 1956 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 1957 if (rc) 1958 return rc; 1959 mr->klm_mr = NULL; 1960 } 1961 1962 if (mlx5_core_destroy_psv(dev->mdev, 1963 mr->sig->psv_memory.psv_idx)) 1964 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1965 mr->sig->psv_memory.psv_idx); 1966 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1967 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1968 mr->sig->psv_wire.psv_idx); 1969 kfree(mr->sig); 1970 mr->sig = NULL; 1971 } 1972 1973 /* Stop DMA */ 1974 if (mr->cache_ent) { 1975 if (revoke_mr(mr)) { 1976 spin_lock_irq(&mr->cache_ent->lock); 1977 mr->cache_ent->total_mrs--; 1978 spin_unlock_irq(&mr->cache_ent->lock); 1979 mr->cache_ent = NULL; 1980 } 1981 } 1982 if (!mr->cache_ent) { 1983 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr); 1984 if (rc) 1985 return rc; 1986 } 1987 1988 if (mr->umem) { 1989 bool is_odp = is_odp_mr(mr); 1990 1991 if (!is_odp) 1992 atomic_sub(ib_umem_num_pages(mr->umem), 1993 &dev->mdev->priv.reg_pages); 1994 ib_umem_release(mr->umem); 1995 if (is_odp) 1996 mlx5_ib_free_odp_mr(mr); 1997 } 1998 1999 if (mr->cache_ent) { 2000 mlx5_mr_cache_free(dev, mr); 2001 } else { 2002 mlx5_free_priv_descs(mr); 2003 kfree(mr); 2004 } 2005 return 0; 2006 } 2007 2008 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 2009 int access_mode, int page_shift) 2010 { 2011 void *mkc; 2012 2013 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2014 2015 /* This is only used from the kernel, so setting the PD is OK. */ 2016 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd); 2017 MLX5_SET(mkc, mkc, free, 1); 2018 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2019 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 2020 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 2021 MLX5_SET(mkc, mkc, umr_en, 1); 2022 MLX5_SET(mkc, mkc, log_page_size, page_shift); 2023 } 2024 2025 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2026 int ndescs, int desc_size, int page_shift, 2027 int access_mode, u32 *in, int inlen) 2028 { 2029 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2030 int err; 2031 2032 mr->access_mode = access_mode; 2033 mr->desc_size = desc_size; 2034 mr->max_descs = ndescs; 2035 2036 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 2037 if (err) 2038 return err; 2039 2040 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 2041 2042 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 2043 if (err) 2044 goto err_free_descs; 2045 2046 mr->mmkey.type = MLX5_MKEY_MR; 2047 mr->ibmr.lkey = mr->mmkey.key; 2048 mr->ibmr.rkey = mr->mmkey.key; 2049 2050 return 0; 2051 2052 err_free_descs: 2053 mlx5_free_priv_descs(mr); 2054 return err; 2055 } 2056 2057 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 2058 u32 max_num_sg, u32 max_num_meta_sg, 2059 int desc_size, int access_mode) 2060 { 2061 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2062 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 2063 int page_shift = 0; 2064 struct mlx5_ib_mr *mr; 2065 u32 *in; 2066 int err; 2067 2068 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2069 if (!mr) 2070 return ERR_PTR(-ENOMEM); 2071 2072 mr->ibmr.pd = pd; 2073 mr->ibmr.device = pd->device; 2074 2075 in = kzalloc(inlen, GFP_KERNEL); 2076 if (!in) { 2077 err = -ENOMEM; 2078 goto err_free; 2079 } 2080 2081 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 2082 page_shift = PAGE_SHIFT; 2083 2084 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 2085 access_mode, in, inlen); 2086 if (err) 2087 goto err_free_in; 2088 2089 mr->umem = NULL; 2090 kfree(in); 2091 2092 return mr; 2093 2094 err_free_in: 2095 kfree(in); 2096 err_free: 2097 kfree(mr); 2098 return ERR_PTR(err); 2099 } 2100 2101 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2102 int ndescs, u32 *in, int inlen) 2103 { 2104 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 2105 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 2106 inlen); 2107 } 2108 2109 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2110 int ndescs, u32 *in, int inlen) 2111 { 2112 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 2113 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2114 } 2115 2116 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2117 int max_num_sg, int max_num_meta_sg, 2118 u32 *in, int inlen) 2119 { 2120 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2121 u32 psv_index[2]; 2122 void *mkc; 2123 int err; 2124 2125 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 2126 if (!mr->sig) 2127 return -ENOMEM; 2128 2129 /* create mem & wire PSVs */ 2130 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 2131 if (err) 2132 goto err_free_sig; 2133 2134 mr->sig->psv_memory.psv_idx = psv_index[0]; 2135 mr->sig->psv_wire.psv_idx = psv_index[1]; 2136 2137 mr->sig->sig_status_checked = true; 2138 mr->sig->sig_err_exists = false; 2139 /* Next UMR, Arm SIGERR */ 2140 ++mr->sig->sigerr_count; 2141 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2142 sizeof(struct mlx5_klm), 2143 MLX5_MKC_ACCESS_MODE_KLMS); 2144 if (IS_ERR(mr->klm_mr)) { 2145 err = PTR_ERR(mr->klm_mr); 2146 goto err_destroy_psv; 2147 } 2148 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2149 sizeof(struct mlx5_mtt), 2150 MLX5_MKC_ACCESS_MODE_MTT); 2151 if (IS_ERR(mr->mtt_mr)) { 2152 err = PTR_ERR(mr->mtt_mr); 2153 goto err_free_klm_mr; 2154 } 2155 2156 /* Set bsf descriptors for mkey */ 2157 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2158 MLX5_SET(mkc, mkc, bsf_en, 1); 2159 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 2160 2161 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 2162 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2163 if (err) 2164 goto err_free_mtt_mr; 2165 2166 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 2167 mr->sig, GFP_KERNEL)); 2168 if (err) 2169 goto err_free_descs; 2170 return 0; 2171 2172 err_free_descs: 2173 destroy_mkey(dev, mr); 2174 mlx5_free_priv_descs(mr); 2175 err_free_mtt_mr: 2176 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 2177 mr->mtt_mr = NULL; 2178 err_free_klm_mr: 2179 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 2180 mr->klm_mr = NULL; 2181 err_destroy_psv: 2182 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 2183 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 2184 mr->sig->psv_memory.psv_idx); 2185 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 2186 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 2187 mr->sig->psv_wire.psv_idx); 2188 err_free_sig: 2189 kfree(mr->sig); 2190 2191 return err; 2192 } 2193 2194 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 2195 enum ib_mr_type mr_type, u32 max_num_sg, 2196 u32 max_num_meta_sg) 2197 { 2198 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2199 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2200 int ndescs = ALIGN(max_num_sg, 4); 2201 struct mlx5_ib_mr *mr; 2202 u32 *in; 2203 int err; 2204 2205 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2206 if (!mr) 2207 return ERR_PTR(-ENOMEM); 2208 2209 in = kzalloc(inlen, GFP_KERNEL); 2210 if (!in) { 2211 err = -ENOMEM; 2212 goto err_free; 2213 } 2214 2215 mr->ibmr.device = pd->device; 2216 mr->umem = NULL; 2217 2218 switch (mr_type) { 2219 case IB_MR_TYPE_MEM_REG: 2220 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 2221 break; 2222 case IB_MR_TYPE_SG_GAPS: 2223 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 2224 break; 2225 case IB_MR_TYPE_INTEGRITY: 2226 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 2227 max_num_meta_sg, in, inlen); 2228 break; 2229 default: 2230 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 2231 err = -EINVAL; 2232 } 2233 2234 if (err) 2235 goto err_free_in; 2236 2237 kfree(in); 2238 2239 return &mr->ibmr; 2240 2241 err_free_in: 2242 kfree(in); 2243 err_free: 2244 kfree(mr); 2245 return ERR_PTR(err); 2246 } 2247 2248 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2249 u32 max_num_sg) 2250 { 2251 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 2252 } 2253 2254 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 2255 u32 max_num_sg, u32 max_num_meta_sg) 2256 { 2257 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 2258 max_num_meta_sg); 2259 } 2260 2261 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 2262 { 2263 struct mlx5_ib_dev *dev = to_mdev(ibmw->device); 2264 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2265 struct mlx5_ib_mw *mw = to_mmw(ibmw); 2266 u32 *in = NULL; 2267 void *mkc; 2268 int ndescs; 2269 int err; 2270 struct mlx5_ib_alloc_mw req = {}; 2271 struct { 2272 __u32 comp_mask; 2273 __u32 response_length; 2274 } resp = {}; 2275 2276 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 2277 if (err) 2278 return err; 2279 2280 if (req.comp_mask || req.reserved1 || req.reserved2) 2281 return -EOPNOTSUPP; 2282 2283 if (udata->inlen > sizeof(req) && 2284 !ib_is_udata_cleared(udata, sizeof(req), 2285 udata->inlen - sizeof(req))) 2286 return -EOPNOTSUPP; 2287 2288 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2289 2290 in = kzalloc(inlen, GFP_KERNEL); 2291 if (!in) { 2292 err = -ENOMEM; 2293 goto free; 2294 } 2295 2296 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2297 2298 MLX5_SET(mkc, mkc, free, 1); 2299 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2300 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); 2301 MLX5_SET(mkc, mkc, umr_en, 1); 2302 MLX5_SET(mkc, mkc, lr, 1); 2303 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2304 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); 2305 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2306 2307 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2308 if (err) 2309 goto free; 2310 2311 mw->mmkey.type = MLX5_MKEY_MW; 2312 ibmw->rkey = mw->mmkey.key; 2313 mw->ndescs = ndescs; 2314 2315 resp.response_length = 2316 min(offsetofend(typeof(resp), response_length), udata->outlen); 2317 if (resp.response_length) { 2318 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2319 if (err) 2320 goto free_mkey; 2321 } 2322 2323 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2324 err = mlx5r_store_odp_mkey(dev, &mw->mmkey); 2325 if (err) 2326 goto free_mkey; 2327 } 2328 2329 kfree(in); 2330 return 0; 2331 2332 free_mkey: 2333 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 2334 free: 2335 kfree(in); 2336 return err; 2337 } 2338 2339 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2340 { 2341 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2342 struct mlx5_ib_mw *mmw = to_mmw(mw); 2343 2344 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 2345 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) 2346 /* 2347 * pagefault_single_data_segment() may be accessing mmw 2348 * if the user bound an ODP MR to this MW. 2349 */ 2350 mlx5r_deref_wait_odp_mkey(&mmw->mmkey); 2351 2352 return mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey); 2353 } 2354 2355 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2356 struct ib_mr_status *mr_status) 2357 { 2358 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2359 int ret = 0; 2360 2361 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2362 pr_err("Invalid status check mask\n"); 2363 ret = -EINVAL; 2364 goto done; 2365 } 2366 2367 mr_status->fail_status = 0; 2368 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2369 if (!mmr->sig) { 2370 ret = -EINVAL; 2371 pr_err("signature status check requested on a non-signature enabled MR\n"); 2372 goto done; 2373 } 2374 2375 mmr->sig->sig_status_checked = true; 2376 if (!mmr->sig->sig_err_exists) 2377 goto done; 2378 2379 if (ibmr->lkey == mmr->sig->err_item.key) 2380 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2381 sizeof(mr_status->sig_err)); 2382 else { 2383 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2384 mr_status->sig_err.sig_err_offset = 0; 2385 mr_status->sig_err.key = mmr->sig->err_item.key; 2386 } 2387 2388 mmr->sig->sig_err_exists = false; 2389 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2390 } 2391 2392 done: 2393 return ret; 2394 } 2395 2396 static int 2397 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2398 int data_sg_nents, unsigned int *data_sg_offset, 2399 struct scatterlist *meta_sg, int meta_sg_nents, 2400 unsigned int *meta_sg_offset) 2401 { 2402 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2403 unsigned int sg_offset = 0; 2404 int n = 0; 2405 2406 mr->meta_length = 0; 2407 if (data_sg_nents == 1) { 2408 n++; 2409 mr->ndescs = 1; 2410 if (data_sg_offset) 2411 sg_offset = *data_sg_offset; 2412 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2413 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2414 if (meta_sg_nents == 1) { 2415 n++; 2416 mr->meta_ndescs = 1; 2417 if (meta_sg_offset) 2418 sg_offset = *meta_sg_offset; 2419 else 2420 sg_offset = 0; 2421 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2422 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2423 } 2424 ibmr->length = mr->data_length + mr->meta_length; 2425 } 2426 2427 return n; 2428 } 2429 2430 static int 2431 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2432 struct scatterlist *sgl, 2433 unsigned short sg_nents, 2434 unsigned int *sg_offset_p, 2435 struct scatterlist *meta_sgl, 2436 unsigned short meta_sg_nents, 2437 unsigned int *meta_sg_offset_p) 2438 { 2439 struct scatterlist *sg = sgl; 2440 struct mlx5_klm *klms = mr->descs; 2441 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2442 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2443 int i, j = 0; 2444 2445 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2446 mr->ibmr.length = 0; 2447 2448 for_each_sg(sgl, sg, sg_nents, i) { 2449 if (unlikely(i >= mr->max_descs)) 2450 break; 2451 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2452 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2453 klms[i].key = cpu_to_be32(lkey); 2454 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2455 2456 sg_offset = 0; 2457 } 2458 2459 if (sg_offset_p) 2460 *sg_offset_p = sg_offset; 2461 2462 mr->ndescs = i; 2463 mr->data_length = mr->ibmr.length; 2464 2465 if (meta_sg_nents) { 2466 sg = meta_sgl; 2467 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2468 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2469 if (unlikely(i + j >= mr->max_descs)) 2470 break; 2471 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2472 sg_offset); 2473 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2474 sg_offset); 2475 klms[i + j].key = cpu_to_be32(lkey); 2476 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2477 2478 sg_offset = 0; 2479 } 2480 if (meta_sg_offset_p) 2481 *meta_sg_offset_p = sg_offset; 2482 2483 mr->meta_ndescs = j; 2484 mr->meta_length = mr->ibmr.length - mr->data_length; 2485 } 2486 2487 return i + j; 2488 } 2489 2490 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2491 { 2492 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2493 __be64 *descs; 2494 2495 if (unlikely(mr->ndescs == mr->max_descs)) 2496 return -ENOMEM; 2497 2498 descs = mr->descs; 2499 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2500 2501 return 0; 2502 } 2503 2504 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2505 { 2506 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2507 __be64 *descs; 2508 2509 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2510 return -ENOMEM; 2511 2512 descs = mr->descs; 2513 descs[mr->ndescs + mr->meta_ndescs++] = 2514 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2515 2516 return 0; 2517 } 2518 2519 static int 2520 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2521 int data_sg_nents, unsigned int *data_sg_offset, 2522 struct scatterlist *meta_sg, int meta_sg_nents, 2523 unsigned int *meta_sg_offset) 2524 { 2525 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2526 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2527 int n; 2528 2529 pi_mr->ndescs = 0; 2530 pi_mr->meta_ndescs = 0; 2531 pi_mr->meta_length = 0; 2532 2533 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2534 pi_mr->desc_size * pi_mr->max_descs, 2535 DMA_TO_DEVICE); 2536 2537 pi_mr->ibmr.page_size = ibmr->page_size; 2538 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2539 mlx5_set_page); 2540 if (n != data_sg_nents) 2541 return n; 2542 2543 pi_mr->data_iova = pi_mr->ibmr.iova; 2544 pi_mr->data_length = pi_mr->ibmr.length; 2545 pi_mr->ibmr.length = pi_mr->data_length; 2546 ibmr->length = pi_mr->data_length; 2547 2548 if (meta_sg_nents) { 2549 u64 page_mask = ~((u64)ibmr->page_size - 1); 2550 u64 iova = pi_mr->data_iova; 2551 2552 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2553 meta_sg_offset, mlx5_set_page_pi); 2554 2555 pi_mr->meta_length = pi_mr->ibmr.length; 2556 /* 2557 * PI address for the HW is the offset of the metadata address 2558 * relative to the first data page address. 2559 * It equals to first data page address + size of data pages + 2560 * metadata offset at the first metadata page 2561 */ 2562 pi_mr->pi_iova = (iova & page_mask) + 2563 pi_mr->ndescs * ibmr->page_size + 2564 (pi_mr->ibmr.iova & ~page_mask); 2565 /* 2566 * In order to use one MTT MR for data and metadata, we register 2567 * also the gaps between the end of the data and the start of 2568 * the metadata (the sig MR will verify that the HW will access 2569 * to right addresses). This mapping is safe because we use 2570 * internal mkey for the registration. 2571 */ 2572 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2573 pi_mr->ibmr.iova = iova; 2574 ibmr->length += pi_mr->meta_length; 2575 } 2576 2577 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2578 pi_mr->desc_size * pi_mr->max_descs, 2579 DMA_TO_DEVICE); 2580 2581 return n; 2582 } 2583 2584 static int 2585 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2586 int data_sg_nents, unsigned int *data_sg_offset, 2587 struct scatterlist *meta_sg, int meta_sg_nents, 2588 unsigned int *meta_sg_offset) 2589 { 2590 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2591 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2592 int n; 2593 2594 pi_mr->ndescs = 0; 2595 pi_mr->meta_ndescs = 0; 2596 pi_mr->meta_length = 0; 2597 2598 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2599 pi_mr->desc_size * pi_mr->max_descs, 2600 DMA_TO_DEVICE); 2601 2602 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2603 meta_sg, meta_sg_nents, meta_sg_offset); 2604 2605 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2606 pi_mr->desc_size * pi_mr->max_descs, 2607 DMA_TO_DEVICE); 2608 2609 /* This is zero-based memory region */ 2610 pi_mr->data_iova = 0; 2611 pi_mr->ibmr.iova = 0; 2612 pi_mr->pi_iova = pi_mr->data_length; 2613 ibmr->length = pi_mr->ibmr.length; 2614 2615 return n; 2616 } 2617 2618 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2619 int data_sg_nents, unsigned int *data_sg_offset, 2620 struct scatterlist *meta_sg, int meta_sg_nents, 2621 unsigned int *meta_sg_offset) 2622 { 2623 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2624 struct mlx5_ib_mr *pi_mr = NULL; 2625 int n; 2626 2627 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2628 2629 mr->ndescs = 0; 2630 mr->data_length = 0; 2631 mr->data_iova = 0; 2632 mr->meta_ndescs = 0; 2633 mr->pi_iova = 0; 2634 /* 2635 * As a performance optimization, if possible, there is no need to 2636 * perform UMR operation to register the data/metadata buffers. 2637 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2638 * Fallback to UMR only in case of a failure. 2639 */ 2640 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2641 data_sg_offset, meta_sg, meta_sg_nents, 2642 meta_sg_offset); 2643 if (n == data_sg_nents + meta_sg_nents) 2644 goto out; 2645 /* 2646 * As a performance optimization, if possible, there is no need to map 2647 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2648 * descriptors and fallback to KLM only in case of a failure. 2649 * It's more efficient for the HW to work with MTT descriptors 2650 * (especially in high load). 2651 * Use KLM (indirect access) only if it's mandatory. 2652 */ 2653 pi_mr = mr->mtt_mr; 2654 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2655 data_sg_offset, meta_sg, meta_sg_nents, 2656 meta_sg_offset); 2657 if (n == data_sg_nents + meta_sg_nents) 2658 goto out; 2659 2660 pi_mr = mr->klm_mr; 2661 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2662 data_sg_offset, meta_sg, meta_sg_nents, 2663 meta_sg_offset); 2664 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2665 return -ENOMEM; 2666 2667 out: 2668 /* This is zero-based memory region */ 2669 ibmr->iova = 0; 2670 mr->pi_mr = pi_mr; 2671 if (pi_mr) 2672 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2673 else 2674 ibmr->sig_attrs->meta_length = mr->meta_length; 2675 2676 return 0; 2677 } 2678 2679 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2680 unsigned int *sg_offset) 2681 { 2682 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2683 int n; 2684 2685 mr->ndescs = 0; 2686 2687 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2688 mr->desc_size * mr->max_descs, 2689 DMA_TO_DEVICE); 2690 2691 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2692 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2693 NULL); 2694 else 2695 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2696 mlx5_set_page); 2697 2698 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2699 mr->desc_size * mr->max_descs, 2700 DMA_TO_DEVICE); 2701 2702 return n; 2703 } 2704