xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43 
44 enum {
45 	MAX_PENDING_REG_MR = 8,
46 };
47 
48 #define MLX5_UMR_ALIGN 2048
49 
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
54 
55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
56 {
57 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
58 }
59 
60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
61 {
62 	int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
63 
64 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
65 		/* Wait until all page fault handlers using the mr complete. */
66 		synchronize_srcu(&dev->mr_srcu);
67 
68 	return err;
69 }
70 
71 static int order2idx(struct mlx5_ib_dev *dev, int order)
72 {
73 	struct mlx5_mr_cache *cache = &dev->cache;
74 
75 	if (order < cache->ent[0].order)
76 		return 0;
77 	else
78 		return order - cache->ent[0].order;
79 }
80 
81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
82 {
83 	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
84 		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
85 }
86 
87 static void update_odp_mr(struct mlx5_ib_mr *mr)
88 {
89 	if (is_odp_mr(mr)) {
90 		/*
91 		 * This barrier prevents the compiler from moving the
92 		 * setting of umem->odp_data->private to point to our
93 		 * MR, before reg_umr finished, to ensure that the MR
94 		 * initialization have finished before starting to
95 		 * handle invalidations.
96 		 */
97 		smp_wmb();
98 		to_ib_umem_odp(mr->umem)->private = mr;
99 		/*
100 		 * Make sure we will see the new
101 		 * umem->odp_data->private value in the invalidation
102 		 * routines, before we can get page faults on the
103 		 * MR. Page faults can happen once we put the MR in
104 		 * the tree, below this line. Without the barrier,
105 		 * there can be a fault handling and an invalidation
106 		 * before umem->odp_data->private == mr is visible to
107 		 * the invalidation handler.
108 		 */
109 		smp_wmb();
110 	}
111 }
112 
113 static void reg_mr_callback(int status, struct mlx5_async_work *context)
114 {
115 	struct mlx5_ib_mr *mr =
116 		container_of(context, struct mlx5_ib_mr, cb_work);
117 	struct mlx5_ib_dev *dev = mr->dev;
118 	struct mlx5_mr_cache *cache = &dev->cache;
119 	int c = order2idx(dev, mr->order);
120 	struct mlx5_cache_ent *ent = &cache->ent[c];
121 	u8 key;
122 	unsigned long flags;
123 	struct xarray *mkeys = &dev->mdev->priv.mkey_table;
124 	int err;
125 
126 	spin_lock_irqsave(&ent->lock, flags);
127 	ent->pending--;
128 	spin_unlock_irqrestore(&ent->lock, flags);
129 	if (status) {
130 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
131 		kfree(mr);
132 		dev->fill_delay = 1;
133 		mod_timer(&dev->delay_timer, jiffies + HZ);
134 		return;
135 	}
136 
137 	mr->mmkey.type = MLX5_MKEY_MR;
138 	spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
139 	key = dev->mdev->priv.mkey_key++;
140 	spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
141 	mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
142 
143 	cache->last_add = jiffies;
144 
145 	spin_lock_irqsave(&ent->lock, flags);
146 	list_add_tail(&mr->list, &ent->head);
147 	ent->cur++;
148 	ent->size++;
149 	spin_unlock_irqrestore(&ent->lock, flags);
150 
151 	xa_lock_irqsave(mkeys, flags);
152 	err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key),
153 				&mr->mmkey, GFP_ATOMIC));
154 	xa_unlock_irqrestore(mkeys, flags);
155 	if (err)
156 		pr_err("Error inserting to mkey tree. 0x%x\n", -err);
157 
158 	if (!completion_done(&ent->compl))
159 		complete(&ent->compl);
160 }
161 
162 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
163 {
164 	struct mlx5_mr_cache *cache = &dev->cache;
165 	struct mlx5_cache_ent *ent = &cache->ent[c];
166 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
167 	struct mlx5_ib_mr *mr;
168 	void *mkc;
169 	u32 *in;
170 	int err = 0;
171 	int i;
172 
173 	in = kzalloc(inlen, GFP_KERNEL);
174 	if (!in)
175 		return -ENOMEM;
176 
177 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
178 	for (i = 0; i < num; i++) {
179 		if (ent->pending >= MAX_PENDING_REG_MR) {
180 			err = -EAGAIN;
181 			break;
182 		}
183 
184 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
185 		if (!mr) {
186 			err = -ENOMEM;
187 			break;
188 		}
189 		mr->order = ent->order;
190 		mr->allocated_from_cache = 1;
191 		mr->dev = dev;
192 
193 		MLX5_SET(mkc, mkc, free, 1);
194 		MLX5_SET(mkc, mkc, umr_en, 1);
195 		MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
196 		MLX5_SET(mkc, mkc, access_mode_4_2,
197 			 (ent->access_mode >> 2) & 0x7);
198 
199 		MLX5_SET(mkc, mkc, qpn, 0xffffff);
200 		MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
201 		MLX5_SET(mkc, mkc, log_page_size, ent->page);
202 
203 		spin_lock_irq(&ent->lock);
204 		ent->pending++;
205 		spin_unlock_irq(&ent->lock);
206 		err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
207 					       &dev->async_ctx, in, inlen,
208 					       mr->out, sizeof(mr->out),
209 					       reg_mr_callback, &mr->cb_work);
210 		if (err) {
211 			spin_lock_irq(&ent->lock);
212 			ent->pending--;
213 			spin_unlock_irq(&ent->lock);
214 			mlx5_ib_warn(dev, "create mkey failed %d\n", err);
215 			kfree(mr);
216 			break;
217 		}
218 	}
219 
220 	kfree(in);
221 	return err;
222 }
223 
224 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
225 {
226 	struct mlx5_mr_cache *cache = &dev->cache;
227 	struct mlx5_cache_ent *ent = &cache->ent[c];
228 	struct mlx5_ib_mr *tmp_mr;
229 	struct mlx5_ib_mr *mr;
230 	LIST_HEAD(del_list);
231 	int i;
232 
233 	for (i = 0; i < num; i++) {
234 		spin_lock_irq(&ent->lock);
235 		if (list_empty(&ent->head)) {
236 			spin_unlock_irq(&ent->lock);
237 			break;
238 		}
239 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
240 		list_move(&mr->list, &del_list);
241 		ent->cur--;
242 		ent->size--;
243 		spin_unlock_irq(&ent->lock);
244 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
245 	}
246 
247 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
248 		synchronize_srcu(&dev->mr_srcu);
249 
250 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
251 		list_del(&mr->list);
252 		kfree(mr);
253 	}
254 }
255 
256 static ssize_t size_write(struct file *filp, const char __user *buf,
257 			  size_t count, loff_t *pos)
258 {
259 	struct mlx5_cache_ent *ent = filp->private_data;
260 	struct mlx5_ib_dev *dev = ent->dev;
261 	char lbuf[20] = {0};
262 	u32 var;
263 	int err;
264 	int c;
265 
266 	count = min(count, sizeof(lbuf) - 1);
267 	if (copy_from_user(lbuf, buf, count))
268 		return -EFAULT;
269 
270 	c = order2idx(dev, ent->order);
271 
272 	if (sscanf(lbuf, "%u", &var) != 1)
273 		return -EINVAL;
274 
275 	if (var < ent->limit)
276 		return -EINVAL;
277 
278 	if (var > ent->size) {
279 		do {
280 			err = add_keys(dev, c, var - ent->size);
281 			if (err && err != -EAGAIN)
282 				return err;
283 
284 			usleep_range(3000, 5000);
285 		} while (err);
286 	} else if (var < ent->size) {
287 		remove_keys(dev, c, ent->size - var);
288 	}
289 
290 	return count;
291 }
292 
293 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
294 			 loff_t *pos)
295 {
296 	struct mlx5_cache_ent *ent = filp->private_data;
297 	char lbuf[20];
298 	int err;
299 
300 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
301 	if (err < 0)
302 		return err;
303 
304 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
305 }
306 
307 static const struct file_operations size_fops = {
308 	.owner	= THIS_MODULE,
309 	.open	= simple_open,
310 	.write	= size_write,
311 	.read	= size_read,
312 };
313 
314 static ssize_t limit_write(struct file *filp, const char __user *buf,
315 			   size_t count, loff_t *pos)
316 {
317 	struct mlx5_cache_ent *ent = filp->private_data;
318 	struct mlx5_ib_dev *dev = ent->dev;
319 	char lbuf[20] = {0};
320 	u32 var;
321 	int err;
322 	int c;
323 
324 	count = min(count, sizeof(lbuf) - 1);
325 	if (copy_from_user(lbuf, buf, count))
326 		return -EFAULT;
327 
328 	c = order2idx(dev, ent->order);
329 
330 	if (sscanf(lbuf, "%u", &var) != 1)
331 		return -EINVAL;
332 
333 	if (var > ent->size)
334 		return -EINVAL;
335 
336 	ent->limit = var;
337 
338 	if (ent->cur < ent->limit) {
339 		err = add_keys(dev, c, 2 * ent->limit - ent->cur);
340 		if (err)
341 			return err;
342 	}
343 
344 	return count;
345 }
346 
347 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
348 			  loff_t *pos)
349 {
350 	struct mlx5_cache_ent *ent = filp->private_data;
351 	char lbuf[20];
352 	int err;
353 
354 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
355 	if (err < 0)
356 		return err;
357 
358 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
359 }
360 
361 static const struct file_operations limit_fops = {
362 	.owner	= THIS_MODULE,
363 	.open	= simple_open,
364 	.write	= limit_write,
365 	.read	= limit_read,
366 };
367 
368 static int someone_adding(struct mlx5_mr_cache *cache)
369 {
370 	int i;
371 
372 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
373 		if (cache->ent[i].cur < cache->ent[i].limit)
374 			return 1;
375 	}
376 
377 	return 0;
378 }
379 
380 static void __cache_work_func(struct mlx5_cache_ent *ent)
381 {
382 	struct mlx5_ib_dev *dev = ent->dev;
383 	struct mlx5_mr_cache *cache = &dev->cache;
384 	int i = order2idx(dev, ent->order);
385 	int err;
386 
387 	if (cache->stopped)
388 		return;
389 
390 	ent = &dev->cache.ent[i];
391 	if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
392 		err = add_keys(dev, i, 1);
393 		if (ent->cur < 2 * ent->limit) {
394 			if (err == -EAGAIN) {
395 				mlx5_ib_dbg(dev, "returned eagain, order %d\n",
396 					    i + 2);
397 				queue_delayed_work(cache->wq, &ent->dwork,
398 						   msecs_to_jiffies(3));
399 			} else if (err) {
400 				mlx5_ib_warn(dev, "command failed order %d, err %d\n",
401 					     i + 2, err);
402 				queue_delayed_work(cache->wq, &ent->dwork,
403 						   msecs_to_jiffies(1000));
404 			} else {
405 				queue_work(cache->wq, &ent->work);
406 			}
407 		}
408 	} else if (ent->cur > 2 * ent->limit) {
409 		/*
410 		 * The remove_keys() logic is performed as garbage collection
411 		 * task. Such task is intended to be run when no other active
412 		 * processes are running.
413 		 *
414 		 * The need_resched() will return TRUE if there are user tasks
415 		 * to be activated in near future.
416 		 *
417 		 * In such case, we don't execute remove_keys() and postpone
418 		 * the garbage collection work to try to run in next cycle,
419 		 * in order to free CPU resources to other tasks.
420 		 */
421 		if (!need_resched() && !someone_adding(cache) &&
422 		    time_after(jiffies, cache->last_add + 300 * HZ)) {
423 			remove_keys(dev, i, 1);
424 			if (ent->cur > ent->limit)
425 				queue_work(cache->wq, &ent->work);
426 		} else {
427 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
428 		}
429 	}
430 }
431 
432 static void delayed_cache_work_func(struct work_struct *work)
433 {
434 	struct mlx5_cache_ent *ent;
435 
436 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
437 	__cache_work_func(ent);
438 }
439 
440 static void cache_work_func(struct work_struct *work)
441 {
442 	struct mlx5_cache_ent *ent;
443 
444 	ent = container_of(work, struct mlx5_cache_ent, work);
445 	__cache_work_func(ent);
446 }
447 
448 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
449 {
450 	struct mlx5_mr_cache *cache = &dev->cache;
451 	struct mlx5_cache_ent *ent;
452 	struct mlx5_ib_mr *mr;
453 	int err;
454 
455 	if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
456 		mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
457 		return NULL;
458 	}
459 
460 	ent = &cache->ent[entry];
461 	while (1) {
462 		spin_lock_irq(&ent->lock);
463 		if (list_empty(&ent->head)) {
464 			spin_unlock_irq(&ent->lock);
465 
466 			err = add_keys(dev, entry, 1);
467 			if (err && err != -EAGAIN)
468 				return ERR_PTR(err);
469 
470 			wait_for_completion(&ent->compl);
471 		} else {
472 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
473 					      list);
474 			list_del(&mr->list);
475 			ent->cur--;
476 			spin_unlock_irq(&ent->lock);
477 			if (ent->cur < ent->limit)
478 				queue_work(cache->wq, &ent->work);
479 			return mr;
480 		}
481 	}
482 }
483 
484 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
485 {
486 	struct mlx5_mr_cache *cache = &dev->cache;
487 	struct mlx5_ib_mr *mr = NULL;
488 	struct mlx5_cache_ent *ent;
489 	int last_umr_cache_entry;
490 	int c;
491 	int i;
492 
493 	c = order2idx(dev, order);
494 	last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
495 	if (c < 0 || c > last_umr_cache_entry) {
496 		mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
497 		return NULL;
498 	}
499 
500 	for (i = c; i <= last_umr_cache_entry; i++) {
501 		ent = &cache->ent[i];
502 
503 		mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
504 
505 		spin_lock_irq(&ent->lock);
506 		if (!list_empty(&ent->head)) {
507 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
508 					      list);
509 			list_del(&mr->list);
510 			ent->cur--;
511 			spin_unlock_irq(&ent->lock);
512 			if (ent->cur < ent->limit)
513 				queue_work(cache->wq, &ent->work);
514 			break;
515 		}
516 		spin_unlock_irq(&ent->lock);
517 
518 		queue_work(cache->wq, &ent->work);
519 	}
520 
521 	if (!mr)
522 		cache->ent[c].miss++;
523 
524 	return mr;
525 }
526 
527 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
528 {
529 	struct mlx5_mr_cache *cache = &dev->cache;
530 	struct mlx5_cache_ent *ent;
531 	int shrink = 0;
532 	int c;
533 
534 	if (!mr->allocated_from_cache)
535 		return;
536 
537 	c = order2idx(dev, mr->order);
538 	WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
539 
540 	if (unreg_umr(dev, mr)) {
541 		mr->allocated_from_cache = false;
542 		destroy_mkey(dev, mr);
543 		ent = &cache->ent[c];
544 		if (ent->cur < ent->limit)
545 			queue_work(cache->wq, &ent->work);
546 		return;
547 	}
548 
549 	ent = &cache->ent[c];
550 	spin_lock_irq(&ent->lock);
551 	list_add_tail(&mr->list, &ent->head);
552 	ent->cur++;
553 	if (ent->cur > 2 * ent->limit)
554 		shrink = 1;
555 	spin_unlock_irq(&ent->lock);
556 
557 	if (shrink)
558 		queue_work(cache->wq, &ent->work);
559 }
560 
561 static void clean_keys(struct mlx5_ib_dev *dev, int c)
562 {
563 	struct mlx5_mr_cache *cache = &dev->cache;
564 	struct mlx5_cache_ent *ent = &cache->ent[c];
565 	struct mlx5_ib_mr *tmp_mr;
566 	struct mlx5_ib_mr *mr;
567 	LIST_HEAD(del_list);
568 
569 	cancel_delayed_work(&ent->dwork);
570 	while (1) {
571 		spin_lock_irq(&ent->lock);
572 		if (list_empty(&ent->head)) {
573 			spin_unlock_irq(&ent->lock);
574 			break;
575 		}
576 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
577 		list_move(&mr->list, &del_list);
578 		ent->cur--;
579 		ent->size--;
580 		spin_unlock_irq(&ent->lock);
581 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
582 	}
583 
584 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
585 	synchronize_srcu(&dev->mr_srcu);
586 #endif
587 
588 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
589 		list_del(&mr->list);
590 		kfree(mr);
591 	}
592 }
593 
594 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
595 {
596 	if (!mlx5_debugfs_root || dev->is_rep)
597 		return;
598 
599 	debugfs_remove_recursive(dev->cache.root);
600 	dev->cache.root = NULL;
601 }
602 
603 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
604 {
605 	struct mlx5_mr_cache *cache = &dev->cache;
606 	struct mlx5_cache_ent *ent;
607 	struct dentry *dir;
608 	int i;
609 
610 	if (!mlx5_debugfs_root || dev->is_rep)
611 		return;
612 
613 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
614 
615 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
616 		ent = &cache->ent[i];
617 		sprintf(ent->name, "%d", ent->order);
618 		dir = debugfs_create_dir(ent->name, cache->root);
619 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
620 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
621 		debugfs_create_u32("cur", 0400, dir, &ent->cur);
622 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
623 	}
624 }
625 
626 static void delay_time_func(struct timer_list *t)
627 {
628 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
629 
630 	dev->fill_delay = 0;
631 }
632 
633 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
634 {
635 	struct mlx5_mr_cache *cache = &dev->cache;
636 	struct mlx5_cache_ent *ent;
637 	int i;
638 
639 	mutex_init(&dev->slow_path_mutex);
640 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
641 	if (!cache->wq) {
642 		mlx5_ib_warn(dev, "failed to create work queue\n");
643 		return -ENOMEM;
644 	}
645 
646 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
647 	timer_setup(&dev->delay_timer, delay_time_func, 0);
648 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
649 		ent = &cache->ent[i];
650 		INIT_LIST_HEAD(&ent->head);
651 		spin_lock_init(&ent->lock);
652 		ent->order = i + 2;
653 		ent->dev = dev;
654 		ent->limit = 0;
655 
656 		init_completion(&ent->compl);
657 		INIT_WORK(&ent->work, cache_work_func);
658 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
659 
660 		if (i > MR_CACHE_LAST_STD_ENTRY) {
661 			mlx5_odp_init_mr_cache_entry(ent);
662 			continue;
663 		}
664 
665 		if (ent->order > mr_cache_max_order(dev))
666 			continue;
667 
668 		ent->page = PAGE_SHIFT;
669 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
670 			   MLX5_IB_UMR_OCTOWORD;
671 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
672 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
673 		    !dev->is_rep &&
674 		    mlx5_core_is_pf(dev->mdev))
675 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
676 		else
677 			ent->limit = 0;
678 		queue_work(cache->wq, &ent->work);
679 	}
680 
681 	mlx5_mr_cache_debugfs_init(dev);
682 
683 	return 0;
684 }
685 
686 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
687 {
688 	int i;
689 
690 	if (!dev->cache.wq)
691 		return 0;
692 
693 	dev->cache.stopped = 1;
694 	flush_workqueue(dev->cache.wq);
695 
696 	mlx5_mr_cache_debugfs_cleanup(dev);
697 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
698 
699 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
700 		clean_keys(dev, i);
701 
702 	destroy_workqueue(dev->cache.wq);
703 	del_timer_sync(&dev->delay_timer);
704 
705 	return 0;
706 }
707 
708 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
709 {
710 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
711 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
712 	struct mlx5_core_dev *mdev = dev->mdev;
713 	struct mlx5_ib_mr *mr;
714 	void *mkc;
715 	u32 *in;
716 	int err;
717 
718 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
719 	if (!mr)
720 		return ERR_PTR(-ENOMEM);
721 
722 	in = kzalloc(inlen, GFP_KERNEL);
723 	if (!in) {
724 		err = -ENOMEM;
725 		goto err_free;
726 	}
727 
728 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
729 
730 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
731 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
732 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
733 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
734 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
735 	MLX5_SET(mkc, mkc, lr, 1);
736 
737 	MLX5_SET(mkc, mkc, length64, 1);
738 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
739 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
740 	MLX5_SET64(mkc, mkc, start_addr, 0);
741 
742 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
743 	if (err)
744 		goto err_in;
745 
746 	kfree(in);
747 	mr->mmkey.type = MLX5_MKEY_MR;
748 	mr->ibmr.lkey = mr->mmkey.key;
749 	mr->ibmr.rkey = mr->mmkey.key;
750 	mr->umem = NULL;
751 
752 	return &mr->ibmr;
753 
754 err_in:
755 	kfree(in);
756 
757 err_free:
758 	kfree(mr);
759 
760 	return ERR_PTR(err);
761 }
762 
763 static int get_octo_len(u64 addr, u64 len, int page_shift)
764 {
765 	u64 page_size = 1ULL << page_shift;
766 	u64 offset;
767 	int npages;
768 
769 	offset = addr & (page_size - 1);
770 	npages = ALIGN(len + offset, page_size) >> page_shift;
771 	return (npages + 1) / 2;
772 }
773 
774 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
775 {
776 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
777 		return MR_CACHE_LAST_STD_ENTRY + 2;
778 	return MLX5_MAX_UMR_SHIFT;
779 }
780 
781 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata,
782 		       u64 start, u64 length, int access_flags,
783 		       struct ib_umem **umem, int *npages, int *page_shift,
784 		       int *ncont, int *order)
785 {
786 	struct ib_umem *u;
787 	int err;
788 
789 	*umem = NULL;
790 
791 	u = ib_umem_get(udata, start, length, access_flags, 0);
792 	err = PTR_ERR_OR_ZERO(u);
793 	if (err) {
794 		mlx5_ib_dbg(dev, "umem get failed (%d)\n", err);
795 		return err;
796 	}
797 
798 	mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
799 			   page_shift, ncont, order);
800 	if (!*npages) {
801 		mlx5_ib_warn(dev, "avoid zero region\n");
802 		ib_umem_release(u);
803 		return -EINVAL;
804 	}
805 
806 	*umem = u;
807 
808 	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
809 		    *npages, *ncont, *order, *page_shift);
810 
811 	return 0;
812 }
813 
814 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
815 {
816 	struct mlx5_ib_umr_context *context =
817 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
818 
819 	context->status = wc->status;
820 	complete(&context->done);
821 }
822 
823 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
824 {
825 	context->cqe.done = mlx5_ib_umr_done;
826 	context->status = -1;
827 	init_completion(&context->done);
828 }
829 
830 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
831 				  struct mlx5_umr_wr *umrwr)
832 {
833 	struct umr_common *umrc = &dev->umrc;
834 	const struct ib_send_wr *bad;
835 	int err;
836 	struct mlx5_ib_umr_context umr_context;
837 
838 	mlx5_ib_init_umr_context(&umr_context);
839 	umrwr->wr.wr_cqe = &umr_context.cqe;
840 
841 	down(&umrc->sem);
842 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
843 	if (err) {
844 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
845 	} else {
846 		wait_for_completion(&umr_context.done);
847 		if (umr_context.status != IB_WC_SUCCESS) {
848 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
849 				     umr_context.status);
850 			err = -EFAULT;
851 		}
852 	}
853 	up(&umrc->sem);
854 	return err;
855 }
856 
857 static struct mlx5_ib_mr *alloc_mr_from_cache(
858 				  struct ib_pd *pd, struct ib_umem *umem,
859 				  u64 virt_addr, u64 len, int npages,
860 				  int page_shift, int order, int access_flags)
861 {
862 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
863 	struct mlx5_ib_mr *mr;
864 	int err = 0;
865 	int i;
866 
867 	for (i = 0; i < 1; i++) {
868 		mr = alloc_cached_mr(dev, order);
869 		if (mr)
870 			break;
871 
872 		err = add_keys(dev, order2idx(dev, order), 1);
873 		if (err && err != -EAGAIN) {
874 			mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
875 			break;
876 		}
877 	}
878 
879 	if (!mr)
880 		return ERR_PTR(-EAGAIN);
881 
882 	mr->ibmr.pd = pd;
883 	mr->umem = umem;
884 	mr->access_flags = access_flags;
885 	mr->desc_size = sizeof(struct mlx5_mtt);
886 	mr->mmkey.iova = virt_addr;
887 	mr->mmkey.size = len;
888 	mr->mmkey.pd = to_mpd(pd)->pdn;
889 
890 	return mr;
891 }
892 
893 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages,
894 			       void *xlt, int page_shift, size_t size,
895 			       int flags)
896 {
897 	struct mlx5_ib_dev *dev = mr->dev;
898 	struct ib_umem *umem = mr->umem;
899 
900 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
901 		if (!umr_can_use_indirect_mkey(dev))
902 			return -EPERM;
903 		mlx5_odp_populate_klm(xlt, idx, npages, mr, flags);
904 		return npages;
905 	}
906 
907 	npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx);
908 
909 	if (!(flags & MLX5_IB_UPD_XLT_ZAP)) {
910 		__mlx5_ib_populate_pas(dev, umem, page_shift,
911 				       idx, npages, xlt,
912 				       MLX5_IB_MTT_PRESENT);
913 		/* Clear padding after the pages
914 		 * brought from the umem.
915 		 */
916 		memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0,
917 		       size - npages * sizeof(struct mlx5_mtt));
918 	}
919 
920 	return npages;
921 }
922 
923 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
924 			    MLX5_UMR_MTT_ALIGNMENT)
925 #define MLX5_SPARE_UMR_CHUNK 0x10000
926 
927 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
928 		       int page_shift, int flags)
929 {
930 	struct mlx5_ib_dev *dev = mr->dev;
931 	struct device *ddev = dev->ib_dev.dev.parent;
932 	int size;
933 	void *xlt;
934 	dma_addr_t dma;
935 	struct mlx5_umr_wr wr;
936 	struct ib_sge sg;
937 	int err = 0;
938 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
939 			       ? sizeof(struct mlx5_klm)
940 			       : sizeof(struct mlx5_mtt);
941 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
942 	const int page_mask = page_align - 1;
943 	size_t pages_mapped = 0;
944 	size_t pages_to_map = 0;
945 	size_t pages_iter = 0;
946 	gfp_t gfp;
947 	bool use_emergency_page = false;
948 
949 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
950 	    !umr_can_use_indirect_mkey(dev))
951 		return -EPERM;
952 
953 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
954 	 * so we need to align the offset and length accordingly
955 	 */
956 	if (idx & page_mask) {
957 		npages += idx & page_mask;
958 		idx &= ~page_mask;
959 	}
960 
961 	gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
962 	gfp |= __GFP_ZERO | __GFP_NOWARN;
963 
964 	pages_to_map = ALIGN(npages, page_align);
965 	size = desc_size * pages_to_map;
966 	size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
967 
968 	xlt = (void *)__get_free_pages(gfp, get_order(size));
969 	if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
970 		mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
971 			    size, get_order(size), MLX5_SPARE_UMR_CHUNK);
972 
973 		size = MLX5_SPARE_UMR_CHUNK;
974 		xlt = (void *)__get_free_pages(gfp, get_order(size));
975 	}
976 
977 	if (!xlt) {
978 		mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
979 		xlt = (void *)mlx5_ib_get_xlt_emergency_page();
980 		size = PAGE_SIZE;
981 		memset(xlt, 0, size);
982 		use_emergency_page = true;
983 	}
984 	pages_iter = size / desc_size;
985 	dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
986 	if (dma_mapping_error(ddev, dma)) {
987 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
988 		err = -ENOMEM;
989 		goto free_xlt;
990 	}
991 
992 	sg.addr = dma;
993 	sg.lkey = dev->umrc.pd->local_dma_lkey;
994 
995 	memset(&wr, 0, sizeof(wr));
996 	wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
997 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
998 		wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
999 	wr.wr.sg_list = &sg;
1000 	wr.wr.num_sge = 1;
1001 	wr.wr.opcode = MLX5_IB_WR_UMR;
1002 
1003 	wr.pd = mr->ibmr.pd;
1004 	wr.mkey = mr->mmkey.key;
1005 	wr.length = mr->mmkey.size;
1006 	wr.virt_addr = mr->mmkey.iova;
1007 	wr.access_flags = mr->access_flags;
1008 	wr.page_shift = page_shift;
1009 
1010 	for (pages_mapped = 0;
1011 	     pages_mapped < pages_to_map && !err;
1012 	     pages_mapped += pages_iter, idx += pages_iter) {
1013 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1014 		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1015 		npages = populate_xlt(mr, idx, npages, xlt,
1016 				      page_shift, size, flags);
1017 
1018 		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1019 
1020 		sg.length = ALIGN(npages * desc_size,
1021 				  MLX5_UMR_MTT_ALIGNMENT);
1022 
1023 		if (pages_mapped + pages_iter >= pages_to_map) {
1024 			if (flags & MLX5_IB_UPD_XLT_ENABLE)
1025 				wr.wr.send_flags |=
1026 					MLX5_IB_SEND_UMR_ENABLE_MR |
1027 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1028 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1029 			if (flags & MLX5_IB_UPD_XLT_PD ||
1030 			    flags & MLX5_IB_UPD_XLT_ACCESS)
1031 				wr.wr.send_flags |=
1032 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1033 			if (flags & MLX5_IB_UPD_XLT_ADDR)
1034 				wr.wr.send_flags |=
1035 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1036 		}
1037 
1038 		wr.offset = idx * desc_size;
1039 		wr.xlt_size = sg.length;
1040 
1041 		err = mlx5_ib_post_send_wait(dev, &wr);
1042 	}
1043 	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1044 
1045 free_xlt:
1046 	if (use_emergency_page)
1047 		mlx5_ib_put_xlt_emergency_page();
1048 	else
1049 		free_pages((unsigned long)xlt, get_order(size));
1050 
1051 	return err;
1052 }
1053 
1054 /*
1055  * If ibmr is NULL it will be allocated by reg_create.
1056  * Else, the given ibmr will be used.
1057  */
1058 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1059 				     u64 virt_addr, u64 length,
1060 				     struct ib_umem *umem, int npages,
1061 				     int page_shift, int access_flags,
1062 				     bool populate)
1063 {
1064 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1065 	struct mlx5_ib_mr *mr;
1066 	__be64 *pas;
1067 	void *mkc;
1068 	int inlen;
1069 	u32 *in;
1070 	int err;
1071 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1072 
1073 	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1074 	if (!mr)
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	mr->ibmr.pd = pd;
1078 	mr->access_flags = access_flags;
1079 
1080 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1081 	if (populate)
1082 		inlen += sizeof(*pas) * roundup(npages, 2);
1083 	in = kvzalloc(inlen, GFP_KERNEL);
1084 	if (!in) {
1085 		err = -ENOMEM;
1086 		goto err_1;
1087 	}
1088 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1089 	if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1090 		mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1091 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1092 
1093 	/* The pg_access bit allows setting the access flags
1094 	 * in the page list submitted with the command. */
1095 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1096 
1097 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1098 	MLX5_SET(mkc, mkc, free, !populate);
1099 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1100 	MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1101 	MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1102 	MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1103 	MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1104 	MLX5_SET(mkc, mkc, lr, 1);
1105 	MLX5_SET(mkc, mkc, umr_en, 1);
1106 
1107 	MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1108 	MLX5_SET64(mkc, mkc, len, length);
1109 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1110 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1111 	MLX5_SET(mkc, mkc, translations_octword_size,
1112 		 get_octo_len(virt_addr, length, page_shift));
1113 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1114 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1115 	if (populate) {
1116 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1117 			 get_octo_len(virt_addr, length, page_shift));
1118 	}
1119 
1120 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1121 	if (err) {
1122 		mlx5_ib_warn(dev, "create mkey failed\n");
1123 		goto err_2;
1124 	}
1125 	mr->mmkey.type = MLX5_MKEY_MR;
1126 	mr->desc_size = sizeof(struct mlx5_mtt);
1127 	mr->dev = dev;
1128 	kvfree(in);
1129 
1130 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1131 
1132 	return mr;
1133 
1134 err_2:
1135 	kvfree(in);
1136 
1137 err_1:
1138 	if (!ibmr)
1139 		kfree(mr);
1140 
1141 	return ERR_PTR(err);
1142 }
1143 
1144 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1145 			  int npages, u64 length, int access_flags)
1146 {
1147 	mr->npages = npages;
1148 	atomic_add(npages, &dev->mdev->priv.reg_pages);
1149 	mr->ibmr.lkey = mr->mmkey.key;
1150 	mr->ibmr.rkey = mr->mmkey.key;
1151 	mr->ibmr.length = length;
1152 	mr->access_flags = access_flags;
1153 }
1154 
1155 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1156 				       u64 length, int acc, int mode)
1157 {
1158 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1159 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1160 	struct mlx5_core_dev *mdev = dev->mdev;
1161 	struct mlx5_ib_mr *mr;
1162 	void *mkc;
1163 	u32 *in;
1164 	int err;
1165 
1166 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1167 	if (!mr)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	in = kzalloc(inlen, GFP_KERNEL);
1171 	if (!in) {
1172 		err = -ENOMEM;
1173 		goto err_free;
1174 	}
1175 
1176 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1177 
1178 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1179 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1180 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
1181 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
1182 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
1183 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
1184 	MLX5_SET(mkc, mkc, lr, 1);
1185 
1186 	MLX5_SET64(mkc, mkc, len, length);
1187 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1188 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1189 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
1190 
1191 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1192 	if (err)
1193 		goto err_in;
1194 
1195 	kfree(in);
1196 
1197 	mr->umem = NULL;
1198 	set_mr_fields(dev, mr, 0, length, acc);
1199 
1200 	return &mr->ibmr;
1201 
1202 err_in:
1203 	kfree(in);
1204 
1205 err_free:
1206 	kfree(mr);
1207 
1208 	return ERR_PTR(err);
1209 }
1210 
1211 int mlx5_ib_advise_mr(struct ib_pd *pd,
1212 		      enum ib_uverbs_advise_mr_advice advice,
1213 		      u32 flags,
1214 		      struct ib_sge *sg_list,
1215 		      u32 num_sge,
1216 		      struct uverbs_attr_bundle *attrs)
1217 {
1218 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1219 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1220 		return -EOPNOTSUPP;
1221 
1222 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1223 					 sg_list, num_sge);
1224 }
1225 
1226 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1227 				struct ib_dm_mr_attr *attr,
1228 				struct uverbs_attr_bundle *attrs)
1229 {
1230 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1231 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1232 	u64 start_addr = mdm->dev_addr + attr->offset;
1233 	int mode;
1234 
1235 	switch (mdm->type) {
1236 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1237 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1238 			return ERR_PTR(-EINVAL);
1239 
1240 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1241 		start_addr -= pci_resource_start(dev->pdev, 0);
1242 		break;
1243 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1244 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1245 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1246 			return ERR_PTR(-EINVAL);
1247 
1248 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1249 		break;
1250 	default:
1251 		return ERR_PTR(-EINVAL);
1252 	}
1253 
1254 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1255 				 attr->access_flags, mode);
1256 }
1257 
1258 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1259 				  u64 virt_addr, int access_flags,
1260 				  struct ib_udata *udata)
1261 {
1262 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1263 	struct mlx5_ib_mr *mr = NULL;
1264 	bool use_umr;
1265 	struct ib_umem *umem;
1266 	int page_shift;
1267 	int npages;
1268 	int ncont;
1269 	int order;
1270 	int err;
1271 
1272 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1273 		return ERR_PTR(-EOPNOTSUPP);
1274 
1275 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1276 		    start, virt_addr, length, access_flags);
1277 
1278 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1279 	    length == U64_MAX) {
1280 		if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1281 		    !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1282 			return ERR_PTR(-EINVAL);
1283 
1284 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1285 		if (IS_ERR(mr))
1286 			return ERR_CAST(mr);
1287 		return &mr->ibmr;
1288 	}
1289 
1290 	err = mr_umem_get(dev, udata, start, length, access_flags, &umem,
1291 			  &npages, &page_shift, &ncont, &order);
1292 
1293 	if (err < 0)
1294 		return ERR_PTR(err);
1295 
1296 	use_umr = !MLX5_CAP_GEN(dev->mdev, umr_modify_entity_size_disabled) &&
1297 		  (!MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled) ||
1298 		   !MLX5_CAP_GEN(dev->mdev, atomic));
1299 
1300 	if (order <= mr_cache_max_order(dev) && use_umr) {
1301 		mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1302 					 page_shift, order, access_flags);
1303 		if (PTR_ERR(mr) == -EAGAIN) {
1304 			mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1305 			mr = NULL;
1306 		}
1307 	} else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1308 		if (access_flags & IB_ACCESS_ON_DEMAND) {
1309 			err = -EINVAL;
1310 			pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1311 			goto error;
1312 		}
1313 		use_umr = false;
1314 	}
1315 
1316 	if (!mr) {
1317 		mutex_lock(&dev->slow_path_mutex);
1318 		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1319 				page_shift, access_flags, !use_umr);
1320 		mutex_unlock(&dev->slow_path_mutex);
1321 	}
1322 
1323 	if (IS_ERR(mr)) {
1324 		err = PTR_ERR(mr);
1325 		goto error;
1326 	}
1327 
1328 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1329 
1330 	mr->umem = umem;
1331 	set_mr_fields(dev, mr, npages, length, access_flags);
1332 
1333 	update_odp_mr(mr);
1334 
1335 	if (use_umr) {
1336 		int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1337 
1338 		if (access_flags & IB_ACCESS_ON_DEMAND)
1339 			update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1340 
1341 		err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1342 					 update_xlt_flags);
1343 
1344 		if (err) {
1345 			dereg_mr(dev, mr);
1346 			return ERR_PTR(err);
1347 		}
1348 	}
1349 
1350 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1351 		mr->live = 1;
1352 		atomic_set(&mr->num_pending_prefetch, 0);
1353 	}
1354 
1355 	return &mr->ibmr;
1356 error:
1357 	ib_umem_release(umem);
1358 	return ERR_PTR(err);
1359 }
1360 
1361 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1362 {
1363 	struct mlx5_core_dev *mdev = dev->mdev;
1364 	struct mlx5_umr_wr umrwr = {};
1365 
1366 	if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1367 		return 0;
1368 
1369 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1370 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1371 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1372 	umrwr.pd = dev->umrc.pd;
1373 	umrwr.mkey = mr->mmkey.key;
1374 	umrwr.ignore_free_state = 1;
1375 
1376 	return mlx5_ib_post_send_wait(dev, &umrwr);
1377 }
1378 
1379 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1380 		     int access_flags, int flags)
1381 {
1382 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1383 	struct mlx5_umr_wr umrwr = {};
1384 	int err;
1385 
1386 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1387 
1388 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1389 	umrwr.mkey = mr->mmkey.key;
1390 
1391 	if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1392 		umrwr.pd = pd;
1393 		umrwr.access_flags = access_flags;
1394 		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1395 	}
1396 
1397 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1398 
1399 	return err;
1400 }
1401 
1402 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1403 			  u64 length, u64 virt_addr, int new_access_flags,
1404 			  struct ib_pd *new_pd, struct ib_udata *udata)
1405 {
1406 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1407 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1408 	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1409 	int access_flags = flags & IB_MR_REREG_ACCESS ?
1410 			    new_access_flags :
1411 			    mr->access_flags;
1412 	int page_shift = 0;
1413 	int upd_flags = 0;
1414 	int npages = 0;
1415 	int ncont = 0;
1416 	int order = 0;
1417 	u64 addr, len;
1418 	int err;
1419 
1420 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1421 		    start, virt_addr, length, access_flags);
1422 
1423 	atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1424 
1425 	if (!mr->umem)
1426 		return -EINVAL;
1427 
1428 	if (flags & IB_MR_REREG_TRANS) {
1429 		addr = virt_addr;
1430 		len = length;
1431 	} else {
1432 		addr = mr->umem->address;
1433 		len = mr->umem->length;
1434 	}
1435 
1436 	if (flags != IB_MR_REREG_PD) {
1437 		/*
1438 		 * Replace umem. This needs to be done whether or not UMR is
1439 		 * used.
1440 		 */
1441 		flags |= IB_MR_REREG_TRANS;
1442 		ib_umem_release(mr->umem);
1443 		mr->umem = NULL;
1444 		err = mr_umem_get(dev, udata, addr, len, access_flags,
1445 				  &mr->umem, &npages, &page_shift, &ncont,
1446 				  &order);
1447 		if (err)
1448 			goto err;
1449 	}
1450 
1451 	if (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len)) {
1452 		/*
1453 		 * UMR can't be used - MKey needs to be replaced.
1454 		 */
1455 		if (mr->allocated_from_cache)
1456 			err = unreg_umr(dev, mr);
1457 		else
1458 			err = destroy_mkey(dev, mr);
1459 		if (err)
1460 			goto err;
1461 
1462 		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1463 				page_shift, access_flags, true);
1464 
1465 		if (IS_ERR(mr)) {
1466 			err = PTR_ERR(mr);
1467 			mr = to_mmr(ib_mr);
1468 			goto err;
1469 		}
1470 
1471 		mr->allocated_from_cache = 0;
1472 		if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1473 			mr->live = 1;
1474 	} else {
1475 		/*
1476 		 * Send a UMR WQE
1477 		 */
1478 		mr->ibmr.pd = pd;
1479 		mr->access_flags = access_flags;
1480 		mr->mmkey.iova = addr;
1481 		mr->mmkey.size = len;
1482 		mr->mmkey.pd = to_mpd(pd)->pdn;
1483 
1484 		if (flags & IB_MR_REREG_TRANS) {
1485 			upd_flags = MLX5_IB_UPD_XLT_ADDR;
1486 			if (flags & IB_MR_REREG_PD)
1487 				upd_flags |= MLX5_IB_UPD_XLT_PD;
1488 			if (flags & IB_MR_REREG_ACCESS)
1489 				upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1490 			err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1491 						 upd_flags);
1492 		} else {
1493 			err = rereg_umr(pd, mr, access_flags, flags);
1494 		}
1495 
1496 		if (err)
1497 			goto err;
1498 	}
1499 
1500 	set_mr_fields(dev, mr, npages, len, access_flags);
1501 
1502 	update_odp_mr(mr);
1503 	return 0;
1504 
1505 err:
1506 	ib_umem_release(mr->umem);
1507 	mr->umem = NULL;
1508 
1509 	clean_mr(dev, mr);
1510 	return err;
1511 }
1512 
1513 static int
1514 mlx5_alloc_priv_descs(struct ib_device *device,
1515 		      struct mlx5_ib_mr *mr,
1516 		      int ndescs,
1517 		      int desc_size)
1518 {
1519 	int size = ndescs * desc_size;
1520 	int add_size;
1521 	int ret;
1522 
1523 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1524 
1525 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1526 	if (!mr->descs_alloc)
1527 		return -ENOMEM;
1528 
1529 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1530 
1531 	mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1532 				      size, DMA_TO_DEVICE);
1533 	if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1534 		ret = -ENOMEM;
1535 		goto err;
1536 	}
1537 
1538 	return 0;
1539 err:
1540 	kfree(mr->descs_alloc);
1541 
1542 	return ret;
1543 }
1544 
1545 static void
1546 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1547 {
1548 	if (mr->descs) {
1549 		struct ib_device *device = mr->ibmr.device;
1550 		int size = mr->max_descs * mr->desc_size;
1551 
1552 		dma_unmap_single(device->dev.parent, mr->desc_map,
1553 				 size, DMA_TO_DEVICE);
1554 		kfree(mr->descs_alloc);
1555 		mr->descs = NULL;
1556 	}
1557 }
1558 
1559 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1560 {
1561 	int allocated_from_cache = mr->allocated_from_cache;
1562 
1563 	if (mr->sig) {
1564 		if (mlx5_core_destroy_psv(dev->mdev,
1565 					  mr->sig->psv_memory.psv_idx))
1566 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1567 				     mr->sig->psv_memory.psv_idx);
1568 		if (mlx5_core_destroy_psv(dev->mdev,
1569 					  mr->sig->psv_wire.psv_idx))
1570 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1571 				     mr->sig->psv_wire.psv_idx);
1572 		kfree(mr->sig);
1573 		mr->sig = NULL;
1574 	}
1575 
1576 	if (!allocated_from_cache) {
1577 		destroy_mkey(dev, mr);
1578 		mlx5_free_priv_descs(mr);
1579 	}
1580 }
1581 
1582 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1583 {
1584 	int npages = mr->npages;
1585 	struct ib_umem *umem = mr->umem;
1586 
1587 	if (is_odp_mr(mr)) {
1588 		struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem);
1589 
1590 		/* Prevent new page faults and
1591 		 * prefetch requests from succeeding
1592 		 */
1593 		mr->live = 0;
1594 
1595 		/* dequeue pending prefetch requests for the mr */
1596 		if (atomic_read(&mr->num_pending_prefetch))
1597 			flush_workqueue(system_unbound_wq);
1598 		WARN_ON(atomic_read(&mr->num_pending_prefetch));
1599 
1600 		/* Wait for all running page-fault handlers to finish. */
1601 		synchronize_srcu(&dev->mr_srcu);
1602 		/* Destroy all page mappings */
1603 		if (umem_odp->page_list)
1604 			mlx5_ib_invalidate_range(umem_odp,
1605 						 ib_umem_start(umem_odp),
1606 						 ib_umem_end(umem_odp));
1607 		else
1608 			mlx5_ib_free_implicit_mr(mr);
1609 		/*
1610 		 * We kill the umem before the MR for ODP,
1611 		 * so that there will not be any invalidations in
1612 		 * flight, looking at the *mr struct.
1613 		 */
1614 		ib_umem_release(umem);
1615 		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1616 
1617 		/* Avoid double-freeing the umem. */
1618 		umem = NULL;
1619 	}
1620 
1621 	clean_mr(dev, mr);
1622 
1623 	/*
1624 	 * We should unregister the DMA address from the HCA before
1625 	 * remove the DMA mapping.
1626 	 */
1627 	mlx5_mr_cache_free(dev, mr);
1628 	ib_umem_release(umem);
1629 	if (umem)
1630 		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1631 
1632 	if (!mr->allocated_from_cache)
1633 		kfree(mr);
1634 }
1635 
1636 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1637 {
1638 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1639 
1640 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1641 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1642 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1643 	}
1644 
1645 	dereg_mr(to_mdev(ibmr->device), mmr);
1646 
1647 	return 0;
1648 }
1649 
1650 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1651 				   int access_mode, int page_shift)
1652 {
1653 	void *mkc;
1654 
1655 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1656 
1657 	MLX5_SET(mkc, mkc, free, 1);
1658 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1659 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1660 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1661 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1662 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1663 	MLX5_SET(mkc, mkc, umr_en, 1);
1664 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1665 }
1666 
1667 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1668 				  int ndescs, int desc_size, int page_shift,
1669 				  int access_mode, u32 *in, int inlen)
1670 {
1671 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1672 	int err;
1673 
1674 	mr->access_mode = access_mode;
1675 	mr->desc_size = desc_size;
1676 	mr->max_descs = ndescs;
1677 
1678 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1679 	if (err)
1680 		return err;
1681 
1682 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1683 
1684 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1685 	if (err)
1686 		goto err_free_descs;
1687 
1688 	mr->mmkey.type = MLX5_MKEY_MR;
1689 	mr->ibmr.lkey = mr->mmkey.key;
1690 	mr->ibmr.rkey = mr->mmkey.key;
1691 
1692 	return 0;
1693 
1694 err_free_descs:
1695 	mlx5_free_priv_descs(mr);
1696 	return err;
1697 }
1698 
1699 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1700 				u32 max_num_sg, u32 max_num_meta_sg,
1701 				int desc_size, int access_mode)
1702 {
1703 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1704 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1705 	int page_shift = 0;
1706 	struct mlx5_ib_mr *mr;
1707 	u32 *in;
1708 	int err;
1709 
1710 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1711 	if (!mr)
1712 		return ERR_PTR(-ENOMEM);
1713 
1714 	mr->ibmr.pd = pd;
1715 	mr->ibmr.device = pd->device;
1716 
1717 	in = kzalloc(inlen, GFP_KERNEL);
1718 	if (!in) {
1719 		err = -ENOMEM;
1720 		goto err_free;
1721 	}
1722 
1723 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1724 		page_shift = PAGE_SHIFT;
1725 
1726 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1727 				     access_mode, in, inlen);
1728 	if (err)
1729 		goto err_free_in;
1730 
1731 	mr->umem = NULL;
1732 	kfree(in);
1733 
1734 	return mr;
1735 
1736 err_free_in:
1737 	kfree(in);
1738 err_free:
1739 	kfree(mr);
1740 	return ERR_PTR(err);
1741 }
1742 
1743 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1744 				    int ndescs, u32 *in, int inlen)
1745 {
1746 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1747 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1748 				      inlen);
1749 }
1750 
1751 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1752 				    int ndescs, u32 *in, int inlen)
1753 {
1754 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1755 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1756 }
1757 
1758 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1759 				      int max_num_sg, int max_num_meta_sg,
1760 				      u32 *in, int inlen)
1761 {
1762 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1763 	u32 psv_index[2];
1764 	void *mkc;
1765 	int err;
1766 
1767 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1768 	if (!mr->sig)
1769 		return -ENOMEM;
1770 
1771 	/* create mem & wire PSVs */
1772 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1773 	if (err)
1774 		goto err_free_sig;
1775 
1776 	mr->sig->psv_memory.psv_idx = psv_index[0];
1777 	mr->sig->psv_wire.psv_idx = psv_index[1];
1778 
1779 	mr->sig->sig_status_checked = true;
1780 	mr->sig->sig_err_exists = false;
1781 	/* Next UMR, Arm SIGERR */
1782 	++mr->sig->sigerr_count;
1783 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1784 					 sizeof(struct mlx5_klm),
1785 					 MLX5_MKC_ACCESS_MODE_KLMS);
1786 	if (IS_ERR(mr->klm_mr)) {
1787 		err = PTR_ERR(mr->klm_mr);
1788 		goto err_destroy_psv;
1789 	}
1790 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1791 					 sizeof(struct mlx5_mtt),
1792 					 MLX5_MKC_ACCESS_MODE_MTT);
1793 	if (IS_ERR(mr->mtt_mr)) {
1794 		err = PTR_ERR(mr->mtt_mr);
1795 		goto err_free_klm_mr;
1796 	}
1797 
1798 	/* Set bsf descriptors for mkey */
1799 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1800 	MLX5_SET(mkc, mkc, bsf_en, 1);
1801 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1802 
1803 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1804 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1805 	if (err)
1806 		goto err_free_mtt_mr;
1807 
1808 	return 0;
1809 
1810 err_free_mtt_mr:
1811 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1812 	mr->mtt_mr = NULL;
1813 err_free_klm_mr:
1814 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1815 	mr->klm_mr = NULL;
1816 err_destroy_psv:
1817 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1818 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1819 			     mr->sig->psv_memory.psv_idx);
1820 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1821 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1822 			     mr->sig->psv_wire.psv_idx);
1823 err_free_sig:
1824 	kfree(mr->sig);
1825 
1826 	return err;
1827 }
1828 
1829 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1830 					enum ib_mr_type mr_type, u32 max_num_sg,
1831 					u32 max_num_meta_sg)
1832 {
1833 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1834 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1835 	int ndescs = ALIGN(max_num_sg, 4);
1836 	struct mlx5_ib_mr *mr;
1837 	u32 *in;
1838 	int err;
1839 
1840 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1841 	if (!mr)
1842 		return ERR_PTR(-ENOMEM);
1843 
1844 	in = kzalloc(inlen, GFP_KERNEL);
1845 	if (!in) {
1846 		err = -ENOMEM;
1847 		goto err_free;
1848 	}
1849 
1850 	mr->ibmr.device = pd->device;
1851 	mr->umem = NULL;
1852 
1853 	switch (mr_type) {
1854 	case IB_MR_TYPE_MEM_REG:
1855 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1856 		break;
1857 	case IB_MR_TYPE_SG_GAPS:
1858 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1859 		break;
1860 	case IB_MR_TYPE_INTEGRITY:
1861 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1862 						 max_num_meta_sg, in, inlen);
1863 		break;
1864 	default:
1865 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1866 		err = -EINVAL;
1867 	}
1868 
1869 	if (err)
1870 		goto err_free_in;
1871 
1872 	kfree(in);
1873 
1874 	return &mr->ibmr;
1875 
1876 err_free_in:
1877 	kfree(in);
1878 err_free:
1879 	kfree(mr);
1880 	return ERR_PTR(err);
1881 }
1882 
1883 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1884 			       u32 max_num_sg, struct ib_udata *udata)
1885 {
1886 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1887 }
1888 
1889 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1890 					 u32 max_num_sg, u32 max_num_meta_sg)
1891 {
1892 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1893 				  max_num_meta_sg);
1894 }
1895 
1896 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1897 			       struct ib_udata *udata)
1898 {
1899 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1900 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1901 	struct mlx5_ib_mw *mw = NULL;
1902 	u32 *in = NULL;
1903 	void *mkc;
1904 	int ndescs;
1905 	int err;
1906 	struct mlx5_ib_alloc_mw req = {};
1907 	struct {
1908 		__u32	comp_mask;
1909 		__u32	response_length;
1910 	} resp = {};
1911 
1912 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1913 	if (err)
1914 		return ERR_PTR(err);
1915 
1916 	if (req.comp_mask || req.reserved1 || req.reserved2)
1917 		return ERR_PTR(-EOPNOTSUPP);
1918 
1919 	if (udata->inlen > sizeof(req) &&
1920 	    !ib_is_udata_cleared(udata, sizeof(req),
1921 				 udata->inlen - sizeof(req)))
1922 		return ERR_PTR(-EOPNOTSUPP);
1923 
1924 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1925 
1926 	mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1927 	in = kzalloc(inlen, GFP_KERNEL);
1928 	if (!mw || !in) {
1929 		err = -ENOMEM;
1930 		goto free;
1931 	}
1932 
1933 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1934 
1935 	MLX5_SET(mkc, mkc, free, 1);
1936 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1937 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1938 	MLX5_SET(mkc, mkc, umr_en, 1);
1939 	MLX5_SET(mkc, mkc, lr, 1);
1940 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1941 	MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1942 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1943 
1944 	err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1945 	if (err)
1946 		goto free;
1947 
1948 	mw->mmkey.type = MLX5_MKEY_MW;
1949 	mw->ibmw.rkey = mw->mmkey.key;
1950 	mw->ndescs = ndescs;
1951 
1952 	resp.response_length = min(offsetof(typeof(resp), response_length) +
1953 				   sizeof(resp.response_length), udata->outlen);
1954 	if (resp.response_length) {
1955 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1956 		if (err) {
1957 			mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1958 			goto free;
1959 		}
1960 	}
1961 
1962 	kfree(in);
1963 	return &mw->ibmw;
1964 
1965 free:
1966 	kfree(mw);
1967 	kfree(in);
1968 	return ERR_PTR(err);
1969 }
1970 
1971 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1972 {
1973 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1974 	int err;
1975 
1976 	err =  mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
1977 				      &mmw->mmkey);
1978 	if (!err)
1979 		kfree(mmw);
1980 	return err;
1981 }
1982 
1983 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1984 			    struct ib_mr_status *mr_status)
1985 {
1986 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1987 	int ret = 0;
1988 
1989 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1990 		pr_err("Invalid status check mask\n");
1991 		ret = -EINVAL;
1992 		goto done;
1993 	}
1994 
1995 	mr_status->fail_status = 0;
1996 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1997 		if (!mmr->sig) {
1998 			ret = -EINVAL;
1999 			pr_err("signature status check requested on a non-signature enabled MR\n");
2000 			goto done;
2001 		}
2002 
2003 		mmr->sig->sig_status_checked = true;
2004 		if (!mmr->sig->sig_err_exists)
2005 			goto done;
2006 
2007 		if (ibmr->lkey == mmr->sig->err_item.key)
2008 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2009 			       sizeof(mr_status->sig_err));
2010 		else {
2011 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2012 			mr_status->sig_err.sig_err_offset = 0;
2013 			mr_status->sig_err.key = mmr->sig->err_item.key;
2014 		}
2015 
2016 		mmr->sig->sig_err_exists = false;
2017 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2018 	}
2019 
2020 done:
2021 	return ret;
2022 }
2023 
2024 static int
2025 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2026 			int data_sg_nents, unsigned int *data_sg_offset,
2027 			struct scatterlist *meta_sg, int meta_sg_nents,
2028 			unsigned int *meta_sg_offset)
2029 {
2030 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2031 	unsigned int sg_offset = 0;
2032 	int n = 0;
2033 
2034 	mr->meta_length = 0;
2035 	if (data_sg_nents == 1) {
2036 		n++;
2037 		mr->ndescs = 1;
2038 		if (data_sg_offset)
2039 			sg_offset = *data_sg_offset;
2040 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2041 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2042 		if (meta_sg_nents == 1) {
2043 			n++;
2044 			mr->meta_ndescs = 1;
2045 			if (meta_sg_offset)
2046 				sg_offset = *meta_sg_offset;
2047 			else
2048 				sg_offset = 0;
2049 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2050 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2051 		}
2052 		ibmr->length = mr->data_length + mr->meta_length;
2053 	}
2054 
2055 	return n;
2056 }
2057 
2058 static int
2059 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2060 		   struct scatterlist *sgl,
2061 		   unsigned short sg_nents,
2062 		   unsigned int *sg_offset_p,
2063 		   struct scatterlist *meta_sgl,
2064 		   unsigned short meta_sg_nents,
2065 		   unsigned int *meta_sg_offset_p)
2066 {
2067 	struct scatterlist *sg = sgl;
2068 	struct mlx5_klm *klms = mr->descs;
2069 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2070 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2071 	int i, j = 0;
2072 
2073 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2074 	mr->ibmr.length = 0;
2075 
2076 	for_each_sg(sgl, sg, sg_nents, i) {
2077 		if (unlikely(i >= mr->max_descs))
2078 			break;
2079 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2080 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2081 		klms[i].key = cpu_to_be32(lkey);
2082 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2083 
2084 		sg_offset = 0;
2085 	}
2086 
2087 	if (sg_offset_p)
2088 		*sg_offset_p = sg_offset;
2089 
2090 	mr->ndescs = i;
2091 	mr->data_length = mr->ibmr.length;
2092 
2093 	if (meta_sg_nents) {
2094 		sg = meta_sgl;
2095 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2096 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2097 			if (unlikely(i + j >= mr->max_descs))
2098 				break;
2099 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2100 						     sg_offset);
2101 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2102 							 sg_offset);
2103 			klms[i + j].key = cpu_to_be32(lkey);
2104 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2105 
2106 			sg_offset = 0;
2107 		}
2108 		if (meta_sg_offset_p)
2109 			*meta_sg_offset_p = sg_offset;
2110 
2111 		mr->meta_ndescs = j;
2112 		mr->meta_length = mr->ibmr.length - mr->data_length;
2113 	}
2114 
2115 	return i + j;
2116 }
2117 
2118 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2119 {
2120 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2121 	__be64 *descs;
2122 
2123 	if (unlikely(mr->ndescs == mr->max_descs))
2124 		return -ENOMEM;
2125 
2126 	descs = mr->descs;
2127 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2128 
2129 	return 0;
2130 }
2131 
2132 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2133 {
2134 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2135 	__be64 *descs;
2136 
2137 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2138 		return -ENOMEM;
2139 
2140 	descs = mr->descs;
2141 	descs[mr->ndescs + mr->meta_ndescs++] =
2142 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2143 
2144 	return 0;
2145 }
2146 
2147 static int
2148 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2149 			 int data_sg_nents, unsigned int *data_sg_offset,
2150 			 struct scatterlist *meta_sg, int meta_sg_nents,
2151 			 unsigned int *meta_sg_offset)
2152 {
2153 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2154 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2155 	int n;
2156 
2157 	pi_mr->ndescs = 0;
2158 	pi_mr->meta_ndescs = 0;
2159 	pi_mr->meta_length = 0;
2160 
2161 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2162 				   pi_mr->desc_size * pi_mr->max_descs,
2163 				   DMA_TO_DEVICE);
2164 
2165 	pi_mr->ibmr.page_size = ibmr->page_size;
2166 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2167 			   mlx5_set_page);
2168 	if (n != data_sg_nents)
2169 		return n;
2170 
2171 	pi_mr->data_iova = pi_mr->ibmr.iova;
2172 	pi_mr->data_length = pi_mr->ibmr.length;
2173 	pi_mr->ibmr.length = pi_mr->data_length;
2174 	ibmr->length = pi_mr->data_length;
2175 
2176 	if (meta_sg_nents) {
2177 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2178 		u64 iova = pi_mr->data_iova;
2179 
2180 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2181 				    meta_sg_offset, mlx5_set_page_pi);
2182 
2183 		pi_mr->meta_length = pi_mr->ibmr.length;
2184 		/*
2185 		 * PI address for the HW is the offset of the metadata address
2186 		 * relative to the first data page address.
2187 		 * It equals to first data page address + size of data pages +
2188 		 * metadata offset at the first metadata page
2189 		 */
2190 		pi_mr->pi_iova = (iova & page_mask) +
2191 				 pi_mr->ndescs * ibmr->page_size +
2192 				 (pi_mr->ibmr.iova & ~page_mask);
2193 		/*
2194 		 * In order to use one MTT MR for data and metadata, we register
2195 		 * also the gaps between the end of the data and the start of
2196 		 * the metadata (the sig MR will verify that the HW will access
2197 		 * to right addresses). This mapping is safe because we use
2198 		 * internal mkey for the registration.
2199 		 */
2200 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2201 		pi_mr->ibmr.iova = iova;
2202 		ibmr->length += pi_mr->meta_length;
2203 	}
2204 
2205 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2206 				      pi_mr->desc_size * pi_mr->max_descs,
2207 				      DMA_TO_DEVICE);
2208 
2209 	return n;
2210 }
2211 
2212 static int
2213 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2214 			 int data_sg_nents, unsigned int *data_sg_offset,
2215 			 struct scatterlist *meta_sg, int meta_sg_nents,
2216 			 unsigned int *meta_sg_offset)
2217 {
2218 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2219 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2220 	int n;
2221 
2222 	pi_mr->ndescs = 0;
2223 	pi_mr->meta_ndescs = 0;
2224 	pi_mr->meta_length = 0;
2225 
2226 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2227 				   pi_mr->desc_size * pi_mr->max_descs,
2228 				   DMA_TO_DEVICE);
2229 
2230 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2231 			       meta_sg, meta_sg_nents, meta_sg_offset);
2232 
2233 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2234 				      pi_mr->desc_size * pi_mr->max_descs,
2235 				      DMA_TO_DEVICE);
2236 
2237 	/* This is zero-based memory region */
2238 	pi_mr->data_iova = 0;
2239 	pi_mr->ibmr.iova = 0;
2240 	pi_mr->pi_iova = pi_mr->data_length;
2241 	ibmr->length = pi_mr->ibmr.length;
2242 
2243 	return n;
2244 }
2245 
2246 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2247 			 int data_sg_nents, unsigned int *data_sg_offset,
2248 			 struct scatterlist *meta_sg, int meta_sg_nents,
2249 			 unsigned int *meta_sg_offset)
2250 {
2251 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2252 	struct mlx5_ib_mr *pi_mr = NULL;
2253 	int n;
2254 
2255 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2256 
2257 	mr->ndescs = 0;
2258 	mr->data_length = 0;
2259 	mr->data_iova = 0;
2260 	mr->meta_ndescs = 0;
2261 	mr->pi_iova = 0;
2262 	/*
2263 	 * As a performance optimization, if possible, there is no need to
2264 	 * perform UMR operation to register the data/metadata buffers.
2265 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2266 	 * Fallback to UMR only in case of a failure.
2267 	 */
2268 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2269 				    data_sg_offset, meta_sg, meta_sg_nents,
2270 				    meta_sg_offset);
2271 	if (n == data_sg_nents + meta_sg_nents)
2272 		goto out;
2273 	/*
2274 	 * As a performance optimization, if possible, there is no need to map
2275 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2276 	 * descriptors and fallback to KLM only in case of a failure.
2277 	 * It's more efficient for the HW to work with MTT descriptors
2278 	 * (especially in high load).
2279 	 * Use KLM (indirect access) only if it's mandatory.
2280 	 */
2281 	pi_mr = mr->mtt_mr;
2282 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2283 				     data_sg_offset, meta_sg, meta_sg_nents,
2284 				     meta_sg_offset);
2285 	if (n == data_sg_nents + meta_sg_nents)
2286 		goto out;
2287 
2288 	pi_mr = mr->klm_mr;
2289 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2290 				     data_sg_offset, meta_sg, meta_sg_nents,
2291 				     meta_sg_offset);
2292 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2293 		return -ENOMEM;
2294 
2295 out:
2296 	/* This is zero-based memory region */
2297 	ibmr->iova = 0;
2298 	mr->pi_mr = pi_mr;
2299 	if (pi_mr)
2300 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2301 	else
2302 		ibmr->sig_attrs->meta_length = mr->meta_length;
2303 
2304 	return 0;
2305 }
2306 
2307 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2308 		      unsigned int *sg_offset)
2309 {
2310 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2311 	int n;
2312 
2313 	mr->ndescs = 0;
2314 
2315 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2316 				   mr->desc_size * mr->max_descs,
2317 				   DMA_TO_DEVICE);
2318 
2319 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2320 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2321 				       NULL);
2322 	else
2323 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2324 				mlx5_set_page);
2325 
2326 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2327 				      mr->desc_size * mr->max_descs,
2328 				      DMA_TO_DEVICE);
2329 
2330 	return n;
2331 }
2332