xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision a272019a46c918575f10cc529c893585d46b3b55)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 #include "data_direct.h"
47 
48 enum {
49 	MAX_PENDING_REG_MR = 8,
50 };
51 
52 #define MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS 4
53 #define MLX5_UMR_ALIGN 2048
54 
55 static void
56 create_mkey_callback(int status, struct mlx5_async_work *context);
57 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
58 				     u64 iova, int access_flags,
59 				     unsigned long page_size, bool populate,
60 				     int access_mode);
61 static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr);
62 
63 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
64 					  struct ib_pd *pd)
65 {
66 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
67 
68 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
69 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
70 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
71 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
72 	MLX5_SET(mkc, mkc, lr, 1);
73 
74 	if (acc & IB_ACCESS_RELAXED_ORDERING) {
75 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
76 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
77 
78 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
79 		    (MLX5_CAP_GEN(dev->mdev,
80 				  relaxed_ordering_read_pci_enabled) &&
81 		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
82 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
83 	}
84 
85 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
86 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
87 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
88 }
89 
90 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
91 {
92 	u8 key = atomic_inc_return(&dev->mkey_var);
93 	void *mkc;
94 
95 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
96 	MLX5_SET(mkc, mkc, mkey_7_0, key);
97 	*mkey = key;
98 }
99 
100 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
101 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
102 {
103 	int ret;
104 
105 	assign_mkey_variant(dev, &mkey->key, in);
106 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
107 	if (!ret)
108 		init_waitqueue_head(&mkey->wait);
109 
110 	return ret;
111 }
112 
113 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
114 {
115 	struct mlx5_ib_dev *dev = async_create->ent->dev;
116 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
117 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
118 
119 	MLX5_SET(create_mkey_in, async_create->in, opcode,
120 		 MLX5_CMD_OP_CREATE_MKEY);
121 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
122 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
123 				async_create->out, outlen, create_mkey_callback,
124 				&async_create->cb_work);
125 }
126 
127 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
128 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
129 
130 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
131 {
132 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
133 
134 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
135 }
136 
137 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
138 {
139 	if (status == -ENXIO) /* core driver is not available */
140 		return;
141 
142 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
143 	if (status != -EREMOTEIO) /* driver specific failure */
144 		return;
145 
146 	/* Failed in FW, print cmd out failure details */
147 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
148 }
149 
150 static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
151 {
152 	unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
153 	struct mlx5_mkeys_page *page;
154 
155 	lockdep_assert_held(&ent->mkeys_queue.lock);
156 	if (ent->mkeys_queue.ci >=
157 	    ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
158 		page = kzalloc(sizeof(*page), GFP_ATOMIC);
159 		if (!page)
160 			return -ENOMEM;
161 		ent->mkeys_queue.num_pages++;
162 		list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
163 	} else {
164 		page = list_last_entry(&ent->mkeys_queue.pages_list,
165 				       struct mlx5_mkeys_page, list);
166 	}
167 
168 	page->mkeys[tmp] = mkey;
169 	ent->mkeys_queue.ci++;
170 	return 0;
171 }
172 
173 static int pop_mkey_locked(struct mlx5_cache_ent *ent)
174 {
175 	unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
176 	struct mlx5_mkeys_page *last_page;
177 	u32 mkey;
178 
179 	lockdep_assert_held(&ent->mkeys_queue.lock);
180 	last_page = list_last_entry(&ent->mkeys_queue.pages_list,
181 				    struct mlx5_mkeys_page, list);
182 	mkey = last_page->mkeys[tmp];
183 	last_page->mkeys[tmp] = 0;
184 	ent->mkeys_queue.ci--;
185 	if (ent->mkeys_queue.num_pages > 1 && !tmp) {
186 		list_del(&last_page->list);
187 		ent->mkeys_queue.num_pages--;
188 		kfree(last_page);
189 	}
190 	return mkey;
191 }
192 
193 static void create_mkey_callback(int status, struct mlx5_async_work *context)
194 {
195 	struct mlx5r_async_create_mkey *mkey_out =
196 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
197 	struct mlx5_cache_ent *ent = mkey_out->ent;
198 	struct mlx5_ib_dev *dev = ent->dev;
199 	unsigned long flags;
200 
201 	if (status) {
202 		create_mkey_warn(dev, status, mkey_out->out);
203 		kfree(mkey_out);
204 		spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
205 		ent->pending--;
206 		WRITE_ONCE(dev->fill_delay, 1);
207 		spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
208 		mod_timer(&dev->delay_timer, jiffies + HZ);
209 		return;
210 	}
211 
212 	mkey_out->mkey |= mlx5_idx_to_mkey(
213 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
214 	WRITE_ONCE(dev->cache.last_add, jiffies);
215 
216 	spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
217 	push_mkey_locked(ent, mkey_out->mkey);
218 	ent->pending--;
219 	/* If we are doing fill_to_high_water then keep going. */
220 	queue_adjust_cache_locked(ent);
221 	spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
222 	kfree(mkey_out);
223 }
224 
225 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
226 {
227 	int ret = 0;
228 
229 	switch (access_mode) {
230 	case MLX5_MKC_ACCESS_MODE_MTT:
231 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 						   sizeof(struct mlx5_mtt));
233 		break;
234 	case MLX5_MKC_ACCESS_MODE_KSM:
235 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
236 						   sizeof(struct mlx5_klm));
237 		break;
238 	default:
239 		WARN_ON(1);
240 	}
241 	return ret;
242 }
243 
244 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
245 {
246 	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
247 				      ent->dev->umrc.pd);
248 	MLX5_SET(mkc, mkc, free, 1);
249 	MLX5_SET(mkc, mkc, umr_en, 1);
250 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
251 	MLX5_SET(mkc, mkc, access_mode_4_2,
252 		(ent->rb_key.access_mode >> 2) & 0x7);
253 	MLX5_SET(mkc, mkc, ma_translation_mode, !!ent->rb_key.ats);
254 
255 	MLX5_SET(mkc, mkc, translations_octword_size,
256 		 get_mkc_octo_size(ent->rb_key.access_mode,
257 				   ent->rb_key.ndescs));
258 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
259 }
260 
261 /* Asynchronously schedule new MRs to be populated in the cache. */
262 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
263 {
264 	struct mlx5r_async_create_mkey *async_create;
265 	void *mkc;
266 	int err = 0;
267 	int i;
268 
269 	for (i = 0; i < num; i++) {
270 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
271 				       GFP_KERNEL);
272 		if (!async_create)
273 			return -ENOMEM;
274 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
275 				   memory_key_mkey_entry);
276 		set_cache_mkc(ent, mkc);
277 		async_create->ent = ent;
278 
279 		spin_lock_irq(&ent->mkeys_queue.lock);
280 		if (ent->pending >= MAX_PENDING_REG_MR) {
281 			err = -EAGAIN;
282 			goto free_async_create;
283 		}
284 		ent->pending++;
285 		spin_unlock_irq(&ent->mkeys_queue.lock);
286 
287 		err = mlx5_ib_create_mkey_cb(async_create);
288 		if (err) {
289 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
290 			goto err_create_mkey;
291 		}
292 	}
293 
294 	return 0;
295 
296 err_create_mkey:
297 	spin_lock_irq(&ent->mkeys_queue.lock);
298 	ent->pending--;
299 free_async_create:
300 	spin_unlock_irq(&ent->mkeys_queue.lock);
301 	kfree(async_create);
302 	return err;
303 }
304 
305 /* Synchronously create a MR in the cache */
306 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
307 {
308 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
309 	void *mkc;
310 	u32 *in;
311 	int err;
312 
313 	in = kzalloc(inlen, GFP_KERNEL);
314 	if (!in)
315 		return -ENOMEM;
316 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
317 	set_cache_mkc(ent, mkc);
318 
319 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
320 	if (err)
321 		goto free_in;
322 
323 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
324 free_in:
325 	kfree(in);
326 	return err;
327 }
328 
329 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
330 {
331 	u32 mkey;
332 
333 	lockdep_assert_held(&ent->mkeys_queue.lock);
334 	if (!ent->mkeys_queue.ci)
335 		return;
336 	mkey = pop_mkey_locked(ent);
337 	spin_unlock_irq(&ent->mkeys_queue.lock);
338 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
339 	spin_lock_irq(&ent->mkeys_queue.lock);
340 }
341 
342 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
343 				bool limit_fill)
344 	__acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
345 {
346 	int err;
347 
348 	lockdep_assert_held(&ent->mkeys_queue.lock);
349 
350 	while (true) {
351 		if (limit_fill)
352 			target = ent->limit * 2;
353 		if (target == ent->pending + ent->mkeys_queue.ci)
354 			return 0;
355 		if (target > ent->pending + ent->mkeys_queue.ci) {
356 			u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
357 
358 			spin_unlock_irq(&ent->mkeys_queue.lock);
359 			err = add_keys(ent, todo);
360 			if (err == -EAGAIN)
361 				usleep_range(3000, 5000);
362 			spin_lock_irq(&ent->mkeys_queue.lock);
363 			if (err) {
364 				if (err != -EAGAIN)
365 					return err;
366 			} else
367 				return 0;
368 		} else {
369 			remove_cache_mr_locked(ent);
370 		}
371 	}
372 }
373 
374 static ssize_t size_write(struct file *filp, const char __user *buf,
375 			  size_t count, loff_t *pos)
376 {
377 	struct mlx5_cache_ent *ent = filp->private_data;
378 	u32 target;
379 	int err;
380 
381 	err = kstrtou32_from_user(buf, count, 0, &target);
382 	if (err)
383 		return err;
384 
385 	/*
386 	 * Target is the new value of total_mrs the user requests, however we
387 	 * cannot free MRs that are in use. Compute the target value for stored
388 	 * mkeys.
389 	 */
390 	spin_lock_irq(&ent->mkeys_queue.lock);
391 	if (target < ent->in_use) {
392 		err = -EINVAL;
393 		goto err_unlock;
394 	}
395 	target = target - ent->in_use;
396 	if (target < ent->limit || target > ent->limit*2) {
397 		err = -EINVAL;
398 		goto err_unlock;
399 	}
400 	err = resize_available_mrs(ent, target, false);
401 	if (err)
402 		goto err_unlock;
403 	spin_unlock_irq(&ent->mkeys_queue.lock);
404 
405 	return count;
406 
407 err_unlock:
408 	spin_unlock_irq(&ent->mkeys_queue.lock);
409 	return err;
410 }
411 
412 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
413 			 loff_t *pos)
414 {
415 	struct mlx5_cache_ent *ent = filp->private_data;
416 	char lbuf[20];
417 	int err;
418 
419 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
420 		       ent->mkeys_queue.ci + ent->in_use);
421 	if (err < 0)
422 		return err;
423 
424 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
425 }
426 
427 static const struct file_operations size_fops = {
428 	.owner	= THIS_MODULE,
429 	.open	= simple_open,
430 	.write	= size_write,
431 	.read	= size_read,
432 };
433 
434 static ssize_t limit_write(struct file *filp, const char __user *buf,
435 			   size_t count, loff_t *pos)
436 {
437 	struct mlx5_cache_ent *ent = filp->private_data;
438 	u32 var;
439 	int err;
440 
441 	err = kstrtou32_from_user(buf, count, 0, &var);
442 	if (err)
443 		return err;
444 
445 	/*
446 	 * Upon set we immediately fill the cache to high water mark implied by
447 	 * the limit.
448 	 */
449 	spin_lock_irq(&ent->mkeys_queue.lock);
450 	ent->limit = var;
451 	err = resize_available_mrs(ent, 0, true);
452 	spin_unlock_irq(&ent->mkeys_queue.lock);
453 	if (err)
454 		return err;
455 	return count;
456 }
457 
458 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
459 			  loff_t *pos)
460 {
461 	struct mlx5_cache_ent *ent = filp->private_data;
462 	char lbuf[20];
463 	int err;
464 
465 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
466 	if (err < 0)
467 		return err;
468 
469 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
470 }
471 
472 static const struct file_operations limit_fops = {
473 	.owner	= THIS_MODULE,
474 	.open	= simple_open,
475 	.write	= limit_write,
476 	.read	= limit_read,
477 };
478 
479 static bool someone_adding(struct mlx5_mkey_cache *cache)
480 {
481 	struct mlx5_cache_ent *ent;
482 	struct rb_node *node;
483 	bool ret;
484 
485 	mutex_lock(&cache->rb_lock);
486 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
487 		ent = rb_entry(node, struct mlx5_cache_ent, node);
488 		spin_lock_irq(&ent->mkeys_queue.lock);
489 		ret = ent->mkeys_queue.ci < ent->limit;
490 		spin_unlock_irq(&ent->mkeys_queue.lock);
491 		if (ret) {
492 			mutex_unlock(&cache->rb_lock);
493 			return true;
494 		}
495 	}
496 	mutex_unlock(&cache->rb_lock);
497 	return false;
498 }
499 
500 /*
501  * Check if the bucket is outside the high/low water mark and schedule an async
502  * update. The cache refill has hysteresis, once the low water mark is hit it is
503  * refilled up to the high mark.
504  */
505 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
506 {
507 	lockdep_assert_held(&ent->mkeys_queue.lock);
508 
509 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
510 		return;
511 	if (ent->mkeys_queue.ci < ent->limit) {
512 		ent->fill_to_high_water = true;
513 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
514 	} else if (ent->fill_to_high_water &&
515 		   ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
516 		/*
517 		 * Once we start populating due to hitting a low water mark
518 		 * continue until we pass the high water mark.
519 		 */
520 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
521 	} else if (ent->mkeys_queue.ci == 2 * ent->limit) {
522 		ent->fill_to_high_water = false;
523 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
524 		/* Queue deletion of excess entries */
525 		ent->fill_to_high_water = false;
526 		if (ent->pending)
527 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
528 					   secs_to_jiffies(1));
529 		else
530 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
531 	}
532 }
533 
534 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
535 {
536 	u32 mkey;
537 
538 	spin_lock_irq(&ent->mkeys_queue.lock);
539 	while (ent->mkeys_queue.ci) {
540 		mkey = pop_mkey_locked(ent);
541 		spin_unlock_irq(&ent->mkeys_queue.lock);
542 		mlx5_core_destroy_mkey(dev->mdev, mkey);
543 		spin_lock_irq(&ent->mkeys_queue.lock);
544 	}
545 	ent->tmp_cleanup_scheduled = false;
546 	spin_unlock_irq(&ent->mkeys_queue.lock);
547 }
548 
549 static void __cache_work_func(struct mlx5_cache_ent *ent)
550 {
551 	struct mlx5_ib_dev *dev = ent->dev;
552 	struct mlx5_mkey_cache *cache = &dev->cache;
553 	int err;
554 
555 	spin_lock_irq(&ent->mkeys_queue.lock);
556 	if (ent->disabled)
557 		goto out;
558 
559 	if (ent->fill_to_high_water &&
560 	    ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
561 	    !READ_ONCE(dev->fill_delay)) {
562 		spin_unlock_irq(&ent->mkeys_queue.lock);
563 		err = add_keys(ent, 1);
564 		spin_lock_irq(&ent->mkeys_queue.lock);
565 		if (ent->disabled)
566 			goto out;
567 		if (err) {
568 			/*
569 			 * EAGAIN only happens if there are pending MRs, so we
570 			 * will be rescheduled when storing them. The only
571 			 * failure path here is ENOMEM.
572 			 */
573 			if (err != -EAGAIN) {
574 				mlx5_ib_warn(
575 					dev,
576 					"add keys command failed, err %d\n",
577 					err);
578 				queue_delayed_work(cache->wq, &ent->dwork,
579 						   secs_to_jiffies(1));
580 			}
581 		}
582 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
583 		bool need_delay;
584 
585 		/*
586 		 * The remove_cache_mr() logic is performed as garbage
587 		 * collection task. Such task is intended to be run when no
588 		 * other active processes are running.
589 		 *
590 		 * The need_resched() will return TRUE if there are user tasks
591 		 * to be activated in near future.
592 		 *
593 		 * In such case, we don't execute remove_cache_mr() and postpone
594 		 * the garbage collection work to try to run in next cycle, in
595 		 * order to free CPU resources to other tasks.
596 		 */
597 		spin_unlock_irq(&ent->mkeys_queue.lock);
598 		need_delay = need_resched() || someone_adding(cache) ||
599 			     !time_after(jiffies,
600 					 READ_ONCE(cache->last_add) + 300 * HZ);
601 		spin_lock_irq(&ent->mkeys_queue.lock);
602 		if (ent->disabled)
603 			goto out;
604 		if (need_delay) {
605 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
606 			goto out;
607 		}
608 		remove_cache_mr_locked(ent);
609 		queue_adjust_cache_locked(ent);
610 	}
611 out:
612 	spin_unlock_irq(&ent->mkeys_queue.lock);
613 }
614 
615 static void delayed_cache_work_func(struct work_struct *work)
616 {
617 	struct mlx5_cache_ent *ent;
618 
619 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
620 	/* temp entries are never filled, only cleaned */
621 	if (ent->is_tmp)
622 		clean_keys(ent->dev, ent);
623 	else
624 		__cache_work_func(ent);
625 }
626 
627 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
628 			     struct mlx5r_cache_rb_key key2)
629 {
630 	int res;
631 
632 	res = key1.ats - key2.ats;
633 	if (res)
634 		return res;
635 
636 	res = key1.access_mode - key2.access_mode;
637 	if (res)
638 		return res;
639 
640 	res = key1.access_flags - key2.access_flags;
641 	if (res)
642 		return res;
643 
644 	/*
645 	 * keep ndescs the last in the compare table since the find function
646 	 * searches for an exact match on all properties and only closest
647 	 * match in size.
648 	 */
649 	return key1.ndescs - key2.ndescs;
650 }
651 
652 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
653 				 struct mlx5_cache_ent *ent)
654 {
655 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
656 	struct mlx5_cache_ent *cur;
657 	int cmp;
658 
659 	/* Figure out where to put new node */
660 	while (*new) {
661 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
662 		parent = *new;
663 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
664 		if (cmp > 0)
665 			new = &((*new)->rb_left);
666 		if (cmp < 0)
667 			new = &((*new)->rb_right);
668 		if (cmp == 0)
669 			return -EEXIST;
670 	}
671 
672 	/* Add new node and rebalance tree. */
673 	rb_link_node(&ent->node, parent, new);
674 	rb_insert_color(&ent->node, &cache->rb_root);
675 
676 	return 0;
677 }
678 
679 static struct mlx5_cache_ent *
680 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
681 			   struct mlx5r_cache_rb_key rb_key)
682 {
683 	struct rb_node *node = dev->cache.rb_root.rb_node;
684 	struct mlx5_cache_ent *cur, *smallest = NULL;
685 	u64 ndescs_limit;
686 	int cmp;
687 
688 	/*
689 	 * Find the smallest ent with order >= requested_order.
690 	 */
691 	while (node) {
692 		cur = rb_entry(node, struct mlx5_cache_ent, node);
693 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
694 		if (cmp > 0) {
695 			smallest = cur;
696 			node = node->rb_left;
697 		}
698 		if (cmp < 0)
699 			node = node->rb_right;
700 		if (cmp == 0)
701 			return cur;
702 	}
703 
704 	/*
705 	 * Limit the usage of mkeys larger than twice the required size while
706 	 * also allowing the usage of smallest cache entry for small MRs.
707 	 */
708 	ndescs_limit = max_t(u64, rb_key.ndescs * 2,
709 			     MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS);
710 
711 	return (smallest &&
712 		smallest->rb_key.access_mode == rb_key.access_mode &&
713 		smallest->rb_key.access_flags == rb_key.access_flags &&
714 		smallest->rb_key.ats == rb_key.ats &&
715 		smallest->rb_key.ndescs <= ndescs_limit) ?
716 		       smallest :
717 		       NULL;
718 }
719 
720 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
721 					       struct mlx5_cache_ent *ent)
722 {
723 	struct mlx5_ib_mr *mr;
724 	int err;
725 
726 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
727 	if (!mr)
728 		return ERR_PTR(-ENOMEM);
729 
730 	spin_lock_irq(&ent->mkeys_queue.lock);
731 	ent->in_use++;
732 
733 	if (!ent->mkeys_queue.ci) {
734 		queue_adjust_cache_locked(ent);
735 		ent->miss++;
736 		spin_unlock_irq(&ent->mkeys_queue.lock);
737 		err = create_cache_mkey(ent, &mr->mmkey.key);
738 		if (err) {
739 			spin_lock_irq(&ent->mkeys_queue.lock);
740 			ent->in_use--;
741 			spin_unlock_irq(&ent->mkeys_queue.lock);
742 			kfree(mr);
743 			return ERR_PTR(err);
744 		}
745 	} else {
746 		mr->mmkey.key = pop_mkey_locked(ent);
747 		queue_adjust_cache_locked(ent);
748 		spin_unlock_irq(&ent->mkeys_queue.lock);
749 	}
750 	mr->mmkey.cache_ent = ent;
751 	mr->mmkey.type = MLX5_MKEY_MR;
752 	mr->mmkey.rb_key = ent->rb_key;
753 	mr->mmkey.cacheable = true;
754 	init_waitqueue_head(&mr->mmkey.wait);
755 	return mr;
756 }
757 
758 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
759 					 int access_flags)
760 {
761 	int ret = 0;
762 
763 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
764 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
765 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
766 		ret |= IB_ACCESS_REMOTE_ATOMIC;
767 
768 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
769 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
770 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
771 		ret |= IB_ACCESS_RELAXED_ORDERING;
772 
773 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
774 	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
775 	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
776 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
777 		ret |= IB_ACCESS_RELAXED_ORDERING;
778 
779 	return ret;
780 }
781 
782 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
783 				       int access_flags, int access_mode,
784 				       int ndescs)
785 {
786 	struct mlx5r_cache_rb_key rb_key = {
787 		.ndescs = ndescs,
788 		.access_mode = access_mode,
789 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
790 	};
791 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
792 
793 	if (!ent)
794 		return ERR_PTR(-EOPNOTSUPP);
795 
796 	return _mlx5_mr_cache_alloc(dev, ent);
797 }
798 
799 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
800 {
801 	if (!mlx5_debugfs_root || dev->is_rep)
802 		return;
803 
804 	debugfs_remove_recursive(dev->cache.fs_root);
805 	dev->cache.fs_root = NULL;
806 }
807 
808 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
809 					    struct mlx5_cache_ent *ent)
810 {
811 	int order = order_base_2(ent->rb_key.ndescs);
812 	struct dentry *dir;
813 
814 	if (!mlx5_debugfs_root || dev->is_rep)
815 		return;
816 
817 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
818 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
819 
820 	sprintf(ent->name, "%d", order);
821 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
822 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
823 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
824 	debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
825 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
826 }
827 
828 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
829 {
830 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
831 	struct mlx5_mkey_cache *cache = &dev->cache;
832 
833 	if (!mlx5_debugfs_root || dev->is_rep)
834 		return;
835 
836 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
837 }
838 
839 static void delay_time_func(struct timer_list *t)
840 {
841 	struct mlx5_ib_dev *dev = timer_container_of(dev, t, delay_timer);
842 
843 	WRITE_ONCE(dev->fill_delay, 0);
844 }
845 
846 static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
847 {
848 	struct mlx5_mkeys_page *page;
849 
850 	page = kzalloc(sizeof(*page), GFP_KERNEL);
851 	if (!page)
852 		return -ENOMEM;
853 	INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
854 	spin_lock_init(&ent->mkeys_queue.lock);
855 	list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
856 	ent->mkeys_queue.num_pages++;
857 	return 0;
858 }
859 
860 static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
861 {
862 	struct mlx5_mkeys_page *page;
863 
864 	WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
865 	page = list_last_entry(&ent->mkeys_queue.pages_list,
866 			       struct mlx5_mkeys_page, list);
867 	list_del(&page->list);
868 	kfree(page);
869 }
870 
871 struct mlx5_cache_ent *
872 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
873 			      struct mlx5r_cache_rb_key rb_key,
874 			      bool persistent_entry)
875 {
876 	struct mlx5_cache_ent *ent;
877 	int order;
878 	int ret;
879 
880 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
881 	if (!ent)
882 		return ERR_PTR(-ENOMEM);
883 
884 	ret = mlx5r_mkeys_init(ent);
885 	if (ret)
886 		goto mkeys_err;
887 	ent->rb_key = rb_key;
888 	ent->dev = dev;
889 	ent->is_tmp = !persistent_entry;
890 
891 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
892 
893 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
894 	if (ret)
895 		goto ent_insert_err;
896 
897 	if (persistent_entry) {
898 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
899 			order = MLX5_IMR_KSM_CACHE_ENTRY;
900 		else
901 			order = order_base_2(rb_key.ndescs) - 2;
902 
903 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
904 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
905 		    mlx5r_umr_can_load_pas(dev, 0))
906 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
907 		else
908 			ent->limit = 0;
909 
910 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
911 	}
912 
913 	return ent;
914 ent_insert_err:
915 	mlx5r_mkeys_uninit(ent);
916 mkeys_err:
917 	kfree(ent);
918 	return ERR_PTR(ret);
919 }
920 
921 static void mlx5r_destroy_cache_entries(struct mlx5_ib_dev *dev)
922 {
923 	struct rb_root *root = &dev->cache.rb_root;
924 	struct mlx5_cache_ent *ent;
925 	struct rb_node *node;
926 
927 	mutex_lock(&dev->cache.rb_lock);
928 	node = rb_first(root);
929 	while (node) {
930 		ent = rb_entry(node, struct mlx5_cache_ent, node);
931 		node = rb_next(node);
932 		clean_keys(dev, ent);
933 		rb_erase(&ent->node, root);
934 		mlx5r_mkeys_uninit(ent);
935 		kfree(ent);
936 	}
937 	mutex_unlock(&dev->cache.rb_lock);
938 }
939 
940 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
941 {
942 	struct mlx5_mkey_cache *cache = &dev->cache;
943 	struct rb_root *root = &dev->cache.rb_root;
944 	struct mlx5r_cache_rb_key rb_key = {
945 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
946 	};
947 	struct mlx5_cache_ent *ent;
948 	struct rb_node *node;
949 	int ret;
950 	int i;
951 
952 	mutex_init(&dev->slow_path_mutex);
953 	mutex_init(&dev->cache.rb_lock);
954 	dev->cache.rb_root = RB_ROOT;
955 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
956 	if (!cache->wq) {
957 		mlx5_ib_warn(dev, "failed to create work queue\n");
958 		return -ENOMEM;
959 	}
960 
961 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
962 	timer_setup(&dev->delay_timer, delay_time_func, 0);
963 	mlx5_mkey_cache_debugfs_init(dev);
964 	mutex_lock(&cache->rb_lock);
965 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
966 		rb_key.ndescs = MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS << i;
967 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
968 		if (IS_ERR(ent)) {
969 			ret = PTR_ERR(ent);
970 			goto err;
971 		}
972 	}
973 
974 	ret = mlx5_odp_init_mkey_cache(dev);
975 	if (ret)
976 		goto err;
977 
978 	mutex_unlock(&cache->rb_lock);
979 	for (node = rb_first(root); node; node = rb_next(node)) {
980 		ent = rb_entry(node, struct mlx5_cache_ent, node);
981 		spin_lock_irq(&ent->mkeys_queue.lock);
982 		queue_adjust_cache_locked(ent);
983 		spin_unlock_irq(&ent->mkeys_queue.lock);
984 	}
985 
986 	return 0;
987 
988 err:
989 	mutex_unlock(&cache->rb_lock);
990 	mlx5_mkey_cache_debugfs_cleanup(dev);
991 	mlx5r_destroy_cache_entries(dev);
992 	destroy_workqueue(cache->wq);
993 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
994 	return ret;
995 }
996 
997 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
998 {
999 	struct rb_root *root = &dev->cache.rb_root;
1000 	struct mlx5_cache_ent *ent;
1001 	struct rb_node *node;
1002 
1003 	if (!dev->cache.wq)
1004 		return;
1005 
1006 	mutex_lock(&dev->cache.rb_lock);
1007 	for (node = rb_first(root); node; node = rb_next(node)) {
1008 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1009 		spin_lock_irq(&ent->mkeys_queue.lock);
1010 		ent->disabled = true;
1011 		spin_unlock_irq(&ent->mkeys_queue.lock);
1012 		cancel_delayed_work(&ent->dwork);
1013 	}
1014 	mutex_unlock(&dev->cache.rb_lock);
1015 
1016 	/*
1017 	 * After all entries are disabled and will not reschedule on WQ,
1018 	 * flush it and all async commands.
1019 	 */
1020 	flush_workqueue(dev->cache.wq);
1021 
1022 	mlx5_mkey_cache_debugfs_cleanup(dev);
1023 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1024 
1025 	/* At this point all entries are disabled and have no concurrent work. */
1026 	mlx5r_destroy_cache_entries(dev);
1027 
1028 	destroy_workqueue(dev->cache.wq);
1029 	timer_delete_sync(&dev->delay_timer);
1030 }
1031 
1032 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1033 {
1034 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1035 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1036 	struct mlx5_ib_mr *mr;
1037 	void *mkc;
1038 	u32 *in;
1039 	int err;
1040 
1041 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1042 	if (!mr)
1043 		return ERR_PTR(-ENOMEM);
1044 
1045 	in = kzalloc(inlen, GFP_KERNEL);
1046 	if (!in) {
1047 		err = -ENOMEM;
1048 		goto err_free;
1049 	}
1050 
1051 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1052 
1053 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1054 	MLX5_SET(mkc, mkc, length64, 1);
1055 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1056 				      pd);
1057 	MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
1058 
1059 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1060 	if (err)
1061 		goto err_in;
1062 
1063 	kfree(in);
1064 	mr->mmkey.type = MLX5_MKEY_MR;
1065 	mr->ibmr.lkey = mr->mmkey.key;
1066 	mr->ibmr.rkey = mr->mmkey.key;
1067 	mr->umem = NULL;
1068 
1069 	return &mr->ibmr;
1070 
1071 err_in:
1072 	kfree(in);
1073 
1074 err_free:
1075 	kfree(mr);
1076 
1077 	return ERR_PTR(err);
1078 }
1079 
1080 static int get_octo_len(u64 addr, u64 len, int page_shift)
1081 {
1082 	u64 page_size = 1ULL << page_shift;
1083 	u64 offset;
1084 	int npages;
1085 
1086 	offset = addr & (page_size - 1);
1087 	npages = ALIGN(len + offset, page_size) >> page_shift;
1088 	return (npages + 1) / 2;
1089 }
1090 
1091 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1092 {
1093 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1094 		return MKEY_CACHE_LAST_STD_ENTRY;
1095 	return MLX5_MAX_UMR_SHIFT;
1096 }
1097 
1098 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1099 			  u64 length, int access_flags, u64 iova)
1100 {
1101 	mr->ibmr.lkey = mr->mmkey.key;
1102 	mr->ibmr.rkey = mr->mmkey.key;
1103 	mr->ibmr.length = length;
1104 	mr->ibmr.device = &dev->ib_dev;
1105 	mr->ibmr.iova = iova;
1106 	mr->access_flags = access_flags;
1107 }
1108 
1109 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1110 						  u64 iova)
1111 {
1112 	/*
1113 	 * The alignment of iova has already been checked upon entering
1114 	 * UVERBS_METHOD_REG_DMABUF_MR
1115 	 */
1116 	umem->iova = iova;
1117 	return PAGE_SIZE;
1118 }
1119 
1120 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1121 					     struct ib_umem *umem, u64 iova,
1122 					     int access_flags, int access_mode)
1123 {
1124 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1125 	struct mlx5r_cache_rb_key rb_key = {};
1126 	struct mlx5_cache_ent *ent;
1127 	struct mlx5_ib_mr *mr;
1128 	unsigned long page_size;
1129 
1130 	if (umem->is_dmabuf)
1131 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1132 	else
1133 		page_size = mlx5_umem_mkc_find_best_pgsz(dev, umem, iova,
1134 							 access_mode);
1135 	if (WARN_ON(!page_size))
1136 		return ERR_PTR(-EINVAL);
1137 
1138 	rb_key.access_mode = access_mode;
1139 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1140 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1141 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1142 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1143 	/*
1144 	 * If the MR can't come from the cache then synchronously create an uncached
1145 	 * one.
1146 	 */
1147 	if (!ent) {
1148 		mutex_lock(&dev->slow_path_mutex);
1149 		mr = reg_create(pd, umem, iova, access_flags, page_size, false, access_mode);
1150 		mutex_unlock(&dev->slow_path_mutex);
1151 		if (IS_ERR(mr))
1152 			return mr;
1153 		mr->mmkey.rb_key = rb_key;
1154 		mr->mmkey.cacheable = true;
1155 		return mr;
1156 	}
1157 
1158 	mr = _mlx5_mr_cache_alloc(dev, ent);
1159 	if (IS_ERR(mr))
1160 		return mr;
1161 
1162 	mr->ibmr.pd = pd;
1163 	mr->umem = umem;
1164 	mr->page_shift = order_base_2(page_size);
1165 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1166 
1167 	return mr;
1168 }
1169 
1170 static struct ib_mr *
1171 reg_create_crossing_vhca_mr(struct ib_pd *pd, u64 iova, u64 length, int access_flags,
1172 			    u32 crossed_lkey)
1173 {
1174 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1175 	int access_mode = MLX5_MKC_ACCESS_MODE_CROSSING;
1176 	struct mlx5_ib_mr *mr;
1177 	void *mkc;
1178 	int inlen;
1179 	u32 *in;
1180 	int err;
1181 
1182 	if (!MLX5_CAP_GEN(dev->mdev, crossing_vhca_mkey))
1183 		return ERR_PTR(-EOPNOTSUPP);
1184 
1185 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1186 	if (!mr)
1187 		return ERR_PTR(-ENOMEM);
1188 
1189 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1190 	in = kvzalloc(inlen, GFP_KERNEL);
1191 	if (!in) {
1192 		err = -ENOMEM;
1193 		goto err_1;
1194 	}
1195 
1196 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1197 	MLX5_SET(mkc, mkc, crossing_target_vhca_id,
1198 		 MLX5_CAP_GEN(dev->mdev, vhca_id));
1199 	MLX5_SET(mkc, mkc, translations_octword_size, crossed_lkey);
1200 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1201 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1202 
1203 	/* for this crossing mkey IOVA should be 0 and len should be IOVA + len */
1204 	set_mkc_access_pd_addr_fields(mkc, access_flags, 0, pd);
1205 	MLX5_SET64(mkc, mkc, len, iova + length);
1206 
1207 	MLX5_SET(mkc, mkc, free, 0);
1208 	MLX5_SET(mkc, mkc, umr_en, 0);
1209 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1210 	if (err)
1211 		goto err_2;
1212 
1213 	mr->mmkey.type = MLX5_MKEY_MR;
1214 	set_mr_fields(dev, mr, length, access_flags, iova);
1215 	mr->ibmr.pd = pd;
1216 	kvfree(in);
1217 	mlx5_ib_dbg(dev, "crossing mkey = 0x%x\n", mr->mmkey.key);
1218 
1219 	return &mr->ibmr;
1220 err_2:
1221 	kvfree(in);
1222 err_1:
1223 	kfree(mr);
1224 	return ERR_PTR(err);
1225 }
1226 
1227 /*
1228  * If ibmr is NULL it will be allocated by reg_create.
1229  * Else, the given ibmr will be used.
1230  */
1231 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1232 				     u64 iova, int access_flags,
1233 				     unsigned long page_size, bool populate,
1234 				     int access_mode)
1235 {
1236 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1237 	struct mlx5_ib_mr *mr;
1238 	__be64 *pas;
1239 	void *mkc;
1240 	int inlen;
1241 	u32 *in;
1242 	int err;
1243 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)) &&
1244 		(access_mode == MLX5_MKC_ACCESS_MODE_MTT);
1245 	bool ksm_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
1246 
1247 	if (!page_size)
1248 		return ERR_PTR(-EINVAL);
1249 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1250 	if (!mr)
1251 		return ERR_PTR(-ENOMEM);
1252 
1253 	mr->ibmr.pd = pd;
1254 	mr->access_flags = access_flags;
1255 	mr->page_shift = order_base_2(page_size);
1256 
1257 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1258 	if (populate)
1259 		inlen += sizeof(*pas) *
1260 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1261 	in = kvzalloc(inlen, GFP_KERNEL);
1262 	if (!in) {
1263 		err = -ENOMEM;
1264 		goto err_1;
1265 	}
1266 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1267 	if (populate) {
1268 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND || ksm_mode)) {
1269 			err = -EINVAL;
1270 			goto err_2;
1271 		}
1272 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1273 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1274 	}
1275 
1276 	/* The pg_access bit allows setting the access flags
1277 	 * in the page list submitted with the command.
1278 	 */
1279 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1280 
1281 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1282 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1283 				      populate ? pd : dev->umrc.pd);
1284 	/* In case a data direct flow, overwrite the pdn field by its internal kernel PD */
1285 	if (umem->is_dmabuf && ksm_mode)
1286 		MLX5_SET(mkc, mkc, pd, dev->ddr.pdn);
1287 
1288 	MLX5_SET(mkc, mkc, free, !populate);
1289 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode);
1290 	MLX5_SET(mkc, mkc, umr_en, 1);
1291 
1292 	MLX5_SET64(mkc, mkc, len, umem->length);
1293 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1294 	if (ksm_mode)
1295 		MLX5_SET(mkc, mkc, translations_octword_size,
1296 			 get_octo_len(iova, umem->length, mr->page_shift) * 2);
1297 	else
1298 		MLX5_SET(mkc, mkc, translations_octword_size,
1299 			 get_octo_len(iova, umem->length, mr->page_shift));
1300 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1301 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1302 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1303 	if (populate) {
1304 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1305 			 get_octo_len(iova, umem->length, mr->page_shift));
1306 	}
1307 
1308 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1309 	if (err) {
1310 		mlx5_ib_warn(dev, "create mkey failed\n");
1311 		goto err_2;
1312 	}
1313 	mr->mmkey.type = MLX5_MKEY_MR;
1314 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1315 	mr->umem = umem;
1316 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1317 	kvfree(in);
1318 
1319 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1320 
1321 	return mr;
1322 
1323 err_2:
1324 	kvfree(in);
1325 err_1:
1326 	kfree(mr);
1327 	return ERR_PTR(err);
1328 }
1329 
1330 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1331 				       u64 length, int acc, int mode)
1332 {
1333 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1334 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1335 	struct mlx5_ib_mr *mr;
1336 	void *mkc;
1337 	u32 *in;
1338 	int err;
1339 
1340 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1341 	if (!mr)
1342 		return ERR_PTR(-ENOMEM);
1343 
1344 	in = kzalloc(inlen, GFP_KERNEL);
1345 	if (!in) {
1346 		err = -ENOMEM;
1347 		goto err_free;
1348 	}
1349 
1350 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1351 
1352 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1353 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1354 	MLX5_SET64(mkc, mkc, len, length);
1355 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1356 
1357 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1358 	if (err)
1359 		goto err_in;
1360 
1361 	kfree(in);
1362 
1363 	set_mr_fields(dev, mr, length, acc, start_addr);
1364 
1365 	return &mr->ibmr;
1366 
1367 err_in:
1368 	kfree(in);
1369 
1370 err_free:
1371 	kfree(mr);
1372 
1373 	return ERR_PTR(err);
1374 }
1375 
1376 int mlx5_ib_advise_mr(struct ib_pd *pd,
1377 		      enum ib_uverbs_advise_mr_advice advice,
1378 		      u32 flags,
1379 		      struct ib_sge *sg_list,
1380 		      u32 num_sge,
1381 		      struct uverbs_attr_bundle *attrs)
1382 {
1383 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1384 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1385 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1386 		return -EOPNOTSUPP;
1387 
1388 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1389 					 sg_list, num_sge);
1390 }
1391 
1392 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1393 				struct ib_dm_mr_attr *attr,
1394 				struct uverbs_attr_bundle *attrs)
1395 {
1396 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1397 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1398 	u64 start_addr = mdm->dev_addr + attr->offset;
1399 	int mode;
1400 
1401 	switch (mdm->type) {
1402 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1403 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1404 			return ERR_PTR(-EINVAL);
1405 
1406 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1407 		start_addr -= pci_resource_start(dev->pdev, 0);
1408 		break;
1409 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1410 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1411 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1412 	case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1413 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1414 			return ERR_PTR(-EINVAL);
1415 
1416 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1417 		break;
1418 	default:
1419 		return ERR_PTR(-EINVAL);
1420 	}
1421 
1422 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1423 				 attr->access_flags, mode);
1424 }
1425 
1426 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1427 				    u64 iova, int access_flags)
1428 {
1429 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1430 	struct mlx5_ib_mr *mr = NULL;
1431 	bool xlt_with_umr;
1432 	int err;
1433 
1434 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1435 	if (xlt_with_umr) {
1436 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags,
1437 					MLX5_MKC_ACCESS_MODE_MTT);
1438 	} else {
1439 		unsigned long page_size = mlx5_umem_mkc_find_best_pgsz(
1440 				dev, umem, iova, MLX5_MKC_ACCESS_MODE_MTT);
1441 
1442 		mutex_lock(&dev->slow_path_mutex);
1443 		mr = reg_create(pd, umem, iova, access_flags, page_size,
1444 				true, MLX5_MKC_ACCESS_MODE_MTT);
1445 		mutex_unlock(&dev->slow_path_mutex);
1446 	}
1447 	if (IS_ERR(mr)) {
1448 		ib_umem_release(umem);
1449 		return ERR_CAST(mr);
1450 	}
1451 
1452 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1453 
1454 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1455 
1456 	if (xlt_with_umr) {
1457 		/*
1458 		 * If the MR was created with reg_create then it will be
1459 		 * configured properly but left disabled. It is safe to go ahead
1460 		 * and configure it again via UMR while enabling it.
1461 		 */
1462 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1463 		if (err) {
1464 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1465 			return ERR_PTR(err);
1466 		}
1467 	}
1468 	return &mr->ibmr;
1469 }
1470 
1471 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1472 					u64 iova, int access_flags,
1473 					struct ib_udata *udata)
1474 {
1475 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1476 	struct ib_umem_odp *odp;
1477 	struct mlx5_ib_mr *mr;
1478 	int err;
1479 
1480 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1481 		return ERR_PTR(-EOPNOTSUPP);
1482 
1483 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1484 	if (err)
1485 		return ERR_PTR(err);
1486 	if (!start && length == U64_MAX) {
1487 		if (iova != 0)
1488 			return ERR_PTR(-EINVAL);
1489 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1490 			return ERR_PTR(-EINVAL);
1491 
1492 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1493 		if (IS_ERR(mr))
1494 			return ERR_CAST(mr);
1495 		return &mr->ibmr;
1496 	}
1497 
1498 	/* ODP requires xlt update via umr to work. */
1499 	if (!mlx5r_umr_can_load_pas(dev, length))
1500 		return ERR_PTR(-EINVAL);
1501 
1502 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1503 			      &mlx5_mn_ops);
1504 	if (IS_ERR(odp))
1505 		return ERR_CAST(odp);
1506 
1507 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags,
1508 				MLX5_MKC_ACCESS_MODE_MTT);
1509 	if (IS_ERR(mr)) {
1510 		ib_umem_release(&odp->umem);
1511 		return ERR_CAST(mr);
1512 	}
1513 	xa_init(&mr->implicit_children);
1514 
1515 	odp->private = mr;
1516 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1517 	if (err)
1518 		goto err_dereg_mr;
1519 
1520 	err = mlx5_ib_init_odp_mr(mr);
1521 	if (err)
1522 		goto err_dereg_mr;
1523 	return &mr->ibmr;
1524 
1525 err_dereg_mr:
1526 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1527 	return ERR_PTR(err);
1528 }
1529 
1530 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1531 				  u64 iova, int access_flags,
1532 				  struct ib_dmah *dmah,
1533 				  struct ib_udata *udata)
1534 {
1535 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1536 	struct ib_umem *umem;
1537 	int err;
1538 
1539 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || dmah)
1540 		return ERR_PTR(-EOPNOTSUPP);
1541 
1542 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1543 		    start, iova, length, access_flags);
1544 
1545 	err = mlx5r_umr_resource_init(dev);
1546 	if (err)
1547 		return ERR_PTR(err);
1548 
1549 	if (access_flags & IB_ACCESS_ON_DEMAND)
1550 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1551 					  udata);
1552 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1553 	if (IS_ERR(umem))
1554 		return ERR_CAST(umem);
1555 	return create_real_mr(pd, umem, iova, access_flags);
1556 }
1557 
1558 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1559 {
1560 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1561 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1562 
1563 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1564 
1565 	if (!umem_dmabuf->sgt || !mr)
1566 		return;
1567 
1568 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1569 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1570 }
1571 
1572 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1573 	.allow_peer2peer = 1,
1574 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1575 };
1576 
1577 static struct ib_mr *
1578 reg_user_mr_dmabuf(struct ib_pd *pd, struct device *dma_device,
1579 		   u64 offset, u64 length, u64 virt_addr,
1580 		   int fd, int access_flags, int access_mode)
1581 {
1582 	bool pinned_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
1583 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1584 	struct mlx5_ib_mr *mr = NULL;
1585 	struct ib_umem_dmabuf *umem_dmabuf;
1586 	int err;
1587 
1588 	err = mlx5r_umr_resource_init(dev);
1589 	if (err)
1590 		return ERR_PTR(err);
1591 
1592 	if (!pinned_mode)
1593 		umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev,
1594 						 offset, length, fd,
1595 						 access_flags,
1596 						 &mlx5_ib_dmabuf_attach_ops);
1597 	else
1598 		umem_dmabuf = ib_umem_dmabuf_get_pinned_with_dma_device(&dev->ib_dev,
1599 				dma_device, offset, length,
1600 				fd, access_flags);
1601 
1602 	if (IS_ERR(umem_dmabuf)) {
1603 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1604 			    PTR_ERR(umem_dmabuf));
1605 		return ERR_CAST(umem_dmabuf);
1606 	}
1607 
1608 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1609 				access_flags, access_mode);
1610 	if (IS_ERR(mr)) {
1611 		ib_umem_release(&umem_dmabuf->umem);
1612 		return ERR_CAST(mr);
1613 	}
1614 
1615 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1616 
1617 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1618 	umem_dmabuf->private = mr;
1619 	if (!pinned_mode) {
1620 		err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1621 		if (err)
1622 			goto err_dereg_mr;
1623 	} else {
1624 		mr->data_direct = true;
1625 	}
1626 
1627 	err = mlx5_ib_init_dmabuf_mr(mr);
1628 	if (err)
1629 		goto err_dereg_mr;
1630 	return &mr->ibmr;
1631 
1632 err_dereg_mr:
1633 	__mlx5_ib_dereg_mr(&mr->ibmr);
1634 	return ERR_PTR(err);
1635 }
1636 
1637 static struct ib_mr *
1638 reg_user_mr_dmabuf_by_data_direct(struct ib_pd *pd, u64 offset,
1639 				  u64 length, u64 virt_addr,
1640 				  int fd, int access_flags)
1641 {
1642 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1643 	struct mlx5_data_direct_dev *data_direct_dev;
1644 	struct ib_mr *crossing_mr;
1645 	struct ib_mr *crossed_mr;
1646 	int ret = 0;
1647 
1648 	/* As of HW behaviour the IOVA must be page aligned in KSM mode */
1649 	if (!PAGE_ALIGNED(virt_addr) || (access_flags & IB_ACCESS_ON_DEMAND))
1650 		return ERR_PTR(-EOPNOTSUPP);
1651 
1652 	mutex_lock(&dev->data_direct_lock);
1653 	data_direct_dev = dev->data_direct_dev;
1654 	if (!data_direct_dev) {
1655 		ret = -EINVAL;
1656 		goto end;
1657 	}
1658 
1659 	/* The device's 'data direct mkey' was created without RO flags to
1660 	 * simplify things and allow for a single mkey per device.
1661 	 * Since RO is not a must, mask it out accordingly.
1662 	 */
1663 	access_flags &= ~IB_ACCESS_RELAXED_ORDERING;
1664 	crossed_mr = reg_user_mr_dmabuf(pd, &data_direct_dev->pdev->dev,
1665 					offset, length, virt_addr, fd,
1666 					access_flags, MLX5_MKC_ACCESS_MODE_KSM);
1667 	if (IS_ERR(crossed_mr)) {
1668 		ret = PTR_ERR(crossed_mr);
1669 		goto end;
1670 	}
1671 
1672 	mutex_lock(&dev->slow_path_mutex);
1673 	crossing_mr = reg_create_crossing_vhca_mr(pd, virt_addr, length, access_flags,
1674 						  crossed_mr->lkey);
1675 	mutex_unlock(&dev->slow_path_mutex);
1676 	if (IS_ERR(crossing_mr)) {
1677 		__mlx5_ib_dereg_mr(crossed_mr);
1678 		ret = PTR_ERR(crossing_mr);
1679 		goto end;
1680 	}
1681 
1682 	list_add_tail(&to_mmr(crossed_mr)->dd_node, &dev->data_direct_mr_list);
1683 	to_mmr(crossing_mr)->dd_crossed_mr = to_mmr(crossed_mr);
1684 	to_mmr(crossing_mr)->data_direct = true;
1685 end:
1686 	mutex_unlock(&dev->data_direct_lock);
1687 	return ret ? ERR_PTR(ret) : crossing_mr;
1688 }
1689 
1690 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1691 					 u64 length, u64 virt_addr,
1692 					 int fd, int access_flags,
1693 					 struct ib_dmah *dmah,
1694 					 struct uverbs_attr_bundle *attrs)
1695 {
1696 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1697 	int mlx5_access_flags = 0;
1698 	int err;
1699 
1700 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1701 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) || dmah)
1702 		return ERR_PTR(-EOPNOTSUPP);
1703 
1704 	if (uverbs_attr_is_valid(attrs, MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS)) {
1705 		err = uverbs_get_flags32(&mlx5_access_flags, attrs,
1706 					 MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS,
1707 					 MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT);
1708 		if (err)
1709 			return ERR_PTR(err);
1710 	}
1711 
1712 	mlx5_ib_dbg(dev,
1713 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x, mlx5_access_flags 0x%x\n",
1714 		    offset, virt_addr, length, fd, access_flags, mlx5_access_flags);
1715 
1716 	/* dmabuf requires xlt update via umr to work. */
1717 	if (!mlx5r_umr_can_load_pas(dev, length))
1718 		return ERR_PTR(-EINVAL);
1719 
1720 	if (mlx5_access_flags & MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT)
1721 		return reg_user_mr_dmabuf_by_data_direct(pd, offset, length, virt_addr,
1722 							 fd, access_flags);
1723 
1724 	return reg_user_mr_dmabuf(pd, pd->device->dma_device,
1725 				  offset, length, virt_addr,
1726 				  fd, access_flags, MLX5_MKC_ACCESS_MODE_MTT);
1727 }
1728 
1729 /*
1730  * True if the change in access flags can be done via UMR, only some access
1731  * flags can be updated.
1732  */
1733 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1734 				     unsigned int current_access_flags,
1735 				     unsigned int target_access_flags)
1736 {
1737 	unsigned int diffs = current_access_flags ^ target_access_flags;
1738 
1739 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1740 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1741 		      IB_ACCESS_REMOTE_ATOMIC))
1742 		return false;
1743 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1744 				      target_access_flags);
1745 }
1746 
1747 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1748 				  struct ib_umem *new_umem,
1749 				  int new_access_flags, u64 iova,
1750 				  unsigned long *page_size)
1751 {
1752 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1753 
1754 	/* We only track the allocated sizes of MRs from the cache */
1755 	if (!mr->mmkey.cache_ent)
1756 		return false;
1757 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1758 		return false;
1759 
1760 	*page_size = mlx5_umem_mkc_find_best_pgsz(
1761 		dev, new_umem, iova, mr->mmkey.cache_ent->rb_key.access_mode);
1762 	if (WARN_ON(!*page_size))
1763 		return false;
1764 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1765 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1766 }
1767 
1768 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1769 			 int access_flags, int flags, struct ib_umem *new_umem,
1770 			 u64 iova, unsigned long page_size)
1771 {
1772 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1773 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1774 	struct ib_umem *old_umem = mr->umem;
1775 	int err;
1776 
1777 	/*
1778 	 * To keep everything simple the MR is revoked before we start to mess
1779 	 * with it. This ensure the change is atomic relative to any use of the
1780 	 * MR.
1781 	 */
1782 	err = mlx5r_umr_revoke_mr(mr);
1783 	if (err)
1784 		return err;
1785 
1786 	if (flags & IB_MR_REREG_PD) {
1787 		mr->ibmr.pd = pd;
1788 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1789 	}
1790 	if (flags & IB_MR_REREG_ACCESS) {
1791 		mr->access_flags = access_flags;
1792 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1793 	}
1794 
1795 	mr->ibmr.iova = iova;
1796 	mr->ibmr.length = new_umem->length;
1797 	mr->page_shift = order_base_2(page_size);
1798 	mr->umem = new_umem;
1799 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1800 	if (err) {
1801 		/*
1802 		 * The MR is revoked at this point so there is no issue to free
1803 		 * new_umem.
1804 		 */
1805 		mr->umem = old_umem;
1806 		return err;
1807 	}
1808 
1809 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1810 	ib_umem_release(old_umem);
1811 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1812 	return 0;
1813 }
1814 
1815 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1816 				    u64 length, u64 iova, int new_access_flags,
1817 				    struct ib_pd *new_pd,
1818 				    struct ib_udata *udata)
1819 {
1820 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1821 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1822 	int err;
1823 
1824 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || mr->data_direct)
1825 		return ERR_PTR(-EOPNOTSUPP);
1826 
1827 	mlx5_ib_dbg(
1828 		dev,
1829 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1830 		start, iova, length, new_access_flags);
1831 
1832 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1833 		return ERR_PTR(-EOPNOTSUPP);
1834 
1835 	if (!(flags & IB_MR_REREG_ACCESS))
1836 		new_access_flags = mr->access_flags;
1837 	if (!(flags & IB_MR_REREG_PD))
1838 		new_pd = ib_mr->pd;
1839 
1840 	if (!(flags & IB_MR_REREG_TRANS)) {
1841 		struct ib_umem *umem;
1842 
1843 		/* Fast path for PD/access change */
1844 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1845 					     new_access_flags)) {
1846 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1847 							new_access_flags);
1848 			if (err)
1849 				return ERR_PTR(err);
1850 			return NULL;
1851 		}
1852 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1853 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1854 			goto recreate;
1855 
1856 		/*
1857 		 * Only one active MR can refer to a umem at one time, revoke
1858 		 * the old MR before assigning the umem to the new one.
1859 		 */
1860 		err = mlx5r_umr_revoke_mr(mr);
1861 		if (err)
1862 			return ERR_PTR(err);
1863 		umem = mr->umem;
1864 		mr->umem = NULL;
1865 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1866 
1867 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1868 				      new_access_flags);
1869 	}
1870 
1871 	/*
1872 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1873 	 * but the logic around releasing the umem is different
1874 	 */
1875 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1876 		goto recreate;
1877 
1878 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1879 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1880 		struct ib_umem *new_umem;
1881 		unsigned long page_size;
1882 
1883 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1884 				       new_access_flags);
1885 		if (IS_ERR(new_umem))
1886 			return ERR_CAST(new_umem);
1887 
1888 		/* Fast path for PAS change */
1889 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1890 					  &page_size)) {
1891 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1892 					    new_umem, iova, page_size);
1893 			if (err) {
1894 				ib_umem_release(new_umem);
1895 				return ERR_PTR(err);
1896 			}
1897 			return NULL;
1898 		}
1899 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1900 	}
1901 
1902 	/*
1903 	 * Everything else has no state we can preserve, just create a new MR
1904 	 * from scratch
1905 	 */
1906 recreate:
1907 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1908 				   new_access_flags, NULL, udata);
1909 }
1910 
1911 static int
1912 mlx5_alloc_priv_descs(struct ib_device *device,
1913 		      struct mlx5_ib_mr *mr,
1914 		      int ndescs,
1915 		      int desc_size)
1916 {
1917 	struct mlx5_ib_dev *dev = to_mdev(device);
1918 	struct device *ddev = &dev->mdev->pdev->dev;
1919 	int size = ndescs * desc_size;
1920 	int add_size;
1921 	int ret;
1922 
1923 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1924 	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1925 		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1926 
1927 		add_size = min_t(int, end - size, add_size);
1928 	}
1929 
1930 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1931 	if (!mr->descs_alloc)
1932 		return -ENOMEM;
1933 
1934 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1935 
1936 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1937 	if (dma_mapping_error(ddev, mr->desc_map)) {
1938 		ret = -ENOMEM;
1939 		goto err;
1940 	}
1941 
1942 	return 0;
1943 err:
1944 	kfree(mr->descs_alloc);
1945 
1946 	return ret;
1947 }
1948 
1949 static void
1950 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1951 {
1952 	if (!mr->umem && !mr->data_direct &&
1953 	    mr->ibmr.type != IB_MR_TYPE_DM && mr->descs) {
1954 		struct ib_device *device = mr->ibmr.device;
1955 		int size = mr->max_descs * mr->desc_size;
1956 		struct mlx5_ib_dev *dev = to_mdev(device);
1957 
1958 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1959 				 DMA_TO_DEVICE);
1960 		kfree(mr->descs_alloc);
1961 		mr->descs = NULL;
1962 	}
1963 }
1964 
1965 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1966 				    struct mlx5_ib_mr *mr)
1967 {
1968 	struct mlx5_mkey_cache *cache = &dev->cache;
1969 	struct mlx5_cache_ent *ent;
1970 	int ret;
1971 
1972 	if (mr->mmkey.cache_ent) {
1973 		spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1974 		goto end;
1975 	}
1976 
1977 	mutex_lock(&cache->rb_lock);
1978 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1979 	if (ent) {
1980 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1981 			if (ent->disabled) {
1982 				mutex_unlock(&cache->rb_lock);
1983 				return -EOPNOTSUPP;
1984 			}
1985 			mr->mmkey.cache_ent = ent;
1986 			spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1987 			mutex_unlock(&cache->rb_lock);
1988 			goto end;
1989 		}
1990 	}
1991 
1992 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1993 	mutex_unlock(&cache->rb_lock);
1994 	if (IS_ERR(ent))
1995 		return PTR_ERR(ent);
1996 
1997 	mr->mmkey.cache_ent = ent;
1998 	spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1999 
2000 end:
2001 	ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
2002 	spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
2003 	return ret;
2004 }
2005 
2006 static int mlx5_ib_revoke_data_direct_mr(struct mlx5_ib_mr *mr)
2007 {
2008 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
2009 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
2010 	int err;
2011 
2012 	lockdep_assert_held(&dev->data_direct_lock);
2013 	mr->revoked = true;
2014 	err = mlx5r_umr_revoke_mr(mr);
2015 	if (WARN_ON(err))
2016 		return err;
2017 
2018 	ib_umem_dmabuf_revoke(umem_dmabuf);
2019 	return 0;
2020 }
2021 
2022 void mlx5_ib_revoke_data_direct_mrs(struct mlx5_ib_dev *dev)
2023 {
2024 	struct mlx5_ib_mr *mr, *next;
2025 
2026 	lockdep_assert_held(&dev->data_direct_lock);
2027 
2028 	list_for_each_entry_safe(mr, next, &dev->data_direct_mr_list, dd_node) {
2029 		list_del(&mr->dd_node);
2030 		mlx5_ib_revoke_data_direct_mr(mr);
2031 	}
2032 }
2033 
2034 static int mlx5_revoke_mr(struct mlx5_ib_mr *mr)
2035 {
2036 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
2037 	struct mlx5_cache_ent *ent = mr->mmkey.cache_ent;
2038 	bool is_odp = is_odp_mr(mr);
2039 	bool is_odp_dma_buf = is_dmabuf_mr(mr) &&
2040 			!to_ib_umem_dmabuf(mr->umem)->pinned;
2041 	bool from_cache = !!ent;
2042 	int ret = 0;
2043 
2044 	if (is_odp)
2045 		mutex_lock(&to_ib_umem_odp(mr->umem)->umem_mutex);
2046 
2047 	if (is_odp_dma_buf)
2048 		dma_resv_lock(to_ib_umem_dmabuf(mr->umem)->attach->dmabuf->resv, NULL);
2049 
2050 	if (mr->mmkey.cacheable && !mlx5r_umr_revoke_mr(mr) && !cache_ent_find_and_store(dev, mr)) {
2051 		ent = mr->mmkey.cache_ent;
2052 		/* upon storing to a clean temp entry - schedule its cleanup */
2053 		spin_lock_irq(&ent->mkeys_queue.lock);
2054 		if (from_cache)
2055 			ent->in_use--;
2056 		if (ent->is_tmp && !ent->tmp_cleanup_scheduled) {
2057 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork,
2058 					 secs_to_jiffies(30));
2059 			ent->tmp_cleanup_scheduled = true;
2060 		}
2061 		spin_unlock_irq(&ent->mkeys_queue.lock);
2062 		goto out;
2063 	}
2064 
2065 	if (ent) {
2066 		spin_lock_irq(&ent->mkeys_queue.lock);
2067 		ent->in_use--;
2068 		mr->mmkey.cache_ent = NULL;
2069 		spin_unlock_irq(&ent->mkeys_queue.lock);
2070 	}
2071 	ret = destroy_mkey(dev, mr);
2072 out:
2073 	if (is_odp) {
2074 		if (!ret)
2075 			to_ib_umem_odp(mr->umem)->private = NULL;
2076 		mutex_unlock(&to_ib_umem_odp(mr->umem)->umem_mutex);
2077 	}
2078 
2079 	if (is_odp_dma_buf) {
2080 		if (!ret)
2081 			to_ib_umem_dmabuf(mr->umem)->private = NULL;
2082 		dma_resv_unlock(to_ib_umem_dmabuf(mr->umem)->attach->dmabuf->resv);
2083 	}
2084 
2085 	return ret;
2086 }
2087 
2088 static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr)
2089 {
2090 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2091 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
2092 	int rc;
2093 
2094 	/*
2095 	 * Any async use of the mr must hold the refcount, once the refcount
2096 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
2097 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
2098 	 */
2099 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2100 	    refcount_read(&mr->mmkey.usecount) != 0 &&
2101 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
2102 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
2103 
2104 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
2105 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2106 			   mr->sig, NULL, GFP_KERNEL);
2107 
2108 		if (mr->mtt_mr) {
2109 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2110 			if (rc)
2111 				return rc;
2112 			mr->mtt_mr = NULL;
2113 		}
2114 		if (mr->klm_mr) {
2115 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2116 			if (rc)
2117 				return rc;
2118 			mr->klm_mr = NULL;
2119 		}
2120 
2121 		if (mlx5_core_destroy_psv(dev->mdev,
2122 					  mr->sig->psv_memory.psv_idx))
2123 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2124 				     mr->sig->psv_memory.psv_idx);
2125 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2126 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2127 				     mr->sig->psv_wire.psv_idx);
2128 		kfree(mr->sig);
2129 		mr->sig = NULL;
2130 	}
2131 
2132 	/* Stop DMA */
2133 	rc = mlx5_revoke_mr(mr);
2134 	if (rc)
2135 		return rc;
2136 
2137 	if (mr->umem) {
2138 		bool is_odp = is_odp_mr(mr);
2139 
2140 		if (!is_odp)
2141 			atomic_sub(ib_umem_num_pages(mr->umem),
2142 				   &dev->mdev->priv.reg_pages);
2143 		ib_umem_release(mr->umem);
2144 		if (is_odp)
2145 			mlx5_ib_free_odp_mr(mr);
2146 	}
2147 
2148 	if (!mr->mmkey.cache_ent)
2149 		mlx5_free_priv_descs(mr);
2150 
2151 	kfree(mr);
2152 	return 0;
2153 }
2154 
2155 static int dereg_crossing_data_direct_mr(struct mlx5_ib_dev *dev,
2156 					struct mlx5_ib_mr *mr)
2157 {
2158 	struct mlx5_ib_mr *dd_crossed_mr = mr->dd_crossed_mr;
2159 	int ret;
2160 
2161 	ret = __mlx5_ib_dereg_mr(&mr->ibmr);
2162 	if (ret)
2163 		return ret;
2164 
2165 	mutex_lock(&dev->data_direct_lock);
2166 	if (!dd_crossed_mr->revoked)
2167 		list_del(&dd_crossed_mr->dd_node);
2168 
2169 	ret = __mlx5_ib_dereg_mr(&dd_crossed_mr->ibmr);
2170 	mutex_unlock(&dev->data_direct_lock);
2171 	return ret;
2172 }
2173 
2174 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
2175 {
2176 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2177 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
2178 
2179 	if (mr->data_direct)
2180 		return dereg_crossing_data_direct_mr(dev, mr);
2181 
2182 	return __mlx5_ib_dereg_mr(ibmr);
2183 }
2184 
2185 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2186 				   int access_mode, int page_shift)
2187 {
2188 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2189 	void *mkc;
2190 
2191 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2192 
2193 	/* This is only used from the kernel, so setting the PD is OK. */
2194 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
2195 	MLX5_SET(mkc, mkc, free, 1);
2196 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2197 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2198 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2199 	MLX5_SET(mkc, mkc, umr_en, 1);
2200 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
2201 	if (access_mode == MLX5_MKC_ACCESS_MODE_PA ||
2202 	    access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2203 		MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
2204 }
2205 
2206 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2207 				  int ndescs, int desc_size, int page_shift,
2208 				  int access_mode, u32 *in, int inlen)
2209 {
2210 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2211 	int err;
2212 
2213 	mr->access_mode = access_mode;
2214 	mr->desc_size = desc_size;
2215 	mr->max_descs = ndescs;
2216 
2217 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2218 	if (err)
2219 		return err;
2220 
2221 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2222 
2223 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2224 	if (err)
2225 		goto err_free_descs;
2226 
2227 	mr->mmkey.type = MLX5_MKEY_MR;
2228 	mr->ibmr.lkey = mr->mmkey.key;
2229 	mr->ibmr.rkey = mr->mmkey.key;
2230 
2231 	return 0;
2232 
2233 err_free_descs:
2234 	mlx5_free_priv_descs(mr);
2235 	return err;
2236 }
2237 
2238 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2239 				u32 max_num_sg, u32 max_num_meta_sg,
2240 				int desc_size, int access_mode)
2241 {
2242 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2243 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2244 	int page_shift = 0;
2245 	struct mlx5_ib_mr *mr;
2246 	u32 *in;
2247 	int err;
2248 
2249 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2250 	if (!mr)
2251 		return ERR_PTR(-ENOMEM);
2252 
2253 	mr->ibmr.pd = pd;
2254 	mr->ibmr.device = pd->device;
2255 
2256 	in = kzalloc(inlen, GFP_KERNEL);
2257 	if (!in) {
2258 		err = -ENOMEM;
2259 		goto err_free;
2260 	}
2261 
2262 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2263 		page_shift = PAGE_SHIFT;
2264 
2265 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2266 				     access_mode, in, inlen);
2267 	if (err)
2268 		goto err_free_in;
2269 
2270 	mr->umem = NULL;
2271 	kfree(in);
2272 
2273 	return mr;
2274 
2275 err_free_in:
2276 	kfree(in);
2277 err_free:
2278 	kfree(mr);
2279 	return ERR_PTR(err);
2280 }
2281 
2282 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2283 				    int ndescs, u32 *in, int inlen)
2284 {
2285 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2286 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2287 				      inlen);
2288 }
2289 
2290 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2291 				    int ndescs, u32 *in, int inlen)
2292 {
2293 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2294 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2295 }
2296 
2297 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2298 				      int max_num_sg, int max_num_meta_sg,
2299 				      u32 *in, int inlen)
2300 {
2301 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2302 	u32 psv_index[2];
2303 	void *mkc;
2304 	int err;
2305 
2306 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2307 	if (!mr->sig)
2308 		return -ENOMEM;
2309 
2310 	/* create mem & wire PSVs */
2311 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2312 	if (err)
2313 		goto err_free_sig;
2314 
2315 	mr->sig->psv_memory.psv_idx = psv_index[0];
2316 	mr->sig->psv_wire.psv_idx = psv_index[1];
2317 
2318 	mr->sig->sig_status_checked = true;
2319 	mr->sig->sig_err_exists = false;
2320 	/* Next UMR, Arm SIGERR */
2321 	++mr->sig->sigerr_count;
2322 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2323 					 sizeof(struct mlx5_klm),
2324 					 MLX5_MKC_ACCESS_MODE_KLMS);
2325 	if (IS_ERR(mr->klm_mr)) {
2326 		err = PTR_ERR(mr->klm_mr);
2327 		goto err_destroy_psv;
2328 	}
2329 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2330 					 sizeof(struct mlx5_mtt),
2331 					 MLX5_MKC_ACCESS_MODE_MTT);
2332 	if (IS_ERR(mr->mtt_mr)) {
2333 		err = PTR_ERR(mr->mtt_mr);
2334 		goto err_free_klm_mr;
2335 	}
2336 
2337 	/* Set bsf descriptors for mkey */
2338 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2339 	MLX5_SET(mkc, mkc, bsf_en, 1);
2340 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2341 
2342 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2343 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2344 	if (err)
2345 		goto err_free_mtt_mr;
2346 
2347 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2348 			      mr->sig, GFP_KERNEL));
2349 	if (err)
2350 		goto err_free_descs;
2351 	return 0;
2352 
2353 err_free_descs:
2354 	destroy_mkey(dev, mr);
2355 	mlx5_free_priv_descs(mr);
2356 err_free_mtt_mr:
2357 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2358 	mr->mtt_mr = NULL;
2359 err_free_klm_mr:
2360 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2361 	mr->klm_mr = NULL;
2362 err_destroy_psv:
2363 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2364 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2365 			     mr->sig->psv_memory.psv_idx);
2366 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2367 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2368 			     mr->sig->psv_wire.psv_idx);
2369 err_free_sig:
2370 	kfree(mr->sig);
2371 
2372 	return err;
2373 }
2374 
2375 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2376 					enum ib_mr_type mr_type, u32 max_num_sg,
2377 					u32 max_num_meta_sg)
2378 {
2379 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2380 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2381 	int ndescs = ALIGN(max_num_sg, 4);
2382 	struct mlx5_ib_mr *mr;
2383 	u32 *in;
2384 	int err;
2385 
2386 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2387 	if (!mr)
2388 		return ERR_PTR(-ENOMEM);
2389 
2390 	in = kzalloc(inlen, GFP_KERNEL);
2391 	if (!in) {
2392 		err = -ENOMEM;
2393 		goto err_free;
2394 	}
2395 
2396 	mr->ibmr.device = pd->device;
2397 	mr->umem = NULL;
2398 
2399 	switch (mr_type) {
2400 	case IB_MR_TYPE_MEM_REG:
2401 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2402 		break;
2403 	case IB_MR_TYPE_SG_GAPS:
2404 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2405 		break;
2406 	case IB_MR_TYPE_INTEGRITY:
2407 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2408 						 max_num_meta_sg, in, inlen);
2409 		break;
2410 	default:
2411 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2412 		err = -EINVAL;
2413 	}
2414 
2415 	if (err)
2416 		goto err_free_in;
2417 
2418 	kfree(in);
2419 
2420 	return &mr->ibmr;
2421 
2422 err_free_in:
2423 	kfree(in);
2424 err_free:
2425 	kfree(mr);
2426 	return ERR_PTR(err);
2427 }
2428 
2429 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2430 			       u32 max_num_sg)
2431 {
2432 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2433 }
2434 
2435 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2436 					 u32 max_num_sg, u32 max_num_meta_sg)
2437 {
2438 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2439 				  max_num_meta_sg);
2440 }
2441 
2442 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2443 {
2444 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2445 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2446 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2447 	unsigned int ndescs;
2448 	u32 *in = NULL;
2449 	void *mkc;
2450 	int err;
2451 	struct mlx5_ib_alloc_mw req = {};
2452 	struct {
2453 		__u32	comp_mask;
2454 		__u32	response_length;
2455 	} resp = {};
2456 
2457 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2458 	if (err)
2459 		return err;
2460 
2461 	if (req.comp_mask || req.reserved1 || req.reserved2)
2462 		return -EOPNOTSUPP;
2463 
2464 	if (udata->inlen > sizeof(req) &&
2465 	    !ib_is_udata_cleared(udata, sizeof(req),
2466 				 udata->inlen - sizeof(req)))
2467 		return -EOPNOTSUPP;
2468 
2469 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2470 
2471 	in = kzalloc(inlen, GFP_KERNEL);
2472 	if (!in)
2473 		return -ENOMEM;
2474 
2475 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2476 
2477 	MLX5_SET(mkc, mkc, free, 1);
2478 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2479 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2480 	MLX5_SET(mkc, mkc, umr_en, 1);
2481 	MLX5_SET(mkc, mkc, lr, 1);
2482 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2483 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2484 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2485 
2486 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2487 	if (err)
2488 		goto free;
2489 
2490 	mw->mmkey.type = MLX5_MKEY_MW;
2491 	ibmw->rkey = mw->mmkey.key;
2492 	mw->mmkey.ndescs = ndescs;
2493 
2494 	resp.response_length =
2495 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2496 	if (resp.response_length) {
2497 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2498 		if (err)
2499 			goto free_mkey;
2500 	}
2501 
2502 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2503 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2504 		if (err)
2505 			goto free_mkey;
2506 	}
2507 
2508 	kfree(in);
2509 	return 0;
2510 
2511 free_mkey:
2512 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2513 free:
2514 	kfree(in);
2515 	return err;
2516 }
2517 
2518 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2519 {
2520 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2521 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2522 
2523 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2524 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2525 		/*
2526 		 * pagefault_single_data_segment() may be accessing mmw
2527 		 * if the user bound an ODP MR to this MW.
2528 		 */
2529 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2530 
2531 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2532 }
2533 
2534 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2535 			    struct ib_mr_status *mr_status)
2536 {
2537 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2538 	int ret = 0;
2539 
2540 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2541 		pr_err("Invalid status check mask\n");
2542 		ret = -EINVAL;
2543 		goto done;
2544 	}
2545 
2546 	mr_status->fail_status = 0;
2547 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2548 		if (!mmr->sig) {
2549 			ret = -EINVAL;
2550 			pr_err("signature status check requested on a non-signature enabled MR\n");
2551 			goto done;
2552 		}
2553 
2554 		mmr->sig->sig_status_checked = true;
2555 		if (!mmr->sig->sig_err_exists)
2556 			goto done;
2557 
2558 		if (ibmr->lkey == mmr->sig->err_item.key)
2559 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2560 			       sizeof(mr_status->sig_err));
2561 		else {
2562 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2563 			mr_status->sig_err.sig_err_offset = 0;
2564 			mr_status->sig_err.key = mmr->sig->err_item.key;
2565 		}
2566 
2567 		mmr->sig->sig_err_exists = false;
2568 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2569 	}
2570 
2571 done:
2572 	return ret;
2573 }
2574 
2575 static int
2576 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2577 			int data_sg_nents, unsigned int *data_sg_offset,
2578 			struct scatterlist *meta_sg, int meta_sg_nents,
2579 			unsigned int *meta_sg_offset)
2580 {
2581 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2582 	unsigned int sg_offset = 0;
2583 	int n = 0;
2584 
2585 	mr->meta_length = 0;
2586 	if (data_sg_nents == 1) {
2587 		n++;
2588 		mr->mmkey.ndescs = 1;
2589 		if (data_sg_offset)
2590 			sg_offset = *data_sg_offset;
2591 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2592 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2593 		if (meta_sg_nents == 1) {
2594 			n++;
2595 			mr->meta_ndescs = 1;
2596 			if (meta_sg_offset)
2597 				sg_offset = *meta_sg_offset;
2598 			else
2599 				sg_offset = 0;
2600 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2601 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2602 		}
2603 		ibmr->length = mr->data_length + mr->meta_length;
2604 	}
2605 
2606 	return n;
2607 }
2608 
2609 static int
2610 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2611 		   struct scatterlist *sgl,
2612 		   unsigned short sg_nents,
2613 		   unsigned int *sg_offset_p,
2614 		   struct scatterlist *meta_sgl,
2615 		   unsigned short meta_sg_nents,
2616 		   unsigned int *meta_sg_offset_p)
2617 {
2618 	struct scatterlist *sg = sgl;
2619 	struct mlx5_klm *klms = mr->descs;
2620 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2621 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2622 	int i, j = 0;
2623 
2624 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2625 	mr->ibmr.length = 0;
2626 
2627 	for_each_sg(sgl, sg, sg_nents, i) {
2628 		if (unlikely(i >= mr->max_descs))
2629 			break;
2630 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2631 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2632 		klms[i].key = cpu_to_be32(lkey);
2633 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2634 
2635 		sg_offset = 0;
2636 	}
2637 
2638 	if (sg_offset_p)
2639 		*sg_offset_p = sg_offset;
2640 
2641 	mr->mmkey.ndescs = i;
2642 	mr->data_length = mr->ibmr.length;
2643 
2644 	if (meta_sg_nents) {
2645 		sg = meta_sgl;
2646 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2647 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2648 			if (unlikely(i + j >= mr->max_descs))
2649 				break;
2650 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2651 						     sg_offset);
2652 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2653 							 sg_offset);
2654 			klms[i + j].key = cpu_to_be32(lkey);
2655 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2656 
2657 			sg_offset = 0;
2658 		}
2659 		if (meta_sg_offset_p)
2660 			*meta_sg_offset_p = sg_offset;
2661 
2662 		mr->meta_ndescs = j;
2663 		mr->meta_length = mr->ibmr.length - mr->data_length;
2664 	}
2665 
2666 	return i + j;
2667 }
2668 
2669 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2670 {
2671 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2672 	__be64 *descs;
2673 
2674 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2675 		return -ENOMEM;
2676 
2677 	descs = mr->descs;
2678 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2679 
2680 	return 0;
2681 }
2682 
2683 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2684 {
2685 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2686 	__be64 *descs;
2687 
2688 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2689 		return -ENOMEM;
2690 
2691 	descs = mr->descs;
2692 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2693 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2694 
2695 	return 0;
2696 }
2697 
2698 static int
2699 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2700 			 int data_sg_nents, unsigned int *data_sg_offset,
2701 			 struct scatterlist *meta_sg, int meta_sg_nents,
2702 			 unsigned int *meta_sg_offset)
2703 {
2704 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2705 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2706 	int n;
2707 
2708 	pi_mr->mmkey.ndescs = 0;
2709 	pi_mr->meta_ndescs = 0;
2710 	pi_mr->meta_length = 0;
2711 
2712 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2713 				   pi_mr->desc_size * pi_mr->max_descs,
2714 				   DMA_TO_DEVICE);
2715 
2716 	pi_mr->ibmr.page_size = ibmr->page_size;
2717 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2718 			   mlx5_set_page);
2719 	if (n != data_sg_nents)
2720 		return n;
2721 
2722 	pi_mr->data_iova = pi_mr->ibmr.iova;
2723 	pi_mr->data_length = pi_mr->ibmr.length;
2724 	pi_mr->ibmr.length = pi_mr->data_length;
2725 	ibmr->length = pi_mr->data_length;
2726 
2727 	if (meta_sg_nents) {
2728 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2729 		u64 iova = pi_mr->data_iova;
2730 
2731 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2732 				    meta_sg_offset, mlx5_set_page_pi);
2733 
2734 		pi_mr->meta_length = pi_mr->ibmr.length;
2735 		/*
2736 		 * PI address for the HW is the offset of the metadata address
2737 		 * relative to the first data page address.
2738 		 * It equals to first data page address + size of data pages +
2739 		 * metadata offset at the first metadata page
2740 		 */
2741 		pi_mr->pi_iova = (iova & page_mask) +
2742 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2743 				 (pi_mr->ibmr.iova & ~page_mask);
2744 		/*
2745 		 * In order to use one MTT MR for data and metadata, we register
2746 		 * also the gaps between the end of the data and the start of
2747 		 * the metadata (the sig MR will verify that the HW will access
2748 		 * to right addresses). This mapping is safe because we use
2749 		 * internal mkey for the registration.
2750 		 */
2751 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2752 		pi_mr->ibmr.iova = iova;
2753 		ibmr->length += pi_mr->meta_length;
2754 	}
2755 
2756 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2757 				      pi_mr->desc_size * pi_mr->max_descs,
2758 				      DMA_TO_DEVICE);
2759 
2760 	return n;
2761 }
2762 
2763 static int
2764 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2765 			 int data_sg_nents, unsigned int *data_sg_offset,
2766 			 struct scatterlist *meta_sg, int meta_sg_nents,
2767 			 unsigned int *meta_sg_offset)
2768 {
2769 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2770 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2771 	int n;
2772 
2773 	pi_mr->mmkey.ndescs = 0;
2774 	pi_mr->meta_ndescs = 0;
2775 	pi_mr->meta_length = 0;
2776 
2777 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2778 				   pi_mr->desc_size * pi_mr->max_descs,
2779 				   DMA_TO_DEVICE);
2780 
2781 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2782 			       meta_sg, meta_sg_nents, meta_sg_offset);
2783 
2784 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2785 				      pi_mr->desc_size * pi_mr->max_descs,
2786 				      DMA_TO_DEVICE);
2787 
2788 	/* This is zero-based memory region */
2789 	pi_mr->data_iova = 0;
2790 	pi_mr->ibmr.iova = 0;
2791 	pi_mr->pi_iova = pi_mr->data_length;
2792 	ibmr->length = pi_mr->ibmr.length;
2793 
2794 	return n;
2795 }
2796 
2797 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2798 			 int data_sg_nents, unsigned int *data_sg_offset,
2799 			 struct scatterlist *meta_sg, int meta_sg_nents,
2800 			 unsigned int *meta_sg_offset)
2801 {
2802 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2803 	struct mlx5_ib_mr *pi_mr = NULL;
2804 	int n;
2805 
2806 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2807 
2808 	mr->mmkey.ndescs = 0;
2809 	mr->data_length = 0;
2810 	mr->data_iova = 0;
2811 	mr->meta_ndescs = 0;
2812 	mr->pi_iova = 0;
2813 	/*
2814 	 * As a performance optimization, if possible, there is no need to
2815 	 * perform UMR operation to register the data/metadata buffers.
2816 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2817 	 * Fallback to UMR only in case of a failure.
2818 	 */
2819 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2820 				    data_sg_offset, meta_sg, meta_sg_nents,
2821 				    meta_sg_offset);
2822 	if (n == data_sg_nents + meta_sg_nents)
2823 		goto out;
2824 	/*
2825 	 * As a performance optimization, if possible, there is no need to map
2826 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2827 	 * descriptors and fallback to KLM only in case of a failure.
2828 	 * It's more efficient for the HW to work with MTT descriptors
2829 	 * (especially in high load).
2830 	 * Use KLM (indirect access) only if it's mandatory.
2831 	 */
2832 	pi_mr = mr->mtt_mr;
2833 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2834 				     data_sg_offset, meta_sg, meta_sg_nents,
2835 				     meta_sg_offset);
2836 	if (n == data_sg_nents + meta_sg_nents)
2837 		goto out;
2838 
2839 	pi_mr = mr->klm_mr;
2840 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2841 				     data_sg_offset, meta_sg, meta_sg_nents,
2842 				     meta_sg_offset);
2843 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2844 		return -ENOMEM;
2845 
2846 out:
2847 	/* This is zero-based memory region */
2848 	ibmr->iova = 0;
2849 	mr->pi_mr = pi_mr;
2850 	if (pi_mr)
2851 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2852 	else
2853 		ibmr->sig_attrs->meta_length = mr->meta_length;
2854 
2855 	return 0;
2856 }
2857 
2858 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2859 		      unsigned int *sg_offset)
2860 {
2861 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2862 	int n;
2863 
2864 	mr->mmkey.ndescs = 0;
2865 
2866 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2867 				   mr->desc_size * mr->max_descs,
2868 				   DMA_TO_DEVICE);
2869 
2870 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2871 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2872 				       NULL);
2873 	else
2874 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2875 				mlx5_set_page);
2876 
2877 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2878 				      mr->desc_size * mr->max_descs,
2879 				      DMA_TO_DEVICE);
2880 
2881 	return n;
2882 }
2883