1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 34 #include <linux/kref.h> 35 #include <linux/random.h> 36 #include <linux/debugfs.h> 37 #include <linux/export.h> 38 #include <linux/delay.h> 39 #include <rdma/ib_umem.h> 40 #include <rdma/ib_umem_odp.h> 41 #include <rdma/ib_verbs.h> 42 #include "mlx5_ib.h" 43 44 enum { 45 MAX_PENDING_REG_MR = 8, 46 }; 47 48 #define MLX5_UMR_ALIGN 2048 49 50 static void 51 create_mkey_callback(int status, struct mlx5_async_work *context); 52 53 static void 54 assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 55 u32 *in) 56 { 57 u8 key = atomic_inc_return(&dev->mkey_var); 58 void *mkc; 59 60 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 61 MLX5_SET(mkc, mkc, mkey_7_0, key); 62 mkey->key = key; 63 } 64 65 static int 66 mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, 67 u32 *in, int inlen) 68 { 69 assign_mkey_variant(dev, mkey, in); 70 return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen); 71 } 72 73 static int 74 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, 75 struct mlx5_core_mkey *mkey, 76 struct mlx5_async_ctx *async_ctx, 77 u32 *in, int inlen, u32 *out, int outlen, 78 struct mlx5_async_work *context) 79 { 80 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); 81 assign_mkey_variant(dev, mkey, in); 82 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, 83 create_mkey_callback, context); 84 } 85 86 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 87 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); 88 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 89 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 90 91 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 92 { 93 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 94 } 95 96 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 97 { 98 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 99 100 return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 101 } 102 103 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length) 104 { 105 return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >= 106 length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1)); 107 } 108 109 static void create_mkey_callback(int status, struct mlx5_async_work *context) 110 { 111 struct mlx5_ib_mr *mr = 112 container_of(context, struct mlx5_ib_mr, cb_work); 113 struct mlx5_ib_dev *dev = mr->dev; 114 struct mlx5_cache_ent *ent = mr->cache_ent; 115 unsigned long flags; 116 117 if (status) { 118 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 119 kfree(mr); 120 spin_lock_irqsave(&ent->lock, flags); 121 ent->pending--; 122 WRITE_ONCE(dev->fill_delay, 1); 123 spin_unlock_irqrestore(&ent->lock, flags); 124 mod_timer(&dev->delay_timer, jiffies + HZ); 125 return; 126 } 127 128 mr->mmkey.type = MLX5_MKEY_MR; 129 mr->mmkey.key |= mlx5_idx_to_mkey( 130 MLX5_GET(create_mkey_out, mr->out, mkey_index)); 131 132 WRITE_ONCE(dev->cache.last_add, jiffies); 133 134 spin_lock_irqsave(&ent->lock, flags); 135 list_add_tail(&mr->list, &ent->head); 136 ent->available_mrs++; 137 ent->total_mrs++; 138 /* If we are doing fill_to_high_water then keep going. */ 139 queue_adjust_cache_locked(ent); 140 ent->pending--; 141 spin_unlock_irqrestore(&ent->lock, flags); 142 } 143 144 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) 145 { 146 struct mlx5_ib_mr *mr; 147 148 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 149 if (!mr) 150 return NULL; 151 mr->order = ent->order; 152 mr->cache_ent = ent; 153 mr->dev = ent->dev; 154 155 MLX5_SET(mkc, mkc, free, 1); 156 MLX5_SET(mkc, mkc, umr_en, 1); 157 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 158 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); 159 160 MLX5_SET(mkc, mkc, qpn, 0xffffff); 161 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 162 MLX5_SET(mkc, mkc, log_page_size, ent->page); 163 return mr; 164 } 165 166 /* Asynchronously schedule new MRs to be populated in the cache. */ 167 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 168 { 169 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 170 struct mlx5_ib_mr *mr; 171 void *mkc; 172 u32 *in; 173 int err = 0; 174 int i; 175 176 in = kzalloc(inlen, GFP_KERNEL); 177 if (!in) 178 return -ENOMEM; 179 180 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 181 for (i = 0; i < num; i++) { 182 mr = alloc_cache_mr(ent, mkc); 183 if (!mr) { 184 err = -ENOMEM; 185 break; 186 } 187 spin_lock_irq(&ent->lock); 188 if (ent->pending >= MAX_PENDING_REG_MR) { 189 err = -EAGAIN; 190 spin_unlock_irq(&ent->lock); 191 kfree(mr); 192 break; 193 } 194 ent->pending++; 195 spin_unlock_irq(&ent->lock); 196 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, 197 &ent->dev->async_ctx, in, inlen, 198 mr->out, sizeof(mr->out), 199 &mr->cb_work); 200 if (err) { 201 spin_lock_irq(&ent->lock); 202 ent->pending--; 203 spin_unlock_irq(&ent->lock); 204 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 205 kfree(mr); 206 break; 207 } 208 } 209 210 kfree(in); 211 return err; 212 } 213 214 /* Synchronously create a MR in the cache */ 215 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) 216 { 217 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 218 struct mlx5_ib_mr *mr; 219 void *mkc; 220 u32 *in; 221 int err; 222 223 in = kzalloc(inlen, GFP_KERNEL); 224 if (!in) 225 return ERR_PTR(-ENOMEM); 226 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 227 228 mr = alloc_cache_mr(ent, mkc); 229 if (!mr) { 230 err = -ENOMEM; 231 goto free_in; 232 } 233 234 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen); 235 if (err) 236 goto free_mr; 237 238 mr->mmkey.type = MLX5_MKEY_MR; 239 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 240 spin_lock_irq(&ent->lock); 241 ent->total_mrs++; 242 spin_unlock_irq(&ent->lock); 243 kfree(in); 244 return mr; 245 free_mr: 246 kfree(mr); 247 free_in: 248 kfree(in); 249 return ERR_PTR(err); 250 } 251 252 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 253 { 254 struct mlx5_ib_mr *mr; 255 256 lockdep_assert_held(&ent->lock); 257 if (list_empty(&ent->head)) 258 return; 259 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 260 list_del(&mr->list); 261 ent->available_mrs--; 262 ent->total_mrs--; 263 spin_unlock_irq(&ent->lock); 264 mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey); 265 kfree(mr); 266 spin_lock_irq(&ent->lock); 267 } 268 269 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 270 bool limit_fill) 271 { 272 int err; 273 274 lockdep_assert_held(&ent->lock); 275 276 while (true) { 277 if (limit_fill) 278 target = ent->limit * 2; 279 if (target == ent->available_mrs + ent->pending) 280 return 0; 281 if (target > ent->available_mrs + ent->pending) { 282 u32 todo = target - (ent->available_mrs + ent->pending); 283 284 spin_unlock_irq(&ent->lock); 285 err = add_keys(ent, todo); 286 if (err == -EAGAIN) 287 usleep_range(3000, 5000); 288 spin_lock_irq(&ent->lock); 289 if (err) { 290 if (err != -EAGAIN) 291 return err; 292 } else 293 return 0; 294 } else { 295 remove_cache_mr_locked(ent); 296 } 297 } 298 } 299 300 static ssize_t size_write(struct file *filp, const char __user *buf, 301 size_t count, loff_t *pos) 302 { 303 struct mlx5_cache_ent *ent = filp->private_data; 304 u32 target; 305 int err; 306 307 err = kstrtou32_from_user(buf, count, 0, &target); 308 if (err) 309 return err; 310 311 /* 312 * Target is the new value of total_mrs the user requests, however we 313 * cannot free MRs that are in use. Compute the target value for 314 * available_mrs. 315 */ 316 spin_lock_irq(&ent->lock); 317 if (target < ent->total_mrs - ent->available_mrs) { 318 err = -EINVAL; 319 goto err_unlock; 320 } 321 target = target - (ent->total_mrs - ent->available_mrs); 322 if (target < ent->limit || target > ent->limit*2) { 323 err = -EINVAL; 324 goto err_unlock; 325 } 326 err = resize_available_mrs(ent, target, false); 327 if (err) 328 goto err_unlock; 329 spin_unlock_irq(&ent->lock); 330 331 return count; 332 333 err_unlock: 334 spin_unlock_irq(&ent->lock); 335 return err; 336 } 337 338 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 339 loff_t *pos) 340 { 341 struct mlx5_cache_ent *ent = filp->private_data; 342 char lbuf[20]; 343 int err; 344 345 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); 346 if (err < 0) 347 return err; 348 349 return simple_read_from_buffer(buf, count, pos, lbuf, err); 350 } 351 352 static const struct file_operations size_fops = { 353 .owner = THIS_MODULE, 354 .open = simple_open, 355 .write = size_write, 356 .read = size_read, 357 }; 358 359 static ssize_t limit_write(struct file *filp, const char __user *buf, 360 size_t count, loff_t *pos) 361 { 362 struct mlx5_cache_ent *ent = filp->private_data; 363 u32 var; 364 int err; 365 366 err = kstrtou32_from_user(buf, count, 0, &var); 367 if (err) 368 return err; 369 370 /* 371 * Upon set we immediately fill the cache to high water mark implied by 372 * the limit. 373 */ 374 spin_lock_irq(&ent->lock); 375 ent->limit = var; 376 err = resize_available_mrs(ent, 0, true); 377 spin_unlock_irq(&ent->lock); 378 if (err) 379 return err; 380 return count; 381 } 382 383 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 384 loff_t *pos) 385 { 386 struct mlx5_cache_ent *ent = filp->private_data; 387 char lbuf[20]; 388 int err; 389 390 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 391 if (err < 0) 392 return err; 393 394 return simple_read_from_buffer(buf, count, pos, lbuf, err); 395 } 396 397 static const struct file_operations limit_fops = { 398 .owner = THIS_MODULE, 399 .open = simple_open, 400 .write = limit_write, 401 .read = limit_read, 402 }; 403 404 static bool someone_adding(struct mlx5_mr_cache *cache) 405 { 406 unsigned int i; 407 408 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 409 struct mlx5_cache_ent *ent = &cache->ent[i]; 410 bool ret; 411 412 spin_lock_irq(&ent->lock); 413 ret = ent->available_mrs < ent->limit; 414 spin_unlock_irq(&ent->lock); 415 if (ret) 416 return true; 417 } 418 return false; 419 } 420 421 /* 422 * Check if the bucket is outside the high/low water mark and schedule an async 423 * update. The cache refill has hysteresis, once the low water mark is hit it is 424 * refilled up to the high mark. 425 */ 426 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 427 { 428 lockdep_assert_held(&ent->lock); 429 430 if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) 431 return; 432 if (ent->available_mrs < ent->limit) { 433 ent->fill_to_high_water = true; 434 queue_work(ent->dev->cache.wq, &ent->work); 435 } else if (ent->fill_to_high_water && 436 ent->available_mrs + ent->pending < 2 * ent->limit) { 437 /* 438 * Once we start populating due to hitting a low water mark 439 * continue until we pass the high water mark. 440 */ 441 queue_work(ent->dev->cache.wq, &ent->work); 442 } else if (ent->available_mrs == 2 * ent->limit) { 443 ent->fill_to_high_water = false; 444 } else if (ent->available_mrs > 2 * ent->limit) { 445 /* Queue deletion of excess entries */ 446 ent->fill_to_high_water = false; 447 if (ent->pending) 448 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 449 msecs_to_jiffies(1000)); 450 else 451 queue_work(ent->dev->cache.wq, &ent->work); 452 } 453 } 454 455 static void __cache_work_func(struct mlx5_cache_ent *ent) 456 { 457 struct mlx5_ib_dev *dev = ent->dev; 458 struct mlx5_mr_cache *cache = &dev->cache; 459 int err; 460 461 spin_lock_irq(&ent->lock); 462 if (ent->disabled) 463 goto out; 464 465 if (ent->fill_to_high_water && 466 ent->available_mrs + ent->pending < 2 * ent->limit && 467 !READ_ONCE(dev->fill_delay)) { 468 spin_unlock_irq(&ent->lock); 469 err = add_keys(ent, 1); 470 spin_lock_irq(&ent->lock); 471 if (ent->disabled) 472 goto out; 473 if (err) { 474 /* 475 * EAGAIN only happens if pending is positive, so we 476 * will be rescheduled from reg_mr_callback(). The only 477 * failure path here is ENOMEM. 478 */ 479 if (err != -EAGAIN) { 480 mlx5_ib_warn( 481 dev, 482 "command failed order %d, err %d\n", 483 ent->order, err); 484 queue_delayed_work(cache->wq, &ent->dwork, 485 msecs_to_jiffies(1000)); 486 } 487 } 488 } else if (ent->available_mrs > 2 * ent->limit) { 489 bool need_delay; 490 491 /* 492 * The remove_cache_mr() logic is performed as garbage 493 * collection task. Such task is intended to be run when no 494 * other active processes are running. 495 * 496 * The need_resched() will return TRUE if there are user tasks 497 * to be activated in near future. 498 * 499 * In such case, we don't execute remove_cache_mr() and postpone 500 * the garbage collection work to try to run in next cycle, in 501 * order to free CPU resources to other tasks. 502 */ 503 spin_unlock_irq(&ent->lock); 504 need_delay = need_resched() || someone_adding(cache) || 505 time_after(jiffies, 506 READ_ONCE(cache->last_add) + 300 * HZ); 507 spin_lock_irq(&ent->lock); 508 if (ent->disabled) 509 goto out; 510 if (need_delay) 511 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 512 remove_cache_mr_locked(ent); 513 queue_adjust_cache_locked(ent); 514 } 515 out: 516 spin_unlock_irq(&ent->lock); 517 } 518 519 static void delayed_cache_work_func(struct work_struct *work) 520 { 521 struct mlx5_cache_ent *ent; 522 523 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 524 __cache_work_func(ent); 525 } 526 527 static void cache_work_func(struct work_struct *work) 528 { 529 struct mlx5_cache_ent *ent; 530 531 ent = container_of(work, struct mlx5_cache_ent, work); 532 __cache_work_func(ent); 533 } 534 535 /* Allocate a special entry from the cache */ 536 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 537 unsigned int entry) 538 { 539 struct mlx5_mr_cache *cache = &dev->cache; 540 struct mlx5_cache_ent *ent; 541 struct mlx5_ib_mr *mr; 542 543 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || 544 entry >= ARRAY_SIZE(cache->ent))) 545 return ERR_PTR(-EINVAL); 546 547 ent = &cache->ent[entry]; 548 spin_lock_irq(&ent->lock); 549 if (list_empty(&ent->head)) { 550 spin_unlock_irq(&ent->lock); 551 mr = create_cache_mr(ent); 552 if (IS_ERR(mr)) 553 return mr; 554 } else { 555 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 556 list_del(&mr->list); 557 ent->available_mrs--; 558 queue_adjust_cache_locked(ent); 559 spin_unlock_irq(&ent->lock); 560 } 561 return mr; 562 } 563 564 /* Return a MR already available in the cache */ 565 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) 566 { 567 struct mlx5_ib_dev *dev = req_ent->dev; 568 struct mlx5_ib_mr *mr = NULL; 569 struct mlx5_cache_ent *ent = req_ent; 570 571 /* Try larger MR pools from the cache to satisfy the allocation */ 572 for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) { 573 mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order, 574 ent - dev->cache.ent); 575 576 spin_lock_irq(&ent->lock); 577 if (!list_empty(&ent->head)) { 578 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, 579 list); 580 list_del(&mr->list); 581 ent->available_mrs--; 582 queue_adjust_cache_locked(ent); 583 spin_unlock_irq(&ent->lock); 584 break; 585 } 586 queue_adjust_cache_locked(ent); 587 spin_unlock_irq(&ent->lock); 588 } 589 590 if (!mr) 591 req_ent->miss++; 592 593 return mr; 594 } 595 596 static void detach_mr_from_cache(struct mlx5_ib_mr *mr) 597 { 598 struct mlx5_cache_ent *ent = mr->cache_ent; 599 600 mr->cache_ent = NULL; 601 spin_lock_irq(&ent->lock); 602 ent->total_mrs--; 603 spin_unlock_irq(&ent->lock); 604 } 605 606 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 607 { 608 struct mlx5_cache_ent *ent = mr->cache_ent; 609 610 if (!ent) 611 return; 612 613 if (mlx5_mr_cache_invalidate(mr)) { 614 detach_mr_from_cache(mr); 615 destroy_mkey(dev, mr); 616 return; 617 } 618 619 spin_lock_irq(&ent->lock); 620 list_add_tail(&mr->list, &ent->head); 621 ent->available_mrs++; 622 queue_adjust_cache_locked(ent); 623 spin_unlock_irq(&ent->lock); 624 } 625 626 static void clean_keys(struct mlx5_ib_dev *dev, int c) 627 { 628 struct mlx5_mr_cache *cache = &dev->cache; 629 struct mlx5_cache_ent *ent = &cache->ent[c]; 630 struct mlx5_ib_mr *tmp_mr; 631 struct mlx5_ib_mr *mr; 632 LIST_HEAD(del_list); 633 634 cancel_delayed_work(&ent->dwork); 635 while (1) { 636 spin_lock_irq(&ent->lock); 637 if (list_empty(&ent->head)) { 638 spin_unlock_irq(&ent->lock); 639 break; 640 } 641 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 642 list_move(&mr->list, &del_list); 643 ent->available_mrs--; 644 ent->total_mrs--; 645 spin_unlock_irq(&ent->lock); 646 mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); 647 } 648 649 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 650 list_del(&mr->list); 651 kfree(mr); 652 } 653 } 654 655 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 656 { 657 if (!mlx5_debugfs_root || dev->is_rep) 658 return; 659 660 debugfs_remove_recursive(dev->cache.root); 661 dev->cache.root = NULL; 662 } 663 664 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 665 { 666 struct mlx5_mr_cache *cache = &dev->cache; 667 struct mlx5_cache_ent *ent; 668 struct dentry *dir; 669 int i; 670 671 if (!mlx5_debugfs_root || dev->is_rep) 672 return; 673 674 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 675 676 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 677 ent = &cache->ent[i]; 678 sprintf(ent->name, "%d", ent->order); 679 dir = debugfs_create_dir(ent->name, cache->root); 680 debugfs_create_file("size", 0600, dir, ent, &size_fops); 681 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 682 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); 683 debugfs_create_u32("miss", 0600, dir, &ent->miss); 684 } 685 } 686 687 static void delay_time_func(struct timer_list *t) 688 { 689 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 690 691 WRITE_ONCE(dev->fill_delay, 0); 692 } 693 694 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 695 { 696 struct mlx5_mr_cache *cache = &dev->cache; 697 struct mlx5_cache_ent *ent; 698 int i; 699 700 mutex_init(&dev->slow_path_mutex); 701 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 702 if (!cache->wq) { 703 mlx5_ib_warn(dev, "failed to create work queue\n"); 704 return -ENOMEM; 705 } 706 707 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 708 timer_setup(&dev->delay_timer, delay_time_func, 0); 709 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 710 ent = &cache->ent[i]; 711 INIT_LIST_HEAD(&ent->head); 712 spin_lock_init(&ent->lock); 713 ent->order = i + 2; 714 ent->dev = dev; 715 ent->limit = 0; 716 717 INIT_WORK(&ent->work, cache_work_func); 718 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 719 720 if (i > MR_CACHE_LAST_STD_ENTRY) { 721 mlx5_odp_init_mr_cache_entry(ent); 722 continue; 723 } 724 725 if (ent->order > mr_cache_max_order(dev)) 726 continue; 727 728 ent->page = PAGE_SHIFT; 729 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 730 MLX5_IB_UMR_OCTOWORD; 731 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 732 if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && 733 !dev->is_rep && 734 mlx5_core_is_pf(dev->mdev)) 735 ent->limit = dev->mdev->profile->mr_cache[i].limit; 736 else 737 ent->limit = 0; 738 spin_lock_irq(&ent->lock); 739 queue_adjust_cache_locked(ent); 740 spin_unlock_irq(&ent->lock); 741 } 742 743 mlx5_mr_cache_debugfs_init(dev); 744 745 return 0; 746 } 747 748 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 749 { 750 unsigned int i; 751 752 if (!dev->cache.wq) 753 return 0; 754 755 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 756 struct mlx5_cache_ent *ent = &dev->cache.ent[i]; 757 758 spin_lock_irq(&ent->lock); 759 ent->disabled = true; 760 spin_unlock_irq(&ent->lock); 761 cancel_work_sync(&ent->work); 762 cancel_delayed_work_sync(&ent->dwork); 763 } 764 765 mlx5_mr_cache_debugfs_cleanup(dev); 766 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 767 768 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 769 clean_keys(dev, i); 770 771 destroy_workqueue(dev->cache.wq); 772 del_timer_sync(&dev->delay_timer); 773 774 return 0; 775 } 776 777 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 778 struct ib_pd *pd) 779 { 780 struct mlx5_ib_dev *dev = to_mdev(pd->device); 781 782 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 783 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 784 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 785 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 786 MLX5_SET(mkc, mkc, lr, 1); 787 788 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 789 MLX5_SET(mkc, mkc, relaxed_ordering_write, 790 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 791 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 792 MLX5_SET(mkc, mkc, relaxed_ordering_read, 793 !!(acc & IB_ACCESS_RELAXED_ORDERING)); 794 795 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 796 MLX5_SET(mkc, mkc, qpn, 0xffffff); 797 MLX5_SET64(mkc, mkc, start_addr, start_addr); 798 } 799 800 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 801 { 802 struct mlx5_ib_dev *dev = to_mdev(pd->device); 803 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 804 struct mlx5_ib_mr *mr; 805 void *mkc; 806 u32 *in; 807 int err; 808 809 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 810 if (!mr) 811 return ERR_PTR(-ENOMEM); 812 813 in = kzalloc(inlen, GFP_KERNEL); 814 if (!in) { 815 err = -ENOMEM; 816 goto err_free; 817 } 818 819 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 820 821 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 822 MLX5_SET(mkc, mkc, length64, 1); 823 set_mkc_access_pd_addr_fields(mkc, acc, 0, pd); 824 825 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 826 if (err) 827 goto err_in; 828 829 kfree(in); 830 mr->mmkey.type = MLX5_MKEY_MR; 831 mr->ibmr.lkey = mr->mmkey.key; 832 mr->ibmr.rkey = mr->mmkey.key; 833 mr->umem = NULL; 834 835 return &mr->ibmr; 836 837 err_in: 838 kfree(in); 839 840 err_free: 841 kfree(mr); 842 843 return ERR_PTR(err); 844 } 845 846 static int get_octo_len(u64 addr, u64 len, int page_shift) 847 { 848 u64 page_size = 1ULL << page_shift; 849 u64 offset; 850 int npages; 851 852 offset = addr & (page_size - 1); 853 npages = ALIGN(len + offset, page_size) >> page_shift; 854 return (npages + 1) / 2; 855 } 856 857 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 858 { 859 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 860 return MR_CACHE_LAST_STD_ENTRY + 2; 861 return MLX5_MAX_UMR_SHIFT; 862 } 863 864 static int mr_umem_get(struct mlx5_ib_dev *dev, u64 start, u64 length, 865 int access_flags, struct ib_umem **umem, int *npages, 866 int *page_shift, int *ncont, int *order) 867 { 868 struct ib_umem *u; 869 870 *umem = NULL; 871 872 if (access_flags & IB_ACCESS_ON_DEMAND) { 873 struct ib_umem_odp *odp; 874 875 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 876 &mlx5_mn_ops); 877 if (IS_ERR(odp)) { 878 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", 879 PTR_ERR(odp)); 880 return PTR_ERR(odp); 881 } 882 883 u = &odp->umem; 884 885 *page_shift = odp->page_shift; 886 *ncont = ib_umem_odp_num_pages(odp); 887 *npages = *ncont << (*page_shift - PAGE_SHIFT); 888 if (order) 889 *order = ilog2(roundup_pow_of_two(*ncont)); 890 } else { 891 u = ib_umem_get(&dev->ib_dev, start, length, access_flags); 892 if (IS_ERR(u)) { 893 mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u)); 894 return PTR_ERR(u); 895 } 896 897 mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages, 898 page_shift, ncont, order); 899 } 900 901 if (!*npages) { 902 mlx5_ib_warn(dev, "avoid zero region\n"); 903 ib_umem_release(u); 904 return -EINVAL; 905 } 906 907 *umem = u; 908 909 mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n", 910 *npages, *ncont, *order, *page_shift); 911 912 return 0; 913 } 914 915 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 916 { 917 struct mlx5_ib_umr_context *context = 918 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 919 920 context->status = wc->status; 921 complete(&context->done); 922 } 923 924 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 925 { 926 context->cqe.done = mlx5_ib_umr_done; 927 context->status = -1; 928 init_completion(&context->done); 929 } 930 931 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 932 struct mlx5_umr_wr *umrwr) 933 { 934 struct umr_common *umrc = &dev->umrc; 935 const struct ib_send_wr *bad; 936 int err; 937 struct mlx5_ib_umr_context umr_context; 938 939 mlx5_ib_init_umr_context(&umr_context); 940 umrwr->wr.wr_cqe = &umr_context.cqe; 941 942 down(&umrc->sem); 943 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 944 if (err) { 945 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 946 } else { 947 wait_for_completion(&umr_context.done); 948 if (umr_context.status != IB_WC_SUCCESS) { 949 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 950 umr_context.status); 951 err = -EFAULT; 952 } 953 } 954 up(&umrc->sem); 955 return err; 956 } 957 958 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, 959 unsigned int order) 960 { 961 struct mlx5_mr_cache *cache = &dev->cache; 962 963 if (order < cache->ent[0].order) 964 return &cache->ent[0]; 965 order = order - cache->ent[0].order; 966 if (order > MR_CACHE_LAST_STD_ENTRY) 967 return NULL; 968 return &cache->ent[order]; 969 } 970 971 static struct mlx5_ib_mr * 972 alloc_mr_from_cache(struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr, 973 u64 len, int npages, int page_shift, unsigned int order, 974 int access_flags) 975 { 976 struct mlx5_ib_dev *dev = to_mdev(pd->device); 977 struct mlx5_cache_ent *ent = mr_cache_ent_from_order(dev, order); 978 struct mlx5_ib_mr *mr; 979 980 if (!ent) 981 return ERR_PTR(-E2BIG); 982 mr = get_cache_mr(ent); 983 if (!mr) { 984 mr = create_cache_mr(ent); 985 if (IS_ERR(mr)) 986 return mr; 987 } 988 989 mr->ibmr.pd = pd; 990 mr->umem = umem; 991 mr->access_flags = access_flags; 992 mr->desc_size = sizeof(struct mlx5_mtt); 993 mr->mmkey.iova = virt_addr; 994 mr->mmkey.size = len; 995 mr->mmkey.pd = to_mpd(pd)->pdn; 996 997 return mr; 998 } 999 1000 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 1001 MLX5_UMR_MTT_ALIGNMENT) 1002 #define MLX5_SPARE_UMR_CHUNK 0x10000 1003 1004 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 1005 int page_shift, int flags) 1006 { 1007 struct mlx5_ib_dev *dev = mr->dev; 1008 struct device *ddev = dev->ib_dev.dev.parent; 1009 int size; 1010 void *xlt; 1011 dma_addr_t dma; 1012 struct mlx5_umr_wr wr; 1013 struct ib_sge sg; 1014 int err = 0; 1015 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 1016 ? sizeof(struct mlx5_klm) 1017 : sizeof(struct mlx5_mtt); 1018 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 1019 const int page_mask = page_align - 1; 1020 size_t pages_mapped = 0; 1021 size_t pages_to_map = 0; 1022 size_t pages_iter = 0; 1023 size_t size_to_map = 0; 1024 gfp_t gfp; 1025 bool use_emergency_page = false; 1026 1027 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 1028 !umr_can_use_indirect_mkey(dev)) 1029 return -EPERM; 1030 1031 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 1032 * so we need to align the offset and length accordingly 1033 */ 1034 if (idx & page_mask) { 1035 npages += idx & page_mask; 1036 idx &= ~page_mask; 1037 } 1038 1039 gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL; 1040 gfp |= __GFP_ZERO | __GFP_NOWARN; 1041 1042 pages_to_map = ALIGN(npages, page_align); 1043 size = desc_size * pages_to_map; 1044 size = min_t(int, size, MLX5_MAX_UMR_CHUNK); 1045 1046 xlt = (void *)__get_free_pages(gfp, get_order(size)); 1047 if (!xlt && size > MLX5_SPARE_UMR_CHUNK) { 1048 mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n", 1049 size, get_order(size), MLX5_SPARE_UMR_CHUNK); 1050 1051 size = MLX5_SPARE_UMR_CHUNK; 1052 xlt = (void *)__get_free_pages(gfp, get_order(size)); 1053 } 1054 1055 if (!xlt) { 1056 mlx5_ib_warn(dev, "Using XLT emergency buffer\n"); 1057 xlt = (void *)mlx5_ib_get_xlt_emergency_page(); 1058 size = PAGE_SIZE; 1059 memset(xlt, 0, size); 1060 use_emergency_page = true; 1061 } 1062 pages_iter = size / desc_size; 1063 dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE); 1064 if (dma_mapping_error(ddev, dma)) { 1065 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1066 err = -ENOMEM; 1067 goto free_xlt; 1068 } 1069 1070 if (mr->umem->is_odp) { 1071 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { 1072 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 1073 size_t max_pages = ib_umem_odp_num_pages(odp) - idx; 1074 1075 pages_to_map = min_t(size_t, pages_to_map, max_pages); 1076 } 1077 } 1078 1079 sg.addr = dma; 1080 sg.lkey = dev->umrc.pd->local_dma_lkey; 1081 1082 memset(&wr, 0, sizeof(wr)); 1083 wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1084 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1085 wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1086 wr.wr.sg_list = &sg; 1087 wr.wr.num_sge = 1; 1088 wr.wr.opcode = MLX5_IB_WR_UMR; 1089 1090 wr.pd = mr->ibmr.pd; 1091 wr.mkey = mr->mmkey.key; 1092 wr.length = mr->mmkey.size; 1093 wr.virt_addr = mr->mmkey.iova; 1094 wr.access_flags = mr->access_flags; 1095 wr.page_shift = page_shift; 1096 1097 for (pages_mapped = 0; 1098 pages_mapped < pages_to_map && !err; 1099 pages_mapped += pages_iter, idx += pages_iter) { 1100 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1101 size_to_map = npages * desc_size; 1102 dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE); 1103 if (mr->umem->is_odp) { 1104 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); 1105 } else { 1106 __mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx, 1107 npages, xlt, 1108 MLX5_IB_MTT_PRESENT); 1109 /* Clear padding after the pages 1110 * brought from the umem. 1111 */ 1112 memset(xlt + size_to_map, 0, size - size_to_map); 1113 } 1114 dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE); 1115 1116 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); 1117 1118 if (pages_mapped + pages_iter >= pages_to_map) { 1119 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1120 wr.wr.send_flags |= 1121 MLX5_IB_SEND_UMR_ENABLE_MR | 1122 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1123 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1124 if (flags & MLX5_IB_UPD_XLT_PD || 1125 flags & MLX5_IB_UPD_XLT_ACCESS) 1126 wr.wr.send_flags |= 1127 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1128 if (flags & MLX5_IB_UPD_XLT_ADDR) 1129 wr.wr.send_flags |= 1130 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1131 } 1132 1133 wr.offset = idx * desc_size; 1134 wr.xlt_size = sg.length; 1135 1136 err = mlx5_ib_post_send_wait(dev, &wr); 1137 } 1138 dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); 1139 1140 free_xlt: 1141 if (use_emergency_page) 1142 mlx5_ib_put_xlt_emergency_page(); 1143 else 1144 free_pages((unsigned long)xlt, get_order(size)); 1145 1146 return err; 1147 } 1148 1149 /* 1150 * If ibmr is NULL it will be allocated by reg_create. 1151 * Else, the given ibmr will be used. 1152 */ 1153 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd, 1154 u64 virt_addr, u64 length, 1155 struct ib_umem *umem, int npages, 1156 int page_shift, int access_flags, 1157 bool populate) 1158 { 1159 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1160 struct mlx5_ib_mr *mr; 1161 __be64 *pas; 1162 void *mkc; 1163 int inlen; 1164 u32 *in; 1165 int err; 1166 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1167 1168 mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL); 1169 if (!mr) 1170 return ERR_PTR(-ENOMEM); 1171 1172 mr->ibmr.pd = pd; 1173 mr->access_flags = access_flags; 1174 1175 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1176 if (populate) 1177 inlen += sizeof(*pas) * roundup(npages, 2); 1178 in = kvzalloc(inlen, GFP_KERNEL); 1179 if (!in) { 1180 err = -ENOMEM; 1181 goto err_1; 1182 } 1183 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1184 if (populate && !(access_flags & IB_ACCESS_ON_DEMAND)) 1185 mlx5_ib_populate_pas(dev, umem, page_shift, pas, 1186 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1187 1188 /* The pg_access bit allows setting the access flags 1189 * in the page list submitted with the command. */ 1190 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1191 1192 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1193 MLX5_SET(mkc, mkc, free, !populate); 1194 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1195 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 1196 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1197 !!(access_flags & IB_ACCESS_RELAXED_ORDERING)); 1198 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 1199 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1200 !!(access_flags & IB_ACCESS_RELAXED_ORDERING)); 1201 MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC)); 1202 MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE)); 1203 MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ)); 1204 MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE)); 1205 MLX5_SET(mkc, mkc, lr, 1); 1206 MLX5_SET(mkc, mkc, umr_en, 1); 1207 1208 MLX5_SET64(mkc, mkc, start_addr, virt_addr); 1209 MLX5_SET64(mkc, mkc, len, length); 1210 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1211 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1212 MLX5_SET(mkc, mkc, translations_octword_size, 1213 get_octo_len(virt_addr, length, page_shift)); 1214 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1215 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1216 if (populate) { 1217 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1218 get_octo_len(virt_addr, length, page_shift)); 1219 } 1220 1221 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1222 if (err) { 1223 mlx5_ib_warn(dev, "create mkey failed\n"); 1224 goto err_2; 1225 } 1226 mr->mmkey.type = MLX5_MKEY_MR; 1227 mr->desc_size = sizeof(struct mlx5_mtt); 1228 mr->dev = dev; 1229 kvfree(in); 1230 1231 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1232 1233 return mr; 1234 1235 err_2: 1236 kvfree(in); 1237 1238 err_1: 1239 if (!ibmr) 1240 kfree(mr); 1241 1242 return ERR_PTR(err); 1243 } 1244 1245 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 1246 int npages, u64 length, int access_flags) 1247 { 1248 mr->npages = npages; 1249 atomic_add(npages, &dev->mdev->priv.reg_pages); 1250 mr->ibmr.lkey = mr->mmkey.key; 1251 mr->ibmr.rkey = mr->mmkey.key; 1252 mr->ibmr.length = length; 1253 mr->access_flags = access_flags; 1254 } 1255 1256 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1257 u64 length, int acc, int mode) 1258 { 1259 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1260 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1261 struct mlx5_ib_mr *mr; 1262 void *mkc; 1263 u32 *in; 1264 int err; 1265 1266 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1267 if (!mr) 1268 return ERR_PTR(-ENOMEM); 1269 1270 in = kzalloc(inlen, GFP_KERNEL); 1271 if (!in) { 1272 err = -ENOMEM; 1273 goto err_free; 1274 } 1275 1276 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1277 1278 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1279 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1280 MLX5_SET64(mkc, mkc, len, length); 1281 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1282 1283 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1284 if (err) 1285 goto err_in; 1286 1287 kfree(in); 1288 1289 mr->umem = NULL; 1290 set_mr_fields(dev, mr, 0, length, acc); 1291 1292 return &mr->ibmr; 1293 1294 err_in: 1295 kfree(in); 1296 1297 err_free: 1298 kfree(mr); 1299 1300 return ERR_PTR(err); 1301 } 1302 1303 int mlx5_ib_advise_mr(struct ib_pd *pd, 1304 enum ib_uverbs_advise_mr_advice advice, 1305 u32 flags, 1306 struct ib_sge *sg_list, 1307 u32 num_sge, 1308 struct uverbs_attr_bundle *attrs) 1309 { 1310 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1311 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE) 1312 return -EOPNOTSUPP; 1313 1314 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1315 sg_list, num_sge); 1316 } 1317 1318 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1319 struct ib_dm_mr_attr *attr, 1320 struct uverbs_attr_bundle *attrs) 1321 { 1322 struct mlx5_ib_dm *mdm = to_mdm(dm); 1323 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1324 u64 start_addr = mdm->dev_addr + attr->offset; 1325 int mode; 1326 1327 switch (mdm->type) { 1328 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1329 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1330 return ERR_PTR(-EINVAL); 1331 1332 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1333 start_addr -= pci_resource_start(dev->pdev, 0); 1334 break; 1335 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1336 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1337 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1338 return ERR_PTR(-EINVAL); 1339 1340 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1341 break; 1342 default: 1343 return ERR_PTR(-EINVAL); 1344 } 1345 1346 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1347 attr->access_flags, mode); 1348 } 1349 1350 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1351 u64 virt_addr, int access_flags, 1352 struct ib_udata *udata) 1353 { 1354 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1355 struct mlx5_ib_mr *mr = NULL; 1356 bool use_umr; 1357 struct ib_umem *umem; 1358 int page_shift; 1359 int npages; 1360 int ncont; 1361 int order; 1362 int err; 1363 1364 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1365 return ERR_PTR(-EOPNOTSUPP); 1366 1367 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1368 start, virt_addr, length, access_flags); 1369 1370 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start && 1371 length == U64_MAX) { 1372 if (virt_addr != start) 1373 return ERR_PTR(-EINVAL); 1374 if (!(access_flags & IB_ACCESS_ON_DEMAND) || 1375 !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1376 return ERR_PTR(-EINVAL); 1377 1378 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); 1379 if (IS_ERR(mr)) 1380 return ERR_CAST(mr); 1381 return &mr->ibmr; 1382 } 1383 1384 err = mr_umem_get(dev, start, length, access_flags, &umem, 1385 &npages, &page_shift, &ncont, &order); 1386 1387 if (err < 0) 1388 return ERR_PTR(err); 1389 1390 use_umr = mlx5_ib_can_use_umr(dev, true, access_flags); 1391 1392 if (order <= mr_cache_max_order(dev) && use_umr) { 1393 mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont, 1394 page_shift, order, access_flags); 1395 if (PTR_ERR(mr) == -EAGAIN) { 1396 mlx5_ib_dbg(dev, "cache empty for order %d\n", order); 1397 mr = NULL; 1398 } 1399 } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) { 1400 if (access_flags & IB_ACCESS_ON_DEMAND) { 1401 err = -EINVAL; 1402 pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n"); 1403 goto error; 1404 } 1405 use_umr = false; 1406 } 1407 1408 if (!mr) { 1409 mutex_lock(&dev->slow_path_mutex); 1410 mr = reg_create(NULL, pd, virt_addr, length, umem, ncont, 1411 page_shift, access_flags, !use_umr); 1412 mutex_unlock(&dev->slow_path_mutex); 1413 } 1414 1415 if (IS_ERR(mr)) { 1416 err = PTR_ERR(mr); 1417 goto error; 1418 } 1419 1420 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1421 1422 mr->umem = umem; 1423 set_mr_fields(dev, mr, npages, length, access_flags); 1424 1425 if (use_umr) { 1426 int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE; 1427 1428 if (access_flags & IB_ACCESS_ON_DEMAND) 1429 update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP; 1430 1431 err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift, 1432 update_xlt_flags); 1433 1434 if (err) { 1435 dereg_mr(dev, mr); 1436 return ERR_PTR(err); 1437 } 1438 } 1439 1440 if (is_odp_mr(mr)) { 1441 to_ib_umem_odp(mr->umem)->private = mr; 1442 init_waitqueue_head(&mr->q_deferred_work); 1443 atomic_set(&mr->num_deferred_work, 0); 1444 err = xa_err(xa_store(&dev->odp_mkeys, 1445 mlx5_base_mkey(mr->mmkey.key), &mr->mmkey, 1446 GFP_KERNEL)); 1447 if (err) { 1448 dereg_mr(dev, mr); 1449 return ERR_PTR(err); 1450 } 1451 } 1452 1453 return &mr->ibmr; 1454 error: 1455 ib_umem_release(umem); 1456 return ERR_PTR(err); 1457 } 1458 1459 /** 1460 * mlx5_mr_cache_invalidate - Fence all DMA on the MR 1461 * @mr: The MR to fence 1462 * 1463 * Upon return the NIC will not be doing any DMA to the pages under the MR, 1464 * and any DMA inprogress will be completed. Failure of this function 1465 * indicates the HW has failed catastrophically. 1466 */ 1467 int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr) 1468 { 1469 struct mlx5_umr_wr umrwr = {}; 1470 1471 if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1472 return 0; 1473 1474 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1475 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1476 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1477 umrwr.pd = mr->dev->umrc.pd; 1478 umrwr.mkey = mr->mmkey.key; 1479 umrwr.ignore_free_state = 1; 1480 1481 return mlx5_ib_post_send_wait(mr->dev, &umrwr); 1482 } 1483 1484 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1485 int access_flags, int flags) 1486 { 1487 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1488 struct mlx5_umr_wr umrwr = {}; 1489 int err; 1490 1491 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1492 1493 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1494 umrwr.mkey = mr->mmkey.key; 1495 1496 if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) { 1497 umrwr.pd = pd; 1498 umrwr.access_flags = access_flags; 1499 umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1500 } 1501 1502 err = mlx5_ib_post_send_wait(dev, &umrwr); 1503 1504 return err; 1505 } 1506 1507 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1508 u64 length, u64 virt_addr, int new_access_flags, 1509 struct ib_pd *new_pd, struct ib_udata *udata) 1510 { 1511 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1512 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1513 struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd; 1514 int access_flags = flags & IB_MR_REREG_ACCESS ? 1515 new_access_flags : 1516 mr->access_flags; 1517 int page_shift = 0; 1518 int upd_flags = 0; 1519 int npages = 0; 1520 int ncont = 0; 1521 int order = 0; 1522 u64 addr, len; 1523 int err; 1524 1525 mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", 1526 start, virt_addr, length, access_flags); 1527 1528 atomic_sub(mr->npages, &dev->mdev->priv.reg_pages); 1529 1530 if (!mr->umem) 1531 return -EINVAL; 1532 1533 if (is_odp_mr(mr)) 1534 return -EOPNOTSUPP; 1535 1536 if (flags & IB_MR_REREG_TRANS) { 1537 addr = virt_addr; 1538 len = length; 1539 } else { 1540 addr = mr->umem->address; 1541 len = mr->umem->length; 1542 } 1543 1544 if (flags != IB_MR_REREG_PD) { 1545 /* 1546 * Replace umem. This needs to be done whether or not UMR is 1547 * used. 1548 */ 1549 flags |= IB_MR_REREG_TRANS; 1550 ib_umem_release(mr->umem); 1551 mr->umem = NULL; 1552 err = mr_umem_get(dev, addr, len, access_flags, &mr->umem, 1553 &npages, &page_shift, &ncont, &order); 1554 if (err) 1555 goto err; 1556 } 1557 1558 if (!mlx5_ib_can_use_umr(dev, true, access_flags) || 1559 (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) { 1560 /* 1561 * UMR can't be used - MKey needs to be replaced. 1562 */ 1563 if (mr->cache_ent) 1564 detach_mr_from_cache(mr); 1565 err = destroy_mkey(dev, mr); 1566 if (err) 1567 goto err; 1568 1569 mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont, 1570 page_shift, access_flags, true); 1571 1572 if (IS_ERR(mr)) { 1573 err = PTR_ERR(mr); 1574 mr = to_mmr(ib_mr); 1575 goto err; 1576 } 1577 } else { 1578 /* 1579 * Send a UMR WQE 1580 */ 1581 mr->ibmr.pd = pd; 1582 mr->access_flags = access_flags; 1583 mr->mmkey.iova = addr; 1584 mr->mmkey.size = len; 1585 mr->mmkey.pd = to_mpd(pd)->pdn; 1586 1587 if (flags & IB_MR_REREG_TRANS) { 1588 upd_flags = MLX5_IB_UPD_XLT_ADDR; 1589 if (flags & IB_MR_REREG_PD) 1590 upd_flags |= MLX5_IB_UPD_XLT_PD; 1591 if (flags & IB_MR_REREG_ACCESS) 1592 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1593 err = mlx5_ib_update_xlt(mr, 0, npages, page_shift, 1594 upd_flags); 1595 } else { 1596 err = rereg_umr(pd, mr, access_flags, flags); 1597 } 1598 1599 if (err) 1600 goto err; 1601 } 1602 1603 set_mr_fields(dev, mr, npages, len, access_flags); 1604 1605 return 0; 1606 1607 err: 1608 ib_umem_release(mr->umem); 1609 mr->umem = NULL; 1610 1611 clean_mr(dev, mr); 1612 return err; 1613 } 1614 1615 static int 1616 mlx5_alloc_priv_descs(struct ib_device *device, 1617 struct mlx5_ib_mr *mr, 1618 int ndescs, 1619 int desc_size) 1620 { 1621 int size = ndescs * desc_size; 1622 int add_size; 1623 int ret; 1624 1625 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1626 1627 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1628 if (!mr->descs_alloc) 1629 return -ENOMEM; 1630 1631 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1632 1633 mr->desc_map = dma_map_single(device->dev.parent, mr->descs, 1634 size, DMA_TO_DEVICE); 1635 if (dma_mapping_error(device->dev.parent, mr->desc_map)) { 1636 ret = -ENOMEM; 1637 goto err; 1638 } 1639 1640 return 0; 1641 err: 1642 kfree(mr->descs_alloc); 1643 1644 return ret; 1645 } 1646 1647 static void 1648 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1649 { 1650 if (mr->descs) { 1651 struct ib_device *device = mr->ibmr.device; 1652 int size = mr->max_descs * mr->desc_size; 1653 1654 dma_unmap_single(device->dev.parent, mr->desc_map, 1655 size, DMA_TO_DEVICE); 1656 kfree(mr->descs_alloc); 1657 mr->descs = NULL; 1658 } 1659 } 1660 1661 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1662 { 1663 if (mr->sig) { 1664 if (mlx5_core_destroy_psv(dev->mdev, 1665 mr->sig->psv_memory.psv_idx)) 1666 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1667 mr->sig->psv_memory.psv_idx); 1668 if (mlx5_core_destroy_psv(dev->mdev, 1669 mr->sig->psv_wire.psv_idx)) 1670 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1671 mr->sig->psv_wire.psv_idx); 1672 xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key)); 1673 kfree(mr->sig); 1674 mr->sig = NULL; 1675 } 1676 1677 if (!mr->cache_ent) { 1678 destroy_mkey(dev, mr); 1679 mlx5_free_priv_descs(mr); 1680 } 1681 } 1682 1683 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 1684 { 1685 int npages = mr->npages; 1686 struct ib_umem *umem = mr->umem; 1687 1688 /* Stop all DMA */ 1689 if (is_odp_mr(mr)) 1690 mlx5_ib_fence_odp_mr(mr); 1691 else 1692 clean_mr(dev, mr); 1693 1694 if (mr->cache_ent) 1695 mlx5_mr_cache_free(dev, mr); 1696 else 1697 kfree(mr); 1698 1699 ib_umem_release(umem); 1700 atomic_sub(npages, &dev->mdev->priv.reg_pages); 1701 1702 } 1703 1704 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1705 { 1706 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 1707 1708 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1709 dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr); 1710 dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr); 1711 } 1712 1713 if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) { 1714 mlx5_ib_free_implicit_mr(mmr); 1715 return 0; 1716 } 1717 1718 dereg_mr(to_mdev(ibmr->device), mmr); 1719 1720 return 0; 1721 } 1722 1723 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 1724 int access_mode, int page_shift) 1725 { 1726 void *mkc; 1727 1728 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1729 1730 MLX5_SET(mkc, mkc, free, 1); 1731 MLX5_SET(mkc, mkc, qpn, 0xffffff); 1732 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 1733 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 1734 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 1735 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 1736 MLX5_SET(mkc, mkc, umr_en, 1); 1737 MLX5_SET(mkc, mkc, log_page_size, page_shift); 1738 } 1739 1740 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1741 int ndescs, int desc_size, int page_shift, 1742 int access_mode, u32 *in, int inlen) 1743 { 1744 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1745 int err; 1746 1747 mr->access_mode = access_mode; 1748 mr->desc_size = desc_size; 1749 mr->max_descs = ndescs; 1750 1751 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 1752 if (err) 1753 return err; 1754 1755 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 1756 1757 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1758 if (err) 1759 goto err_free_descs; 1760 1761 mr->mmkey.type = MLX5_MKEY_MR; 1762 mr->ibmr.lkey = mr->mmkey.key; 1763 mr->ibmr.rkey = mr->mmkey.key; 1764 1765 return 0; 1766 1767 err_free_descs: 1768 mlx5_free_priv_descs(mr); 1769 return err; 1770 } 1771 1772 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 1773 u32 max_num_sg, u32 max_num_meta_sg, 1774 int desc_size, int access_mode) 1775 { 1776 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1777 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 1778 int page_shift = 0; 1779 struct mlx5_ib_mr *mr; 1780 u32 *in; 1781 int err; 1782 1783 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1784 if (!mr) 1785 return ERR_PTR(-ENOMEM); 1786 1787 mr->ibmr.pd = pd; 1788 mr->ibmr.device = pd->device; 1789 1790 in = kzalloc(inlen, GFP_KERNEL); 1791 if (!in) { 1792 err = -ENOMEM; 1793 goto err_free; 1794 } 1795 1796 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 1797 page_shift = PAGE_SHIFT; 1798 1799 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 1800 access_mode, in, inlen); 1801 if (err) 1802 goto err_free_in; 1803 1804 mr->umem = NULL; 1805 kfree(in); 1806 1807 return mr; 1808 1809 err_free_in: 1810 kfree(in); 1811 err_free: 1812 kfree(mr); 1813 return ERR_PTR(err); 1814 } 1815 1816 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1817 int ndescs, u32 *in, int inlen) 1818 { 1819 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 1820 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 1821 inlen); 1822 } 1823 1824 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1825 int ndescs, u32 *in, int inlen) 1826 { 1827 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 1828 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1829 } 1830 1831 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 1832 int max_num_sg, int max_num_meta_sg, 1833 u32 *in, int inlen) 1834 { 1835 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1836 u32 psv_index[2]; 1837 void *mkc; 1838 int err; 1839 1840 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 1841 if (!mr->sig) 1842 return -ENOMEM; 1843 1844 /* create mem & wire PSVs */ 1845 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 1846 if (err) 1847 goto err_free_sig; 1848 1849 mr->sig->psv_memory.psv_idx = psv_index[0]; 1850 mr->sig->psv_wire.psv_idx = psv_index[1]; 1851 1852 mr->sig->sig_status_checked = true; 1853 mr->sig->sig_err_exists = false; 1854 /* Next UMR, Arm SIGERR */ 1855 ++mr->sig->sigerr_count; 1856 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1857 sizeof(struct mlx5_klm), 1858 MLX5_MKC_ACCESS_MODE_KLMS); 1859 if (IS_ERR(mr->klm_mr)) { 1860 err = PTR_ERR(mr->klm_mr); 1861 goto err_destroy_psv; 1862 } 1863 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 1864 sizeof(struct mlx5_mtt), 1865 MLX5_MKC_ACCESS_MODE_MTT); 1866 if (IS_ERR(mr->mtt_mr)) { 1867 err = PTR_ERR(mr->mtt_mr); 1868 goto err_free_klm_mr; 1869 } 1870 1871 /* Set bsf descriptors for mkey */ 1872 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1873 MLX5_SET(mkc, mkc, bsf_en, 1); 1874 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 1875 1876 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 1877 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 1878 if (err) 1879 goto err_free_mtt_mr; 1880 1881 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 1882 mr->sig, GFP_KERNEL)); 1883 if (err) 1884 goto err_free_descs; 1885 return 0; 1886 1887 err_free_descs: 1888 destroy_mkey(dev, mr); 1889 mlx5_free_priv_descs(mr); 1890 err_free_mtt_mr: 1891 dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr); 1892 mr->mtt_mr = NULL; 1893 err_free_klm_mr: 1894 dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr); 1895 mr->klm_mr = NULL; 1896 err_destroy_psv: 1897 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 1898 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1899 mr->sig->psv_memory.psv_idx); 1900 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1901 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1902 mr->sig->psv_wire.psv_idx); 1903 err_free_sig: 1904 kfree(mr->sig); 1905 1906 return err; 1907 } 1908 1909 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 1910 enum ib_mr_type mr_type, u32 max_num_sg, 1911 u32 max_num_meta_sg) 1912 { 1913 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1914 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1915 int ndescs = ALIGN(max_num_sg, 4); 1916 struct mlx5_ib_mr *mr; 1917 u32 *in; 1918 int err; 1919 1920 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1921 if (!mr) 1922 return ERR_PTR(-ENOMEM); 1923 1924 in = kzalloc(inlen, GFP_KERNEL); 1925 if (!in) { 1926 err = -ENOMEM; 1927 goto err_free; 1928 } 1929 1930 mr->ibmr.device = pd->device; 1931 mr->umem = NULL; 1932 1933 switch (mr_type) { 1934 case IB_MR_TYPE_MEM_REG: 1935 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 1936 break; 1937 case IB_MR_TYPE_SG_GAPS: 1938 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 1939 break; 1940 case IB_MR_TYPE_INTEGRITY: 1941 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 1942 max_num_meta_sg, in, inlen); 1943 break; 1944 default: 1945 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 1946 err = -EINVAL; 1947 } 1948 1949 if (err) 1950 goto err_free_in; 1951 1952 kfree(in); 1953 1954 return &mr->ibmr; 1955 1956 err_free_in: 1957 kfree(in); 1958 err_free: 1959 kfree(mr); 1960 return ERR_PTR(err); 1961 } 1962 1963 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 1964 u32 max_num_sg) 1965 { 1966 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 1967 } 1968 1969 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 1970 u32 max_num_sg, u32 max_num_meta_sg) 1971 { 1972 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 1973 max_num_meta_sg); 1974 } 1975 1976 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, 1977 struct ib_udata *udata) 1978 { 1979 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1980 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1981 struct mlx5_ib_mw *mw = NULL; 1982 u32 *in = NULL; 1983 void *mkc; 1984 int ndescs; 1985 int err; 1986 struct mlx5_ib_alloc_mw req = {}; 1987 struct { 1988 __u32 comp_mask; 1989 __u32 response_length; 1990 } resp = {}; 1991 1992 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 1993 if (err) 1994 return ERR_PTR(err); 1995 1996 if (req.comp_mask || req.reserved1 || req.reserved2) 1997 return ERR_PTR(-EOPNOTSUPP); 1998 1999 if (udata->inlen > sizeof(req) && 2000 !ib_is_udata_cleared(udata, sizeof(req), 2001 udata->inlen - sizeof(req))) 2002 return ERR_PTR(-EOPNOTSUPP); 2003 2004 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2005 2006 mw = kzalloc(sizeof(*mw), GFP_KERNEL); 2007 in = kzalloc(inlen, GFP_KERNEL); 2008 if (!mw || !in) { 2009 err = -ENOMEM; 2010 goto free; 2011 } 2012 2013 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2014 2015 MLX5_SET(mkc, mkc, free, 1); 2016 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2017 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 2018 MLX5_SET(mkc, mkc, umr_en, 1); 2019 MLX5_SET(mkc, mkc, lr, 1); 2020 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2021 MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2))); 2022 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2023 2024 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2025 if (err) 2026 goto free; 2027 2028 mw->mmkey.type = MLX5_MKEY_MW; 2029 mw->ibmw.rkey = mw->mmkey.key; 2030 mw->ndescs = ndescs; 2031 2032 resp.response_length = min(offsetof(typeof(resp), response_length) + 2033 sizeof(resp.response_length), udata->outlen); 2034 if (resp.response_length) { 2035 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2036 if (err) { 2037 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 2038 goto free; 2039 } 2040 } 2041 2042 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2043 err = xa_err(xa_store(&dev->odp_mkeys, 2044 mlx5_base_mkey(mw->mmkey.key), &mw->mmkey, 2045 GFP_KERNEL)); 2046 if (err) 2047 goto free_mkey; 2048 } 2049 2050 kfree(in); 2051 return &mw->ibmw; 2052 2053 free_mkey: 2054 mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); 2055 free: 2056 kfree(mw); 2057 kfree(in); 2058 return ERR_PTR(err); 2059 } 2060 2061 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2062 { 2063 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2064 struct mlx5_ib_mw *mmw = to_mmw(mw); 2065 int err; 2066 2067 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2068 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)); 2069 /* 2070 * pagefault_single_data_segment() may be accessing mmw under 2071 * SRCU if the user bound an ODP MR to this MW. 2072 */ 2073 synchronize_srcu(&dev->odp_srcu); 2074 } 2075 2076 err = mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey); 2077 if (err) 2078 return err; 2079 kfree(mmw); 2080 return 0; 2081 } 2082 2083 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2084 struct ib_mr_status *mr_status) 2085 { 2086 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2087 int ret = 0; 2088 2089 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2090 pr_err("Invalid status check mask\n"); 2091 ret = -EINVAL; 2092 goto done; 2093 } 2094 2095 mr_status->fail_status = 0; 2096 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2097 if (!mmr->sig) { 2098 ret = -EINVAL; 2099 pr_err("signature status check requested on a non-signature enabled MR\n"); 2100 goto done; 2101 } 2102 2103 mmr->sig->sig_status_checked = true; 2104 if (!mmr->sig->sig_err_exists) 2105 goto done; 2106 2107 if (ibmr->lkey == mmr->sig->err_item.key) 2108 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2109 sizeof(mr_status->sig_err)); 2110 else { 2111 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2112 mr_status->sig_err.sig_err_offset = 0; 2113 mr_status->sig_err.key = mmr->sig->err_item.key; 2114 } 2115 2116 mmr->sig->sig_err_exists = false; 2117 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2118 } 2119 2120 done: 2121 return ret; 2122 } 2123 2124 static int 2125 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2126 int data_sg_nents, unsigned int *data_sg_offset, 2127 struct scatterlist *meta_sg, int meta_sg_nents, 2128 unsigned int *meta_sg_offset) 2129 { 2130 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2131 unsigned int sg_offset = 0; 2132 int n = 0; 2133 2134 mr->meta_length = 0; 2135 if (data_sg_nents == 1) { 2136 n++; 2137 mr->ndescs = 1; 2138 if (data_sg_offset) 2139 sg_offset = *data_sg_offset; 2140 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2141 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2142 if (meta_sg_nents == 1) { 2143 n++; 2144 mr->meta_ndescs = 1; 2145 if (meta_sg_offset) 2146 sg_offset = *meta_sg_offset; 2147 else 2148 sg_offset = 0; 2149 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2150 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2151 } 2152 ibmr->length = mr->data_length + mr->meta_length; 2153 } 2154 2155 return n; 2156 } 2157 2158 static int 2159 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2160 struct scatterlist *sgl, 2161 unsigned short sg_nents, 2162 unsigned int *sg_offset_p, 2163 struct scatterlist *meta_sgl, 2164 unsigned short meta_sg_nents, 2165 unsigned int *meta_sg_offset_p) 2166 { 2167 struct scatterlist *sg = sgl; 2168 struct mlx5_klm *klms = mr->descs; 2169 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2170 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2171 int i, j = 0; 2172 2173 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2174 mr->ibmr.length = 0; 2175 2176 for_each_sg(sgl, sg, sg_nents, i) { 2177 if (unlikely(i >= mr->max_descs)) 2178 break; 2179 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2180 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2181 klms[i].key = cpu_to_be32(lkey); 2182 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2183 2184 sg_offset = 0; 2185 } 2186 2187 if (sg_offset_p) 2188 *sg_offset_p = sg_offset; 2189 2190 mr->ndescs = i; 2191 mr->data_length = mr->ibmr.length; 2192 2193 if (meta_sg_nents) { 2194 sg = meta_sgl; 2195 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2196 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2197 if (unlikely(i + j >= mr->max_descs)) 2198 break; 2199 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2200 sg_offset); 2201 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2202 sg_offset); 2203 klms[i + j].key = cpu_to_be32(lkey); 2204 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2205 2206 sg_offset = 0; 2207 } 2208 if (meta_sg_offset_p) 2209 *meta_sg_offset_p = sg_offset; 2210 2211 mr->meta_ndescs = j; 2212 mr->meta_length = mr->ibmr.length - mr->data_length; 2213 } 2214 2215 return i + j; 2216 } 2217 2218 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2219 { 2220 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2221 __be64 *descs; 2222 2223 if (unlikely(mr->ndescs == mr->max_descs)) 2224 return -ENOMEM; 2225 2226 descs = mr->descs; 2227 descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2228 2229 return 0; 2230 } 2231 2232 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2233 { 2234 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2235 __be64 *descs; 2236 2237 if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) 2238 return -ENOMEM; 2239 2240 descs = mr->descs; 2241 descs[mr->ndescs + mr->meta_ndescs++] = 2242 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2243 2244 return 0; 2245 } 2246 2247 static int 2248 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2249 int data_sg_nents, unsigned int *data_sg_offset, 2250 struct scatterlist *meta_sg, int meta_sg_nents, 2251 unsigned int *meta_sg_offset) 2252 { 2253 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2254 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2255 int n; 2256 2257 pi_mr->ndescs = 0; 2258 pi_mr->meta_ndescs = 0; 2259 pi_mr->meta_length = 0; 2260 2261 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2262 pi_mr->desc_size * pi_mr->max_descs, 2263 DMA_TO_DEVICE); 2264 2265 pi_mr->ibmr.page_size = ibmr->page_size; 2266 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2267 mlx5_set_page); 2268 if (n != data_sg_nents) 2269 return n; 2270 2271 pi_mr->data_iova = pi_mr->ibmr.iova; 2272 pi_mr->data_length = pi_mr->ibmr.length; 2273 pi_mr->ibmr.length = pi_mr->data_length; 2274 ibmr->length = pi_mr->data_length; 2275 2276 if (meta_sg_nents) { 2277 u64 page_mask = ~((u64)ibmr->page_size - 1); 2278 u64 iova = pi_mr->data_iova; 2279 2280 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2281 meta_sg_offset, mlx5_set_page_pi); 2282 2283 pi_mr->meta_length = pi_mr->ibmr.length; 2284 /* 2285 * PI address for the HW is the offset of the metadata address 2286 * relative to the first data page address. 2287 * It equals to first data page address + size of data pages + 2288 * metadata offset at the first metadata page 2289 */ 2290 pi_mr->pi_iova = (iova & page_mask) + 2291 pi_mr->ndescs * ibmr->page_size + 2292 (pi_mr->ibmr.iova & ~page_mask); 2293 /* 2294 * In order to use one MTT MR for data and metadata, we register 2295 * also the gaps between the end of the data and the start of 2296 * the metadata (the sig MR will verify that the HW will access 2297 * to right addresses). This mapping is safe because we use 2298 * internal mkey for the registration. 2299 */ 2300 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2301 pi_mr->ibmr.iova = iova; 2302 ibmr->length += pi_mr->meta_length; 2303 } 2304 2305 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2306 pi_mr->desc_size * pi_mr->max_descs, 2307 DMA_TO_DEVICE); 2308 2309 return n; 2310 } 2311 2312 static int 2313 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2314 int data_sg_nents, unsigned int *data_sg_offset, 2315 struct scatterlist *meta_sg, int meta_sg_nents, 2316 unsigned int *meta_sg_offset) 2317 { 2318 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2319 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2320 int n; 2321 2322 pi_mr->ndescs = 0; 2323 pi_mr->meta_ndescs = 0; 2324 pi_mr->meta_length = 0; 2325 2326 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2327 pi_mr->desc_size * pi_mr->max_descs, 2328 DMA_TO_DEVICE); 2329 2330 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2331 meta_sg, meta_sg_nents, meta_sg_offset); 2332 2333 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2334 pi_mr->desc_size * pi_mr->max_descs, 2335 DMA_TO_DEVICE); 2336 2337 /* This is zero-based memory region */ 2338 pi_mr->data_iova = 0; 2339 pi_mr->ibmr.iova = 0; 2340 pi_mr->pi_iova = pi_mr->data_length; 2341 ibmr->length = pi_mr->ibmr.length; 2342 2343 return n; 2344 } 2345 2346 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2347 int data_sg_nents, unsigned int *data_sg_offset, 2348 struct scatterlist *meta_sg, int meta_sg_nents, 2349 unsigned int *meta_sg_offset) 2350 { 2351 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2352 struct mlx5_ib_mr *pi_mr = NULL; 2353 int n; 2354 2355 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2356 2357 mr->ndescs = 0; 2358 mr->data_length = 0; 2359 mr->data_iova = 0; 2360 mr->meta_ndescs = 0; 2361 mr->pi_iova = 0; 2362 /* 2363 * As a performance optimization, if possible, there is no need to 2364 * perform UMR operation to register the data/metadata buffers. 2365 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2366 * Fallback to UMR only in case of a failure. 2367 */ 2368 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2369 data_sg_offset, meta_sg, meta_sg_nents, 2370 meta_sg_offset); 2371 if (n == data_sg_nents + meta_sg_nents) 2372 goto out; 2373 /* 2374 * As a performance optimization, if possible, there is no need to map 2375 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2376 * descriptors and fallback to KLM only in case of a failure. 2377 * It's more efficient for the HW to work with MTT descriptors 2378 * (especially in high load). 2379 * Use KLM (indirect access) only if it's mandatory. 2380 */ 2381 pi_mr = mr->mtt_mr; 2382 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2383 data_sg_offset, meta_sg, meta_sg_nents, 2384 meta_sg_offset); 2385 if (n == data_sg_nents + meta_sg_nents) 2386 goto out; 2387 2388 pi_mr = mr->klm_mr; 2389 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2390 data_sg_offset, meta_sg, meta_sg_nents, 2391 meta_sg_offset); 2392 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2393 return -ENOMEM; 2394 2395 out: 2396 /* This is zero-based memory region */ 2397 ibmr->iova = 0; 2398 mr->pi_mr = pi_mr; 2399 if (pi_mr) 2400 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2401 else 2402 ibmr->sig_attrs->meta_length = mr->meta_length; 2403 2404 return 0; 2405 } 2406 2407 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2408 unsigned int *sg_offset) 2409 { 2410 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2411 int n; 2412 2413 mr->ndescs = 0; 2414 2415 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2416 mr->desc_size * mr->max_descs, 2417 DMA_TO_DEVICE); 2418 2419 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2420 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2421 NULL); 2422 else 2423 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2424 mlx5_set_page); 2425 2426 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2427 mr->desc_size * mr->max_descs, 2428 DMA_TO_DEVICE); 2429 2430 return n; 2431 } 2432