xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision 69bfec7548f4c1595bac0e3ddfc0458a5af31f4c)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 
47 enum {
48 	MAX_PENDING_REG_MR = 8,
49 };
50 
51 #define MLX5_UMR_ALIGN 2048
52 
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 				     u64 iova, int access_flags,
57 				     unsigned int page_size, bool populate);
58 
59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 					  struct ib_pd *pd)
61 {
62 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
63 
64 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 	MLX5_SET(mkc, mkc, lr, 1);
69 
70 	if ((acc & IB_ACCESS_RELAXED_ORDERING) &&
71 	    pcie_relaxed_ordering_enabled(dev->mdev->pdev)) {
72 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
73 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
75 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
76 	}
77 
78 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
79 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
80 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
81 }
82 
83 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
84 {
85 	u8 key = atomic_inc_return(&dev->mkey_var);
86 	void *mkc;
87 
88 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
89 	MLX5_SET(mkc, mkc, mkey_7_0, key);
90 	*mkey = key;
91 }
92 
93 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
94 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
95 {
96 	int ret;
97 
98 	assign_mkey_variant(dev, &mkey->key, in);
99 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
100 	if (!ret)
101 		init_waitqueue_head(&mkey->wait);
102 
103 	return ret;
104 }
105 
106 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
107 {
108 	struct mlx5_ib_dev *dev = async_create->ent->dev;
109 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
110 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
111 
112 	MLX5_SET(create_mkey_in, async_create->in, opcode,
113 		 MLX5_CMD_OP_CREATE_MKEY);
114 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
115 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
116 				async_create->out, outlen, create_mkey_callback,
117 				&async_create->cb_work);
118 }
119 
120 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
121 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
122 
123 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
124 {
125 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
126 
127 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
128 }
129 
130 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
131 {
132 	if (status == -ENXIO) /* core driver is not available */
133 		return;
134 
135 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
136 	if (status != -EREMOTEIO) /* driver specific failure */
137 		return;
138 
139 	/* Failed in FW, print cmd out failure details */
140 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
141 }
142 
143 static int push_mkey_locked(struct mlx5_cache_ent *ent, bool limit_pendings,
144 			    void *to_store)
145 {
146 	XA_STATE(xas, &ent->mkeys, 0);
147 	void *curr;
148 
149 	if (limit_pendings &&
150 	    (ent->reserved - ent->stored) > MAX_PENDING_REG_MR)
151 		return -EAGAIN;
152 
153 	while (1) {
154 		/*
155 		 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
156 		 * doesn't transparently unlock. Instead we set the xas index to
157 		 * the current value of reserved every iteration.
158 		 */
159 		xas_set(&xas, ent->reserved);
160 		curr = xas_load(&xas);
161 		if (!curr) {
162 			if (to_store && ent->stored == ent->reserved)
163 				xas_store(&xas, to_store);
164 			else
165 				xas_store(&xas, XA_ZERO_ENTRY);
166 			if (xas_valid(&xas)) {
167 				ent->reserved++;
168 				if (to_store) {
169 					if (ent->stored != ent->reserved)
170 						__xa_store(&ent->mkeys,
171 							   ent->stored,
172 							   to_store,
173 							   GFP_KERNEL);
174 					ent->stored++;
175 					queue_adjust_cache_locked(ent);
176 					WRITE_ONCE(ent->dev->cache.last_add,
177 						   jiffies);
178 				}
179 			}
180 		}
181 		xa_unlock_irq(&ent->mkeys);
182 
183 		/*
184 		 * Notice xas_nomem() must always be called as it cleans
185 		 * up any cached allocation.
186 		 */
187 		if (!xas_nomem(&xas, GFP_KERNEL))
188 			break;
189 		xa_lock_irq(&ent->mkeys);
190 	}
191 	xa_lock_irq(&ent->mkeys);
192 	if (xas_error(&xas))
193 		return xas_error(&xas);
194 	if (WARN_ON(curr))
195 		return -EINVAL;
196 	return 0;
197 }
198 
199 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
200 		     void *to_store)
201 {
202 	int ret;
203 
204 	xa_lock_irq(&ent->mkeys);
205 	ret = push_mkey_locked(ent, limit_pendings, to_store);
206 	xa_unlock_irq(&ent->mkeys);
207 	return ret;
208 }
209 
210 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
211 {
212 	void *old;
213 
214 	ent->reserved--;
215 	old = __xa_erase(&ent->mkeys, ent->reserved);
216 	WARN_ON(old);
217 }
218 
219 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
220 {
221 	void *old;
222 
223 	old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
224 	WARN_ON(old);
225 	ent->stored++;
226 }
227 
228 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
229 {
230 	void *old, *xa_mkey;
231 
232 	ent->stored--;
233 	ent->reserved--;
234 
235 	if (ent->stored == ent->reserved) {
236 		xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
237 		WARN_ON(!xa_mkey);
238 		return (u32)xa_to_value(xa_mkey);
239 	}
240 
241 	xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
242 			     GFP_KERNEL);
243 	WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
244 	old = __xa_erase(&ent->mkeys, ent->reserved);
245 	WARN_ON(old);
246 	return (u32)xa_to_value(xa_mkey);
247 }
248 
249 static void create_mkey_callback(int status, struct mlx5_async_work *context)
250 {
251 	struct mlx5r_async_create_mkey *mkey_out =
252 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
253 	struct mlx5_cache_ent *ent = mkey_out->ent;
254 	struct mlx5_ib_dev *dev = ent->dev;
255 	unsigned long flags;
256 
257 	if (status) {
258 		create_mkey_warn(dev, status, mkey_out->out);
259 		kfree(mkey_out);
260 		xa_lock_irqsave(&ent->mkeys, flags);
261 		undo_push_reserve_mkey(ent);
262 		WRITE_ONCE(dev->fill_delay, 1);
263 		xa_unlock_irqrestore(&ent->mkeys, flags);
264 		mod_timer(&dev->delay_timer, jiffies + HZ);
265 		return;
266 	}
267 
268 	mkey_out->mkey |= mlx5_idx_to_mkey(
269 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
270 	WRITE_ONCE(dev->cache.last_add, jiffies);
271 
272 	xa_lock_irqsave(&ent->mkeys, flags);
273 	push_to_reserved(ent, mkey_out->mkey);
274 	/* If we are doing fill_to_high_water then keep going. */
275 	queue_adjust_cache_locked(ent);
276 	xa_unlock_irqrestore(&ent->mkeys, flags);
277 	kfree(mkey_out);
278 }
279 
280 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
281 {
282 	int ret = 0;
283 
284 	switch (access_mode) {
285 	case MLX5_MKC_ACCESS_MODE_MTT:
286 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
287 						   sizeof(struct mlx5_mtt));
288 		break;
289 	case MLX5_MKC_ACCESS_MODE_KSM:
290 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
291 						   sizeof(struct mlx5_klm));
292 		break;
293 	default:
294 		WARN_ON(1);
295 	}
296 	return ret;
297 }
298 
299 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
300 {
301 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
302 	MLX5_SET(mkc, mkc, free, 1);
303 	MLX5_SET(mkc, mkc, umr_en, 1);
304 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
305 	MLX5_SET(mkc, mkc, access_mode_4_2,
306 		(ent->rb_key.access_mode >> 2) & 0x7);
307 
308 	MLX5_SET(mkc, mkc, translations_octword_size,
309 		 get_mkc_octo_size(ent->rb_key.access_mode,
310 				   ent->rb_key.ndescs));
311 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
312 }
313 
314 /* Asynchronously schedule new MRs to be populated in the cache. */
315 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
316 {
317 	struct mlx5r_async_create_mkey *async_create;
318 	void *mkc;
319 	int err = 0;
320 	int i;
321 
322 	for (i = 0; i < num; i++) {
323 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
324 				       GFP_KERNEL);
325 		if (!async_create)
326 			return -ENOMEM;
327 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
328 				   memory_key_mkey_entry);
329 		set_cache_mkc(ent, mkc);
330 		async_create->ent = ent;
331 
332 		err = push_mkey(ent, true, NULL);
333 		if (err)
334 			goto free_async_create;
335 
336 		err = mlx5_ib_create_mkey_cb(async_create);
337 		if (err) {
338 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
339 			goto err_undo_reserve;
340 		}
341 	}
342 
343 	return 0;
344 
345 err_undo_reserve:
346 	xa_lock_irq(&ent->mkeys);
347 	undo_push_reserve_mkey(ent);
348 	xa_unlock_irq(&ent->mkeys);
349 free_async_create:
350 	kfree(async_create);
351 	return err;
352 }
353 
354 /* Synchronously create a MR in the cache */
355 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
356 {
357 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
358 	void *mkc;
359 	u32 *in;
360 	int err;
361 
362 	in = kzalloc(inlen, GFP_KERNEL);
363 	if (!in)
364 		return -ENOMEM;
365 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
366 	set_cache_mkc(ent, mkc);
367 
368 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
369 	if (err)
370 		goto free_in;
371 
372 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
373 free_in:
374 	kfree(in);
375 	return err;
376 }
377 
378 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
379 {
380 	u32 mkey;
381 
382 	lockdep_assert_held(&ent->mkeys.xa_lock);
383 	if (!ent->stored)
384 		return;
385 	mkey = pop_stored_mkey(ent);
386 	xa_unlock_irq(&ent->mkeys);
387 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
388 	xa_lock_irq(&ent->mkeys);
389 }
390 
391 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
392 				bool limit_fill)
393 	 __acquires(&ent->mkeys) __releases(&ent->mkeys)
394 {
395 	int err;
396 
397 	lockdep_assert_held(&ent->mkeys.xa_lock);
398 
399 	while (true) {
400 		if (limit_fill)
401 			target = ent->limit * 2;
402 		if (target == ent->reserved)
403 			return 0;
404 		if (target > ent->reserved) {
405 			u32 todo = target - ent->reserved;
406 
407 			xa_unlock_irq(&ent->mkeys);
408 			err = add_keys(ent, todo);
409 			if (err == -EAGAIN)
410 				usleep_range(3000, 5000);
411 			xa_lock_irq(&ent->mkeys);
412 			if (err) {
413 				if (err != -EAGAIN)
414 					return err;
415 			} else
416 				return 0;
417 		} else {
418 			remove_cache_mr_locked(ent);
419 		}
420 	}
421 }
422 
423 static ssize_t size_write(struct file *filp, const char __user *buf,
424 			  size_t count, loff_t *pos)
425 {
426 	struct mlx5_cache_ent *ent = filp->private_data;
427 	u32 target;
428 	int err;
429 
430 	err = kstrtou32_from_user(buf, count, 0, &target);
431 	if (err)
432 		return err;
433 
434 	/*
435 	 * Target is the new value of total_mrs the user requests, however we
436 	 * cannot free MRs that are in use. Compute the target value for stored
437 	 * mkeys.
438 	 */
439 	xa_lock_irq(&ent->mkeys);
440 	if (target < ent->in_use) {
441 		err = -EINVAL;
442 		goto err_unlock;
443 	}
444 	target = target - ent->in_use;
445 	if (target < ent->limit || target > ent->limit*2) {
446 		err = -EINVAL;
447 		goto err_unlock;
448 	}
449 	err = resize_available_mrs(ent, target, false);
450 	if (err)
451 		goto err_unlock;
452 	xa_unlock_irq(&ent->mkeys);
453 
454 	return count;
455 
456 err_unlock:
457 	xa_unlock_irq(&ent->mkeys);
458 	return err;
459 }
460 
461 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
462 			 loff_t *pos)
463 {
464 	struct mlx5_cache_ent *ent = filp->private_data;
465 	char lbuf[20];
466 	int err;
467 
468 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
469 	if (err < 0)
470 		return err;
471 
472 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
473 }
474 
475 static const struct file_operations size_fops = {
476 	.owner	= THIS_MODULE,
477 	.open	= simple_open,
478 	.write	= size_write,
479 	.read	= size_read,
480 };
481 
482 static ssize_t limit_write(struct file *filp, const char __user *buf,
483 			   size_t count, loff_t *pos)
484 {
485 	struct mlx5_cache_ent *ent = filp->private_data;
486 	u32 var;
487 	int err;
488 
489 	err = kstrtou32_from_user(buf, count, 0, &var);
490 	if (err)
491 		return err;
492 
493 	/*
494 	 * Upon set we immediately fill the cache to high water mark implied by
495 	 * the limit.
496 	 */
497 	xa_lock_irq(&ent->mkeys);
498 	ent->limit = var;
499 	err = resize_available_mrs(ent, 0, true);
500 	xa_unlock_irq(&ent->mkeys);
501 	if (err)
502 		return err;
503 	return count;
504 }
505 
506 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
507 			  loff_t *pos)
508 {
509 	struct mlx5_cache_ent *ent = filp->private_data;
510 	char lbuf[20];
511 	int err;
512 
513 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
514 	if (err < 0)
515 		return err;
516 
517 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
518 }
519 
520 static const struct file_operations limit_fops = {
521 	.owner	= THIS_MODULE,
522 	.open	= simple_open,
523 	.write	= limit_write,
524 	.read	= limit_read,
525 };
526 
527 static bool someone_adding(struct mlx5_mkey_cache *cache)
528 {
529 	struct mlx5_cache_ent *ent;
530 	struct rb_node *node;
531 	bool ret;
532 
533 	mutex_lock(&cache->rb_lock);
534 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
535 		ent = rb_entry(node, struct mlx5_cache_ent, node);
536 		xa_lock_irq(&ent->mkeys);
537 		ret = ent->stored < ent->limit;
538 		xa_unlock_irq(&ent->mkeys);
539 		if (ret) {
540 			mutex_unlock(&cache->rb_lock);
541 			return true;
542 		}
543 	}
544 	mutex_unlock(&cache->rb_lock);
545 	return false;
546 }
547 
548 /*
549  * Check if the bucket is outside the high/low water mark and schedule an async
550  * update. The cache refill has hysteresis, once the low water mark is hit it is
551  * refilled up to the high mark.
552  */
553 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
554 {
555 	lockdep_assert_held(&ent->mkeys.xa_lock);
556 
557 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
558 		return;
559 	if (ent->stored < ent->limit) {
560 		ent->fill_to_high_water = true;
561 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
562 	} else if (ent->fill_to_high_water &&
563 		   ent->reserved < 2 * ent->limit) {
564 		/*
565 		 * Once we start populating due to hitting a low water mark
566 		 * continue until we pass the high water mark.
567 		 */
568 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
569 	} else if (ent->stored == 2 * ent->limit) {
570 		ent->fill_to_high_water = false;
571 	} else if (ent->stored > 2 * ent->limit) {
572 		/* Queue deletion of excess entries */
573 		ent->fill_to_high_water = false;
574 		if (ent->stored != ent->reserved)
575 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
576 					   msecs_to_jiffies(1000));
577 		else
578 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
579 	}
580 }
581 
582 static void __cache_work_func(struct mlx5_cache_ent *ent)
583 {
584 	struct mlx5_ib_dev *dev = ent->dev;
585 	struct mlx5_mkey_cache *cache = &dev->cache;
586 	int err;
587 
588 	xa_lock_irq(&ent->mkeys);
589 	if (ent->disabled)
590 		goto out;
591 
592 	if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
593 	    !READ_ONCE(dev->fill_delay)) {
594 		xa_unlock_irq(&ent->mkeys);
595 		err = add_keys(ent, 1);
596 		xa_lock_irq(&ent->mkeys);
597 		if (ent->disabled)
598 			goto out;
599 		if (err) {
600 			/*
601 			 * EAGAIN only happens if there are pending MRs, so we
602 			 * will be rescheduled when storing them. The only
603 			 * failure path here is ENOMEM.
604 			 */
605 			if (err != -EAGAIN) {
606 				mlx5_ib_warn(
607 					dev,
608 					"add keys command failed, err %d\n",
609 					err);
610 				queue_delayed_work(cache->wq, &ent->dwork,
611 						   msecs_to_jiffies(1000));
612 			}
613 		}
614 	} else if (ent->stored > 2 * ent->limit) {
615 		bool need_delay;
616 
617 		/*
618 		 * The remove_cache_mr() logic is performed as garbage
619 		 * collection task. Such task is intended to be run when no
620 		 * other active processes are running.
621 		 *
622 		 * The need_resched() will return TRUE if there are user tasks
623 		 * to be activated in near future.
624 		 *
625 		 * In such case, we don't execute remove_cache_mr() and postpone
626 		 * the garbage collection work to try to run in next cycle, in
627 		 * order to free CPU resources to other tasks.
628 		 */
629 		xa_unlock_irq(&ent->mkeys);
630 		need_delay = need_resched() || someone_adding(cache) ||
631 			     !time_after(jiffies,
632 					 READ_ONCE(cache->last_add) + 300 * HZ);
633 		xa_lock_irq(&ent->mkeys);
634 		if (ent->disabled)
635 			goto out;
636 		if (need_delay) {
637 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
638 			goto out;
639 		}
640 		remove_cache_mr_locked(ent);
641 		queue_adjust_cache_locked(ent);
642 	}
643 out:
644 	xa_unlock_irq(&ent->mkeys);
645 }
646 
647 static void delayed_cache_work_func(struct work_struct *work)
648 {
649 	struct mlx5_cache_ent *ent;
650 
651 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
652 	__cache_work_func(ent);
653 }
654 
655 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
656 			     struct mlx5r_cache_rb_key key2)
657 {
658 	int res;
659 
660 	res = key1.ats - key2.ats;
661 	if (res)
662 		return res;
663 
664 	res = key1.access_mode - key2.access_mode;
665 	if (res)
666 		return res;
667 
668 	res = key1.access_flags - key2.access_flags;
669 	if (res)
670 		return res;
671 
672 	/*
673 	 * keep ndescs the last in the compare table since the find function
674 	 * searches for an exact match on all properties and only closest
675 	 * match in size.
676 	 */
677 	return key1.ndescs - key2.ndescs;
678 }
679 
680 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
681 				 struct mlx5_cache_ent *ent)
682 {
683 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
684 	struct mlx5_cache_ent *cur;
685 	int cmp;
686 
687 	/* Figure out where to put new node */
688 	while (*new) {
689 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
690 		parent = *new;
691 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
692 		if (cmp > 0)
693 			new = &((*new)->rb_left);
694 		if (cmp < 0)
695 			new = &((*new)->rb_right);
696 		if (cmp == 0) {
697 			mutex_unlock(&cache->rb_lock);
698 			return -EEXIST;
699 		}
700 	}
701 
702 	/* Add new node and rebalance tree. */
703 	rb_link_node(&ent->node, parent, new);
704 	rb_insert_color(&ent->node, &cache->rb_root);
705 
706 	return 0;
707 }
708 
709 static struct mlx5_cache_ent *
710 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
711 			   struct mlx5r_cache_rb_key rb_key)
712 {
713 	struct rb_node *node = dev->cache.rb_root.rb_node;
714 	struct mlx5_cache_ent *cur, *smallest = NULL;
715 	int cmp;
716 
717 	/*
718 	 * Find the smallest ent with order >= requested_order.
719 	 */
720 	while (node) {
721 		cur = rb_entry(node, struct mlx5_cache_ent, node);
722 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
723 		if (cmp > 0) {
724 			smallest = cur;
725 			node = node->rb_left;
726 		}
727 		if (cmp < 0)
728 			node = node->rb_right;
729 		if (cmp == 0)
730 			return cur;
731 	}
732 
733 	return (smallest &&
734 		smallest->rb_key.access_mode == rb_key.access_mode &&
735 		smallest->rb_key.access_flags == rb_key.access_flags &&
736 		smallest->rb_key.ats == rb_key.ats) ?
737 		       smallest :
738 		       NULL;
739 }
740 
741 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
742 					struct mlx5_cache_ent *ent,
743 					int access_flags)
744 {
745 	struct mlx5_ib_mr *mr;
746 	int err;
747 
748 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
749 	if (!mr)
750 		return ERR_PTR(-ENOMEM);
751 
752 	xa_lock_irq(&ent->mkeys);
753 	ent->in_use++;
754 
755 	if (!ent->stored) {
756 		queue_adjust_cache_locked(ent);
757 		ent->miss++;
758 		xa_unlock_irq(&ent->mkeys);
759 		err = create_cache_mkey(ent, &mr->mmkey.key);
760 		if (err) {
761 			xa_lock_irq(&ent->mkeys);
762 			ent->in_use--;
763 			xa_unlock_irq(&ent->mkeys);
764 			kfree(mr);
765 			return ERR_PTR(err);
766 		}
767 	} else {
768 		mr->mmkey.key = pop_stored_mkey(ent);
769 		queue_adjust_cache_locked(ent);
770 		xa_unlock_irq(&ent->mkeys);
771 	}
772 	mr->mmkey.cache_ent = ent;
773 	mr->mmkey.type = MLX5_MKEY_MR;
774 	init_waitqueue_head(&mr->mmkey.wait);
775 	return mr;
776 }
777 
778 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
779 					 int access_flags)
780 {
781 	int ret = 0;
782 
783 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
784 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
785 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
786 		ret |= IB_ACCESS_REMOTE_ATOMIC;
787 
788 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
789 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
790 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
791 		ret |= IB_ACCESS_RELAXED_ORDERING;
792 
793 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
794 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) &&
795 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
796 		ret |= IB_ACCESS_RELAXED_ORDERING;
797 
798 	return ret;
799 }
800 
801 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
802 				       int access_flags, int access_mode,
803 				       int ndescs)
804 {
805 	struct mlx5r_cache_rb_key rb_key = {
806 		.ndescs = ndescs,
807 		.access_mode = access_mode,
808 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
809 	};
810 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
811 
812 	if (!ent)
813 		return ERR_PTR(-EOPNOTSUPP);
814 
815 	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
816 }
817 
818 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
819 {
820 	u32 mkey;
821 
822 	cancel_delayed_work(&ent->dwork);
823 	xa_lock_irq(&ent->mkeys);
824 	while (ent->stored) {
825 		mkey = pop_stored_mkey(ent);
826 		xa_unlock_irq(&ent->mkeys);
827 		mlx5_core_destroy_mkey(dev->mdev, mkey);
828 		xa_lock_irq(&ent->mkeys);
829 	}
830 	xa_unlock_irq(&ent->mkeys);
831 }
832 
833 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
834 {
835 	if (!mlx5_debugfs_root || dev->is_rep)
836 		return;
837 
838 	debugfs_remove_recursive(dev->cache.fs_root);
839 	dev->cache.fs_root = NULL;
840 }
841 
842 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
843 					    struct mlx5_cache_ent *ent)
844 {
845 	int order = order_base_2(ent->rb_key.ndescs);
846 	struct dentry *dir;
847 
848 	if (!mlx5_debugfs_root || dev->is_rep)
849 		return;
850 
851 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
852 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
853 
854 	sprintf(ent->name, "%d", order);
855 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
856 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
857 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
858 	debugfs_create_ulong("cur", 0400, dir, &ent->stored);
859 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
860 }
861 
862 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
863 {
864 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
865 	struct mlx5_mkey_cache *cache = &dev->cache;
866 
867 	if (!mlx5_debugfs_root || dev->is_rep)
868 		return;
869 
870 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
871 }
872 
873 static void delay_time_func(struct timer_list *t)
874 {
875 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
876 
877 	WRITE_ONCE(dev->fill_delay, 0);
878 }
879 
880 struct mlx5_cache_ent *
881 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
882 			      struct mlx5r_cache_rb_key rb_key,
883 			      bool persistent_entry)
884 {
885 	struct mlx5_cache_ent *ent;
886 	int order;
887 	int ret;
888 
889 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
890 	if (!ent)
891 		return ERR_PTR(-ENOMEM);
892 
893 	xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
894 	ent->rb_key = rb_key;
895 	ent->dev = dev;
896 	ent->is_tmp = !persistent_entry;
897 
898 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
899 
900 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
901 	if (ret) {
902 		kfree(ent);
903 		return ERR_PTR(ret);
904 	}
905 
906 	if (persistent_entry) {
907 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
908 			order = MLX5_IMR_KSM_CACHE_ENTRY;
909 		else
910 			order = order_base_2(rb_key.ndescs) - 2;
911 
912 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
913 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
914 		    mlx5r_umr_can_load_pas(dev, 0))
915 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
916 		else
917 			ent->limit = 0;
918 
919 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
920 	} else {
921 		mod_delayed_work(ent->dev->cache.wq,
922 				 &ent->dev->cache.remove_ent_dwork,
923 				 msecs_to_jiffies(30 * 1000));
924 	}
925 
926 	return ent;
927 }
928 
929 static void remove_ent_work_func(struct work_struct *work)
930 {
931 	struct mlx5_mkey_cache *cache;
932 	struct mlx5_cache_ent *ent;
933 	struct rb_node *cur;
934 
935 	cache = container_of(work, struct mlx5_mkey_cache,
936 			     remove_ent_dwork.work);
937 	mutex_lock(&cache->rb_lock);
938 	cur = rb_last(&cache->rb_root);
939 	while (cur) {
940 		ent = rb_entry(cur, struct mlx5_cache_ent, node);
941 		cur = rb_prev(cur);
942 		mutex_unlock(&cache->rb_lock);
943 
944 		xa_lock_irq(&ent->mkeys);
945 		if (!ent->is_tmp) {
946 			xa_unlock_irq(&ent->mkeys);
947 			mutex_lock(&cache->rb_lock);
948 			continue;
949 		}
950 		xa_unlock_irq(&ent->mkeys);
951 
952 		clean_keys(ent->dev, ent);
953 		mutex_lock(&cache->rb_lock);
954 	}
955 	mutex_unlock(&cache->rb_lock);
956 }
957 
958 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
959 {
960 	struct mlx5_mkey_cache *cache = &dev->cache;
961 	struct rb_root *root = &dev->cache.rb_root;
962 	struct mlx5r_cache_rb_key rb_key = {
963 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
964 	};
965 	struct mlx5_cache_ent *ent;
966 	struct rb_node *node;
967 	int ret;
968 	int i;
969 
970 	mutex_init(&dev->slow_path_mutex);
971 	mutex_init(&dev->cache.rb_lock);
972 	dev->cache.rb_root = RB_ROOT;
973 	INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
974 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
975 	if (!cache->wq) {
976 		mlx5_ib_warn(dev, "failed to create work queue\n");
977 		return -ENOMEM;
978 	}
979 
980 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
981 	timer_setup(&dev->delay_timer, delay_time_func, 0);
982 	mlx5_mkey_cache_debugfs_init(dev);
983 	mutex_lock(&cache->rb_lock);
984 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
985 		rb_key.ndescs = 1 << (i + 2);
986 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
987 		if (IS_ERR(ent)) {
988 			ret = PTR_ERR(ent);
989 			goto err;
990 		}
991 	}
992 
993 	ret = mlx5_odp_init_mkey_cache(dev);
994 	if (ret)
995 		goto err;
996 
997 	mutex_unlock(&cache->rb_lock);
998 	for (node = rb_first(root); node; node = rb_next(node)) {
999 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1000 		xa_lock_irq(&ent->mkeys);
1001 		queue_adjust_cache_locked(ent);
1002 		xa_unlock_irq(&ent->mkeys);
1003 	}
1004 
1005 	return 0;
1006 
1007 err:
1008 	mutex_unlock(&cache->rb_lock);
1009 	mlx5_mkey_cache_debugfs_cleanup(dev);
1010 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
1011 	return ret;
1012 }
1013 
1014 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
1015 {
1016 	struct rb_root *root = &dev->cache.rb_root;
1017 	struct mlx5_cache_ent *ent;
1018 	struct rb_node *node;
1019 
1020 	if (!dev->cache.wq)
1021 		return;
1022 
1023 	cancel_delayed_work_sync(&dev->cache.remove_ent_dwork);
1024 	mutex_lock(&dev->cache.rb_lock);
1025 	for (node = rb_first(root); node; node = rb_next(node)) {
1026 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1027 		xa_lock_irq(&ent->mkeys);
1028 		ent->disabled = true;
1029 		xa_unlock_irq(&ent->mkeys);
1030 		cancel_delayed_work_sync(&ent->dwork);
1031 	}
1032 
1033 	mlx5_mkey_cache_debugfs_cleanup(dev);
1034 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1035 
1036 	node = rb_first(root);
1037 	while (node) {
1038 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1039 		node = rb_next(node);
1040 		clean_keys(dev, ent);
1041 		rb_erase(&ent->node, root);
1042 		kfree(ent);
1043 	}
1044 	mutex_unlock(&dev->cache.rb_lock);
1045 
1046 	destroy_workqueue(dev->cache.wq);
1047 	del_timer_sync(&dev->delay_timer);
1048 }
1049 
1050 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1051 {
1052 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1053 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1054 	struct mlx5_ib_mr *mr;
1055 	void *mkc;
1056 	u32 *in;
1057 	int err;
1058 
1059 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1060 	if (!mr)
1061 		return ERR_PTR(-ENOMEM);
1062 
1063 	in = kzalloc(inlen, GFP_KERNEL);
1064 	if (!in) {
1065 		err = -ENOMEM;
1066 		goto err_free;
1067 	}
1068 
1069 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1070 
1071 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1072 	MLX5_SET(mkc, mkc, length64, 1);
1073 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1074 				      pd);
1075 
1076 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1077 	if (err)
1078 		goto err_in;
1079 
1080 	kfree(in);
1081 	mr->mmkey.type = MLX5_MKEY_MR;
1082 	mr->ibmr.lkey = mr->mmkey.key;
1083 	mr->ibmr.rkey = mr->mmkey.key;
1084 	mr->umem = NULL;
1085 
1086 	return &mr->ibmr;
1087 
1088 err_in:
1089 	kfree(in);
1090 
1091 err_free:
1092 	kfree(mr);
1093 
1094 	return ERR_PTR(err);
1095 }
1096 
1097 static int get_octo_len(u64 addr, u64 len, int page_shift)
1098 {
1099 	u64 page_size = 1ULL << page_shift;
1100 	u64 offset;
1101 	int npages;
1102 
1103 	offset = addr & (page_size - 1);
1104 	npages = ALIGN(len + offset, page_size) >> page_shift;
1105 	return (npages + 1) / 2;
1106 }
1107 
1108 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1109 {
1110 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1111 		return MKEY_CACHE_LAST_STD_ENTRY;
1112 	return MLX5_MAX_UMR_SHIFT;
1113 }
1114 
1115 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1116 			  u64 length, int access_flags, u64 iova)
1117 {
1118 	mr->ibmr.lkey = mr->mmkey.key;
1119 	mr->ibmr.rkey = mr->mmkey.key;
1120 	mr->ibmr.length = length;
1121 	mr->ibmr.device = &dev->ib_dev;
1122 	mr->ibmr.iova = iova;
1123 	mr->access_flags = access_flags;
1124 }
1125 
1126 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1127 						  u64 iova)
1128 {
1129 	/*
1130 	 * The alignment of iova has already been checked upon entering
1131 	 * UVERBS_METHOD_REG_DMABUF_MR
1132 	 */
1133 	umem->iova = iova;
1134 	return PAGE_SIZE;
1135 }
1136 
1137 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1138 					     struct ib_umem *umem, u64 iova,
1139 					     int access_flags)
1140 {
1141 	struct mlx5r_cache_rb_key rb_key = {
1142 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1143 	};
1144 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1145 	struct mlx5_cache_ent *ent;
1146 	struct mlx5_ib_mr *mr;
1147 	unsigned int page_size;
1148 
1149 	if (umem->is_dmabuf)
1150 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1151 	else
1152 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1153 						     0, iova);
1154 	if (WARN_ON(!page_size))
1155 		return ERR_PTR(-EINVAL);
1156 
1157 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1158 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1159 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1160 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1161 	/*
1162 	 * If the MR can't come from the cache then synchronously create an uncached
1163 	 * one.
1164 	 */
1165 	if (!ent) {
1166 		mutex_lock(&dev->slow_path_mutex);
1167 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1168 		mutex_unlock(&dev->slow_path_mutex);
1169 		if (IS_ERR(mr))
1170 			return mr;
1171 		mr->mmkey.rb_key = rb_key;
1172 		return mr;
1173 	}
1174 
1175 	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1176 	if (IS_ERR(mr))
1177 		return mr;
1178 
1179 	mr->ibmr.pd = pd;
1180 	mr->umem = umem;
1181 	mr->page_shift = order_base_2(page_size);
1182 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1183 
1184 	return mr;
1185 }
1186 
1187 /*
1188  * If ibmr is NULL it will be allocated by reg_create.
1189  * Else, the given ibmr will be used.
1190  */
1191 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1192 				     u64 iova, int access_flags,
1193 				     unsigned int page_size, bool populate)
1194 {
1195 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1196 	struct mlx5_ib_mr *mr;
1197 	__be64 *pas;
1198 	void *mkc;
1199 	int inlen;
1200 	u32 *in;
1201 	int err;
1202 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1203 
1204 	if (!page_size)
1205 		return ERR_PTR(-EINVAL);
1206 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1207 	if (!mr)
1208 		return ERR_PTR(-ENOMEM);
1209 
1210 	mr->ibmr.pd = pd;
1211 	mr->access_flags = access_flags;
1212 	mr->page_shift = order_base_2(page_size);
1213 
1214 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1215 	if (populate)
1216 		inlen += sizeof(*pas) *
1217 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1218 	in = kvzalloc(inlen, GFP_KERNEL);
1219 	if (!in) {
1220 		err = -ENOMEM;
1221 		goto err_1;
1222 	}
1223 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1224 	if (populate) {
1225 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1226 			err = -EINVAL;
1227 			goto err_2;
1228 		}
1229 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1230 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1231 	}
1232 
1233 	/* The pg_access bit allows setting the access flags
1234 	 * in the page list submitted with the command. */
1235 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1236 
1237 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1238 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1239 				      populate ? pd : dev->umrc.pd);
1240 	MLX5_SET(mkc, mkc, free, !populate);
1241 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1242 	MLX5_SET(mkc, mkc, umr_en, 1);
1243 
1244 	MLX5_SET64(mkc, mkc, len, umem->length);
1245 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1246 	MLX5_SET(mkc, mkc, translations_octword_size,
1247 		 get_octo_len(iova, umem->length, mr->page_shift));
1248 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1249 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1250 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1251 	if (populate) {
1252 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1253 			 get_octo_len(iova, umem->length, mr->page_shift));
1254 	}
1255 
1256 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1257 	if (err) {
1258 		mlx5_ib_warn(dev, "create mkey failed\n");
1259 		goto err_2;
1260 	}
1261 	mr->mmkey.type = MLX5_MKEY_MR;
1262 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1263 	mr->umem = umem;
1264 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1265 	kvfree(in);
1266 
1267 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1268 
1269 	return mr;
1270 
1271 err_2:
1272 	kvfree(in);
1273 err_1:
1274 	kfree(mr);
1275 	return ERR_PTR(err);
1276 }
1277 
1278 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1279 				       u64 length, int acc, int mode)
1280 {
1281 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1282 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1283 	struct mlx5_ib_mr *mr;
1284 	void *mkc;
1285 	u32 *in;
1286 	int err;
1287 
1288 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1289 	if (!mr)
1290 		return ERR_PTR(-ENOMEM);
1291 
1292 	in = kzalloc(inlen, GFP_KERNEL);
1293 	if (!in) {
1294 		err = -ENOMEM;
1295 		goto err_free;
1296 	}
1297 
1298 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1299 
1300 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1301 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1302 	MLX5_SET64(mkc, mkc, len, length);
1303 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1304 
1305 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1306 	if (err)
1307 		goto err_in;
1308 
1309 	kfree(in);
1310 
1311 	set_mr_fields(dev, mr, length, acc, start_addr);
1312 
1313 	return &mr->ibmr;
1314 
1315 err_in:
1316 	kfree(in);
1317 
1318 err_free:
1319 	kfree(mr);
1320 
1321 	return ERR_PTR(err);
1322 }
1323 
1324 int mlx5_ib_advise_mr(struct ib_pd *pd,
1325 		      enum ib_uverbs_advise_mr_advice advice,
1326 		      u32 flags,
1327 		      struct ib_sge *sg_list,
1328 		      u32 num_sge,
1329 		      struct uverbs_attr_bundle *attrs)
1330 {
1331 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1332 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1333 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1334 		return -EOPNOTSUPP;
1335 
1336 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1337 					 sg_list, num_sge);
1338 }
1339 
1340 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1341 				struct ib_dm_mr_attr *attr,
1342 				struct uverbs_attr_bundle *attrs)
1343 {
1344 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1345 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1346 	u64 start_addr = mdm->dev_addr + attr->offset;
1347 	int mode;
1348 
1349 	switch (mdm->type) {
1350 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1351 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1352 			return ERR_PTR(-EINVAL);
1353 
1354 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1355 		start_addr -= pci_resource_start(dev->pdev, 0);
1356 		break;
1357 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1358 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1359 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1360 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1361 			return ERR_PTR(-EINVAL);
1362 
1363 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1364 		break;
1365 	default:
1366 		return ERR_PTR(-EINVAL);
1367 	}
1368 
1369 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1370 				 attr->access_flags, mode);
1371 }
1372 
1373 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1374 				    u64 iova, int access_flags)
1375 {
1376 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1377 	struct mlx5_ib_mr *mr = NULL;
1378 	bool xlt_with_umr;
1379 	int err;
1380 
1381 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1382 	if (xlt_with_umr) {
1383 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1384 	} else {
1385 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1386 			umem, mkc, log_page_size, 0, iova);
1387 
1388 		mutex_lock(&dev->slow_path_mutex);
1389 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1390 		mutex_unlock(&dev->slow_path_mutex);
1391 	}
1392 	if (IS_ERR(mr)) {
1393 		ib_umem_release(umem);
1394 		return ERR_CAST(mr);
1395 	}
1396 
1397 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1398 
1399 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1400 
1401 	if (xlt_with_umr) {
1402 		/*
1403 		 * If the MR was created with reg_create then it will be
1404 		 * configured properly but left disabled. It is safe to go ahead
1405 		 * and configure it again via UMR while enabling it.
1406 		 */
1407 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1408 		if (err) {
1409 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1410 			return ERR_PTR(err);
1411 		}
1412 	}
1413 	return &mr->ibmr;
1414 }
1415 
1416 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1417 					u64 iova, int access_flags,
1418 					struct ib_udata *udata)
1419 {
1420 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1421 	struct ib_umem_odp *odp;
1422 	struct mlx5_ib_mr *mr;
1423 	int err;
1424 
1425 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1426 		return ERR_PTR(-EOPNOTSUPP);
1427 
1428 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1429 	if (err)
1430 		return ERR_PTR(err);
1431 	if (!start && length == U64_MAX) {
1432 		if (iova != 0)
1433 			return ERR_PTR(-EINVAL);
1434 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1435 			return ERR_PTR(-EINVAL);
1436 
1437 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1438 		if (IS_ERR(mr))
1439 			return ERR_CAST(mr);
1440 		return &mr->ibmr;
1441 	}
1442 
1443 	/* ODP requires xlt update via umr to work. */
1444 	if (!mlx5r_umr_can_load_pas(dev, length))
1445 		return ERR_PTR(-EINVAL);
1446 
1447 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1448 			      &mlx5_mn_ops);
1449 	if (IS_ERR(odp))
1450 		return ERR_CAST(odp);
1451 
1452 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1453 	if (IS_ERR(mr)) {
1454 		ib_umem_release(&odp->umem);
1455 		return ERR_CAST(mr);
1456 	}
1457 	xa_init(&mr->implicit_children);
1458 
1459 	odp->private = mr;
1460 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1461 	if (err)
1462 		goto err_dereg_mr;
1463 
1464 	err = mlx5_ib_init_odp_mr(mr);
1465 	if (err)
1466 		goto err_dereg_mr;
1467 	return &mr->ibmr;
1468 
1469 err_dereg_mr:
1470 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1471 	return ERR_PTR(err);
1472 }
1473 
1474 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1475 				  u64 iova, int access_flags,
1476 				  struct ib_udata *udata)
1477 {
1478 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1479 	struct ib_umem *umem;
1480 
1481 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1482 		return ERR_PTR(-EOPNOTSUPP);
1483 
1484 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1485 		    start, iova, length, access_flags);
1486 
1487 	if (access_flags & IB_ACCESS_ON_DEMAND)
1488 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1489 					  udata);
1490 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1491 	if (IS_ERR(umem))
1492 		return ERR_CAST(umem);
1493 	return create_real_mr(pd, umem, iova, access_flags);
1494 }
1495 
1496 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1497 {
1498 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1499 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1500 
1501 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1502 
1503 	if (!umem_dmabuf->sgt)
1504 		return;
1505 
1506 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1507 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1508 }
1509 
1510 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1511 	.allow_peer2peer = 1,
1512 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1513 };
1514 
1515 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1516 					 u64 length, u64 virt_addr,
1517 					 int fd, int access_flags,
1518 					 struct ib_udata *udata)
1519 {
1520 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1521 	struct mlx5_ib_mr *mr = NULL;
1522 	struct ib_umem_dmabuf *umem_dmabuf;
1523 	int err;
1524 
1525 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1526 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1527 		return ERR_PTR(-EOPNOTSUPP);
1528 
1529 	mlx5_ib_dbg(dev,
1530 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1531 		    offset, virt_addr, length, fd, access_flags);
1532 
1533 	/* dmabuf requires xlt update via umr to work. */
1534 	if (!mlx5r_umr_can_load_pas(dev, length))
1535 		return ERR_PTR(-EINVAL);
1536 
1537 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1538 					 access_flags,
1539 					 &mlx5_ib_dmabuf_attach_ops);
1540 	if (IS_ERR(umem_dmabuf)) {
1541 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1542 			    PTR_ERR(umem_dmabuf));
1543 		return ERR_CAST(umem_dmabuf);
1544 	}
1545 
1546 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1547 				access_flags);
1548 	if (IS_ERR(mr)) {
1549 		ib_umem_release(&umem_dmabuf->umem);
1550 		return ERR_CAST(mr);
1551 	}
1552 
1553 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1554 
1555 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1556 	umem_dmabuf->private = mr;
1557 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1558 	if (err)
1559 		goto err_dereg_mr;
1560 
1561 	err = mlx5_ib_init_dmabuf_mr(mr);
1562 	if (err)
1563 		goto err_dereg_mr;
1564 	return &mr->ibmr;
1565 
1566 err_dereg_mr:
1567 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1568 	return ERR_PTR(err);
1569 }
1570 
1571 /*
1572  * True if the change in access flags can be done via UMR, only some access
1573  * flags can be updated.
1574  */
1575 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1576 				     unsigned int current_access_flags,
1577 				     unsigned int target_access_flags)
1578 {
1579 	unsigned int diffs = current_access_flags ^ target_access_flags;
1580 
1581 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1582 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1583 		return false;
1584 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1585 				      target_access_flags);
1586 }
1587 
1588 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1589 				  struct ib_umem *new_umem,
1590 				  int new_access_flags, u64 iova,
1591 				  unsigned long *page_size)
1592 {
1593 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1594 
1595 	/* We only track the allocated sizes of MRs from the cache */
1596 	if (!mr->mmkey.cache_ent)
1597 		return false;
1598 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1599 		return false;
1600 
1601 	*page_size =
1602 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1603 	if (WARN_ON(!*page_size))
1604 		return false;
1605 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1606 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1607 }
1608 
1609 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1610 			 int access_flags, int flags, struct ib_umem *new_umem,
1611 			 u64 iova, unsigned long page_size)
1612 {
1613 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1614 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1615 	struct ib_umem *old_umem = mr->umem;
1616 	int err;
1617 
1618 	/*
1619 	 * To keep everything simple the MR is revoked before we start to mess
1620 	 * with it. This ensure the change is atomic relative to any use of the
1621 	 * MR.
1622 	 */
1623 	err = mlx5r_umr_revoke_mr(mr);
1624 	if (err)
1625 		return err;
1626 
1627 	if (flags & IB_MR_REREG_PD) {
1628 		mr->ibmr.pd = pd;
1629 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1630 	}
1631 	if (flags & IB_MR_REREG_ACCESS) {
1632 		mr->access_flags = access_flags;
1633 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1634 	}
1635 
1636 	mr->ibmr.iova = iova;
1637 	mr->ibmr.length = new_umem->length;
1638 	mr->page_shift = order_base_2(page_size);
1639 	mr->umem = new_umem;
1640 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1641 	if (err) {
1642 		/*
1643 		 * The MR is revoked at this point so there is no issue to free
1644 		 * new_umem.
1645 		 */
1646 		mr->umem = old_umem;
1647 		return err;
1648 	}
1649 
1650 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1651 	ib_umem_release(old_umem);
1652 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1653 	return 0;
1654 }
1655 
1656 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1657 				    u64 length, u64 iova, int new_access_flags,
1658 				    struct ib_pd *new_pd,
1659 				    struct ib_udata *udata)
1660 {
1661 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1662 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1663 	int err;
1664 
1665 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1666 		return ERR_PTR(-EOPNOTSUPP);
1667 
1668 	mlx5_ib_dbg(
1669 		dev,
1670 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1671 		start, iova, length, new_access_flags);
1672 
1673 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1674 		return ERR_PTR(-EOPNOTSUPP);
1675 
1676 	if (!(flags & IB_MR_REREG_ACCESS))
1677 		new_access_flags = mr->access_flags;
1678 	if (!(flags & IB_MR_REREG_PD))
1679 		new_pd = ib_mr->pd;
1680 
1681 	if (!(flags & IB_MR_REREG_TRANS)) {
1682 		struct ib_umem *umem;
1683 
1684 		/* Fast path for PD/access change */
1685 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1686 					     new_access_flags)) {
1687 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1688 							new_access_flags);
1689 			if (err)
1690 				return ERR_PTR(err);
1691 			return NULL;
1692 		}
1693 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1694 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1695 			goto recreate;
1696 
1697 		/*
1698 		 * Only one active MR can refer to a umem at one time, revoke
1699 		 * the old MR before assigning the umem to the new one.
1700 		 */
1701 		err = mlx5r_umr_revoke_mr(mr);
1702 		if (err)
1703 			return ERR_PTR(err);
1704 		umem = mr->umem;
1705 		mr->umem = NULL;
1706 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1707 
1708 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1709 				      new_access_flags);
1710 	}
1711 
1712 	/*
1713 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1714 	 * but the logic around releasing the umem is different
1715 	 */
1716 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1717 		goto recreate;
1718 
1719 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1720 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1721 		struct ib_umem *new_umem;
1722 		unsigned long page_size;
1723 
1724 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1725 				       new_access_flags);
1726 		if (IS_ERR(new_umem))
1727 			return ERR_CAST(new_umem);
1728 
1729 		/* Fast path for PAS change */
1730 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1731 					  &page_size)) {
1732 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1733 					    new_umem, iova, page_size);
1734 			if (err) {
1735 				ib_umem_release(new_umem);
1736 				return ERR_PTR(err);
1737 			}
1738 			return NULL;
1739 		}
1740 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1741 	}
1742 
1743 	/*
1744 	 * Everything else has no state we can preserve, just create a new MR
1745 	 * from scratch
1746 	 */
1747 recreate:
1748 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1749 				   new_access_flags, udata);
1750 }
1751 
1752 static int
1753 mlx5_alloc_priv_descs(struct ib_device *device,
1754 		      struct mlx5_ib_mr *mr,
1755 		      int ndescs,
1756 		      int desc_size)
1757 {
1758 	struct mlx5_ib_dev *dev = to_mdev(device);
1759 	struct device *ddev = &dev->mdev->pdev->dev;
1760 	int size = ndescs * desc_size;
1761 	int add_size;
1762 	int ret;
1763 
1764 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1765 
1766 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1767 	if (!mr->descs_alloc)
1768 		return -ENOMEM;
1769 
1770 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1771 
1772 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1773 	if (dma_mapping_error(ddev, mr->desc_map)) {
1774 		ret = -ENOMEM;
1775 		goto err;
1776 	}
1777 
1778 	return 0;
1779 err:
1780 	kfree(mr->descs_alloc);
1781 
1782 	return ret;
1783 }
1784 
1785 static void
1786 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1787 {
1788 	if (!mr->umem && mr->descs) {
1789 		struct ib_device *device = mr->ibmr.device;
1790 		int size = mr->max_descs * mr->desc_size;
1791 		struct mlx5_ib_dev *dev = to_mdev(device);
1792 
1793 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1794 				 DMA_TO_DEVICE);
1795 		kfree(mr->descs_alloc);
1796 		mr->descs = NULL;
1797 	}
1798 }
1799 
1800 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1801 				    struct mlx5_ib_mr *mr)
1802 {
1803 	struct mlx5_mkey_cache *cache = &dev->cache;
1804 	struct mlx5_cache_ent *ent;
1805 	int ret;
1806 
1807 	if (mr->mmkey.cache_ent) {
1808 		xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1809 		mr->mmkey.cache_ent->in_use--;
1810 		goto end;
1811 	}
1812 
1813 	mutex_lock(&cache->rb_lock);
1814 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1815 	if (ent) {
1816 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1817 			if (ent->disabled) {
1818 				mutex_unlock(&cache->rb_lock);
1819 				return -EOPNOTSUPP;
1820 			}
1821 			mr->mmkey.cache_ent = ent;
1822 			xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1823 			mutex_unlock(&cache->rb_lock);
1824 			goto end;
1825 		}
1826 	}
1827 
1828 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1829 	mutex_unlock(&cache->rb_lock);
1830 	if (IS_ERR(ent))
1831 		return PTR_ERR(ent);
1832 
1833 	mr->mmkey.cache_ent = ent;
1834 	xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1835 
1836 end:
1837 	ret = push_mkey_locked(mr->mmkey.cache_ent, false,
1838 			       xa_mk_value(mr->mmkey.key));
1839 	xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1840 	return ret;
1841 }
1842 
1843 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1844 {
1845 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1846 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1847 	int rc;
1848 
1849 	/*
1850 	 * Any async use of the mr must hold the refcount, once the refcount
1851 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1852 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1853 	 */
1854 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1855 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1856 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1857 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1858 
1859 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1860 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1861 			   mr->sig, NULL, GFP_KERNEL);
1862 
1863 		if (mr->mtt_mr) {
1864 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1865 			if (rc)
1866 				return rc;
1867 			mr->mtt_mr = NULL;
1868 		}
1869 		if (mr->klm_mr) {
1870 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1871 			if (rc)
1872 				return rc;
1873 			mr->klm_mr = NULL;
1874 		}
1875 
1876 		if (mlx5_core_destroy_psv(dev->mdev,
1877 					  mr->sig->psv_memory.psv_idx))
1878 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1879 				     mr->sig->psv_memory.psv_idx);
1880 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1881 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1882 				     mr->sig->psv_wire.psv_idx);
1883 		kfree(mr->sig);
1884 		mr->sig = NULL;
1885 	}
1886 
1887 	/* Stop DMA */
1888 	if (mr->umem && mlx5r_umr_can_load_pas(dev, mr->umem->length))
1889 		if (mlx5r_umr_revoke_mr(mr) ||
1890 		    cache_ent_find_and_store(dev, mr))
1891 			mr->mmkey.cache_ent = NULL;
1892 
1893 	if (!mr->mmkey.cache_ent) {
1894 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1895 		if (rc)
1896 			return rc;
1897 	}
1898 
1899 	if (mr->umem) {
1900 		bool is_odp = is_odp_mr(mr);
1901 
1902 		if (!is_odp)
1903 			atomic_sub(ib_umem_num_pages(mr->umem),
1904 				   &dev->mdev->priv.reg_pages);
1905 		ib_umem_release(mr->umem);
1906 		if (is_odp)
1907 			mlx5_ib_free_odp_mr(mr);
1908 	}
1909 
1910 	if (!mr->mmkey.cache_ent)
1911 		mlx5_free_priv_descs(mr);
1912 
1913 	kfree(mr);
1914 	return 0;
1915 }
1916 
1917 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1918 				   int access_mode, int page_shift)
1919 {
1920 	void *mkc;
1921 
1922 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1923 
1924 	/* This is only used from the kernel, so setting the PD is OK. */
1925 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1926 	MLX5_SET(mkc, mkc, free, 1);
1927 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1928 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1929 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1930 	MLX5_SET(mkc, mkc, umr_en, 1);
1931 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1932 }
1933 
1934 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1935 				  int ndescs, int desc_size, int page_shift,
1936 				  int access_mode, u32 *in, int inlen)
1937 {
1938 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1939 	int err;
1940 
1941 	mr->access_mode = access_mode;
1942 	mr->desc_size = desc_size;
1943 	mr->max_descs = ndescs;
1944 
1945 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1946 	if (err)
1947 		return err;
1948 
1949 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1950 
1951 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1952 	if (err)
1953 		goto err_free_descs;
1954 
1955 	mr->mmkey.type = MLX5_MKEY_MR;
1956 	mr->ibmr.lkey = mr->mmkey.key;
1957 	mr->ibmr.rkey = mr->mmkey.key;
1958 
1959 	return 0;
1960 
1961 err_free_descs:
1962 	mlx5_free_priv_descs(mr);
1963 	return err;
1964 }
1965 
1966 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1967 				u32 max_num_sg, u32 max_num_meta_sg,
1968 				int desc_size, int access_mode)
1969 {
1970 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1971 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1972 	int page_shift = 0;
1973 	struct mlx5_ib_mr *mr;
1974 	u32 *in;
1975 	int err;
1976 
1977 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1978 	if (!mr)
1979 		return ERR_PTR(-ENOMEM);
1980 
1981 	mr->ibmr.pd = pd;
1982 	mr->ibmr.device = pd->device;
1983 
1984 	in = kzalloc(inlen, GFP_KERNEL);
1985 	if (!in) {
1986 		err = -ENOMEM;
1987 		goto err_free;
1988 	}
1989 
1990 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1991 		page_shift = PAGE_SHIFT;
1992 
1993 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1994 				     access_mode, in, inlen);
1995 	if (err)
1996 		goto err_free_in;
1997 
1998 	mr->umem = NULL;
1999 	kfree(in);
2000 
2001 	return mr;
2002 
2003 err_free_in:
2004 	kfree(in);
2005 err_free:
2006 	kfree(mr);
2007 	return ERR_PTR(err);
2008 }
2009 
2010 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2011 				    int ndescs, u32 *in, int inlen)
2012 {
2013 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2014 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2015 				      inlen);
2016 }
2017 
2018 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2019 				    int ndescs, u32 *in, int inlen)
2020 {
2021 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2022 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2023 }
2024 
2025 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2026 				      int max_num_sg, int max_num_meta_sg,
2027 				      u32 *in, int inlen)
2028 {
2029 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2030 	u32 psv_index[2];
2031 	void *mkc;
2032 	int err;
2033 
2034 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2035 	if (!mr->sig)
2036 		return -ENOMEM;
2037 
2038 	/* create mem & wire PSVs */
2039 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2040 	if (err)
2041 		goto err_free_sig;
2042 
2043 	mr->sig->psv_memory.psv_idx = psv_index[0];
2044 	mr->sig->psv_wire.psv_idx = psv_index[1];
2045 
2046 	mr->sig->sig_status_checked = true;
2047 	mr->sig->sig_err_exists = false;
2048 	/* Next UMR, Arm SIGERR */
2049 	++mr->sig->sigerr_count;
2050 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2051 					 sizeof(struct mlx5_klm),
2052 					 MLX5_MKC_ACCESS_MODE_KLMS);
2053 	if (IS_ERR(mr->klm_mr)) {
2054 		err = PTR_ERR(mr->klm_mr);
2055 		goto err_destroy_psv;
2056 	}
2057 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2058 					 sizeof(struct mlx5_mtt),
2059 					 MLX5_MKC_ACCESS_MODE_MTT);
2060 	if (IS_ERR(mr->mtt_mr)) {
2061 		err = PTR_ERR(mr->mtt_mr);
2062 		goto err_free_klm_mr;
2063 	}
2064 
2065 	/* Set bsf descriptors for mkey */
2066 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2067 	MLX5_SET(mkc, mkc, bsf_en, 1);
2068 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2069 
2070 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2071 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2072 	if (err)
2073 		goto err_free_mtt_mr;
2074 
2075 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2076 			      mr->sig, GFP_KERNEL));
2077 	if (err)
2078 		goto err_free_descs;
2079 	return 0;
2080 
2081 err_free_descs:
2082 	destroy_mkey(dev, mr);
2083 	mlx5_free_priv_descs(mr);
2084 err_free_mtt_mr:
2085 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2086 	mr->mtt_mr = NULL;
2087 err_free_klm_mr:
2088 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2089 	mr->klm_mr = NULL;
2090 err_destroy_psv:
2091 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2092 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2093 			     mr->sig->psv_memory.psv_idx);
2094 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2095 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2096 			     mr->sig->psv_wire.psv_idx);
2097 err_free_sig:
2098 	kfree(mr->sig);
2099 
2100 	return err;
2101 }
2102 
2103 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2104 					enum ib_mr_type mr_type, u32 max_num_sg,
2105 					u32 max_num_meta_sg)
2106 {
2107 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2108 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2109 	int ndescs = ALIGN(max_num_sg, 4);
2110 	struct mlx5_ib_mr *mr;
2111 	u32 *in;
2112 	int err;
2113 
2114 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2115 	if (!mr)
2116 		return ERR_PTR(-ENOMEM);
2117 
2118 	in = kzalloc(inlen, GFP_KERNEL);
2119 	if (!in) {
2120 		err = -ENOMEM;
2121 		goto err_free;
2122 	}
2123 
2124 	mr->ibmr.device = pd->device;
2125 	mr->umem = NULL;
2126 
2127 	switch (mr_type) {
2128 	case IB_MR_TYPE_MEM_REG:
2129 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2130 		break;
2131 	case IB_MR_TYPE_SG_GAPS:
2132 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2133 		break;
2134 	case IB_MR_TYPE_INTEGRITY:
2135 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2136 						 max_num_meta_sg, in, inlen);
2137 		break;
2138 	default:
2139 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2140 		err = -EINVAL;
2141 	}
2142 
2143 	if (err)
2144 		goto err_free_in;
2145 
2146 	kfree(in);
2147 
2148 	return &mr->ibmr;
2149 
2150 err_free_in:
2151 	kfree(in);
2152 err_free:
2153 	kfree(mr);
2154 	return ERR_PTR(err);
2155 }
2156 
2157 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2158 			       u32 max_num_sg)
2159 {
2160 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2161 }
2162 
2163 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2164 					 u32 max_num_sg, u32 max_num_meta_sg)
2165 {
2166 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2167 				  max_num_meta_sg);
2168 }
2169 
2170 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2171 {
2172 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2173 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2174 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2175 	unsigned int ndescs;
2176 	u32 *in = NULL;
2177 	void *mkc;
2178 	int err;
2179 	struct mlx5_ib_alloc_mw req = {};
2180 	struct {
2181 		__u32	comp_mask;
2182 		__u32	response_length;
2183 	} resp = {};
2184 
2185 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2186 	if (err)
2187 		return err;
2188 
2189 	if (req.comp_mask || req.reserved1 || req.reserved2)
2190 		return -EOPNOTSUPP;
2191 
2192 	if (udata->inlen > sizeof(req) &&
2193 	    !ib_is_udata_cleared(udata, sizeof(req),
2194 				 udata->inlen - sizeof(req)))
2195 		return -EOPNOTSUPP;
2196 
2197 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2198 
2199 	in = kzalloc(inlen, GFP_KERNEL);
2200 	if (!in)
2201 		return -ENOMEM;
2202 
2203 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2204 
2205 	MLX5_SET(mkc, mkc, free, 1);
2206 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2207 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2208 	MLX5_SET(mkc, mkc, umr_en, 1);
2209 	MLX5_SET(mkc, mkc, lr, 1);
2210 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2211 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2212 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2213 
2214 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2215 	if (err)
2216 		goto free;
2217 
2218 	mw->mmkey.type = MLX5_MKEY_MW;
2219 	ibmw->rkey = mw->mmkey.key;
2220 	mw->mmkey.ndescs = ndescs;
2221 
2222 	resp.response_length =
2223 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2224 	if (resp.response_length) {
2225 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2226 		if (err)
2227 			goto free_mkey;
2228 	}
2229 
2230 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2231 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2232 		if (err)
2233 			goto free_mkey;
2234 	}
2235 
2236 	kfree(in);
2237 	return 0;
2238 
2239 free_mkey:
2240 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2241 free:
2242 	kfree(in);
2243 	return err;
2244 }
2245 
2246 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2247 {
2248 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2249 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2250 
2251 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2252 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2253 		/*
2254 		 * pagefault_single_data_segment() may be accessing mmw
2255 		 * if the user bound an ODP MR to this MW.
2256 		 */
2257 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2258 
2259 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2260 }
2261 
2262 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2263 			    struct ib_mr_status *mr_status)
2264 {
2265 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2266 	int ret = 0;
2267 
2268 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2269 		pr_err("Invalid status check mask\n");
2270 		ret = -EINVAL;
2271 		goto done;
2272 	}
2273 
2274 	mr_status->fail_status = 0;
2275 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2276 		if (!mmr->sig) {
2277 			ret = -EINVAL;
2278 			pr_err("signature status check requested on a non-signature enabled MR\n");
2279 			goto done;
2280 		}
2281 
2282 		mmr->sig->sig_status_checked = true;
2283 		if (!mmr->sig->sig_err_exists)
2284 			goto done;
2285 
2286 		if (ibmr->lkey == mmr->sig->err_item.key)
2287 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2288 			       sizeof(mr_status->sig_err));
2289 		else {
2290 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2291 			mr_status->sig_err.sig_err_offset = 0;
2292 			mr_status->sig_err.key = mmr->sig->err_item.key;
2293 		}
2294 
2295 		mmr->sig->sig_err_exists = false;
2296 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2297 	}
2298 
2299 done:
2300 	return ret;
2301 }
2302 
2303 static int
2304 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2305 			int data_sg_nents, unsigned int *data_sg_offset,
2306 			struct scatterlist *meta_sg, int meta_sg_nents,
2307 			unsigned int *meta_sg_offset)
2308 {
2309 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2310 	unsigned int sg_offset = 0;
2311 	int n = 0;
2312 
2313 	mr->meta_length = 0;
2314 	if (data_sg_nents == 1) {
2315 		n++;
2316 		mr->mmkey.ndescs = 1;
2317 		if (data_sg_offset)
2318 			sg_offset = *data_sg_offset;
2319 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2320 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2321 		if (meta_sg_nents == 1) {
2322 			n++;
2323 			mr->meta_ndescs = 1;
2324 			if (meta_sg_offset)
2325 				sg_offset = *meta_sg_offset;
2326 			else
2327 				sg_offset = 0;
2328 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2329 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2330 		}
2331 		ibmr->length = mr->data_length + mr->meta_length;
2332 	}
2333 
2334 	return n;
2335 }
2336 
2337 static int
2338 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2339 		   struct scatterlist *sgl,
2340 		   unsigned short sg_nents,
2341 		   unsigned int *sg_offset_p,
2342 		   struct scatterlist *meta_sgl,
2343 		   unsigned short meta_sg_nents,
2344 		   unsigned int *meta_sg_offset_p)
2345 {
2346 	struct scatterlist *sg = sgl;
2347 	struct mlx5_klm *klms = mr->descs;
2348 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2349 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2350 	int i, j = 0;
2351 
2352 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2353 	mr->ibmr.length = 0;
2354 
2355 	for_each_sg(sgl, sg, sg_nents, i) {
2356 		if (unlikely(i >= mr->max_descs))
2357 			break;
2358 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2359 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2360 		klms[i].key = cpu_to_be32(lkey);
2361 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2362 
2363 		sg_offset = 0;
2364 	}
2365 
2366 	if (sg_offset_p)
2367 		*sg_offset_p = sg_offset;
2368 
2369 	mr->mmkey.ndescs = i;
2370 	mr->data_length = mr->ibmr.length;
2371 
2372 	if (meta_sg_nents) {
2373 		sg = meta_sgl;
2374 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2375 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2376 			if (unlikely(i + j >= mr->max_descs))
2377 				break;
2378 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2379 						     sg_offset);
2380 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2381 							 sg_offset);
2382 			klms[i + j].key = cpu_to_be32(lkey);
2383 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2384 
2385 			sg_offset = 0;
2386 		}
2387 		if (meta_sg_offset_p)
2388 			*meta_sg_offset_p = sg_offset;
2389 
2390 		mr->meta_ndescs = j;
2391 		mr->meta_length = mr->ibmr.length - mr->data_length;
2392 	}
2393 
2394 	return i + j;
2395 }
2396 
2397 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2398 {
2399 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2400 	__be64 *descs;
2401 
2402 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2403 		return -ENOMEM;
2404 
2405 	descs = mr->descs;
2406 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2407 
2408 	return 0;
2409 }
2410 
2411 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2412 {
2413 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2414 	__be64 *descs;
2415 
2416 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2417 		return -ENOMEM;
2418 
2419 	descs = mr->descs;
2420 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2421 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2422 
2423 	return 0;
2424 }
2425 
2426 static int
2427 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2428 			 int data_sg_nents, unsigned int *data_sg_offset,
2429 			 struct scatterlist *meta_sg, int meta_sg_nents,
2430 			 unsigned int *meta_sg_offset)
2431 {
2432 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2433 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2434 	int n;
2435 
2436 	pi_mr->mmkey.ndescs = 0;
2437 	pi_mr->meta_ndescs = 0;
2438 	pi_mr->meta_length = 0;
2439 
2440 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2441 				   pi_mr->desc_size * pi_mr->max_descs,
2442 				   DMA_TO_DEVICE);
2443 
2444 	pi_mr->ibmr.page_size = ibmr->page_size;
2445 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2446 			   mlx5_set_page);
2447 	if (n != data_sg_nents)
2448 		return n;
2449 
2450 	pi_mr->data_iova = pi_mr->ibmr.iova;
2451 	pi_mr->data_length = pi_mr->ibmr.length;
2452 	pi_mr->ibmr.length = pi_mr->data_length;
2453 	ibmr->length = pi_mr->data_length;
2454 
2455 	if (meta_sg_nents) {
2456 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2457 		u64 iova = pi_mr->data_iova;
2458 
2459 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2460 				    meta_sg_offset, mlx5_set_page_pi);
2461 
2462 		pi_mr->meta_length = pi_mr->ibmr.length;
2463 		/*
2464 		 * PI address for the HW is the offset of the metadata address
2465 		 * relative to the first data page address.
2466 		 * It equals to first data page address + size of data pages +
2467 		 * metadata offset at the first metadata page
2468 		 */
2469 		pi_mr->pi_iova = (iova & page_mask) +
2470 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2471 				 (pi_mr->ibmr.iova & ~page_mask);
2472 		/*
2473 		 * In order to use one MTT MR for data and metadata, we register
2474 		 * also the gaps between the end of the data and the start of
2475 		 * the metadata (the sig MR will verify that the HW will access
2476 		 * to right addresses). This mapping is safe because we use
2477 		 * internal mkey for the registration.
2478 		 */
2479 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2480 		pi_mr->ibmr.iova = iova;
2481 		ibmr->length += pi_mr->meta_length;
2482 	}
2483 
2484 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2485 				      pi_mr->desc_size * pi_mr->max_descs,
2486 				      DMA_TO_DEVICE);
2487 
2488 	return n;
2489 }
2490 
2491 static int
2492 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2493 			 int data_sg_nents, unsigned int *data_sg_offset,
2494 			 struct scatterlist *meta_sg, int meta_sg_nents,
2495 			 unsigned int *meta_sg_offset)
2496 {
2497 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2498 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2499 	int n;
2500 
2501 	pi_mr->mmkey.ndescs = 0;
2502 	pi_mr->meta_ndescs = 0;
2503 	pi_mr->meta_length = 0;
2504 
2505 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2506 				   pi_mr->desc_size * pi_mr->max_descs,
2507 				   DMA_TO_DEVICE);
2508 
2509 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2510 			       meta_sg, meta_sg_nents, meta_sg_offset);
2511 
2512 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2513 				      pi_mr->desc_size * pi_mr->max_descs,
2514 				      DMA_TO_DEVICE);
2515 
2516 	/* This is zero-based memory region */
2517 	pi_mr->data_iova = 0;
2518 	pi_mr->ibmr.iova = 0;
2519 	pi_mr->pi_iova = pi_mr->data_length;
2520 	ibmr->length = pi_mr->ibmr.length;
2521 
2522 	return n;
2523 }
2524 
2525 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2526 			 int data_sg_nents, unsigned int *data_sg_offset,
2527 			 struct scatterlist *meta_sg, int meta_sg_nents,
2528 			 unsigned int *meta_sg_offset)
2529 {
2530 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2531 	struct mlx5_ib_mr *pi_mr = NULL;
2532 	int n;
2533 
2534 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2535 
2536 	mr->mmkey.ndescs = 0;
2537 	mr->data_length = 0;
2538 	mr->data_iova = 0;
2539 	mr->meta_ndescs = 0;
2540 	mr->pi_iova = 0;
2541 	/*
2542 	 * As a performance optimization, if possible, there is no need to
2543 	 * perform UMR operation to register the data/metadata buffers.
2544 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2545 	 * Fallback to UMR only in case of a failure.
2546 	 */
2547 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2548 				    data_sg_offset, meta_sg, meta_sg_nents,
2549 				    meta_sg_offset);
2550 	if (n == data_sg_nents + meta_sg_nents)
2551 		goto out;
2552 	/*
2553 	 * As a performance optimization, if possible, there is no need to map
2554 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2555 	 * descriptors and fallback to KLM only in case of a failure.
2556 	 * It's more efficient for the HW to work with MTT descriptors
2557 	 * (especially in high load).
2558 	 * Use KLM (indirect access) only if it's mandatory.
2559 	 */
2560 	pi_mr = mr->mtt_mr;
2561 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2562 				     data_sg_offset, meta_sg, meta_sg_nents,
2563 				     meta_sg_offset);
2564 	if (n == data_sg_nents + meta_sg_nents)
2565 		goto out;
2566 
2567 	pi_mr = mr->klm_mr;
2568 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2569 				     data_sg_offset, meta_sg, meta_sg_nents,
2570 				     meta_sg_offset);
2571 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2572 		return -ENOMEM;
2573 
2574 out:
2575 	/* This is zero-based memory region */
2576 	ibmr->iova = 0;
2577 	mr->pi_mr = pi_mr;
2578 	if (pi_mr)
2579 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2580 	else
2581 		ibmr->sig_attrs->meta_length = mr->meta_length;
2582 
2583 	return 0;
2584 }
2585 
2586 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2587 		      unsigned int *sg_offset)
2588 {
2589 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2590 	int n;
2591 
2592 	mr->mmkey.ndescs = 0;
2593 
2594 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2595 				   mr->desc_size * mr->max_descs,
2596 				   DMA_TO_DEVICE);
2597 
2598 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2599 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2600 				       NULL);
2601 	else
2602 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2603 				mlx5_set_page);
2604 
2605 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2606 				      mr->desc_size * mr->max_descs,
2607 				      DMA_TO_DEVICE);
2608 
2609 	return n;
2610 }
2611