xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision 63769819079d87dc322fefaf981589e227de2978)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 #include <rdma/ib_verbs.h>
45 #include "dm.h"
46 #include "mlx5_ib.h"
47 #include "umr.h"
48 
49 enum {
50 	MAX_PENDING_REG_MR = 8,
51 };
52 
53 #define MLX5_UMR_ALIGN 2048
54 
55 static void
56 create_mkey_callback(int status, struct mlx5_async_work *context);
57 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
58 				     u64 iova, int access_flags,
59 				     unsigned int page_size, bool populate);
60 
61 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
62 					  struct ib_pd *pd)
63 {
64 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
65 
66 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
67 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
68 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
69 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
70 	MLX5_SET(mkc, mkc, lr, 1);
71 
72 	if ((acc & IB_ACCESS_RELAXED_ORDERING) &&
73 	    pcie_relaxed_ordering_enabled(dev->mdev->pdev)) {
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
75 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
76 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
77 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
78 	}
79 
80 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
81 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
82 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
83 }
84 
85 static void assign_mkey_variant(struct mlx5_ib_dev *dev,
86 				struct mlx5_ib_mkey *mkey, u32 *in)
87 {
88 	u8 key = atomic_inc_return(&dev->mkey_var);
89 	void *mkc;
90 
91 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 	MLX5_SET(mkc, mkc, mkey_7_0, key);
93 	mkey->key = key;
94 }
95 
96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98 {
99 	int ret;
100 
101 	assign_mkey_variant(dev, mkey, in);
102 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 	if (!ret)
104 		init_waitqueue_head(&mkey->wait);
105 
106 	return ret;
107 }
108 
109 static int
110 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
111 		       struct mlx5_ib_mkey *mkey,
112 		       struct mlx5_async_ctx *async_ctx,
113 		       u32 *in, int inlen, u32 *out, int outlen,
114 		       struct mlx5_async_work *context)
115 {
116 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
117 	assign_mkey_variant(dev, mkey, in);
118 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
119 				create_mkey_callback, context);
120 }
121 
122 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
123 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
124 
125 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
126 {
127 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
128 
129 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
130 }
131 
132 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
133 {
134 	if (status == -ENXIO) /* core driver is not available */
135 		return;
136 
137 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
138 	if (status != -EREMOTEIO) /* driver specific failure */
139 		return;
140 
141 	/* Failed in FW, print cmd out failure details */
142 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
143 }
144 
145 static void create_mkey_callback(int status, struct mlx5_async_work *context)
146 {
147 	struct mlx5_ib_mr *mr =
148 		container_of(context, struct mlx5_ib_mr, cb_work);
149 	struct mlx5_cache_ent *ent = mr->cache_ent;
150 	struct mlx5_ib_dev *dev = ent->dev;
151 	unsigned long flags;
152 
153 	if (status) {
154 		create_mkey_warn(dev, status, mr->out);
155 		kfree(mr);
156 		spin_lock_irqsave(&ent->lock, flags);
157 		ent->pending--;
158 		WRITE_ONCE(dev->fill_delay, 1);
159 		spin_unlock_irqrestore(&ent->lock, flags);
160 		mod_timer(&dev->delay_timer, jiffies + HZ);
161 		return;
162 	}
163 
164 	mr->mmkey.type = MLX5_MKEY_MR;
165 	mr->mmkey.key |= mlx5_idx_to_mkey(
166 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
167 	init_waitqueue_head(&mr->mmkey.wait);
168 
169 	WRITE_ONCE(dev->cache.last_add, jiffies);
170 
171 	spin_lock_irqsave(&ent->lock, flags);
172 	list_add_tail(&mr->list, &ent->head);
173 	ent->available_mrs++;
174 	ent->total_mrs++;
175 	/* If we are doing fill_to_high_water then keep going. */
176 	queue_adjust_cache_locked(ent);
177 	ent->pending--;
178 	spin_unlock_irqrestore(&ent->lock, flags);
179 }
180 
181 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
182 {
183 	int ret = 0;
184 
185 	switch (access_mode) {
186 	case MLX5_MKC_ACCESS_MODE_MTT:
187 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
188 						   sizeof(struct mlx5_mtt));
189 		break;
190 	case MLX5_MKC_ACCESS_MODE_KSM:
191 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
192 						   sizeof(struct mlx5_klm));
193 		break;
194 	default:
195 		WARN_ON(1);
196 	}
197 	return ret;
198 }
199 
200 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
201 {
202 	struct mlx5_ib_mr *mr;
203 
204 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
205 	if (!mr)
206 		return NULL;
207 	mr->cache_ent = ent;
208 
209 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
210 	MLX5_SET(mkc, mkc, free, 1);
211 	MLX5_SET(mkc, mkc, umr_en, 1);
212 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
213 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
214 
215 	MLX5_SET(mkc, mkc, translations_octword_size,
216 		 get_mkc_octo_size(ent->access_mode, ent->ndescs));
217 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
218 	return mr;
219 }
220 
221 /* Asynchronously schedule new MRs to be populated in the cache. */
222 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
223 {
224 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
225 	struct mlx5_ib_mr *mr;
226 	void *mkc;
227 	u32 *in;
228 	int err = 0;
229 	int i;
230 
231 	in = kzalloc(inlen, GFP_KERNEL);
232 	if (!in)
233 		return -ENOMEM;
234 
235 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
236 	for (i = 0; i < num; i++) {
237 		mr = alloc_cache_mr(ent, mkc);
238 		if (!mr) {
239 			err = -ENOMEM;
240 			break;
241 		}
242 		spin_lock_irq(&ent->lock);
243 		if (ent->pending >= MAX_PENDING_REG_MR) {
244 			err = -EAGAIN;
245 			spin_unlock_irq(&ent->lock);
246 			kfree(mr);
247 			break;
248 		}
249 		ent->pending++;
250 		spin_unlock_irq(&ent->lock);
251 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
252 					     &ent->dev->async_ctx, in, inlen,
253 					     mr->out, sizeof(mr->out),
254 					     &mr->cb_work);
255 		if (err) {
256 			spin_lock_irq(&ent->lock);
257 			ent->pending--;
258 			spin_unlock_irq(&ent->lock);
259 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
260 			kfree(mr);
261 			break;
262 		}
263 	}
264 
265 	kfree(in);
266 	return err;
267 }
268 
269 /* Synchronously create a MR in the cache */
270 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
271 {
272 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
273 	struct mlx5_ib_mr *mr;
274 	void *mkc;
275 	u32 *in;
276 	int err;
277 
278 	in = kzalloc(inlen, GFP_KERNEL);
279 	if (!in)
280 		return ERR_PTR(-ENOMEM);
281 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
282 
283 	mr = alloc_cache_mr(ent, mkc);
284 	if (!mr) {
285 		err = -ENOMEM;
286 		goto free_in;
287 	}
288 
289 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey.key, in, inlen);
290 	if (err)
291 		goto free_mr;
292 
293 	init_waitqueue_head(&mr->mmkey.wait);
294 	mr->mmkey.type = MLX5_MKEY_MR;
295 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
296 	spin_lock_irq(&ent->lock);
297 	ent->total_mrs++;
298 	spin_unlock_irq(&ent->lock);
299 	kfree(in);
300 	return mr;
301 free_mr:
302 	kfree(mr);
303 free_in:
304 	kfree(in);
305 	return ERR_PTR(err);
306 }
307 
308 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
309 {
310 	struct mlx5_ib_mr *mr;
311 
312 	lockdep_assert_held(&ent->lock);
313 	if (list_empty(&ent->head))
314 		return;
315 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
316 	list_del(&mr->list);
317 	ent->available_mrs--;
318 	ent->total_mrs--;
319 	spin_unlock_irq(&ent->lock);
320 	mlx5_core_destroy_mkey(ent->dev->mdev, mr->mmkey.key);
321 	kfree(mr);
322 	spin_lock_irq(&ent->lock);
323 }
324 
325 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
326 				bool limit_fill)
327 {
328 	int err;
329 
330 	lockdep_assert_held(&ent->lock);
331 
332 	while (true) {
333 		if (limit_fill)
334 			target = ent->limit * 2;
335 		if (target == ent->available_mrs + ent->pending)
336 			return 0;
337 		if (target > ent->available_mrs + ent->pending) {
338 			u32 todo = target - (ent->available_mrs + ent->pending);
339 
340 			spin_unlock_irq(&ent->lock);
341 			err = add_keys(ent, todo);
342 			if (err == -EAGAIN)
343 				usleep_range(3000, 5000);
344 			spin_lock_irq(&ent->lock);
345 			if (err) {
346 				if (err != -EAGAIN)
347 					return err;
348 			} else
349 				return 0;
350 		} else {
351 			remove_cache_mr_locked(ent);
352 		}
353 	}
354 }
355 
356 static ssize_t size_write(struct file *filp, const char __user *buf,
357 			  size_t count, loff_t *pos)
358 {
359 	struct mlx5_cache_ent *ent = filp->private_data;
360 	u32 target;
361 	int err;
362 
363 	err = kstrtou32_from_user(buf, count, 0, &target);
364 	if (err)
365 		return err;
366 
367 	/*
368 	 * Target is the new value of total_mrs the user requests, however we
369 	 * cannot free MRs that are in use. Compute the target value for
370 	 * available_mrs.
371 	 */
372 	spin_lock_irq(&ent->lock);
373 	if (target < ent->total_mrs - ent->available_mrs) {
374 		err = -EINVAL;
375 		goto err_unlock;
376 	}
377 	target = target - (ent->total_mrs - ent->available_mrs);
378 	if (target < ent->limit || target > ent->limit*2) {
379 		err = -EINVAL;
380 		goto err_unlock;
381 	}
382 	err = resize_available_mrs(ent, target, false);
383 	if (err)
384 		goto err_unlock;
385 	spin_unlock_irq(&ent->lock);
386 
387 	return count;
388 
389 err_unlock:
390 	spin_unlock_irq(&ent->lock);
391 	return err;
392 }
393 
394 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
395 			 loff_t *pos)
396 {
397 	struct mlx5_cache_ent *ent = filp->private_data;
398 	char lbuf[20];
399 	int err;
400 
401 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
402 	if (err < 0)
403 		return err;
404 
405 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
406 }
407 
408 static const struct file_operations size_fops = {
409 	.owner	= THIS_MODULE,
410 	.open	= simple_open,
411 	.write	= size_write,
412 	.read	= size_read,
413 };
414 
415 static ssize_t limit_write(struct file *filp, const char __user *buf,
416 			   size_t count, loff_t *pos)
417 {
418 	struct mlx5_cache_ent *ent = filp->private_data;
419 	u32 var;
420 	int err;
421 
422 	err = kstrtou32_from_user(buf, count, 0, &var);
423 	if (err)
424 		return err;
425 
426 	/*
427 	 * Upon set we immediately fill the cache to high water mark implied by
428 	 * the limit.
429 	 */
430 	spin_lock_irq(&ent->lock);
431 	ent->limit = var;
432 	err = resize_available_mrs(ent, 0, true);
433 	spin_unlock_irq(&ent->lock);
434 	if (err)
435 		return err;
436 	return count;
437 }
438 
439 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
440 			  loff_t *pos)
441 {
442 	struct mlx5_cache_ent *ent = filp->private_data;
443 	char lbuf[20];
444 	int err;
445 
446 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
447 	if (err < 0)
448 		return err;
449 
450 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
451 }
452 
453 static const struct file_operations limit_fops = {
454 	.owner	= THIS_MODULE,
455 	.open	= simple_open,
456 	.write	= limit_write,
457 	.read	= limit_read,
458 };
459 
460 static bool someone_adding(struct mlx5_mr_cache *cache)
461 {
462 	unsigned int i;
463 
464 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
465 		struct mlx5_cache_ent *ent = &cache->ent[i];
466 		bool ret;
467 
468 		spin_lock_irq(&ent->lock);
469 		ret = ent->available_mrs < ent->limit;
470 		spin_unlock_irq(&ent->lock);
471 		if (ret)
472 			return true;
473 	}
474 	return false;
475 }
476 
477 /*
478  * Check if the bucket is outside the high/low water mark and schedule an async
479  * update. The cache refill has hysteresis, once the low water mark is hit it is
480  * refilled up to the high mark.
481  */
482 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
483 {
484 	lockdep_assert_held(&ent->lock);
485 
486 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
487 		return;
488 	if (ent->available_mrs < ent->limit) {
489 		ent->fill_to_high_water = true;
490 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
491 	} else if (ent->fill_to_high_water &&
492 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
493 		/*
494 		 * Once we start populating due to hitting a low water mark
495 		 * continue until we pass the high water mark.
496 		 */
497 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
498 	} else if (ent->available_mrs == 2 * ent->limit) {
499 		ent->fill_to_high_water = false;
500 	} else if (ent->available_mrs > 2 * ent->limit) {
501 		/* Queue deletion of excess entries */
502 		ent->fill_to_high_water = false;
503 		if (ent->pending)
504 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
505 					   msecs_to_jiffies(1000));
506 		else
507 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
508 	}
509 }
510 
511 static void __cache_work_func(struct mlx5_cache_ent *ent)
512 {
513 	struct mlx5_ib_dev *dev = ent->dev;
514 	struct mlx5_mr_cache *cache = &dev->cache;
515 	int err;
516 
517 	spin_lock_irq(&ent->lock);
518 	if (ent->disabled)
519 		goto out;
520 
521 	if (ent->fill_to_high_water &&
522 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
523 	    !READ_ONCE(dev->fill_delay)) {
524 		spin_unlock_irq(&ent->lock);
525 		err = add_keys(ent, 1);
526 		spin_lock_irq(&ent->lock);
527 		if (ent->disabled)
528 			goto out;
529 		if (err) {
530 			/*
531 			 * EAGAIN only happens if pending is positive, so we
532 			 * will be rescheduled from reg_mr_callback(). The only
533 			 * failure path here is ENOMEM.
534 			 */
535 			if (err != -EAGAIN) {
536 				mlx5_ib_warn(
537 					dev,
538 					"command failed order %d, err %d\n",
539 					ent->order, err);
540 				queue_delayed_work(cache->wq, &ent->dwork,
541 						   msecs_to_jiffies(1000));
542 			}
543 		}
544 	} else if (ent->available_mrs > 2 * ent->limit) {
545 		bool need_delay;
546 
547 		/*
548 		 * The remove_cache_mr() logic is performed as garbage
549 		 * collection task. Such task is intended to be run when no
550 		 * other active processes are running.
551 		 *
552 		 * The need_resched() will return TRUE if there are user tasks
553 		 * to be activated in near future.
554 		 *
555 		 * In such case, we don't execute remove_cache_mr() and postpone
556 		 * the garbage collection work to try to run in next cycle, in
557 		 * order to free CPU resources to other tasks.
558 		 */
559 		spin_unlock_irq(&ent->lock);
560 		need_delay = need_resched() || someone_adding(cache) ||
561 			     !time_after(jiffies,
562 					 READ_ONCE(cache->last_add) + 300 * HZ);
563 		spin_lock_irq(&ent->lock);
564 		if (ent->disabled)
565 			goto out;
566 		if (need_delay) {
567 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
568 			goto out;
569 		}
570 		remove_cache_mr_locked(ent);
571 		queue_adjust_cache_locked(ent);
572 	}
573 out:
574 	spin_unlock_irq(&ent->lock);
575 }
576 
577 static void delayed_cache_work_func(struct work_struct *work)
578 {
579 	struct mlx5_cache_ent *ent;
580 
581 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
582 	__cache_work_func(ent);
583 }
584 
585 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
586 				       struct mlx5_cache_ent *ent,
587 				       int access_flags)
588 {
589 	struct mlx5_ib_mr *mr;
590 
591 	/* Matches access in alloc_cache_mr() */
592 	if (!mlx5r_umr_can_reconfig(dev, 0, access_flags))
593 		return ERR_PTR(-EOPNOTSUPP);
594 
595 	spin_lock_irq(&ent->lock);
596 	if (list_empty(&ent->head)) {
597 		queue_adjust_cache_locked(ent);
598 		ent->miss++;
599 		spin_unlock_irq(&ent->lock);
600 		mr = create_cache_mr(ent);
601 		if (IS_ERR(mr))
602 			return mr;
603 	} else {
604 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
605 		list_del(&mr->list);
606 		ent->available_mrs--;
607 		queue_adjust_cache_locked(ent);
608 		spin_unlock_irq(&ent->lock);
609 
610 		mlx5_clear_mr(mr);
611 	}
612 	return mr;
613 }
614 
615 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
616 {
617 	struct mlx5_cache_ent *ent = mr->cache_ent;
618 
619 	WRITE_ONCE(dev->cache.last_add, jiffies);
620 	spin_lock_irq(&ent->lock);
621 	list_add_tail(&mr->list, &ent->head);
622 	ent->available_mrs++;
623 	queue_adjust_cache_locked(ent);
624 	spin_unlock_irq(&ent->lock);
625 }
626 
627 static void clean_keys(struct mlx5_ib_dev *dev, int c)
628 {
629 	struct mlx5_mr_cache *cache = &dev->cache;
630 	struct mlx5_cache_ent *ent = &cache->ent[c];
631 	struct mlx5_ib_mr *tmp_mr;
632 	struct mlx5_ib_mr *mr;
633 	LIST_HEAD(del_list);
634 
635 	cancel_delayed_work(&ent->dwork);
636 	while (1) {
637 		spin_lock_irq(&ent->lock);
638 		if (list_empty(&ent->head)) {
639 			spin_unlock_irq(&ent->lock);
640 			break;
641 		}
642 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
643 		list_move(&mr->list, &del_list);
644 		ent->available_mrs--;
645 		ent->total_mrs--;
646 		spin_unlock_irq(&ent->lock);
647 		mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
648 	}
649 
650 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
651 		list_del(&mr->list);
652 		kfree(mr);
653 	}
654 }
655 
656 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
657 {
658 	if (!mlx5_debugfs_root || dev->is_rep)
659 		return;
660 
661 	debugfs_remove_recursive(dev->cache.root);
662 	dev->cache.root = NULL;
663 }
664 
665 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
666 {
667 	struct mlx5_mr_cache *cache = &dev->cache;
668 	struct mlx5_cache_ent *ent;
669 	struct dentry *dir;
670 	int i;
671 
672 	if (!mlx5_debugfs_root || dev->is_rep)
673 		return;
674 
675 	cache->root = debugfs_create_dir("mr_cache", mlx5_debugfs_get_dev_root(dev->mdev));
676 
677 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
678 		ent = &cache->ent[i];
679 		sprintf(ent->name, "%d", ent->order);
680 		dir = debugfs_create_dir(ent->name, cache->root);
681 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
682 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
683 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
684 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
685 	}
686 }
687 
688 static void delay_time_func(struct timer_list *t)
689 {
690 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
691 
692 	WRITE_ONCE(dev->fill_delay, 0);
693 }
694 
695 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
696 {
697 	struct mlx5_mr_cache *cache = &dev->cache;
698 	struct mlx5_cache_ent *ent;
699 	int i;
700 
701 	mutex_init(&dev->slow_path_mutex);
702 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
703 	if (!cache->wq) {
704 		mlx5_ib_warn(dev, "failed to create work queue\n");
705 		return -ENOMEM;
706 	}
707 
708 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
709 	timer_setup(&dev->delay_timer, delay_time_func, 0);
710 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
711 		ent = &cache->ent[i];
712 		INIT_LIST_HEAD(&ent->head);
713 		spin_lock_init(&ent->lock);
714 		ent->order = i + 2;
715 		ent->dev = dev;
716 		ent->limit = 0;
717 
718 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
719 
720 		if (i > MR_CACHE_LAST_STD_ENTRY) {
721 			mlx5_odp_init_mr_cache_entry(ent);
722 			continue;
723 		}
724 
725 		if (ent->order > mr_cache_max_order(dev))
726 			continue;
727 
728 		ent->page = PAGE_SHIFT;
729 		ent->ndescs = 1 << ent->order;
730 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
731 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
732 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
733 		    mlx5r_umr_can_load_pas(dev, 0))
734 			ent->limit = dev->mdev->profile.mr_cache[i].limit;
735 		else
736 			ent->limit = 0;
737 		spin_lock_irq(&ent->lock);
738 		queue_adjust_cache_locked(ent);
739 		spin_unlock_irq(&ent->lock);
740 	}
741 
742 	mlx5_mr_cache_debugfs_init(dev);
743 
744 	return 0;
745 }
746 
747 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
748 {
749 	unsigned int i;
750 
751 	if (!dev->cache.wq)
752 		return 0;
753 
754 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
755 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
756 
757 		spin_lock_irq(&ent->lock);
758 		ent->disabled = true;
759 		spin_unlock_irq(&ent->lock);
760 		cancel_delayed_work_sync(&ent->dwork);
761 	}
762 
763 	mlx5_mr_cache_debugfs_cleanup(dev);
764 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
765 
766 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
767 		clean_keys(dev, i);
768 
769 	destroy_workqueue(dev->cache.wq);
770 	del_timer_sync(&dev->delay_timer);
771 
772 	return 0;
773 }
774 
775 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
776 {
777 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
778 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
779 	struct mlx5_ib_mr *mr;
780 	void *mkc;
781 	u32 *in;
782 	int err;
783 
784 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
785 	if (!mr)
786 		return ERR_PTR(-ENOMEM);
787 
788 	in = kzalloc(inlen, GFP_KERNEL);
789 	if (!in) {
790 		err = -ENOMEM;
791 		goto err_free;
792 	}
793 
794 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
795 
796 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
797 	MLX5_SET(mkc, mkc, length64, 1);
798 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
799 				      pd);
800 
801 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
802 	if (err)
803 		goto err_in;
804 
805 	kfree(in);
806 	mr->mmkey.type = MLX5_MKEY_MR;
807 	mr->ibmr.lkey = mr->mmkey.key;
808 	mr->ibmr.rkey = mr->mmkey.key;
809 	mr->umem = NULL;
810 
811 	return &mr->ibmr;
812 
813 err_in:
814 	kfree(in);
815 
816 err_free:
817 	kfree(mr);
818 
819 	return ERR_PTR(err);
820 }
821 
822 static int get_octo_len(u64 addr, u64 len, int page_shift)
823 {
824 	u64 page_size = 1ULL << page_shift;
825 	u64 offset;
826 	int npages;
827 
828 	offset = addr & (page_size - 1);
829 	npages = ALIGN(len + offset, page_size) >> page_shift;
830 	return (npages + 1) / 2;
831 }
832 
833 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
834 {
835 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
836 		return MR_CACHE_LAST_STD_ENTRY + 2;
837 	return MLX5_MAX_UMR_SHIFT;
838 }
839 
840 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
841 						      unsigned int order)
842 {
843 	struct mlx5_mr_cache *cache = &dev->cache;
844 
845 	if (order < cache->ent[0].order)
846 		return &cache->ent[0];
847 	order = order - cache->ent[0].order;
848 	if (order > MR_CACHE_LAST_STD_ENTRY)
849 		return NULL;
850 	return &cache->ent[order];
851 }
852 
853 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
854 			  u64 length, int access_flags, u64 iova)
855 {
856 	mr->ibmr.lkey = mr->mmkey.key;
857 	mr->ibmr.rkey = mr->mmkey.key;
858 	mr->ibmr.length = length;
859 	mr->ibmr.device = &dev->ib_dev;
860 	mr->ibmr.iova = iova;
861 	mr->access_flags = access_flags;
862 }
863 
864 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
865 						  u64 iova)
866 {
867 	/*
868 	 * The alignment of iova has already been checked upon entering
869 	 * UVERBS_METHOD_REG_DMABUF_MR
870 	 */
871 	umem->iova = iova;
872 	return PAGE_SIZE;
873 }
874 
875 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
876 					     struct ib_umem *umem, u64 iova,
877 					     int access_flags)
878 {
879 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
880 	struct mlx5_cache_ent *ent;
881 	struct mlx5_ib_mr *mr;
882 	unsigned int page_size;
883 
884 	if (umem->is_dmabuf)
885 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
886 	else
887 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
888 						     0, iova);
889 	if (WARN_ON(!page_size))
890 		return ERR_PTR(-EINVAL);
891 	ent = mr_cache_ent_from_order(
892 		dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
893 	/*
894 	 * Matches access in alloc_cache_mr(). If the MR can't come from the
895 	 * cache then synchronously create an uncached one.
896 	 */
897 	if (!ent || ent->limit == 0 ||
898 	    !mlx5r_umr_can_reconfig(dev, 0, access_flags)) {
899 		mutex_lock(&dev->slow_path_mutex);
900 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
901 		mutex_unlock(&dev->slow_path_mutex);
902 		return mr;
903 	}
904 
905 	mr = mlx5_mr_cache_alloc(dev, ent, access_flags);
906 	if (IS_ERR(mr))
907 		return mr;
908 
909 	mr->ibmr.pd = pd;
910 	mr->umem = umem;
911 	mr->page_shift = order_base_2(page_size);
912 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
913 
914 	return mr;
915 }
916 
917 /*
918  * If ibmr is NULL it will be allocated by reg_create.
919  * Else, the given ibmr will be used.
920  */
921 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
922 				     u64 iova, int access_flags,
923 				     unsigned int page_size, bool populate)
924 {
925 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
926 	struct mlx5_ib_mr *mr;
927 	__be64 *pas;
928 	void *mkc;
929 	int inlen;
930 	u32 *in;
931 	int err;
932 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
933 
934 	if (!page_size)
935 		return ERR_PTR(-EINVAL);
936 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
937 	if (!mr)
938 		return ERR_PTR(-ENOMEM);
939 
940 	mr->ibmr.pd = pd;
941 	mr->access_flags = access_flags;
942 	mr->page_shift = order_base_2(page_size);
943 
944 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
945 	if (populate)
946 		inlen += sizeof(*pas) *
947 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
948 	in = kvzalloc(inlen, GFP_KERNEL);
949 	if (!in) {
950 		err = -ENOMEM;
951 		goto err_1;
952 	}
953 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
954 	if (populate) {
955 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
956 			err = -EINVAL;
957 			goto err_2;
958 		}
959 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
960 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
961 	}
962 
963 	/* The pg_access bit allows setting the access flags
964 	 * in the page list submitted with the command. */
965 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
966 
967 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
968 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
969 				      populate ? pd : dev->umrc.pd);
970 	MLX5_SET(mkc, mkc, free, !populate);
971 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
972 	MLX5_SET(mkc, mkc, umr_en, 1);
973 
974 	MLX5_SET64(mkc, mkc, len, umem->length);
975 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
976 	MLX5_SET(mkc, mkc, translations_octword_size,
977 		 get_octo_len(iova, umem->length, mr->page_shift));
978 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
979 	if (populate) {
980 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
981 			 get_octo_len(iova, umem->length, mr->page_shift));
982 	}
983 
984 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
985 	if (err) {
986 		mlx5_ib_warn(dev, "create mkey failed\n");
987 		goto err_2;
988 	}
989 	mr->mmkey.type = MLX5_MKEY_MR;
990 	mr->umem = umem;
991 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
992 	kvfree(in);
993 
994 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
995 
996 	return mr;
997 
998 err_2:
999 	kvfree(in);
1000 err_1:
1001 	kfree(mr);
1002 	return ERR_PTR(err);
1003 }
1004 
1005 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1006 				       u64 length, int acc, int mode)
1007 {
1008 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1009 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1010 	struct mlx5_ib_mr *mr;
1011 	void *mkc;
1012 	u32 *in;
1013 	int err;
1014 
1015 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1016 	if (!mr)
1017 		return ERR_PTR(-ENOMEM);
1018 
1019 	in = kzalloc(inlen, GFP_KERNEL);
1020 	if (!in) {
1021 		err = -ENOMEM;
1022 		goto err_free;
1023 	}
1024 
1025 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1026 
1027 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1028 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1029 	MLX5_SET64(mkc, mkc, len, length);
1030 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1031 
1032 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1033 	if (err)
1034 		goto err_in;
1035 
1036 	kfree(in);
1037 
1038 	set_mr_fields(dev, mr, length, acc, start_addr);
1039 
1040 	return &mr->ibmr;
1041 
1042 err_in:
1043 	kfree(in);
1044 
1045 err_free:
1046 	kfree(mr);
1047 
1048 	return ERR_PTR(err);
1049 }
1050 
1051 int mlx5_ib_advise_mr(struct ib_pd *pd,
1052 		      enum ib_uverbs_advise_mr_advice advice,
1053 		      u32 flags,
1054 		      struct ib_sge *sg_list,
1055 		      u32 num_sge,
1056 		      struct uverbs_attr_bundle *attrs)
1057 {
1058 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1059 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1060 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1061 		return -EOPNOTSUPP;
1062 
1063 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1064 					 sg_list, num_sge);
1065 }
1066 
1067 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1068 				struct ib_dm_mr_attr *attr,
1069 				struct uverbs_attr_bundle *attrs)
1070 {
1071 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1072 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1073 	u64 start_addr = mdm->dev_addr + attr->offset;
1074 	int mode;
1075 
1076 	switch (mdm->type) {
1077 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1078 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1079 			return ERR_PTR(-EINVAL);
1080 
1081 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1082 		start_addr -= pci_resource_start(dev->pdev, 0);
1083 		break;
1084 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1085 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1086 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1087 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1088 			return ERR_PTR(-EINVAL);
1089 
1090 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1091 		break;
1092 	default:
1093 		return ERR_PTR(-EINVAL);
1094 	}
1095 
1096 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1097 				 attr->access_flags, mode);
1098 }
1099 
1100 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1101 				    u64 iova, int access_flags)
1102 {
1103 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1104 	struct mlx5_ib_mr *mr = NULL;
1105 	bool xlt_with_umr;
1106 	int err;
1107 
1108 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1109 	if (xlt_with_umr) {
1110 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1111 	} else {
1112 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1113 			umem, mkc, log_page_size, 0, iova);
1114 
1115 		mutex_lock(&dev->slow_path_mutex);
1116 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1117 		mutex_unlock(&dev->slow_path_mutex);
1118 	}
1119 	if (IS_ERR(mr)) {
1120 		ib_umem_release(umem);
1121 		return ERR_CAST(mr);
1122 	}
1123 
1124 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1125 
1126 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1127 
1128 	if (xlt_with_umr) {
1129 		/*
1130 		 * If the MR was created with reg_create then it will be
1131 		 * configured properly but left disabled. It is safe to go ahead
1132 		 * and configure it again via UMR while enabling it.
1133 		 */
1134 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1135 		if (err) {
1136 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1137 			return ERR_PTR(err);
1138 		}
1139 	}
1140 	return &mr->ibmr;
1141 }
1142 
1143 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1144 					u64 iova, int access_flags,
1145 					struct ib_udata *udata)
1146 {
1147 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1148 	struct ib_umem_odp *odp;
1149 	struct mlx5_ib_mr *mr;
1150 	int err;
1151 
1152 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1153 		return ERR_PTR(-EOPNOTSUPP);
1154 
1155 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1156 	if (err)
1157 		return ERR_PTR(err);
1158 	if (!start && length == U64_MAX) {
1159 		if (iova != 0)
1160 			return ERR_PTR(-EINVAL);
1161 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1162 			return ERR_PTR(-EINVAL);
1163 
1164 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1165 		if (IS_ERR(mr))
1166 			return ERR_CAST(mr);
1167 		return &mr->ibmr;
1168 	}
1169 
1170 	/* ODP requires xlt update via umr to work. */
1171 	if (!mlx5r_umr_can_load_pas(dev, length))
1172 		return ERR_PTR(-EINVAL);
1173 
1174 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1175 			      &mlx5_mn_ops);
1176 	if (IS_ERR(odp))
1177 		return ERR_CAST(odp);
1178 
1179 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1180 	if (IS_ERR(mr)) {
1181 		ib_umem_release(&odp->umem);
1182 		return ERR_CAST(mr);
1183 	}
1184 	xa_init(&mr->implicit_children);
1185 
1186 	odp->private = mr;
1187 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1188 	if (err)
1189 		goto err_dereg_mr;
1190 
1191 	err = mlx5_ib_init_odp_mr(mr);
1192 	if (err)
1193 		goto err_dereg_mr;
1194 	return &mr->ibmr;
1195 
1196 err_dereg_mr:
1197 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1198 	return ERR_PTR(err);
1199 }
1200 
1201 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1202 				  u64 iova, int access_flags,
1203 				  struct ib_udata *udata)
1204 {
1205 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1206 	struct ib_umem *umem;
1207 
1208 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1209 		return ERR_PTR(-EOPNOTSUPP);
1210 
1211 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1212 		    start, iova, length, access_flags);
1213 
1214 	if (access_flags & IB_ACCESS_ON_DEMAND)
1215 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1216 					  udata);
1217 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1218 	if (IS_ERR(umem))
1219 		return ERR_CAST(umem);
1220 	return create_real_mr(pd, umem, iova, access_flags);
1221 }
1222 
1223 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1224 {
1225 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1226 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1227 
1228 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1229 
1230 	if (!umem_dmabuf->sgt)
1231 		return;
1232 
1233 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1234 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1235 }
1236 
1237 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1238 	.allow_peer2peer = 1,
1239 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1240 };
1241 
1242 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1243 					 u64 length, u64 virt_addr,
1244 					 int fd, int access_flags,
1245 					 struct ib_udata *udata)
1246 {
1247 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1248 	struct mlx5_ib_mr *mr = NULL;
1249 	struct ib_umem_dmabuf *umem_dmabuf;
1250 	int err;
1251 
1252 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1253 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1254 		return ERR_PTR(-EOPNOTSUPP);
1255 
1256 	mlx5_ib_dbg(dev,
1257 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1258 		    offset, virt_addr, length, fd, access_flags);
1259 
1260 	/* dmabuf requires xlt update via umr to work. */
1261 	if (!mlx5r_umr_can_load_pas(dev, length))
1262 		return ERR_PTR(-EINVAL);
1263 
1264 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1265 					 access_flags,
1266 					 &mlx5_ib_dmabuf_attach_ops);
1267 	if (IS_ERR(umem_dmabuf)) {
1268 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1269 			    PTR_ERR(umem_dmabuf));
1270 		return ERR_CAST(umem_dmabuf);
1271 	}
1272 
1273 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1274 				access_flags);
1275 	if (IS_ERR(mr)) {
1276 		ib_umem_release(&umem_dmabuf->umem);
1277 		return ERR_CAST(mr);
1278 	}
1279 
1280 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1281 
1282 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1283 	umem_dmabuf->private = mr;
1284 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1285 	if (err)
1286 		goto err_dereg_mr;
1287 
1288 	err = mlx5_ib_init_dmabuf_mr(mr);
1289 	if (err)
1290 		goto err_dereg_mr;
1291 	return &mr->ibmr;
1292 
1293 err_dereg_mr:
1294 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1295 	return ERR_PTR(err);
1296 }
1297 
1298 /*
1299  * True if the change in access flags can be done via UMR, only some access
1300  * flags can be updated.
1301  */
1302 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1303 				     unsigned int current_access_flags,
1304 				     unsigned int target_access_flags)
1305 {
1306 	unsigned int diffs = current_access_flags ^ target_access_flags;
1307 
1308 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1309 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1310 		return false;
1311 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1312 				      target_access_flags);
1313 }
1314 
1315 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1316 				  struct ib_umem *new_umem,
1317 				  int new_access_flags, u64 iova,
1318 				  unsigned long *page_size)
1319 {
1320 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1321 
1322 	/* We only track the allocated sizes of MRs from the cache */
1323 	if (!mr->cache_ent)
1324 		return false;
1325 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1326 		return false;
1327 
1328 	*page_size =
1329 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1330 	if (WARN_ON(!*page_size))
1331 		return false;
1332 	return (1ULL << mr->cache_ent->order) >=
1333 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1334 }
1335 
1336 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1337 			 int access_flags, int flags, struct ib_umem *new_umem,
1338 			 u64 iova, unsigned long page_size)
1339 {
1340 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1341 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1342 	struct ib_umem *old_umem = mr->umem;
1343 	int err;
1344 
1345 	/*
1346 	 * To keep everything simple the MR is revoked before we start to mess
1347 	 * with it. This ensure the change is atomic relative to any use of the
1348 	 * MR.
1349 	 */
1350 	err = mlx5r_umr_revoke_mr(mr);
1351 	if (err)
1352 		return err;
1353 
1354 	if (flags & IB_MR_REREG_PD) {
1355 		mr->ibmr.pd = pd;
1356 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1357 	}
1358 	if (flags & IB_MR_REREG_ACCESS) {
1359 		mr->access_flags = access_flags;
1360 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1361 	}
1362 
1363 	mr->ibmr.length = new_umem->length;
1364 	mr->ibmr.iova = iova;
1365 	mr->ibmr.length = new_umem->length;
1366 	mr->page_shift = order_base_2(page_size);
1367 	mr->umem = new_umem;
1368 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1369 	if (err) {
1370 		/*
1371 		 * The MR is revoked at this point so there is no issue to free
1372 		 * new_umem.
1373 		 */
1374 		mr->umem = old_umem;
1375 		return err;
1376 	}
1377 
1378 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1379 	ib_umem_release(old_umem);
1380 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1381 	return 0;
1382 }
1383 
1384 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1385 				    u64 length, u64 iova, int new_access_flags,
1386 				    struct ib_pd *new_pd,
1387 				    struct ib_udata *udata)
1388 {
1389 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1390 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1391 	int err;
1392 
1393 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1394 		return ERR_PTR(-EOPNOTSUPP);
1395 
1396 	mlx5_ib_dbg(
1397 		dev,
1398 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1399 		start, iova, length, new_access_flags);
1400 
1401 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1402 		return ERR_PTR(-EOPNOTSUPP);
1403 
1404 	if (!(flags & IB_MR_REREG_ACCESS))
1405 		new_access_flags = mr->access_flags;
1406 	if (!(flags & IB_MR_REREG_PD))
1407 		new_pd = ib_mr->pd;
1408 
1409 	if (!(flags & IB_MR_REREG_TRANS)) {
1410 		struct ib_umem *umem;
1411 
1412 		/* Fast path for PD/access change */
1413 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1414 					     new_access_flags)) {
1415 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1416 							new_access_flags);
1417 			if (err)
1418 				return ERR_PTR(err);
1419 			return NULL;
1420 		}
1421 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1422 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1423 			goto recreate;
1424 
1425 		/*
1426 		 * Only one active MR can refer to a umem at one time, revoke
1427 		 * the old MR before assigning the umem to the new one.
1428 		 */
1429 		err = mlx5r_umr_revoke_mr(mr);
1430 		if (err)
1431 			return ERR_PTR(err);
1432 		umem = mr->umem;
1433 		mr->umem = NULL;
1434 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1435 
1436 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1437 				      new_access_flags);
1438 	}
1439 
1440 	/*
1441 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1442 	 * but the logic around releasing the umem is different
1443 	 */
1444 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1445 		goto recreate;
1446 
1447 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1448 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1449 		struct ib_umem *new_umem;
1450 		unsigned long page_size;
1451 
1452 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1453 				       new_access_flags);
1454 		if (IS_ERR(new_umem))
1455 			return ERR_CAST(new_umem);
1456 
1457 		/* Fast path for PAS change */
1458 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1459 					  &page_size)) {
1460 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1461 					    new_umem, iova, page_size);
1462 			if (err) {
1463 				ib_umem_release(new_umem);
1464 				return ERR_PTR(err);
1465 			}
1466 			return NULL;
1467 		}
1468 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1469 	}
1470 
1471 	/*
1472 	 * Everything else has no state we can preserve, just create a new MR
1473 	 * from scratch
1474 	 */
1475 recreate:
1476 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1477 				   new_access_flags, udata);
1478 }
1479 
1480 static int
1481 mlx5_alloc_priv_descs(struct ib_device *device,
1482 		      struct mlx5_ib_mr *mr,
1483 		      int ndescs,
1484 		      int desc_size)
1485 {
1486 	struct mlx5_ib_dev *dev = to_mdev(device);
1487 	struct device *ddev = &dev->mdev->pdev->dev;
1488 	int size = ndescs * desc_size;
1489 	int add_size;
1490 	int ret;
1491 
1492 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1493 
1494 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1495 	if (!mr->descs_alloc)
1496 		return -ENOMEM;
1497 
1498 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1499 
1500 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1501 	if (dma_mapping_error(ddev, mr->desc_map)) {
1502 		ret = -ENOMEM;
1503 		goto err;
1504 	}
1505 
1506 	return 0;
1507 err:
1508 	kfree(mr->descs_alloc);
1509 
1510 	return ret;
1511 }
1512 
1513 static void
1514 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1515 {
1516 	if (!mr->umem && mr->descs) {
1517 		struct ib_device *device = mr->ibmr.device;
1518 		int size = mr->max_descs * mr->desc_size;
1519 		struct mlx5_ib_dev *dev = to_mdev(device);
1520 
1521 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1522 				 DMA_TO_DEVICE);
1523 		kfree(mr->descs_alloc);
1524 		mr->descs = NULL;
1525 	}
1526 }
1527 
1528 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1529 {
1530 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1531 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1532 	int rc;
1533 
1534 	/*
1535 	 * Any async use of the mr must hold the refcount, once the refcount
1536 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1537 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1538 	 */
1539 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1540 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1541 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1542 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1543 
1544 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1545 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1546 			   mr->sig, NULL, GFP_KERNEL);
1547 
1548 		if (mr->mtt_mr) {
1549 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1550 			if (rc)
1551 				return rc;
1552 			mr->mtt_mr = NULL;
1553 		}
1554 		if (mr->klm_mr) {
1555 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1556 			if (rc)
1557 				return rc;
1558 			mr->klm_mr = NULL;
1559 		}
1560 
1561 		if (mlx5_core_destroy_psv(dev->mdev,
1562 					  mr->sig->psv_memory.psv_idx))
1563 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1564 				     mr->sig->psv_memory.psv_idx);
1565 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1566 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1567 				     mr->sig->psv_wire.psv_idx);
1568 		kfree(mr->sig);
1569 		mr->sig = NULL;
1570 	}
1571 
1572 	/* Stop DMA */
1573 	if (mr->cache_ent) {
1574 		if (mlx5r_umr_revoke_mr(mr)) {
1575 			spin_lock_irq(&mr->cache_ent->lock);
1576 			mr->cache_ent->total_mrs--;
1577 			spin_unlock_irq(&mr->cache_ent->lock);
1578 			mr->cache_ent = NULL;
1579 		}
1580 	}
1581 	if (!mr->cache_ent) {
1582 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1583 		if (rc)
1584 			return rc;
1585 	}
1586 
1587 	if (mr->umem) {
1588 		bool is_odp = is_odp_mr(mr);
1589 
1590 		if (!is_odp)
1591 			atomic_sub(ib_umem_num_pages(mr->umem),
1592 				   &dev->mdev->priv.reg_pages);
1593 		ib_umem_release(mr->umem);
1594 		if (is_odp)
1595 			mlx5_ib_free_odp_mr(mr);
1596 	}
1597 
1598 	if (mr->cache_ent) {
1599 		mlx5_mr_cache_free(dev, mr);
1600 	} else {
1601 		mlx5_free_priv_descs(mr);
1602 		kfree(mr);
1603 	}
1604 	return 0;
1605 }
1606 
1607 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1608 				   int access_mode, int page_shift)
1609 {
1610 	void *mkc;
1611 
1612 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1613 
1614 	/* This is only used from the kernel, so setting the PD is OK. */
1615 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1616 	MLX5_SET(mkc, mkc, free, 1);
1617 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1618 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1619 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1620 	MLX5_SET(mkc, mkc, umr_en, 1);
1621 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1622 }
1623 
1624 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1625 				  int ndescs, int desc_size, int page_shift,
1626 				  int access_mode, u32 *in, int inlen)
1627 {
1628 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1629 	int err;
1630 
1631 	mr->access_mode = access_mode;
1632 	mr->desc_size = desc_size;
1633 	mr->max_descs = ndescs;
1634 
1635 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1636 	if (err)
1637 		return err;
1638 
1639 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1640 
1641 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1642 	if (err)
1643 		goto err_free_descs;
1644 
1645 	mr->mmkey.type = MLX5_MKEY_MR;
1646 	mr->ibmr.lkey = mr->mmkey.key;
1647 	mr->ibmr.rkey = mr->mmkey.key;
1648 
1649 	return 0;
1650 
1651 err_free_descs:
1652 	mlx5_free_priv_descs(mr);
1653 	return err;
1654 }
1655 
1656 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1657 				u32 max_num_sg, u32 max_num_meta_sg,
1658 				int desc_size, int access_mode)
1659 {
1660 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1661 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1662 	int page_shift = 0;
1663 	struct mlx5_ib_mr *mr;
1664 	u32 *in;
1665 	int err;
1666 
1667 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1668 	if (!mr)
1669 		return ERR_PTR(-ENOMEM);
1670 
1671 	mr->ibmr.pd = pd;
1672 	mr->ibmr.device = pd->device;
1673 
1674 	in = kzalloc(inlen, GFP_KERNEL);
1675 	if (!in) {
1676 		err = -ENOMEM;
1677 		goto err_free;
1678 	}
1679 
1680 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1681 		page_shift = PAGE_SHIFT;
1682 
1683 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1684 				     access_mode, in, inlen);
1685 	if (err)
1686 		goto err_free_in;
1687 
1688 	mr->umem = NULL;
1689 	kfree(in);
1690 
1691 	return mr;
1692 
1693 err_free_in:
1694 	kfree(in);
1695 err_free:
1696 	kfree(mr);
1697 	return ERR_PTR(err);
1698 }
1699 
1700 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1701 				    int ndescs, u32 *in, int inlen)
1702 {
1703 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1704 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1705 				      inlen);
1706 }
1707 
1708 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1709 				    int ndescs, u32 *in, int inlen)
1710 {
1711 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1712 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1713 }
1714 
1715 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1716 				      int max_num_sg, int max_num_meta_sg,
1717 				      u32 *in, int inlen)
1718 {
1719 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1720 	u32 psv_index[2];
1721 	void *mkc;
1722 	int err;
1723 
1724 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1725 	if (!mr->sig)
1726 		return -ENOMEM;
1727 
1728 	/* create mem & wire PSVs */
1729 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1730 	if (err)
1731 		goto err_free_sig;
1732 
1733 	mr->sig->psv_memory.psv_idx = psv_index[0];
1734 	mr->sig->psv_wire.psv_idx = psv_index[1];
1735 
1736 	mr->sig->sig_status_checked = true;
1737 	mr->sig->sig_err_exists = false;
1738 	/* Next UMR, Arm SIGERR */
1739 	++mr->sig->sigerr_count;
1740 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1741 					 sizeof(struct mlx5_klm),
1742 					 MLX5_MKC_ACCESS_MODE_KLMS);
1743 	if (IS_ERR(mr->klm_mr)) {
1744 		err = PTR_ERR(mr->klm_mr);
1745 		goto err_destroy_psv;
1746 	}
1747 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1748 					 sizeof(struct mlx5_mtt),
1749 					 MLX5_MKC_ACCESS_MODE_MTT);
1750 	if (IS_ERR(mr->mtt_mr)) {
1751 		err = PTR_ERR(mr->mtt_mr);
1752 		goto err_free_klm_mr;
1753 	}
1754 
1755 	/* Set bsf descriptors for mkey */
1756 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1757 	MLX5_SET(mkc, mkc, bsf_en, 1);
1758 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1759 
1760 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1761 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1762 	if (err)
1763 		goto err_free_mtt_mr;
1764 
1765 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1766 			      mr->sig, GFP_KERNEL));
1767 	if (err)
1768 		goto err_free_descs;
1769 	return 0;
1770 
1771 err_free_descs:
1772 	destroy_mkey(dev, mr);
1773 	mlx5_free_priv_descs(mr);
1774 err_free_mtt_mr:
1775 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1776 	mr->mtt_mr = NULL;
1777 err_free_klm_mr:
1778 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1779 	mr->klm_mr = NULL;
1780 err_destroy_psv:
1781 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1782 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1783 			     mr->sig->psv_memory.psv_idx);
1784 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1785 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1786 			     mr->sig->psv_wire.psv_idx);
1787 err_free_sig:
1788 	kfree(mr->sig);
1789 
1790 	return err;
1791 }
1792 
1793 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1794 					enum ib_mr_type mr_type, u32 max_num_sg,
1795 					u32 max_num_meta_sg)
1796 {
1797 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1798 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1799 	int ndescs = ALIGN(max_num_sg, 4);
1800 	struct mlx5_ib_mr *mr;
1801 	u32 *in;
1802 	int err;
1803 
1804 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1805 	if (!mr)
1806 		return ERR_PTR(-ENOMEM);
1807 
1808 	in = kzalloc(inlen, GFP_KERNEL);
1809 	if (!in) {
1810 		err = -ENOMEM;
1811 		goto err_free;
1812 	}
1813 
1814 	mr->ibmr.device = pd->device;
1815 	mr->umem = NULL;
1816 
1817 	switch (mr_type) {
1818 	case IB_MR_TYPE_MEM_REG:
1819 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1820 		break;
1821 	case IB_MR_TYPE_SG_GAPS:
1822 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1823 		break;
1824 	case IB_MR_TYPE_INTEGRITY:
1825 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1826 						 max_num_meta_sg, in, inlen);
1827 		break;
1828 	default:
1829 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1830 		err = -EINVAL;
1831 	}
1832 
1833 	if (err)
1834 		goto err_free_in;
1835 
1836 	kfree(in);
1837 
1838 	return &mr->ibmr;
1839 
1840 err_free_in:
1841 	kfree(in);
1842 err_free:
1843 	kfree(mr);
1844 	return ERR_PTR(err);
1845 }
1846 
1847 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1848 			       u32 max_num_sg)
1849 {
1850 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1851 }
1852 
1853 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1854 					 u32 max_num_sg, u32 max_num_meta_sg)
1855 {
1856 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1857 				  max_num_meta_sg);
1858 }
1859 
1860 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
1861 {
1862 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
1863 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1864 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
1865 	unsigned int ndescs;
1866 	u32 *in = NULL;
1867 	void *mkc;
1868 	int err;
1869 	struct mlx5_ib_alloc_mw req = {};
1870 	struct {
1871 		__u32	comp_mask;
1872 		__u32	response_length;
1873 	} resp = {};
1874 
1875 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1876 	if (err)
1877 		return err;
1878 
1879 	if (req.comp_mask || req.reserved1 || req.reserved2)
1880 		return -EOPNOTSUPP;
1881 
1882 	if (udata->inlen > sizeof(req) &&
1883 	    !ib_is_udata_cleared(udata, sizeof(req),
1884 				 udata->inlen - sizeof(req)))
1885 		return -EOPNOTSUPP;
1886 
1887 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1888 
1889 	in = kzalloc(inlen, GFP_KERNEL);
1890 	if (!in) {
1891 		err = -ENOMEM;
1892 		goto free;
1893 	}
1894 
1895 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1896 
1897 	MLX5_SET(mkc, mkc, free, 1);
1898 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1899 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
1900 	MLX5_SET(mkc, mkc, umr_en, 1);
1901 	MLX5_SET(mkc, mkc, lr, 1);
1902 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1903 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
1904 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1905 
1906 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
1907 	if (err)
1908 		goto free;
1909 
1910 	mw->mmkey.type = MLX5_MKEY_MW;
1911 	ibmw->rkey = mw->mmkey.key;
1912 	mw->mmkey.ndescs = ndescs;
1913 
1914 	resp.response_length =
1915 		min(offsetofend(typeof(resp), response_length), udata->outlen);
1916 	if (resp.response_length) {
1917 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1918 		if (err)
1919 			goto free_mkey;
1920 	}
1921 
1922 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1923 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
1924 		if (err)
1925 			goto free_mkey;
1926 	}
1927 
1928 	kfree(in);
1929 	return 0;
1930 
1931 free_mkey:
1932 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
1933 free:
1934 	kfree(in);
1935 	return err;
1936 }
1937 
1938 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1939 {
1940 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
1941 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1942 
1943 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1944 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
1945 		/*
1946 		 * pagefault_single_data_segment() may be accessing mmw
1947 		 * if the user bound an ODP MR to this MW.
1948 		 */
1949 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
1950 
1951 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
1952 }
1953 
1954 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1955 			    struct ib_mr_status *mr_status)
1956 {
1957 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1958 	int ret = 0;
1959 
1960 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1961 		pr_err("Invalid status check mask\n");
1962 		ret = -EINVAL;
1963 		goto done;
1964 	}
1965 
1966 	mr_status->fail_status = 0;
1967 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1968 		if (!mmr->sig) {
1969 			ret = -EINVAL;
1970 			pr_err("signature status check requested on a non-signature enabled MR\n");
1971 			goto done;
1972 		}
1973 
1974 		mmr->sig->sig_status_checked = true;
1975 		if (!mmr->sig->sig_err_exists)
1976 			goto done;
1977 
1978 		if (ibmr->lkey == mmr->sig->err_item.key)
1979 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
1980 			       sizeof(mr_status->sig_err));
1981 		else {
1982 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
1983 			mr_status->sig_err.sig_err_offset = 0;
1984 			mr_status->sig_err.key = mmr->sig->err_item.key;
1985 		}
1986 
1987 		mmr->sig->sig_err_exists = false;
1988 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
1989 	}
1990 
1991 done:
1992 	return ret;
1993 }
1994 
1995 static int
1996 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
1997 			int data_sg_nents, unsigned int *data_sg_offset,
1998 			struct scatterlist *meta_sg, int meta_sg_nents,
1999 			unsigned int *meta_sg_offset)
2000 {
2001 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2002 	unsigned int sg_offset = 0;
2003 	int n = 0;
2004 
2005 	mr->meta_length = 0;
2006 	if (data_sg_nents == 1) {
2007 		n++;
2008 		mr->mmkey.ndescs = 1;
2009 		if (data_sg_offset)
2010 			sg_offset = *data_sg_offset;
2011 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2012 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2013 		if (meta_sg_nents == 1) {
2014 			n++;
2015 			mr->meta_ndescs = 1;
2016 			if (meta_sg_offset)
2017 				sg_offset = *meta_sg_offset;
2018 			else
2019 				sg_offset = 0;
2020 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2021 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2022 		}
2023 		ibmr->length = mr->data_length + mr->meta_length;
2024 	}
2025 
2026 	return n;
2027 }
2028 
2029 static int
2030 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2031 		   struct scatterlist *sgl,
2032 		   unsigned short sg_nents,
2033 		   unsigned int *sg_offset_p,
2034 		   struct scatterlist *meta_sgl,
2035 		   unsigned short meta_sg_nents,
2036 		   unsigned int *meta_sg_offset_p)
2037 {
2038 	struct scatterlist *sg = sgl;
2039 	struct mlx5_klm *klms = mr->descs;
2040 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2041 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2042 	int i, j = 0;
2043 
2044 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2045 	mr->ibmr.length = 0;
2046 
2047 	for_each_sg(sgl, sg, sg_nents, i) {
2048 		if (unlikely(i >= mr->max_descs))
2049 			break;
2050 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2051 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2052 		klms[i].key = cpu_to_be32(lkey);
2053 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2054 
2055 		sg_offset = 0;
2056 	}
2057 
2058 	if (sg_offset_p)
2059 		*sg_offset_p = sg_offset;
2060 
2061 	mr->mmkey.ndescs = i;
2062 	mr->data_length = mr->ibmr.length;
2063 
2064 	if (meta_sg_nents) {
2065 		sg = meta_sgl;
2066 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2067 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2068 			if (unlikely(i + j >= mr->max_descs))
2069 				break;
2070 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2071 						     sg_offset);
2072 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2073 							 sg_offset);
2074 			klms[i + j].key = cpu_to_be32(lkey);
2075 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2076 
2077 			sg_offset = 0;
2078 		}
2079 		if (meta_sg_offset_p)
2080 			*meta_sg_offset_p = sg_offset;
2081 
2082 		mr->meta_ndescs = j;
2083 		mr->meta_length = mr->ibmr.length - mr->data_length;
2084 	}
2085 
2086 	return i + j;
2087 }
2088 
2089 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2090 {
2091 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2092 	__be64 *descs;
2093 
2094 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2095 		return -ENOMEM;
2096 
2097 	descs = mr->descs;
2098 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2099 
2100 	return 0;
2101 }
2102 
2103 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2104 {
2105 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2106 	__be64 *descs;
2107 
2108 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2109 		return -ENOMEM;
2110 
2111 	descs = mr->descs;
2112 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2113 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2114 
2115 	return 0;
2116 }
2117 
2118 static int
2119 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2120 			 int data_sg_nents, unsigned int *data_sg_offset,
2121 			 struct scatterlist *meta_sg, int meta_sg_nents,
2122 			 unsigned int *meta_sg_offset)
2123 {
2124 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2125 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2126 	int n;
2127 
2128 	pi_mr->mmkey.ndescs = 0;
2129 	pi_mr->meta_ndescs = 0;
2130 	pi_mr->meta_length = 0;
2131 
2132 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2133 				   pi_mr->desc_size * pi_mr->max_descs,
2134 				   DMA_TO_DEVICE);
2135 
2136 	pi_mr->ibmr.page_size = ibmr->page_size;
2137 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2138 			   mlx5_set_page);
2139 	if (n != data_sg_nents)
2140 		return n;
2141 
2142 	pi_mr->data_iova = pi_mr->ibmr.iova;
2143 	pi_mr->data_length = pi_mr->ibmr.length;
2144 	pi_mr->ibmr.length = pi_mr->data_length;
2145 	ibmr->length = pi_mr->data_length;
2146 
2147 	if (meta_sg_nents) {
2148 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2149 		u64 iova = pi_mr->data_iova;
2150 
2151 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2152 				    meta_sg_offset, mlx5_set_page_pi);
2153 
2154 		pi_mr->meta_length = pi_mr->ibmr.length;
2155 		/*
2156 		 * PI address for the HW is the offset of the metadata address
2157 		 * relative to the first data page address.
2158 		 * It equals to first data page address + size of data pages +
2159 		 * metadata offset at the first metadata page
2160 		 */
2161 		pi_mr->pi_iova = (iova & page_mask) +
2162 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2163 				 (pi_mr->ibmr.iova & ~page_mask);
2164 		/*
2165 		 * In order to use one MTT MR for data and metadata, we register
2166 		 * also the gaps between the end of the data and the start of
2167 		 * the metadata (the sig MR will verify that the HW will access
2168 		 * to right addresses). This mapping is safe because we use
2169 		 * internal mkey for the registration.
2170 		 */
2171 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2172 		pi_mr->ibmr.iova = iova;
2173 		ibmr->length += pi_mr->meta_length;
2174 	}
2175 
2176 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2177 				      pi_mr->desc_size * pi_mr->max_descs,
2178 				      DMA_TO_DEVICE);
2179 
2180 	return n;
2181 }
2182 
2183 static int
2184 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2185 			 int data_sg_nents, unsigned int *data_sg_offset,
2186 			 struct scatterlist *meta_sg, int meta_sg_nents,
2187 			 unsigned int *meta_sg_offset)
2188 {
2189 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2190 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2191 	int n;
2192 
2193 	pi_mr->mmkey.ndescs = 0;
2194 	pi_mr->meta_ndescs = 0;
2195 	pi_mr->meta_length = 0;
2196 
2197 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2198 				   pi_mr->desc_size * pi_mr->max_descs,
2199 				   DMA_TO_DEVICE);
2200 
2201 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2202 			       meta_sg, meta_sg_nents, meta_sg_offset);
2203 
2204 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2205 				      pi_mr->desc_size * pi_mr->max_descs,
2206 				      DMA_TO_DEVICE);
2207 
2208 	/* This is zero-based memory region */
2209 	pi_mr->data_iova = 0;
2210 	pi_mr->ibmr.iova = 0;
2211 	pi_mr->pi_iova = pi_mr->data_length;
2212 	ibmr->length = pi_mr->ibmr.length;
2213 
2214 	return n;
2215 }
2216 
2217 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2218 			 int data_sg_nents, unsigned int *data_sg_offset,
2219 			 struct scatterlist *meta_sg, int meta_sg_nents,
2220 			 unsigned int *meta_sg_offset)
2221 {
2222 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2223 	struct mlx5_ib_mr *pi_mr = NULL;
2224 	int n;
2225 
2226 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2227 
2228 	mr->mmkey.ndescs = 0;
2229 	mr->data_length = 0;
2230 	mr->data_iova = 0;
2231 	mr->meta_ndescs = 0;
2232 	mr->pi_iova = 0;
2233 	/*
2234 	 * As a performance optimization, if possible, there is no need to
2235 	 * perform UMR operation to register the data/metadata buffers.
2236 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2237 	 * Fallback to UMR only in case of a failure.
2238 	 */
2239 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2240 				    data_sg_offset, meta_sg, meta_sg_nents,
2241 				    meta_sg_offset);
2242 	if (n == data_sg_nents + meta_sg_nents)
2243 		goto out;
2244 	/*
2245 	 * As a performance optimization, if possible, there is no need to map
2246 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2247 	 * descriptors and fallback to KLM only in case of a failure.
2248 	 * It's more efficient for the HW to work with MTT descriptors
2249 	 * (especially in high load).
2250 	 * Use KLM (indirect access) only if it's mandatory.
2251 	 */
2252 	pi_mr = mr->mtt_mr;
2253 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2254 				     data_sg_offset, meta_sg, meta_sg_nents,
2255 				     meta_sg_offset);
2256 	if (n == data_sg_nents + meta_sg_nents)
2257 		goto out;
2258 
2259 	pi_mr = mr->klm_mr;
2260 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2261 				     data_sg_offset, meta_sg, meta_sg_nents,
2262 				     meta_sg_offset);
2263 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2264 		return -ENOMEM;
2265 
2266 out:
2267 	/* This is zero-based memory region */
2268 	ibmr->iova = 0;
2269 	mr->pi_mr = pi_mr;
2270 	if (pi_mr)
2271 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2272 	else
2273 		ibmr->sig_attrs->meta_length = mr->meta_length;
2274 
2275 	return 0;
2276 }
2277 
2278 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2279 		      unsigned int *sg_offset)
2280 {
2281 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2282 	int n;
2283 
2284 	mr->mmkey.ndescs = 0;
2285 
2286 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2287 				   mr->desc_size * mr->max_descs,
2288 				   DMA_TO_DEVICE);
2289 
2290 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2291 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2292 				       NULL);
2293 	else
2294 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2295 				mlx5_set_page);
2296 
2297 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2298 				      mr->desc_size * mr->max_descs,
2299 				      DMA_TO_DEVICE);
2300 
2301 	return n;
2302 }
2303