xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision 62de0e67328e9503459a24b9343c3358937cdeef)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 #include "data_direct.h"
47 
48 enum {
49 	MAX_PENDING_REG_MR = 8,
50 };
51 
52 #define MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS 4
53 #define MLX5_UMR_ALIGN 2048
54 
55 static void
56 create_mkey_callback(int status, struct mlx5_async_work *context);
57 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
58 				     u64 iova, int access_flags,
59 				     unsigned long page_size, bool populate,
60 				     int access_mode);
61 static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr);
62 
63 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
64 					  struct ib_pd *pd)
65 {
66 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
67 
68 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
69 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
70 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
71 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
72 	MLX5_SET(mkc, mkc, lr, 1);
73 
74 	if (acc & IB_ACCESS_RELAXED_ORDERING) {
75 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
76 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
77 
78 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
79 		    (MLX5_CAP_GEN(dev->mdev,
80 				  relaxed_ordering_read_pci_enabled) &&
81 		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
82 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
83 	}
84 
85 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
86 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
87 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
88 }
89 
90 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
91 {
92 	u8 key = atomic_inc_return(&dev->mkey_var);
93 	void *mkc;
94 
95 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
96 	MLX5_SET(mkc, mkc, mkey_7_0, key);
97 	*mkey = key;
98 }
99 
100 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
101 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
102 {
103 	int ret;
104 
105 	assign_mkey_variant(dev, &mkey->key, in);
106 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
107 	if (!ret)
108 		init_waitqueue_head(&mkey->wait);
109 
110 	return ret;
111 }
112 
113 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
114 {
115 	struct mlx5_ib_dev *dev = async_create->ent->dev;
116 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
117 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
118 
119 	MLX5_SET(create_mkey_in, async_create->in, opcode,
120 		 MLX5_CMD_OP_CREATE_MKEY);
121 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
122 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
123 				async_create->out, outlen, create_mkey_callback,
124 				&async_create->cb_work);
125 }
126 
127 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
128 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
129 
130 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
131 {
132 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
133 
134 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
135 }
136 
137 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
138 {
139 	if (status == -ENXIO) /* core driver is not available */
140 		return;
141 
142 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
143 	if (status != -EREMOTEIO) /* driver specific failure */
144 		return;
145 
146 	/* Failed in FW, print cmd out failure details */
147 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
148 }
149 
150 static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
151 {
152 	unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
153 	struct mlx5_mkeys_page *page;
154 
155 	lockdep_assert_held(&ent->mkeys_queue.lock);
156 	if (ent->mkeys_queue.ci >=
157 	    ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
158 		page = kzalloc(sizeof(*page), GFP_ATOMIC);
159 		if (!page)
160 			return -ENOMEM;
161 		ent->mkeys_queue.num_pages++;
162 		list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
163 	} else {
164 		page = list_last_entry(&ent->mkeys_queue.pages_list,
165 				       struct mlx5_mkeys_page, list);
166 	}
167 
168 	page->mkeys[tmp] = mkey;
169 	ent->mkeys_queue.ci++;
170 	return 0;
171 }
172 
173 static int pop_mkey_locked(struct mlx5_cache_ent *ent)
174 {
175 	unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
176 	struct mlx5_mkeys_page *last_page;
177 	u32 mkey;
178 
179 	lockdep_assert_held(&ent->mkeys_queue.lock);
180 	last_page = list_last_entry(&ent->mkeys_queue.pages_list,
181 				    struct mlx5_mkeys_page, list);
182 	mkey = last_page->mkeys[tmp];
183 	last_page->mkeys[tmp] = 0;
184 	ent->mkeys_queue.ci--;
185 	if (ent->mkeys_queue.num_pages > 1 && !tmp) {
186 		list_del(&last_page->list);
187 		ent->mkeys_queue.num_pages--;
188 		kfree(last_page);
189 	}
190 	return mkey;
191 }
192 
193 static void create_mkey_callback(int status, struct mlx5_async_work *context)
194 {
195 	struct mlx5r_async_create_mkey *mkey_out =
196 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
197 	struct mlx5_cache_ent *ent = mkey_out->ent;
198 	struct mlx5_ib_dev *dev = ent->dev;
199 	unsigned long flags;
200 
201 	if (status) {
202 		create_mkey_warn(dev, status, mkey_out->out);
203 		kfree(mkey_out);
204 		spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
205 		ent->pending--;
206 		WRITE_ONCE(dev->fill_delay, 1);
207 		spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
208 		mod_timer(&dev->delay_timer, jiffies + HZ);
209 		return;
210 	}
211 
212 	mkey_out->mkey |= mlx5_idx_to_mkey(
213 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
214 	WRITE_ONCE(dev->cache.last_add, jiffies);
215 
216 	spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
217 	push_mkey_locked(ent, mkey_out->mkey);
218 	ent->pending--;
219 	/* If we are doing fill_to_high_water then keep going. */
220 	queue_adjust_cache_locked(ent);
221 	spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
222 	kfree(mkey_out);
223 }
224 
225 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
226 {
227 	int ret = 0;
228 
229 	switch (access_mode) {
230 	case MLX5_MKC_ACCESS_MODE_MTT:
231 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 						   sizeof(struct mlx5_mtt));
233 		break;
234 	case MLX5_MKC_ACCESS_MODE_KSM:
235 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
236 						   sizeof(struct mlx5_klm));
237 		break;
238 	default:
239 		WARN_ON(1);
240 	}
241 	return ret;
242 }
243 
244 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
245 {
246 	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
247 				      ent->dev->umrc.pd);
248 	MLX5_SET(mkc, mkc, free, 1);
249 	MLX5_SET(mkc, mkc, umr_en, 1);
250 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
251 	MLX5_SET(mkc, mkc, access_mode_4_2,
252 		(ent->rb_key.access_mode >> 2) & 0x7);
253 	MLX5_SET(mkc, mkc, ma_translation_mode, !!ent->rb_key.ats);
254 
255 	MLX5_SET(mkc, mkc, translations_octword_size,
256 		 get_mkc_octo_size(ent->rb_key.access_mode,
257 				   ent->rb_key.ndescs));
258 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
259 }
260 
261 /* Asynchronously schedule new MRs to be populated in the cache. */
262 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
263 {
264 	struct mlx5r_async_create_mkey *async_create;
265 	void *mkc;
266 	int err = 0;
267 	int i;
268 
269 	for (i = 0; i < num; i++) {
270 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
271 				       GFP_KERNEL);
272 		if (!async_create)
273 			return -ENOMEM;
274 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
275 				   memory_key_mkey_entry);
276 		set_cache_mkc(ent, mkc);
277 		async_create->ent = ent;
278 
279 		spin_lock_irq(&ent->mkeys_queue.lock);
280 		if (ent->pending >= MAX_PENDING_REG_MR) {
281 			err = -EAGAIN;
282 			goto free_async_create;
283 		}
284 		ent->pending++;
285 		spin_unlock_irq(&ent->mkeys_queue.lock);
286 
287 		err = mlx5_ib_create_mkey_cb(async_create);
288 		if (err) {
289 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
290 			goto err_create_mkey;
291 		}
292 	}
293 
294 	return 0;
295 
296 err_create_mkey:
297 	spin_lock_irq(&ent->mkeys_queue.lock);
298 	ent->pending--;
299 free_async_create:
300 	spin_unlock_irq(&ent->mkeys_queue.lock);
301 	kfree(async_create);
302 	return err;
303 }
304 
305 /* Synchronously create a MR in the cache */
306 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
307 {
308 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
309 	void *mkc;
310 	u32 *in;
311 	int err;
312 
313 	in = kzalloc(inlen, GFP_KERNEL);
314 	if (!in)
315 		return -ENOMEM;
316 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
317 	set_cache_mkc(ent, mkc);
318 
319 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
320 	if (err)
321 		goto free_in;
322 
323 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
324 free_in:
325 	kfree(in);
326 	return err;
327 }
328 
329 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
330 {
331 	u32 mkey;
332 
333 	lockdep_assert_held(&ent->mkeys_queue.lock);
334 	if (!ent->mkeys_queue.ci)
335 		return;
336 	mkey = pop_mkey_locked(ent);
337 	spin_unlock_irq(&ent->mkeys_queue.lock);
338 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
339 	spin_lock_irq(&ent->mkeys_queue.lock);
340 }
341 
342 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
343 				bool limit_fill)
344 	__acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
345 {
346 	int err;
347 
348 	lockdep_assert_held(&ent->mkeys_queue.lock);
349 
350 	while (true) {
351 		if (limit_fill)
352 			target = ent->limit * 2;
353 		if (target == ent->pending + ent->mkeys_queue.ci)
354 			return 0;
355 		if (target > ent->pending + ent->mkeys_queue.ci) {
356 			u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
357 
358 			spin_unlock_irq(&ent->mkeys_queue.lock);
359 			err = add_keys(ent, todo);
360 			if (err == -EAGAIN)
361 				usleep_range(3000, 5000);
362 			spin_lock_irq(&ent->mkeys_queue.lock);
363 			if (err) {
364 				if (err != -EAGAIN)
365 					return err;
366 			} else
367 				return 0;
368 		} else {
369 			remove_cache_mr_locked(ent);
370 		}
371 	}
372 }
373 
374 static ssize_t size_write(struct file *filp, const char __user *buf,
375 			  size_t count, loff_t *pos)
376 {
377 	struct mlx5_cache_ent *ent = filp->private_data;
378 	u32 target;
379 	int err;
380 
381 	err = kstrtou32_from_user(buf, count, 0, &target);
382 	if (err)
383 		return err;
384 
385 	/*
386 	 * Target is the new value of total_mrs the user requests, however we
387 	 * cannot free MRs that are in use. Compute the target value for stored
388 	 * mkeys.
389 	 */
390 	spin_lock_irq(&ent->mkeys_queue.lock);
391 	if (target < ent->in_use) {
392 		err = -EINVAL;
393 		goto err_unlock;
394 	}
395 	target = target - ent->in_use;
396 	if (target < ent->limit || target > ent->limit*2) {
397 		err = -EINVAL;
398 		goto err_unlock;
399 	}
400 	err = resize_available_mrs(ent, target, false);
401 	if (err)
402 		goto err_unlock;
403 	spin_unlock_irq(&ent->mkeys_queue.lock);
404 
405 	return count;
406 
407 err_unlock:
408 	spin_unlock_irq(&ent->mkeys_queue.lock);
409 	return err;
410 }
411 
412 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
413 			 loff_t *pos)
414 {
415 	struct mlx5_cache_ent *ent = filp->private_data;
416 	char lbuf[20];
417 	int err;
418 
419 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
420 		       ent->mkeys_queue.ci + ent->in_use);
421 	if (err < 0)
422 		return err;
423 
424 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
425 }
426 
427 static const struct file_operations size_fops = {
428 	.owner	= THIS_MODULE,
429 	.open	= simple_open,
430 	.write	= size_write,
431 	.read	= size_read,
432 };
433 
434 static ssize_t limit_write(struct file *filp, const char __user *buf,
435 			   size_t count, loff_t *pos)
436 {
437 	struct mlx5_cache_ent *ent = filp->private_data;
438 	u32 var;
439 	int err;
440 
441 	err = kstrtou32_from_user(buf, count, 0, &var);
442 	if (err)
443 		return err;
444 
445 	/*
446 	 * Upon set we immediately fill the cache to high water mark implied by
447 	 * the limit.
448 	 */
449 	spin_lock_irq(&ent->mkeys_queue.lock);
450 	ent->limit = var;
451 	err = resize_available_mrs(ent, 0, true);
452 	spin_unlock_irq(&ent->mkeys_queue.lock);
453 	if (err)
454 		return err;
455 	return count;
456 }
457 
458 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
459 			  loff_t *pos)
460 {
461 	struct mlx5_cache_ent *ent = filp->private_data;
462 	char lbuf[20];
463 	int err;
464 
465 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
466 	if (err < 0)
467 		return err;
468 
469 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
470 }
471 
472 static const struct file_operations limit_fops = {
473 	.owner	= THIS_MODULE,
474 	.open	= simple_open,
475 	.write	= limit_write,
476 	.read	= limit_read,
477 };
478 
479 static bool someone_adding(struct mlx5_mkey_cache *cache)
480 {
481 	struct mlx5_cache_ent *ent;
482 	struct rb_node *node;
483 	bool ret;
484 
485 	mutex_lock(&cache->rb_lock);
486 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
487 		ent = rb_entry(node, struct mlx5_cache_ent, node);
488 		spin_lock_irq(&ent->mkeys_queue.lock);
489 		ret = ent->mkeys_queue.ci < ent->limit;
490 		spin_unlock_irq(&ent->mkeys_queue.lock);
491 		if (ret) {
492 			mutex_unlock(&cache->rb_lock);
493 			return true;
494 		}
495 	}
496 	mutex_unlock(&cache->rb_lock);
497 	return false;
498 }
499 
500 /*
501  * Check if the bucket is outside the high/low water mark and schedule an async
502  * update. The cache refill has hysteresis, once the low water mark is hit it is
503  * refilled up to the high mark.
504  */
505 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
506 {
507 	lockdep_assert_held(&ent->mkeys_queue.lock);
508 
509 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
510 		return;
511 	if (ent->mkeys_queue.ci < ent->limit) {
512 		ent->fill_to_high_water = true;
513 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
514 	} else if (ent->fill_to_high_water &&
515 		   ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
516 		/*
517 		 * Once we start populating due to hitting a low water mark
518 		 * continue until we pass the high water mark.
519 		 */
520 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
521 	} else if (ent->mkeys_queue.ci == 2 * ent->limit) {
522 		ent->fill_to_high_water = false;
523 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
524 		/* Queue deletion of excess entries */
525 		ent->fill_to_high_water = false;
526 		if (ent->pending)
527 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
528 					   secs_to_jiffies(1));
529 		else
530 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
531 	}
532 }
533 
534 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
535 {
536 	u32 mkey;
537 
538 	spin_lock_irq(&ent->mkeys_queue.lock);
539 	while (ent->mkeys_queue.ci) {
540 		mkey = pop_mkey_locked(ent);
541 		spin_unlock_irq(&ent->mkeys_queue.lock);
542 		mlx5_core_destroy_mkey(dev->mdev, mkey);
543 		spin_lock_irq(&ent->mkeys_queue.lock);
544 	}
545 	ent->tmp_cleanup_scheduled = false;
546 	spin_unlock_irq(&ent->mkeys_queue.lock);
547 }
548 
549 static void __cache_work_func(struct mlx5_cache_ent *ent)
550 {
551 	struct mlx5_ib_dev *dev = ent->dev;
552 	struct mlx5_mkey_cache *cache = &dev->cache;
553 	int err;
554 
555 	spin_lock_irq(&ent->mkeys_queue.lock);
556 	if (ent->disabled)
557 		goto out;
558 
559 	if (ent->fill_to_high_water &&
560 	    ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
561 	    !READ_ONCE(dev->fill_delay)) {
562 		spin_unlock_irq(&ent->mkeys_queue.lock);
563 		err = add_keys(ent, 1);
564 		spin_lock_irq(&ent->mkeys_queue.lock);
565 		if (ent->disabled)
566 			goto out;
567 		if (err) {
568 			/*
569 			 * EAGAIN only happens if there are pending MRs, so we
570 			 * will be rescheduled when storing them. The only
571 			 * failure path here is ENOMEM.
572 			 */
573 			if (err != -EAGAIN) {
574 				mlx5_ib_warn(
575 					dev,
576 					"add keys command failed, err %d\n",
577 					err);
578 				queue_delayed_work(cache->wq, &ent->dwork,
579 						   secs_to_jiffies(1));
580 			}
581 		}
582 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
583 		bool need_delay;
584 
585 		/*
586 		 * The remove_cache_mr() logic is performed as garbage
587 		 * collection task. Such task is intended to be run when no
588 		 * other active processes are running.
589 		 *
590 		 * The need_resched() will return TRUE if there are user tasks
591 		 * to be activated in near future.
592 		 *
593 		 * In such case, we don't execute remove_cache_mr() and postpone
594 		 * the garbage collection work to try to run in next cycle, in
595 		 * order to free CPU resources to other tasks.
596 		 */
597 		spin_unlock_irq(&ent->mkeys_queue.lock);
598 		need_delay = need_resched() || someone_adding(cache) ||
599 			     !time_after(jiffies,
600 					 READ_ONCE(cache->last_add) + 300 * HZ);
601 		spin_lock_irq(&ent->mkeys_queue.lock);
602 		if (ent->disabled)
603 			goto out;
604 		if (need_delay) {
605 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
606 			goto out;
607 		}
608 		remove_cache_mr_locked(ent);
609 		queue_adjust_cache_locked(ent);
610 	}
611 out:
612 	spin_unlock_irq(&ent->mkeys_queue.lock);
613 }
614 
615 static void delayed_cache_work_func(struct work_struct *work)
616 {
617 	struct mlx5_cache_ent *ent;
618 
619 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
620 	/* temp entries are never filled, only cleaned */
621 	if (ent->is_tmp)
622 		clean_keys(ent->dev, ent);
623 	else
624 		__cache_work_func(ent);
625 }
626 
627 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
628 			     struct mlx5r_cache_rb_key key2)
629 {
630 	int res;
631 
632 	res = key1.ats - key2.ats;
633 	if (res)
634 		return res;
635 
636 	res = key1.access_mode - key2.access_mode;
637 	if (res)
638 		return res;
639 
640 	res = key1.access_flags - key2.access_flags;
641 	if (res)
642 		return res;
643 
644 	/*
645 	 * keep ndescs the last in the compare table since the find function
646 	 * searches for an exact match on all properties and only closest
647 	 * match in size.
648 	 */
649 	return key1.ndescs - key2.ndescs;
650 }
651 
652 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
653 				 struct mlx5_cache_ent *ent)
654 {
655 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
656 	struct mlx5_cache_ent *cur;
657 	int cmp;
658 
659 	/* Figure out where to put new node */
660 	while (*new) {
661 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
662 		parent = *new;
663 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
664 		if (cmp > 0)
665 			new = &((*new)->rb_left);
666 		if (cmp < 0)
667 			new = &((*new)->rb_right);
668 		if (cmp == 0)
669 			return -EEXIST;
670 	}
671 
672 	/* Add new node and rebalance tree. */
673 	rb_link_node(&ent->node, parent, new);
674 	rb_insert_color(&ent->node, &cache->rb_root);
675 
676 	return 0;
677 }
678 
679 static struct mlx5_cache_ent *
680 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
681 			   struct mlx5r_cache_rb_key rb_key)
682 {
683 	struct rb_node *node = dev->cache.rb_root.rb_node;
684 	struct mlx5_cache_ent *cur, *smallest = NULL;
685 	u64 ndescs_limit;
686 	int cmp;
687 
688 	/*
689 	 * Find the smallest ent with order >= requested_order.
690 	 */
691 	while (node) {
692 		cur = rb_entry(node, struct mlx5_cache_ent, node);
693 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
694 		if (cmp > 0) {
695 			smallest = cur;
696 			node = node->rb_left;
697 		}
698 		if (cmp < 0)
699 			node = node->rb_right;
700 		if (cmp == 0)
701 			return cur;
702 	}
703 
704 	/*
705 	 * Limit the usage of mkeys larger than twice the required size while
706 	 * also allowing the usage of smallest cache entry for small MRs.
707 	 */
708 	ndescs_limit = max_t(u64, rb_key.ndescs * 2,
709 			     MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS);
710 
711 	return (smallest &&
712 		smallest->rb_key.access_mode == rb_key.access_mode &&
713 		smallest->rb_key.access_flags == rb_key.access_flags &&
714 		smallest->rb_key.ats == rb_key.ats &&
715 		smallest->rb_key.ndescs <= ndescs_limit) ?
716 		       smallest :
717 		       NULL;
718 }
719 
720 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
721 					       struct mlx5_cache_ent *ent)
722 {
723 	struct mlx5_ib_mr *mr;
724 	int err;
725 
726 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
727 	if (!mr)
728 		return ERR_PTR(-ENOMEM);
729 
730 	spin_lock_irq(&ent->mkeys_queue.lock);
731 	ent->in_use++;
732 
733 	if (!ent->mkeys_queue.ci) {
734 		queue_adjust_cache_locked(ent);
735 		ent->miss++;
736 		spin_unlock_irq(&ent->mkeys_queue.lock);
737 		err = create_cache_mkey(ent, &mr->mmkey.key);
738 		if (err) {
739 			spin_lock_irq(&ent->mkeys_queue.lock);
740 			ent->in_use--;
741 			spin_unlock_irq(&ent->mkeys_queue.lock);
742 			kfree(mr);
743 			return ERR_PTR(err);
744 		}
745 	} else {
746 		mr->mmkey.key = pop_mkey_locked(ent);
747 		queue_adjust_cache_locked(ent);
748 		spin_unlock_irq(&ent->mkeys_queue.lock);
749 	}
750 	mr->mmkey.cache_ent = ent;
751 	mr->mmkey.type = MLX5_MKEY_MR;
752 	mr->mmkey.rb_key = ent->rb_key;
753 	mr->mmkey.cacheable = true;
754 	init_waitqueue_head(&mr->mmkey.wait);
755 	return mr;
756 }
757 
758 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
759 					 int access_flags)
760 {
761 	int ret = 0;
762 
763 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
764 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
765 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
766 		ret |= IB_ACCESS_REMOTE_ATOMIC;
767 
768 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
769 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
770 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
771 		ret |= IB_ACCESS_RELAXED_ORDERING;
772 
773 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
774 	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
775 	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
776 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
777 		ret |= IB_ACCESS_RELAXED_ORDERING;
778 
779 	return ret;
780 }
781 
782 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
783 				       int access_flags, int access_mode,
784 				       int ndescs)
785 {
786 	struct mlx5r_cache_rb_key rb_key = {
787 		.ndescs = ndescs,
788 		.access_mode = access_mode,
789 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
790 	};
791 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
792 
793 	if (!ent)
794 		return ERR_PTR(-EOPNOTSUPP);
795 
796 	return _mlx5_mr_cache_alloc(dev, ent);
797 }
798 
799 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
800 {
801 	if (!mlx5_debugfs_root || dev->is_rep)
802 		return;
803 
804 	debugfs_remove_recursive(dev->cache.fs_root);
805 	dev->cache.fs_root = NULL;
806 }
807 
808 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
809 					    struct mlx5_cache_ent *ent)
810 {
811 	int order = order_base_2(ent->rb_key.ndescs);
812 	struct dentry *dir;
813 
814 	if (!mlx5_debugfs_root || dev->is_rep)
815 		return;
816 
817 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
818 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
819 
820 	sprintf(ent->name, "%d", order);
821 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
822 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
823 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
824 	debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
825 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
826 }
827 
828 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
829 {
830 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
831 	struct mlx5_mkey_cache *cache = &dev->cache;
832 
833 	if (!mlx5_debugfs_root || dev->is_rep)
834 		return;
835 
836 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
837 }
838 
839 static void delay_time_func(struct timer_list *t)
840 {
841 	struct mlx5_ib_dev *dev = timer_container_of(dev, t, delay_timer);
842 
843 	WRITE_ONCE(dev->fill_delay, 0);
844 }
845 
846 static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
847 {
848 	struct mlx5_mkeys_page *page;
849 
850 	page = kzalloc(sizeof(*page), GFP_KERNEL);
851 	if (!page)
852 		return -ENOMEM;
853 	INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
854 	spin_lock_init(&ent->mkeys_queue.lock);
855 	list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
856 	ent->mkeys_queue.num_pages++;
857 	return 0;
858 }
859 
860 static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
861 {
862 	struct mlx5_mkeys_page *page;
863 
864 	WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
865 	page = list_last_entry(&ent->mkeys_queue.pages_list,
866 			       struct mlx5_mkeys_page, list);
867 	list_del(&page->list);
868 	kfree(page);
869 }
870 
871 struct mlx5_cache_ent *
872 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
873 			      struct mlx5r_cache_rb_key rb_key,
874 			      bool persistent_entry)
875 {
876 	struct mlx5_cache_ent *ent;
877 	int order;
878 	int ret;
879 
880 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
881 	if (!ent)
882 		return ERR_PTR(-ENOMEM);
883 
884 	ret = mlx5r_mkeys_init(ent);
885 	if (ret)
886 		goto mkeys_err;
887 	ent->rb_key = rb_key;
888 	ent->dev = dev;
889 	ent->is_tmp = !persistent_entry;
890 
891 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
892 
893 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
894 	if (ret)
895 		goto ent_insert_err;
896 
897 	if (persistent_entry) {
898 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
899 			order = MLX5_IMR_KSM_CACHE_ENTRY;
900 		else
901 			order = order_base_2(rb_key.ndescs) - 2;
902 
903 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
904 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
905 		    mlx5r_umr_can_load_pas(dev, 0))
906 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
907 		else
908 			ent->limit = 0;
909 
910 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
911 	}
912 
913 	return ent;
914 ent_insert_err:
915 	mlx5r_mkeys_uninit(ent);
916 mkeys_err:
917 	kfree(ent);
918 	return ERR_PTR(ret);
919 }
920 
921 static void mlx5r_destroy_cache_entries(struct mlx5_ib_dev *dev)
922 {
923 	struct rb_root *root = &dev->cache.rb_root;
924 	struct mlx5_cache_ent *ent;
925 	struct rb_node *node;
926 
927 	mutex_lock(&dev->cache.rb_lock);
928 	node = rb_first(root);
929 	while (node) {
930 		ent = rb_entry(node, struct mlx5_cache_ent, node);
931 		node = rb_next(node);
932 		clean_keys(dev, ent);
933 		rb_erase(&ent->node, root);
934 		mlx5r_mkeys_uninit(ent);
935 		kfree(ent);
936 	}
937 	mutex_unlock(&dev->cache.rb_lock);
938 }
939 
940 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
941 {
942 	struct mlx5_mkey_cache *cache = &dev->cache;
943 	struct rb_root *root = &dev->cache.rb_root;
944 	struct mlx5r_cache_rb_key rb_key = {
945 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
946 	};
947 	struct mlx5_cache_ent *ent;
948 	struct rb_node *node;
949 	int ret;
950 	int i;
951 
952 	mutex_init(&dev->slow_path_mutex);
953 	mutex_init(&dev->cache.rb_lock);
954 	dev->cache.rb_root = RB_ROOT;
955 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
956 	if (!cache->wq) {
957 		mlx5_ib_warn(dev, "failed to create work queue\n");
958 		return -ENOMEM;
959 	}
960 
961 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
962 	timer_setup(&dev->delay_timer, delay_time_func, 0);
963 	mlx5_mkey_cache_debugfs_init(dev);
964 	mutex_lock(&cache->rb_lock);
965 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
966 		rb_key.ndescs = MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS << i;
967 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
968 		if (IS_ERR(ent)) {
969 			ret = PTR_ERR(ent);
970 			goto err;
971 		}
972 	}
973 
974 	ret = mlx5_odp_init_mkey_cache(dev);
975 	if (ret)
976 		goto err;
977 
978 	mutex_unlock(&cache->rb_lock);
979 	for (node = rb_first(root); node; node = rb_next(node)) {
980 		ent = rb_entry(node, struct mlx5_cache_ent, node);
981 		spin_lock_irq(&ent->mkeys_queue.lock);
982 		queue_adjust_cache_locked(ent);
983 		spin_unlock_irq(&ent->mkeys_queue.lock);
984 	}
985 
986 	return 0;
987 
988 err:
989 	mutex_unlock(&cache->rb_lock);
990 	mlx5_mkey_cache_debugfs_cleanup(dev);
991 	mlx5r_destroy_cache_entries(dev);
992 	destroy_workqueue(cache->wq);
993 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
994 	return ret;
995 }
996 
997 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
998 {
999 	struct rb_root *root = &dev->cache.rb_root;
1000 	struct mlx5_cache_ent *ent;
1001 	struct rb_node *node;
1002 
1003 	if (!dev->cache.wq)
1004 		return;
1005 
1006 	mutex_lock(&dev->cache.rb_lock);
1007 	for (node = rb_first(root); node; node = rb_next(node)) {
1008 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1009 		spin_lock_irq(&ent->mkeys_queue.lock);
1010 		ent->disabled = true;
1011 		spin_unlock_irq(&ent->mkeys_queue.lock);
1012 		cancel_delayed_work(&ent->dwork);
1013 	}
1014 	mutex_unlock(&dev->cache.rb_lock);
1015 
1016 	/*
1017 	 * After all entries are disabled and will not reschedule on WQ,
1018 	 * flush it and all async commands.
1019 	 */
1020 	flush_workqueue(dev->cache.wq);
1021 
1022 	mlx5_mkey_cache_debugfs_cleanup(dev);
1023 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1024 
1025 	/* At this point all entries are disabled and have no concurrent work. */
1026 	mlx5r_destroy_cache_entries(dev);
1027 
1028 	destroy_workqueue(dev->cache.wq);
1029 	timer_delete_sync(&dev->delay_timer);
1030 }
1031 
1032 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1033 {
1034 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1035 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1036 	struct mlx5_ib_mr *mr;
1037 	void *mkc;
1038 	u32 *in;
1039 	int err;
1040 
1041 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1042 	if (!mr)
1043 		return ERR_PTR(-ENOMEM);
1044 
1045 	in = kzalloc(inlen, GFP_KERNEL);
1046 	if (!in) {
1047 		err = -ENOMEM;
1048 		goto err_free;
1049 	}
1050 
1051 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1052 
1053 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1054 	MLX5_SET(mkc, mkc, length64, 1);
1055 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1056 				      pd);
1057 	MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
1058 
1059 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1060 	if (err)
1061 		goto err_in;
1062 
1063 	kfree(in);
1064 	mr->mmkey.type = MLX5_MKEY_MR;
1065 	mr->ibmr.lkey = mr->mmkey.key;
1066 	mr->ibmr.rkey = mr->mmkey.key;
1067 	mr->umem = NULL;
1068 
1069 	return &mr->ibmr;
1070 
1071 err_in:
1072 	kfree(in);
1073 
1074 err_free:
1075 	kfree(mr);
1076 
1077 	return ERR_PTR(err);
1078 }
1079 
1080 static int get_octo_len(u64 addr, u64 len, int page_shift)
1081 {
1082 	u64 page_size = 1ULL << page_shift;
1083 	u64 offset;
1084 	int npages;
1085 
1086 	offset = addr & (page_size - 1);
1087 	npages = ALIGN(len + offset, page_size) >> page_shift;
1088 	return (npages + 1) / 2;
1089 }
1090 
1091 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1092 {
1093 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1094 		return MKEY_CACHE_LAST_STD_ENTRY;
1095 	return MLX5_MAX_UMR_SHIFT;
1096 }
1097 
1098 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1099 			  u64 length, int access_flags, u64 iova)
1100 {
1101 	mr->ibmr.lkey = mr->mmkey.key;
1102 	mr->ibmr.rkey = mr->mmkey.key;
1103 	mr->ibmr.length = length;
1104 	mr->ibmr.device = &dev->ib_dev;
1105 	mr->ibmr.iova = iova;
1106 	mr->access_flags = access_flags;
1107 }
1108 
1109 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1110 						  u64 iova)
1111 {
1112 	/*
1113 	 * The alignment of iova has already been checked upon entering
1114 	 * UVERBS_METHOD_REG_DMABUF_MR
1115 	 */
1116 	umem->iova = iova;
1117 	return PAGE_SIZE;
1118 }
1119 
1120 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1121 					     struct ib_umem *umem, u64 iova,
1122 					     int access_flags, int access_mode)
1123 {
1124 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1125 	struct mlx5r_cache_rb_key rb_key = {};
1126 	struct mlx5_cache_ent *ent;
1127 	struct mlx5_ib_mr *mr;
1128 	unsigned long page_size;
1129 
1130 	if (umem->is_dmabuf)
1131 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1132 	else
1133 		page_size = mlx5_umem_mkc_find_best_pgsz(dev, umem, iova,
1134 							 access_mode);
1135 	if (WARN_ON(!page_size))
1136 		return ERR_PTR(-EINVAL);
1137 
1138 	rb_key.access_mode = access_mode;
1139 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1140 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1141 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1142 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1143 	/*
1144 	 * If the MR can't come from the cache then synchronously create an uncached
1145 	 * one.
1146 	 */
1147 	if (!ent) {
1148 		mutex_lock(&dev->slow_path_mutex);
1149 		mr = reg_create(pd, umem, iova, access_flags, page_size, false, access_mode);
1150 		mutex_unlock(&dev->slow_path_mutex);
1151 		if (IS_ERR(mr))
1152 			return mr;
1153 		mr->mmkey.rb_key = rb_key;
1154 		mr->mmkey.cacheable = true;
1155 		return mr;
1156 	}
1157 
1158 	mr = _mlx5_mr_cache_alloc(dev, ent);
1159 	if (IS_ERR(mr))
1160 		return mr;
1161 
1162 	mr->ibmr.pd = pd;
1163 	mr->umem = umem;
1164 	mr->page_shift = order_base_2(page_size);
1165 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1166 
1167 	return mr;
1168 }
1169 
1170 static struct ib_mr *
1171 reg_create_crossing_vhca_mr(struct ib_pd *pd, u64 iova, u64 length, int access_flags,
1172 			    u32 crossed_lkey)
1173 {
1174 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1175 	int access_mode = MLX5_MKC_ACCESS_MODE_CROSSING;
1176 	struct mlx5_ib_mr *mr;
1177 	void *mkc;
1178 	int inlen;
1179 	u32 *in;
1180 	int err;
1181 
1182 	if (!MLX5_CAP_GEN(dev->mdev, crossing_vhca_mkey))
1183 		return ERR_PTR(-EOPNOTSUPP);
1184 
1185 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1186 	if (!mr)
1187 		return ERR_PTR(-ENOMEM);
1188 
1189 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1190 	in = kvzalloc(inlen, GFP_KERNEL);
1191 	if (!in) {
1192 		err = -ENOMEM;
1193 		goto err_1;
1194 	}
1195 
1196 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1197 	MLX5_SET(mkc, mkc, crossing_target_vhca_id,
1198 		 MLX5_CAP_GEN(dev->mdev, vhca_id));
1199 	MLX5_SET(mkc, mkc, translations_octword_size, crossed_lkey);
1200 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1201 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1202 
1203 	/* for this crossing mkey IOVA should be 0 and len should be IOVA + len */
1204 	set_mkc_access_pd_addr_fields(mkc, access_flags, 0, pd);
1205 	MLX5_SET64(mkc, mkc, len, iova + length);
1206 
1207 	MLX5_SET(mkc, mkc, free, 0);
1208 	MLX5_SET(mkc, mkc, umr_en, 0);
1209 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1210 	if (err)
1211 		goto err_2;
1212 
1213 	mr->mmkey.type = MLX5_MKEY_MR;
1214 	set_mr_fields(dev, mr, length, access_flags, iova);
1215 	mr->ibmr.pd = pd;
1216 	kvfree(in);
1217 	mlx5_ib_dbg(dev, "crossing mkey = 0x%x\n", mr->mmkey.key);
1218 
1219 	return &mr->ibmr;
1220 err_2:
1221 	kvfree(in);
1222 err_1:
1223 	kfree(mr);
1224 	return ERR_PTR(err);
1225 }
1226 
1227 /*
1228  * If ibmr is NULL it will be allocated by reg_create.
1229  * Else, the given ibmr will be used.
1230  */
1231 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1232 				     u64 iova, int access_flags,
1233 				     unsigned long page_size, bool populate,
1234 				     int access_mode)
1235 {
1236 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1237 	struct mlx5_ib_mr *mr;
1238 	__be64 *pas;
1239 	void *mkc;
1240 	int inlen;
1241 	u32 *in;
1242 	int err;
1243 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)) &&
1244 		(access_mode == MLX5_MKC_ACCESS_MODE_MTT);
1245 	bool ksm_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
1246 
1247 	if (!page_size)
1248 		return ERR_PTR(-EINVAL);
1249 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1250 	if (!mr)
1251 		return ERR_PTR(-ENOMEM);
1252 
1253 	mr->ibmr.pd = pd;
1254 	mr->access_flags = access_flags;
1255 	mr->page_shift = order_base_2(page_size);
1256 
1257 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1258 	if (populate)
1259 		inlen += sizeof(*pas) *
1260 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1261 	in = kvzalloc(inlen, GFP_KERNEL);
1262 	if (!in) {
1263 		err = -ENOMEM;
1264 		goto err_1;
1265 	}
1266 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1267 	if (populate) {
1268 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND || ksm_mode)) {
1269 			err = -EINVAL;
1270 			goto err_2;
1271 		}
1272 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1273 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1274 	}
1275 
1276 	/* The pg_access bit allows setting the access flags
1277 	 * in the page list submitted with the command.
1278 	 */
1279 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1280 
1281 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1282 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1283 				      populate ? pd : dev->umrc.pd);
1284 	/* In case a data direct flow, overwrite the pdn field by its internal kernel PD */
1285 	if (umem->is_dmabuf && ksm_mode)
1286 		MLX5_SET(mkc, mkc, pd, dev->ddr.pdn);
1287 
1288 	MLX5_SET(mkc, mkc, free, !populate);
1289 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode);
1290 	MLX5_SET(mkc, mkc, umr_en, 1);
1291 
1292 	MLX5_SET64(mkc, mkc, len, umem->length);
1293 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1294 	if (ksm_mode)
1295 		MLX5_SET(mkc, mkc, translations_octword_size,
1296 			 get_octo_len(iova, umem->length, mr->page_shift) * 2);
1297 	else
1298 		MLX5_SET(mkc, mkc, translations_octword_size,
1299 			 get_octo_len(iova, umem->length, mr->page_shift));
1300 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1301 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1302 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1303 	if (populate) {
1304 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1305 			 get_octo_len(iova, umem->length, mr->page_shift));
1306 	}
1307 
1308 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1309 	if (err) {
1310 		mlx5_ib_warn(dev, "create mkey failed\n");
1311 		goto err_2;
1312 	}
1313 	mr->mmkey.type = MLX5_MKEY_MR;
1314 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1315 	mr->umem = umem;
1316 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1317 	kvfree(in);
1318 
1319 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1320 
1321 	return mr;
1322 
1323 err_2:
1324 	kvfree(in);
1325 err_1:
1326 	kfree(mr);
1327 	return ERR_PTR(err);
1328 }
1329 
1330 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1331 				       u64 length, int acc, int mode)
1332 {
1333 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1334 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1335 	struct mlx5_ib_mr *mr;
1336 	void *mkc;
1337 	u32 *in;
1338 	int err;
1339 
1340 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1341 	if (!mr)
1342 		return ERR_PTR(-ENOMEM);
1343 
1344 	in = kzalloc(inlen, GFP_KERNEL);
1345 	if (!in) {
1346 		err = -ENOMEM;
1347 		goto err_free;
1348 	}
1349 
1350 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1351 
1352 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1353 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1354 	MLX5_SET64(mkc, mkc, len, length);
1355 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1356 
1357 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1358 	if (err)
1359 		goto err_in;
1360 
1361 	kfree(in);
1362 
1363 	set_mr_fields(dev, mr, length, acc, start_addr);
1364 
1365 	return &mr->ibmr;
1366 
1367 err_in:
1368 	kfree(in);
1369 
1370 err_free:
1371 	kfree(mr);
1372 
1373 	return ERR_PTR(err);
1374 }
1375 
1376 int mlx5_ib_advise_mr(struct ib_pd *pd,
1377 		      enum ib_uverbs_advise_mr_advice advice,
1378 		      u32 flags,
1379 		      struct ib_sge *sg_list,
1380 		      u32 num_sge,
1381 		      struct uverbs_attr_bundle *attrs)
1382 {
1383 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1384 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1385 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1386 		return -EOPNOTSUPP;
1387 
1388 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1389 					 sg_list, num_sge);
1390 }
1391 
1392 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1393 				struct ib_dm_mr_attr *attr,
1394 				struct uverbs_attr_bundle *attrs)
1395 {
1396 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1397 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1398 	u64 start_addr = mdm->dev_addr + attr->offset;
1399 	int mode;
1400 
1401 	switch (mdm->type) {
1402 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1403 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1404 			return ERR_PTR(-EINVAL);
1405 
1406 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1407 		start_addr -= pci_resource_start(dev->pdev, 0);
1408 		break;
1409 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1410 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1411 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1412 	case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1413 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1414 			return ERR_PTR(-EINVAL);
1415 
1416 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1417 		break;
1418 	default:
1419 		return ERR_PTR(-EINVAL);
1420 	}
1421 
1422 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1423 				 attr->access_flags, mode);
1424 }
1425 
1426 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1427 				    u64 iova, int access_flags)
1428 {
1429 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1430 	struct mlx5_ib_mr *mr = NULL;
1431 	bool xlt_with_umr;
1432 	int err;
1433 
1434 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1435 	if (xlt_with_umr) {
1436 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags,
1437 					MLX5_MKC_ACCESS_MODE_MTT);
1438 	} else {
1439 		unsigned long page_size = mlx5_umem_mkc_find_best_pgsz(
1440 				dev, umem, iova, MLX5_MKC_ACCESS_MODE_MTT);
1441 
1442 		mutex_lock(&dev->slow_path_mutex);
1443 		mr = reg_create(pd, umem, iova, access_flags, page_size,
1444 				true, MLX5_MKC_ACCESS_MODE_MTT);
1445 		mutex_unlock(&dev->slow_path_mutex);
1446 	}
1447 	if (IS_ERR(mr)) {
1448 		ib_umem_release(umem);
1449 		return ERR_CAST(mr);
1450 	}
1451 
1452 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1453 
1454 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1455 
1456 	if (xlt_with_umr) {
1457 		/*
1458 		 * If the MR was created with reg_create then it will be
1459 		 * configured properly but left disabled. It is safe to go ahead
1460 		 * and configure it again via UMR while enabling it.
1461 		 */
1462 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1463 		if (err) {
1464 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1465 			return ERR_PTR(err);
1466 		}
1467 	}
1468 	return &mr->ibmr;
1469 }
1470 
1471 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1472 					u64 iova, int access_flags,
1473 					struct ib_udata *udata)
1474 {
1475 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1476 	struct ib_umem_odp *odp;
1477 	struct mlx5_ib_mr *mr;
1478 	int err;
1479 
1480 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1481 		return ERR_PTR(-EOPNOTSUPP);
1482 
1483 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1484 	if (err)
1485 		return ERR_PTR(err);
1486 	if (!start && length == U64_MAX) {
1487 		if (iova != 0)
1488 			return ERR_PTR(-EINVAL);
1489 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1490 			return ERR_PTR(-EINVAL);
1491 
1492 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1493 		if (IS_ERR(mr))
1494 			return ERR_CAST(mr);
1495 		return &mr->ibmr;
1496 	}
1497 
1498 	/* ODP requires xlt update via umr to work. */
1499 	if (!mlx5r_umr_can_load_pas(dev, length))
1500 		return ERR_PTR(-EINVAL);
1501 
1502 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1503 			      &mlx5_mn_ops);
1504 	if (IS_ERR(odp))
1505 		return ERR_CAST(odp);
1506 
1507 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags,
1508 				MLX5_MKC_ACCESS_MODE_MTT);
1509 	if (IS_ERR(mr)) {
1510 		ib_umem_release(&odp->umem);
1511 		return ERR_CAST(mr);
1512 	}
1513 	xa_init(&mr->implicit_children);
1514 
1515 	odp->private = mr;
1516 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1517 	if (err)
1518 		goto err_dereg_mr;
1519 
1520 	err = mlx5_ib_init_odp_mr(mr);
1521 	if (err)
1522 		goto err_dereg_mr;
1523 	return &mr->ibmr;
1524 
1525 err_dereg_mr:
1526 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1527 	return ERR_PTR(err);
1528 }
1529 
1530 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1531 				  u64 iova, int access_flags,
1532 				  struct ib_udata *udata)
1533 {
1534 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1535 	struct ib_umem *umem;
1536 	int err;
1537 
1538 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1539 		return ERR_PTR(-EOPNOTSUPP);
1540 
1541 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1542 		    start, iova, length, access_flags);
1543 
1544 	err = mlx5r_umr_resource_init(dev);
1545 	if (err)
1546 		return ERR_PTR(err);
1547 
1548 	if (access_flags & IB_ACCESS_ON_DEMAND)
1549 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1550 					  udata);
1551 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1552 	if (IS_ERR(umem))
1553 		return ERR_CAST(umem);
1554 	return create_real_mr(pd, umem, iova, access_flags);
1555 }
1556 
1557 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1558 {
1559 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1560 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1561 
1562 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1563 
1564 	if (!umem_dmabuf->sgt || !mr)
1565 		return;
1566 
1567 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1568 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1569 }
1570 
1571 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1572 	.allow_peer2peer = 1,
1573 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1574 };
1575 
1576 static struct ib_mr *
1577 reg_user_mr_dmabuf(struct ib_pd *pd, struct device *dma_device,
1578 		   u64 offset, u64 length, u64 virt_addr,
1579 		   int fd, int access_flags, int access_mode)
1580 {
1581 	bool pinned_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
1582 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1583 	struct mlx5_ib_mr *mr = NULL;
1584 	struct ib_umem_dmabuf *umem_dmabuf;
1585 	int err;
1586 
1587 	err = mlx5r_umr_resource_init(dev);
1588 	if (err)
1589 		return ERR_PTR(err);
1590 
1591 	if (!pinned_mode)
1592 		umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev,
1593 						 offset, length, fd,
1594 						 access_flags,
1595 						 &mlx5_ib_dmabuf_attach_ops);
1596 	else
1597 		umem_dmabuf = ib_umem_dmabuf_get_pinned_with_dma_device(&dev->ib_dev,
1598 				dma_device, offset, length,
1599 				fd, access_flags);
1600 
1601 	if (IS_ERR(umem_dmabuf)) {
1602 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1603 			    PTR_ERR(umem_dmabuf));
1604 		return ERR_CAST(umem_dmabuf);
1605 	}
1606 
1607 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1608 				access_flags, access_mode);
1609 	if (IS_ERR(mr)) {
1610 		ib_umem_release(&umem_dmabuf->umem);
1611 		return ERR_CAST(mr);
1612 	}
1613 
1614 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1615 
1616 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1617 	umem_dmabuf->private = mr;
1618 	if (!pinned_mode) {
1619 		err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1620 		if (err)
1621 			goto err_dereg_mr;
1622 	} else {
1623 		mr->data_direct = true;
1624 	}
1625 
1626 	err = mlx5_ib_init_dmabuf_mr(mr);
1627 	if (err)
1628 		goto err_dereg_mr;
1629 	return &mr->ibmr;
1630 
1631 err_dereg_mr:
1632 	__mlx5_ib_dereg_mr(&mr->ibmr);
1633 	return ERR_PTR(err);
1634 }
1635 
1636 static struct ib_mr *
1637 reg_user_mr_dmabuf_by_data_direct(struct ib_pd *pd, u64 offset,
1638 				  u64 length, u64 virt_addr,
1639 				  int fd, int access_flags)
1640 {
1641 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1642 	struct mlx5_data_direct_dev *data_direct_dev;
1643 	struct ib_mr *crossing_mr;
1644 	struct ib_mr *crossed_mr;
1645 	int ret = 0;
1646 
1647 	/* As of HW behaviour the IOVA must be page aligned in KSM mode */
1648 	if (!PAGE_ALIGNED(virt_addr) || (access_flags & IB_ACCESS_ON_DEMAND))
1649 		return ERR_PTR(-EOPNOTSUPP);
1650 
1651 	mutex_lock(&dev->data_direct_lock);
1652 	data_direct_dev = dev->data_direct_dev;
1653 	if (!data_direct_dev) {
1654 		ret = -EINVAL;
1655 		goto end;
1656 	}
1657 
1658 	/* The device's 'data direct mkey' was created without RO flags to
1659 	 * simplify things and allow for a single mkey per device.
1660 	 * Since RO is not a must, mask it out accordingly.
1661 	 */
1662 	access_flags &= ~IB_ACCESS_RELAXED_ORDERING;
1663 	crossed_mr = reg_user_mr_dmabuf(pd, &data_direct_dev->pdev->dev,
1664 					offset, length, virt_addr, fd,
1665 					access_flags, MLX5_MKC_ACCESS_MODE_KSM);
1666 	if (IS_ERR(crossed_mr)) {
1667 		ret = PTR_ERR(crossed_mr);
1668 		goto end;
1669 	}
1670 
1671 	mutex_lock(&dev->slow_path_mutex);
1672 	crossing_mr = reg_create_crossing_vhca_mr(pd, virt_addr, length, access_flags,
1673 						  crossed_mr->lkey);
1674 	mutex_unlock(&dev->slow_path_mutex);
1675 	if (IS_ERR(crossing_mr)) {
1676 		__mlx5_ib_dereg_mr(crossed_mr);
1677 		ret = PTR_ERR(crossing_mr);
1678 		goto end;
1679 	}
1680 
1681 	list_add_tail(&to_mmr(crossed_mr)->dd_node, &dev->data_direct_mr_list);
1682 	to_mmr(crossing_mr)->dd_crossed_mr = to_mmr(crossed_mr);
1683 	to_mmr(crossing_mr)->data_direct = true;
1684 end:
1685 	mutex_unlock(&dev->data_direct_lock);
1686 	return ret ? ERR_PTR(ret) : crossing_mr;
1687 }
1688 
1689 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1690 					 u64 length, u64 virt_addr,
1691 					 int fd, int access_flags,
1692 					 struct uverbs_attr_bundle *attrs)
1693 {
1694 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1695 	int mlx5_access_flags = 0;
1696 	int err;
1697 
1698 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1699 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1700 		return ERR_PTR(-EOPNOTSUPP);
1701 
1702 	if (uverbs_attr_is_valid(attrs, MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS)) {
1703 		err = uverbs_get_flags32(&mlx5_access_flags, attrs,
1704 					 MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS,
1705 					 MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT);
1706 		if (err)
1707 			return ERR_PTR(err);
1708 	}
1709 
1710 	mlx5_ib_dbg(dev,
1711 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x, mlx5_access_flags 0x%x\n",
1712 		    offset, virt_addr, length, fd, access_flags, mlx5_access_flags);
1713 
1714 	/* dmabuf requires xlt update via umr to work. */
1715 	if (!mlx5r_umr_can_load_pas(dev, length))
1716 		return ERR_PTR(-EINVAL);
1717 
1718 	if (mlx5_access_flags & MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT)
1719 		return reg_user_mr_dmabuf_by_data_direct(pd, offset, length, virt_addr,
1720 							 fd, access_flags);
1721 
1722 	return reg_user_mr_dmabuf(pd, pd->device->dma_device,
1723 				  offset, length, virt_addr,
1724 				  fd, access_flags, MLX5_MKC_ACCESS_MODE_MTT);
1725 }
1726 
1727 /*
1728  * True if the change in access flags can be done via UMR, only some access
1729  * flags can be updated.
1730  */
1731 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1732 				     unsigned int current_access_flags,
1733 				     unsigned int target_access_flags)
1734 {
1735 	unsigned int diffs = current_access_flags ^ target_access_flags;
1736 
1737 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1738 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1739 		      IB_ACCESS_REMOTE_ATOMIC))
1740 		return false;
1741 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1742 				      target_access_flags);
1743 }
1744 
1745 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1746 				  struct ib_umem *new_umem,
1747 				  int new_access_flags, u64 iova,
1748 				  unsigned long *page_size)
1749 {
1750 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1751 
1752 	/* We only track the allocated sizes of MRs from the cache */
1753 	if (!mr->mmkey.cache_ent)
1754 		return false;
1755 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1756 		return false;
1757 
1758 	*page_size = mlx5_umem_mkc_find_best_pgsz(
1759 		dev, new_umem, iova, mr->mmkey.cache_ent->rb_key.access_mode);
1760 	if (WARN_ON(!*page_size))
1761 		return false;
1762 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1763 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1764 }
1765 
1766 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1767 			 int access_flags, int flags, struct ib_umem *new_umem,
1768 			 u64 iova, unsigned long page_size)
1769 {
1770 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1771 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1772 	struct ib_umem *old_umem = mr->umem;
1773 	int err;
1774 
1775 	/*
1776 	 * To keep everything simple the MR is revoked before we start to mess
1777 	 * with it. This ensure the change is atomic relative to any use of the
1778 	 * MR.
1779 	 */
1780 	err = mlx5r_umr_revoke_mr(mr);
1781 	if (err)
1782 		return err;
1783 
1784 	if (flags & IB_MR_REREG_PD) {
1785 		mr->ibmr.pd = pd;
1786 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1787 	}
1788 	if (flags & IB_MR_REREG_ACCESS) {
1789 		mr->access_flags = access_flags;
1790 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1791 	}
1792 
1793 	mr->ibmr.iova = iova;
1794 	mr->ibmr.length = new_umem->length;
1795 	mr->page_shift = order_base_2(page_size);
1796 	mr->umem = new_umem;
1797 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1798 	if (err) {
1799 		/*
1800 		 * The MR is revoked at this point so there is no issue to free
1801 		 * new_umem.
1802 		 */
1803 		mr->umem = old_umem;
1804 		return err;
1805 	}
1806 
1807 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1808 	ib_umem_release(old_umem);
1809 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1810 	return 0;
1811 }
1812 
1813 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1814 				    u64 length, u64 iova, int new_access_flags,
1815 				    struct ib_pd *new_pd,
1816 				    struct ib_udata *udata)
1817 {
1818 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1819 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1820 	int err;
1821 
1822 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || mr->data_direct)
1823 		return ERR_PTR(-EOPNOTSUPP);
1824 
1825 	mlx5_ib_dbg(
1826 		dev,
1827 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1828 		start, iova, length, new_access_flags);
1829 
1830 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1831 		return ERR_PTR(-EOPNOTSUPP);
1832 
1833 	if (!(flags & IB_MR_REREG_ACCESS))
1834 		new_access_flags = mr->access_flags;
1835 	if (!(flags & IB_MR_REREG_PD))
1836 		new_pd = ib_mr->pd;
1837 
1838 	if (!(flags & IB_MR_REREG_TRANS)) {
1839 		struct ib_umem *umem;
1840 
1841 		/* Fast path for PD/access change */
1842 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1843 					     new_access_flags)) {
1844 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1845 							new_access_flags);
1846 			if (err)
1847 				return ERR_PTR(err);
1848 			return NULL;
1849 		}
1850 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1851 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1852 			goto recreate;
1853 
1854 		/*
1855 		 * Only one active MR can refer to a umem at one time, revoke
1856 		 * the old MR before assigning the umem to the new one.
1857 		 */
1858 		err = mlx5r_umr_revoke_mr(mr);
1859 		if (err)
1860 			return ERR_PTR(err);
1861 		umem = mr->umem;
1862 		mr->umem = NULL;
1863 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1864 
1865 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1866 				      new_access_flags);
1867 	}
1868 
1869 	/*
1870 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1871 	 * but the logic around releasing the umem is different
1872 	 */
1873 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1874 		goto recreate;
1875 
1876 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1877 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1878 		struct ib_umem *new_umem;
1879 		unsigned long page_size;
1880 
1881 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1882 				       new_access_flags);
1883 		if (IS_ERR(new_umem))
1884 			return ERR_CAST(new_umem);
1885 
1886 		/* Fast path for PAS change */
1887 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1888 					  &page_size)) {
1889 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1890 					    new_umem, iova, page_size);
1891 			if (err) {
1892 				ib_umem_release(new_umem);
1893 				return ERR_PTR(err);
1894 			}
1895 			return NULL;
1896 		}
1897 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1898 	}
1899 
1900 	/*
1901 	 * Everything else has no state we can preserve, just create a new MR
1902 	 * from scratch
1903 	 */
1904 recreate:
1905 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1906 				   new_access_flags, udata);
1907 }
1908 
1909 static int
1910 mlx5_alloc_priv_descs(struct ib_device *device,
1911 		      struct mlx5_ib_mr *mr,
1912 		      int ndescs,
1913 		      int desc_size)
1914 {
1915 	struct mlx5_ib_dev *dev = to_mdev(device);
1916 	struct device *ddev = &dev->mdev->pdev->dev;
1917 	int size = ndescs * desc_size;
1918 	int add_size;
1919 	int ret;
1920 
1921 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1922 	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1923 		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1924 
1925 		add_size = min_t(int, end - size, add_size);
1926 	}
1927 
1928 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1929 	if (!mr->descs_alloc)
1930 		return -ENOMEM;
1931 
1932 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1933 
1934 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1935 	if (dma_mapping_error(ddev, mr->desc_map)) {
1936 		ret = -ENOMEM;
1937 		goto err;
1938 	}
1939 
1940 	return 0;
1941 err:
1942 	kfree(mr->descs_alloc);
1943 
1944 	return ret;
1945 }
1946 
1947 static void
1948 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1949 {
1950 	if (!mr->umem && !mr->data_direct &&
1951 	    mr->ibmr.type != IB_MR_TYPE_DM && mr->descs) {
1952 		struct ib_device *device = mr->ibmr.device;
1953 		int size = mr->max_descs * mr->desc_size;
1954 		struct mlx5_ib_dev *dev = to_mdev(device);
1955 
1956 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1957 				 DMA_TO_DEVICE);
1958 		kfree(mr->descs_alloc);
1959 		mr->descs = NULL;
1960 	}
1961 }
1962 
1963 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1964 				    struct mlx5_ib_mr *mr)
1965 {
1966 	struct mlx5_mkey_cache *cache = &dev->cache;
1967 	struct mlx5_cache_ent *ent;
1968 	int ret;
1969 
1970 	if (mr->mmkey.cache_ent) {
1971 		spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1972 		goto end;
1973 	}
1974 
1975 	mutex_lock(&cache->rb_lock);
1976 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1977 	if (ent) {
1978 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1979 			if (ent->disabled) {
1980 				mutex_unlock(&cache->rb_lock);
1981 				return -EOPNOTSUPP;
1982 			}
1983 			mr->mmkey.cache_ent = ent;
1984 			spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1985 			mutex_unlock(&cache->rb_lock);
1986 			goto end;
1987 		}
1988 	}
1989 
1990 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1991 	mutex_unlock(&cache->rb_lock);
1992 	if (IS_ERR(ent))
1993 		return PTR_ERR(ent);
1994 
1995 	mr->mmkey.cache_ent = ent;
1996 	spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1997 
1998 end:
1999 	ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
2000 	spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
2001 	return ret;
2002 }
2003 
2004 static int mlx5_ib_revoke_data_direct_mr(struct mlx5_ib_mr *mr)
2005 {
2006 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
2007 	struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
2008 	int err;
2009 
2010 	lockdep_assert_held(&dev->data_direct_lock);
2011 	mr->revoked = true;
2012 	err = mlx5r_umr_revoke_mr(mr);
2013 	if (WARN_ON(err))
2014 		return err;
2015 
2016 	ib_umem_dmabuf_revoke(umem_dmabuf);
2017 	return 0;
2018 }
2019 
2020 void mlx5_ib_revoke_data_direct_mrs(struct mlx5_ib_dev *dev)
2021 {
2022 	struct mlx5_ib_mr *mr, *next;
2023 
2024 	lockdep_assert_held(&dev->data_direct_lock);
2025 
2026 	list_for_each_entry_safe(mr, next, &dev->data_direct_mr_list, dd_node) {
2027 		list_del(&mr->dd_node);
2028 		mlx5_ib_revoke_data_direct_mr(mr);
2029 	}
2030 }
2031 
2032 static int mlx5_revoke_mr(struct mlx5_ib_mr *mr)
2033 {
2034 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
2035 	struct mlx5_cache_ent *ent = mr->mmkey.cache_ent;
2036 	bool is_odp = is_odp_mr(mr);
2037 	bool is_odp_dma_buf = is_dmabuf_mr(mr) &&
2038 			!to_ib_umem_dmabuf(mr->umem)->pinned;
2039 	bool from_cache = !!ent;
2040 	int ret = 0;
2041 
2042 	if (is_odp)
2043 		mutex_lock(&to_ib_umem_odp(mr->umem)->umem_mutex);
2044 
2045 	if (is_odp_dma_buf)
2046 		dma_resv_lock(to_ib_umem_dmabuf(mr->umem)->attach->dmabuf->resv, NULL);
2047 
2048 	if (mr->mmkey.cacheable && !mlx5r_umr_revoke_mr(mr) && !cache_ent_find_and_store(dev, mr)) {
2049 		ent = mr->mmkey.cache_ent;
2050 		/* upon storing to a clean temp entry - schedule its cleanup */
2051 		spin_lock_irq(&ent->mkeys_queue.lock);
2052 		if (from_cache)
2053 			ent->in_use--;
2054 		if (ent->is_tmp && !ent->tmp_cleanup_scheduled) {
2055 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork,
2056 					 secs_to_jiffies(30));
2057 			ent->tmp_cleanup_scheduled = true;
2058 		}
2059 		spin_unlock_irq(&ent->mkeys_queue.lock);
2060 		goto out;
2061 	}
2062 
2063 	if (ent) {
2064 		spin_lock_irq(&ent->mkeys_queue.lock);
2065 		ent->in_use--;
2066 		mr->mmkey.cache_ent = NULL;
2067 		spin_unlock_irq(&ent->mkeys_queue.lock);
2068 	}
2069 	ret = destroy_mkey(dev, mr);
2070 out:
2071 	if (is_odp) {
2072 		if (!ret)
2073 			to_ib_umem_odp(mr->umem)->private = NULL;
2074 		mutex_unlock(&to_ib_umem_odp(mr->umem)->umem_mutex);
2075 	}
2076 
2077 	if (is_odp_dma_buf) {
2078 		if (!ret)
2079 			to_ib_umem_dmabuf(mr->umem)->private = NULL;
2080 		dma_resv_unlock(to_ib_umem_dmabuf(mr->umem)->attach->dmabuf->resv);
2081 	}
2082 
2083 	return ret;
2084 }
2085 
2086 static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr)
2087 {
2088 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2089 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
2090 	int rc;
2091 
2092 	/*
2093 	 * Any async use of the mr must hold the refcount, once the refcount
2094 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
2095 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
2096 	 */
2097 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2098 	    refcount_read(&mr->mmkey.usecount) != 0 &&
2099 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
2100 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
2101 
2102 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
2103 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2104 			   mr->sig, NULL, GFP_KERNEL);
2105 
2106 		if (mr->mtt_mr) {
2107 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2108 			if (rc)
2109 				return rc;
2110 			mr->mtt_mr = NULL;
2111 		}
2112 		if (mr->klm_mr) {
2113 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2114 			if (rc)
2115 				return rc;
2116 			mr->klm_mr = NULL;
2117 		}
2118 
2119 		if (mlx5_core_destroy_psv(dev->mdev,
2120 					  mr->sig->psv_memory.psv_idx))
2121 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2122 				     mr->sig->psv_memory.psv_idx);
2123 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2124 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2125 				     mr->sig->psv_wire.psv_idx);
2126 		kfree(mr->sig);
2127 		mr->sig = NULL;
2128 	}
2129 
2130 	/* Stop DMA */
2131 	rc = mlx5_revoke_mr(mr);
2132 	if (rc)
2133 		return rc;
2134 
2135 	if (mr->umem) {
2136 		bool is_odp = is_odp_mr(mr);
2137 
2138 		if (!is_odp)
2139 			atomic_sub(ib_umem_num_pages(mr->umem),
2140 				   &dev->mdev->priv.reg_pages);
2141 		ib_umem_release(mr->umem);
2142 		if (is_odp)
2143 			mlx5_ib_free_odp_mr(mr);
2144 	}
2145 
2146 	if (!mr->mmkey.cache_ent)
2147 		mlx5_free_priv_descs(mr);
2148 
2149 	kfree(mr);
2150 	return 0;
2151 }
2152 
2153 static int dereg_crossing_data_direct_mr(struct mlx5_ib_dev *dev,
2154 					struct mlx5_ib_mr *mr)
2155 {
2156 	struct mlx5_ib_mr *dd_crossed_mr = mr->dd_crossed_mr;
2157 	int ret;
2158 
2159 	ret = __mlx5_ib_dereg_mr(&mr->ibmr);
2160 	if (ret)
2161 		return ret;
2162 
2163 	mutex_lock(&dev->data_direct_lock);
2164 	if (!dd_crossed_mr->revoked)
2165 		list_del(&dd_crossed_mr->dd_node);
2166 
2167 	ret = __mlx5_ib_dereg_mr(&dd_crossed_mr->ibmr);
2168 	mutex_unlock(&dev->data_direct_lock);
2169 	return ret;
2170 }
2171 
2172 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
2173 {
2174 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2175 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
2176 
2177 	if (mr->data_direct)
2178 		return dereg_crossing_data_direct_mr(dev, mr);
2179 
2180 	return __mlx5_ib_dereg_mr(ibmr);
2181 }
2182 
2183 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
2184 				   int access_mode, int page_shift)
2185 {
2186 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2187 	void *mkc;
2188 
2189 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2190 
2191 	/* This is only used from the kernel, so setting the PD is OK. */
2192 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
2193 	MLX5_SET(mkc, mkc, free, 1);
2194 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2195 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
2196 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
2197 	MLX5_SET(mkc, mkc, umr_en, 1);
2198 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
2199 	if (access_mode == MLX5_MKC_ACCESS_MODE_PA ||
2200 	    access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2201 		MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
2202 }
2203 
2204 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2205 				  int ndescs, int desc_size, int page_shift,
2206 				  int access_mode, u32 *in, int inlen)
2207 {
2208 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2209 	int err;
2210 
2211 	mr->access_mode = access_mode;
2212 	mr->desc_size = desc_size;
2213 	mr->max_descs = ndescs;
2214 
2215 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
2216 	if (err)
2217 		return err;
2218 
2219 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
2220 
2221 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
2222 	if (err)
2223 		goto err_free_descs;
2224 
2225 	mr->mmkey.type = MLX5_MKEY_MR;
2226 	mr->ibmr.lkey = mr->mmkey.key;
2227 	mr->ibmr.rkey = mr->mmkey.key;
2228 
2229 	return 0;
2230 
2231 err_free_descs:
2232 	mlx5_free_priv_descs(mr);
2233 	return err;
2234 }
2235 
2236 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
2237 				u32 max_num_sg, u32 max_num_meta_sg,
2238 				int desc_size, int access_mode)
2239 {
2240 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2241 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
2242 	int page_shift = 0;
2243 	struct mlx5_ib_mr *mr;
2244 	u32 *in;
2245 	int err;
2246 
2247 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2248 	if (!mr)
2249 		return ERR_PTR(-ENOMEM);
2250 
2251 	mr->ibmr.pd = pd;
2252 	mr->ibmr.device = pd->device;
2253 
2254 	in = kzalloc(inlen, GFP_KERNEL);
2255 	if (!in) {
2256 		err = -ENOMEM;
2257 		goto err_free;
2258 	}
2259 
2260 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
2261 		page_shift = PAGE_SHIFT;
2262 
2263 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2264 				     access_mode, in, inlen);
2265 	if (err)
2266 		goto err_free_in;
2267 
2268 	mr->umem = NULL;
2269 	kfree(in);
2270 
2271 	return mr;
2272 
2273 err_free_in:
2274 	kfree(in);
2275 err_free:
2276 	kfree(mr);
2277 	return ERR_PTR(err);
2278 }
2279 
2280 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2281 				    int ndescs, u32 *in, int inlen)
2282 {
2283 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2284 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2285 				      inlen);
2286 }
2287 
2288 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2289 				    int ndescs, u32 *in, int inlen)
2290 {
2291 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2292 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2293 }
2294 
2295 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2296 				      int max_num_sg, int max_num_meta_sg,
2297 				      u32 *in, int inlen)
2298 {
2299 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2300 	u32 psv_index[2];
2301 	void *mkc;
2302 	int err;
2303 
2304 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2305 	if (!mr->sig)
2306 		return -ENOMEM;
2307 
2308 	/* create mem & wire PSVs */
2309 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2310 	if (err)
2311 		goto err_free_sig;
2312 
2313 	mr->sig->psv_memory.psv_idx = psv_index[0];
2314 	mr->sig->psv_wire.psv_idx = psv_index[1];
2315 
2316 	mr->sig->sig_status_checked = true;
2317 	mr->sig->sig_err_exists = false;
2318 	/* Next UMR, Arm SIGERR */
2319 	++mr->sig->sigerr_count;
2320 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2321 					 sizeof(struct mlx5_klm),
2322 					 MLX5_MKC_ACCESS_MODE_KLMS);
2323 	if (IS_ERR(mr->klm_mr)) {
2324 		err = PTR_ERR(mr->klm_mr);
2325 		goto err_destroy_psv;
2326 	}
2327 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2328 					 sizeof(struct mlx5_mtt),
2329 					 MLX5_MKC_ACCESS_MODE_MTT);
2330 	if (IS_ERR(mr->mtt_mr)) {
2331 		err = PTR_ERR(mr->mtt_mr);
2332 		goto err_free_klm_mr;
2333 	}
2334 
2335 	/* Set bsf descriptors for mkey */
2336 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2337 	MLX5_SET(mkc, mkc, bsf_en, 1);
2338 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2339 
2340 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2341 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2342 	if (err)
2343 		goto err_free_mtt_mr;
2344 
2345 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2346 			      mr->sig, GFP_KERNEL));
2347 	if (err)
2348 		goto err_free_descs;
2349 	return 0;
2350 
2351 err_free_descs:
2352 	destroy_mkey(dev, mr);
2353 	mlx5_free_priv_descs(mr);
2354 err_free_mtt_mr:
2355 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2356 	mr->mtt_mr = NULL;
2357 err_free_klm_mr:
2358 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2359 	mr->klm_mr = NULL;
2360 err_destroy_psv:
2361 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2362 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2363 			     mr->sig->psv_memory.psv_idx);
2364 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2365 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2366 			     mr->sig->psv_wire.psv_idx);
2367 err_free_sig:
2368 	kfree(mr->sig);
2369 
2370 	return err;
2371 }
2372 
2373 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2374 					enum ib_mr_type mr_type, u32 max_num_sg,
2375 					u32 max_num_meta_sg)
2376 {
2377 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2378 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2379 	int ndescs = ALIGN(max_num_sg, 4);
2380 	struct mlx5_ib_mr *mr;
2381 	u32 *in;
2382 	int err;
2383 
2384 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2385 	if (!mr)
2386 		return ERR_PTR(-ENOMEM);
2387 
2388 	in = kzalloc(inlen, GFP_KERNEL);
2389 	if (!in) {
2390 		err = -ENOMEM;
2391 		goto err_free;
2392 	}
2393 
2394 	mr->ibmr.device = pd->device;
2395 	mr->umem = NULL;
2396 
2397 	switch (mr_type) {
2398 	case IB_MR_TYPE_MEM_REG:
2399 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2400 		break;
2401 	case IB_MR_TYPE_SG_GAPS:
2402 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2403 		break;
2404 	case IB_MR_TYPE_INTEGRITY:
2405 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2406 						 max_num_meta_sg, in, inlen);
2407 		break;
2408 	default:
2409 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2410 		err = -EINVAL;
2411 	}
2412 
2413 	if (err)
2414 		goto err_free_in;
2415 
2416 	kfree(in);
2417 
2418 	return &mr->ibmr;
2419 
2420 err_free_in:
2421 	kfree(in);
2422 err_free:
2423 	kfree(mr);
2424 	return ERR_PTR(err);
2425 }
2426 
2427 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2428 			       u32 max_num_sg)
2429 {
2430 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2431 }
2432 
2433 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2434 					 u32 max_num_sg, u32 max_num_meta_sg)
2435 {
2436 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2437 				  max_num_meta_sg);
2438 }
2439 
2440 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2441 {
2442 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2443 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2444 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2445 	unsigned int ndescs;
2446 	u32 *in = NULL;
2447 	void *mkc;
2448 	int err;
2449 	struct mlx5_ib_alloc_mw req = {};
2450 	struct {
2451 		__u32	comp_mask;
2452 		__u32	response_length;
2453 	} resp = {};
2454 
2455 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2456 	if (err)
2457 		return err;
2458 
2459 	if (req.comp_mask || req.reserved1 || req.reserved2)
2460 		return -EOPNOTSUPP;
2461 
2462 	if (udata->inlen > sizeof(req) &&
2463 	    !ib_is_udata_cleared(udata, sizeof(req),
2464 				 udata->inlen - sizeof(req)))
2465 		return -EOPNOTSUPP;
2466 
2467 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2468 
2469 	in = kzalloc(inlen, GFP_KERNEL);
2470 	if (!in)
2471 		return -ENOMEM;
2472 
2473 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2474 
2475 	MLX5_SET(mkc, mkc, free, 1);
2476 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2477 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2478 	MLX5_SET(mkc, mkc, umr_en, 1);
2479 	MLX5_SET(mkc, mkc, lr, 1);
2480 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2481 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2482 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2483 
2484 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2485 	if (err)
2486 		goto free;
2487 
2488 	mw->mmkey.type = MLX5_MKEY_MW;
2489 	ibmw->rkey = mw->mmkey.key;
2490 	mw->mmkey.ndescs = ndescs;
2491 
2492 	resp.response_length =
2493 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2494 	if (resp.response_length) {
2495 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2496 		if (err)
2497 			goto free_mkey;
2498 	}
2499 
2500 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2501 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2502 		if (err)
2503 			goto free_mkey;
2504 	}
2505 
2506 	kfree(in);
2507 	return 0;
2508 
2509 free_mkey:
2510 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2511 free:
2512 	kfree(in);
2513 	return err;
2514 }
2515 
2516 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2517 {
2518 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2519 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2520 
2521 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2522 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2523 		/*
2524 		 * pagefault_single_data_segment() may be accessing mmw
2525 		 * if the user bound an ODP MR to this MW.
2526 		 */
2527 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2528 
2529 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2530 }
2531 
2532 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2533 			    struct ib_mr_status *mr_status)
2534 {
2535 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2536 	int ret = 0;
2537 
2538 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2539 		pr_err("Invalid status check mask\n");
2540 		ret = -EINVAL;
2541 		goto done;
2542 	}
2543 
2544 	mr_status->fail_status = 0;
2545 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2546 		if (!mmr->sig) {
2547 			ret = -EINVAL;
2548 			pr_err("signature status check requested on a non-signature enabled MR\n");
2549 			goto done;
2550 		}
2551 
2552 		mmr->sig->sig_status_checked = true;
2553 		if (!mmr->sig->sig_err_exists)
2554 			goto done;
2555 
2556 		if (ibmr->lkey == mmr->sig->err_item.key)
2557 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2558 			       sizeof(mr_status->sig_err));
2559 		else {
2560 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2561 			mr_status->sig_err.sig_err_offset = 0;
2562 			mr_status->sig_err.key = mmr->sig->err_item.key;
2563 		}
2564 
2565 		mmr->sig->sig_err_exists = false;
2566 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2567 	}
2568 
2569 done:
2570 	return ret;
2571 }
2572 
2573 static int
2574 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2575 			int data_sg_nents, unsigned int *data_sg_offset,
2576 			struct scatterlist *meta_sg, int meta_sg_nents,
2577 			unsigned int *meta_sg_offset)
2578 {
2579 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2580 	unsigned int sg_offset = 0;
2581 	int n = 0;
2582 
2583 	mr->meta_length = 0;
2584 	if (data_sg_nents == 1) {
2585 		n++;
2586 		mr->mmkey.ndescs = 1;
2587 		if (data_sg_offset)
2588 			sg_offset = *data_sg_offset;
2589 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2590 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2591 		if (meta_sg_nents == 1) {
2592 			n++;
2593 			mr->meta_ndescs = 1;
2594 			if (meta_sg_offset)
2595 				sg_offset = *meta_sg_offset;
2596 			else
2597 				sg_offset = 0;
2598 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2599 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2600 		}
2601 		ibmr->length = mr->data_length + mr->meta_length;
2602 	}
2603 
2604 	return n;
2605 }
2606 
2607 static int
2608 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2609 		   struct scatterlist *sgl,
2610 		   unsigned short sg_nents,
2611 		   unsigned int *sg_offset_p,
2612 		   struct scatterlist *meta_sgl,
2613 		   unsigned short meta_sg_nents,
2614 		   unsigned int *meta_sg_offset_p)
2615 {
2616 	struct scatterlist *sg = sgl;
2617 	struct mlx5_klm *klms = mr->descs;
2618 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2619 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2620 	int i, j = 0;
2621 
2622 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2623 	mr->ibmr.length = 0;
2624 
2625 	for_each_sg(sgl, sg, sg_nents, i) {
2626 		if (unlikely(i >= mr->max_descs))
2627 			break;
2628 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2629 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2630 		klms[i].key = cpu_to_be32(lkey);
2631 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2632 
2633 		sg_offset = 0;
2634 	}
2635 
2636 	if (sg_offset_p)
2637 		*sg_offset_p = sg_offset;
2638 
2639 	mr->mmkey.ndescs = i;
2640 	mr->data_length = mr->ibmr.length;
2641 
2642 	if (meta_sg_nents) {
2643 		sg = meta_sgl;
2644 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2645 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2646 			if (unlikely(i + j >= mr->max_descs))
2647 				break;
2648 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2649 						     sg_offset);
2650 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2651 							 sg_offset);
2652 			klms[i + j].key = cpu_to_be32(lkey);
2653 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2654 
2655 			sg_offset = 0;
2656 		}
2657 		if (meta_sg_offset_p)
2658 			*meta_sg_offset_p = sg_offset;
2659 
2660 		mr->meta_ndescs = j;
2661 		mr->meta_length = mr->ibmr.length - mr->data_length;
2662 	}
2663 
2664 	return i + j;
2665 }
2666 
2667 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2668 {
2669 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2670 	__be64 *descs;
2671 
2672 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2673 		return -ENOMEM;
2674 
2675 	descs = mr->descs;
2676 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2677 
2678 	return 0;
2679 }
2680 
2681 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2682 {
2683 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2684 	__be64 *descs;
2685 
2686 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2687 		return -ENOMEM;
2688 
2689 	descs = mr->descs;
2690 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2691 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2692 
2693 	return 0;
2694 }
2695 
2696 static int
2697 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2698 			 int data_sg_nents, unsigned int *data_sg_offset,
2699 			 struct scatterlist *meta_sg, int meta_sg_nents,
2700 			 unsigned int *meta_sg_offset)
2701 {
2702 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2703 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2704 	int n;
2705 
2706 	pi_mr->mmkey.ndescs = 0;
2707 	pi_mr->meta_ndescs = 0;
2708 	pi_mr->meta_length = 0;
2709 
2710 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2711 				   pi_mr->desc_size * pi_mr->max_descs,
2712 				   DMA_TO_DEVICE);
2713 
2714 	pi_mr->ibmr.page_size = ibmr->page_size;
2715 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2716 			   mlx5_set_page);
2717 	if (n != data_sg_nents)
2718 		return n;
2719 
2720 	pi_mr->data_iova = pi_mr->ibmr.iova;
2721 	pi_mr->data_length = pi_mr->ibmr.length;
2722 	pi_mr->ibmr.length = pi_mr->data_length;
2723 	ibmr->length = pi_mr->data_length;
2724 
2725 	if (meta_sg_nents) {
2726 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2727 		u64 iova = pi_mr->data_iova;
2728 
2729 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2730 				    meta_sg_offset, mlx5_set_page_pi);
2731 
2732 		pi_mr->meta_length = pi_mr->ibmr.length;
2733 		/*
2734 		 * PI address for the HW is the offset of the metadata address
2735 		 * relative to the first data page address.
2736 		 * It equals to first data page address + size of data pages +
2737 		 * metadata offset at the first metadata page
2738 		 */
2739 		pi_mr->pi_iova = (iova & page_mask) +
2740 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2741 				 (pi_mr->ibmr.iova & ~page_mask);
2742 		/*
2743 		 * In order to use one MTT MR for data and metadata, we register
2744 		 * also the gaps between the end of the data and the start of
2745 		 * the metadata (the sig MR will verify that the HW will access
2746 		 * to right addresses). This mapping is safe because we use
2747 		 * internal mkey for the registration.
2748 		 */
2749 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2750 		pi_mr->ibmr.iova = iova;
2751 		ibmr->length += pi_mr->meta_length;
2752 	}
2753 
2754 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2755 				      pi_mr->desc_size * pi_mr->max_descs,
2756 				      DMA_TO_DEVICE);
2757 
2758 	return n;
2759 }
2760 
2761 static int
2762 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2763 			 int data_sg_nents, unsigned int *data_sg_offset,
2764 			 struct scatterlist *meta_sg, int meta_sg_nents,
2765 			 unsigned int *meta_sg_offset)
2766 {
2767 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2768 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2769 	int n;
2770 
2771 	pi_mr->mmkey.ndescs = 0;
2772 	pi_mr->meta_ndescs = 0;
2773 	pi_mr->meta_length = 0;
2774 
2775 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2776 				   pi_mr->desc_size * pi_mr->max_descs,
2777 				   DMA_TO_DEVICE);
2778 
2779 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2780 			       meta_sg, meta_sg_nents, meta_sg_offset);
2781 
2782 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2783 				      pi_mr->desc_size * pi_mr->max_descs,
2784 				      DMA_TO_DEVICE);
2785 
2786 	/* This is zero-based memory region */
2787 	pi_mr->data_iova = 0;
2788 	pi_mr->ibmr.iova = 0;
2789 	pi_mr->pi_iova = pi_mr->data_length;
2790 	ibmr->length = pi_mr->ibmr.length;
2791 
2792 	return n;
2793 }
2794 
2795 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2796 			 int data_sg_nents, unsigned int *data_sg_offset,
2797 			 struct scatterlist *meta_sg, int meta_sg_nents,
2798 			 unsigned int *meta_sg_offset)
2799 {
2800 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2801 	struct mlx5_ib_mr *pi_mr = NULL;
2802 	int n;
2803 
2804 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2805 
2806 	mr->mmkey.ndescs = 0;
2807 	mr->data_length = 0;
2808 	mr->data_iova = 0;
2809 	mr->meta_ndescs = 0;
2810 	mr->pi_iova = 0;
2811 	/*
2812 	 * As a performance optimization, if possible, there is no need to
2813 	 * perform UMR operation to register the data/metadata buffers.
2814 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2815 	 * Fallback to UMR only in case of a failure.
2816 	 */
2817 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2818 				    data_sg_offset, meta_sg, meta_sg_nents,
2819 				    meta_sg_offset);
2820 	if (n == data_sg_nents + meta_sg_nents)
2821 		goto out;
2822 	/*
2823 	 * As a performance optimization, if possible, there is no need to map
2824 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2825 	 * descriptors and fallback to KLM only in case of a failure.
2826 	 * It's more efficient for the HW to work with MTT descriptors
2827 	 * (especially in high load).
2828 	 * Use KLM (indirect access) only if it's mandatory.
2829 	 */
2830 	pi_mr = mr->mtt_mr;
2831 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2832 				     data_sg_offset, meta_sg, meta_sg_nents,
2833 				     meta_sg_offset);
2834 	if (n == data_sg_nents + meta_sg_nents)
2835 		goto out;
2836 
2837 	pi_mr = mr->klm_mr;
2838 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2839 				     data_sg_offset, meta_sg, meta_sg_nents,
2840 				     meta_sg_offset);
2841 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2842 		return -ENOMEM;
2843 
2844 out:
2845 	/* This is zero-based memory region */
2846 	ibmr->iova = 0;
2847 	mr->pi_mr = pi_mr;
2848 	if (pi_mr)
2849 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2850 	else
2851 		ibmr->sig_attrs->meta_length = mr->meta_length;
2852 
2853 	return 0;
2854 }
2855 
2856 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2857 		      unsigned int *sg_offset)
2858 {
2859 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2860 	int n;
2861 
2862 	mr->mmkey.ndescs = 0;
2863 
2864 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2865 				   mr->desc_size * mr->max_descs,
2866 				   DMA_TO_DEVICE);
2867 
2868 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2869 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2870 				       NULL);
2871 	else
2872 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2873 				mlx5_set_page);
2874 
2875 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2876 				      mr->desc_size * mr->max_descs,
2877 				      DMA_TO_DEVICE);
2878 
2879 	return n;
2880 }
2881