1 /* 2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2020, Intel Corporation. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 35 #include <linux/kref.h> 36 #include <linux/random.h> 37 #include <linux/debugfs.h> 38 #include <linux/export.h> 39 #include <linux/delay.h> 40 #include <linux/dma-buf.h> 41 #include <linux/dma-resv.h> 42 #include <rdma/ib_umem.h> 43 #include <rdma/ib_umem_odp.h> 44 #include <rdma/ib_verbs.h> 45 #include "dm.h" 46 #include "mlx5_ib.h" 47 48 /* 49 * We can't use an array for xlt_emergency_page because dma_map_single doesn't 50 * work on kernel modules memory 51 */ 52 void *xlt_emergency_page; 53 static DEFINE_MUTEX(xlt_emergency_page_mutex); 54 55 enum { 56 MAX_PENDING_REG_MR = 8, 57 }; 58 59 #define MLX5_UMR_ALIGN 2048 60 61 static void 62 create_mkey_callback(int status, struct mlx5_async_work *context); 63 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 64 u64 iova, int access_flags, 65 unsigned int page_size, bool populate); 66 67 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, 68 struct ib_pd *pd) 69 { 70 struct mlx5_ib_dev *dev = to_mdev(pd->device); 71 bool ro_pci_enabled = pcie_relaxed_ordering_enabled(dev->mdev->pdev); 72 73 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); 74 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); 75 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); 76 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); 77 MLX5_SET(mkc, mkc, lr, 1); 78 79 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) 80 MLX5_SET(mkc, mkc, relaxed_ordering_write, 81 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled); 82 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) 83 MLX5_SET(mkc, mkc, relaxed_ordering_read, 84 (acc & IB_ACCESS_RELAXED_ORDERING) && ro_pci_enabled); 85 86 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); 87 MLX5_SET(mkc, mkc, qpn, 0xffffff); 88 MLX5_SET64(mkc, mkc, start_addr, start_addr); 89 } 90 91 static void assign_mkey_variant(struct mlx5_ib_dev *dev, 92 struct mlx5_ib_mkey *mkey, u32 *in) 93 { 94 u8 key = atomic_inc_return(&dev->mkey_var); 95 void *mkc; 96 97 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 98 MLX5_SET(mkc, mkc, mkey_7_0, key); 99 mkey->key = key; 100 } 101 102 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, 103 struct mlx5_ib_mkey *mkey, u32 *in, int inlen) 104 { 105 int ret; 106 107 assign_mkey_variant(dev, mkey, in); 108 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen); 109 if (!ret) 110 init_waitqueue_head(&mkey->wait); 111 112 return ret; 113 } 114 115 static int 116 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, 117 struct mlx5_ib_mkey *mkey, 118 struct mlx5_async_ctx *async_ctx, 119 u32 *in, int inlen, u32 *out, int outlen, 120 struct mlx5_async_work *context) 121 { 122 MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); 123 assign_mkey_variant(dev, mkey, in); 124 return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, 125 create_mkey_callback, context); 126 } 127 128 static int mr_cache_max_order(struct mlx5_ib_dev *dev); 129 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); 130 131 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) 132 { 133 return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); 134 } 135 136 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 137 { 138 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); 139 140 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key); 141 } 142 143 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out) 144 { 145 if (status == -ENXIO) /* core driver is not available */ 146 return; 147 148 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); 149 if (status != -EREMOTEIO) /* driver specific failure */ 150 return; 151 152 /* Failed in FW, print cmd out failure details */ 153 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out); 154 } 155 156 static void create_mkey_callback(int status, struct mlx5_async_work *context) 157 { 158 struct mlx5_ib_mr *mr = 159 container_of(context, struct mlx5_ib_mr, cb_work); 160 struct mlx5_cache_ent *ent = mr->cache_ent; 161 struct mlx5_ib_dev *dev = ent->dev; 162 unsigned long flags; 163 164 if (status) { 165 create_mkey_warn(dev, status, mr->out); 166 kfree(mr); 167 spin_lock_irqsave(&ent->lock, flags); 168 ent->pending--; 169 WRITE_ONCE(dev->fill_delay, 1); 170 spin_unlock_irqrestore(&ent->lock, flags); 171 mod_timer(&dev->delay_timer, jiffies + HZ); 172 return; 173 } 174 175 mr->mmkey.type = MLX5_MKEY_MR; 176 mr->mmkey.key |= mlx5_idx_to_mkey( 177 MLX5_GET(create_mkey_out, mr->out, mkey_index)); 178 init_waitqueue_head(&mr->mmkey.wait); 179 180 WRITE_ONCE(dev->cache.last_add, jiffies); 181 182 spin_lock_irqsave(&ent->lock, flags); 183 list_add_tail(&mr->list, &ent->head); 184 ent->available_mrs++; 185 ent->total_mrs++; 186 /* If we are doing fill_to_high_water then keep going. */ 187 queue_adjust_cache_locked(ent); 188 ent->pending--; 189 spin_unlock_irqrestore(&ent->lock, flags); 190 } 191 192 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) 193 { 194 struct mlx5_ib_mr *mr; 195 196 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 197 if (!mr) 198 return NULL; 199 mr->cache_ent = ent; 200 201 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd); 202 MLX5_SET(mkc, mkc, free, 1); 203 MLX5_SET(mkc, mkc, umr_en, 1); 204 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); 205 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); 206 207 MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); 208 MLX5_SET(mkc, mkc, log_page_size, ent->page); 209 return mr; 210 } 211 212 /* Asynchronously schedule new MRs to be populated in the cache. */ 213 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) 214 { 215 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 216 struct mlx5_ib_mr *mr; 217 void *mkc; 218 u32 *in; 219 int err = 0; 220 int i; 221 222 in = kzalloc(inlen, GFP_KERNEL); 223 if (!in) 224 return -ENOMEM; 225 226 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 227 for (i = 0; i < num; i++) { 228 mr = alloc_cache_mr(ent, mkc); 229 if (!mr) { 230 err = -ENOMEM; 231 break; 232 } 233 spin_lock_irq(&ent->lock); 234 if (ent->pending >= MAX_PENDING_REG_MR) { 235 err = -EAGAIN; 236 spin_unlock_irq(&ent->lock); 237 kfree(mr); 238 break; 239 } 240 ent->pending++; 241 spin_unlock_irq(&ent->lock); 242 err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, 243 &ent->dev->async_ctx, in, inlen, 244 mr->out, sizeof(mr->out), 245 &mr->cb_work); 246 if (err) { 247 spin_lock_irq(&ent->lock); 248 ent->pending--; 249 spin_unlock_irq(&ent->lock); 250 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); 251 kfree(mr); 252 break; 253 } 254 } 255 256 kfree(in); 257 return err; 258 } 259 260 /* Synchronously create a MR in the cache */ 261 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) 262 { 263 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 264 struct mlx5_ib_mr *mr; 265 void *mkc; 266 u32 *in; 267 int err; 268 269 in = kzalloc(inlen, GFP_KERNEL); 270 if (!in) 271 return ERR_PTR(-ENOMEM); 272 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 273 274 mr = alloc_cache_mr(ent, mkc); 275 if (!mr) { 276 err = -ENOMEM; 277 goto free_in; 278 } 279 280 err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey.key, in, inlen); 281 if (err) 282 goto free_mr; 283 284 init_waitqueue_head(&mr->mmkey.wait); 285 mr->mmkey.type = MLX5_MKEY_MR; 286 WRITE_ONCE(ent->dev->cache.last_add, jiffies); 287 spin_lock_irq(&ent->lock); 288 ent->total_mrs++; 289 spin_unlock_irq(&ent->lock); 290 kfree(in); 291 return mr; 292 free_mr: 293 kfree(mr); 294 free_in: 295 kfree(in); 296 return ERR_PTR(err); 297 } 298 299 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) 300 { 301 struct mlx5_ib_mr *mr; 302 303 lockdep_assert_held(&ent->lock); 304 if (list_empty(&ent->head)) 305 return; 306 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 307 list_del(&mr->list); 308 ent->available_mrs--; 309 ent->total_mrs--; 310 spin_unlock_irq(&ent->lock); 311 mlx5_core_destroy_mkey(ent->dev->mdev, mr->mmkey.key); 312 kfree(mr); 313 spin_lock_irq(&ent->lock); 314 } 315 316 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, 317 bool limit_fill) 318 { 319 int err; 320 321 lockdep_assert_held(&ent->lock); 322 323 while (true) { 324 if (limit_fill) 325 target = ent->limit * 2; 326 if (target == ent->available_mrs + ent->pending) 327 return 0; 328 if (target > ent->available_mrs + ent->pending) { 329 u32 todo = target - (ent->available_mrs + ent->pending); 330 331 spin_unlock_irq(&ent->lock); 332 err = add_keys(ent, todo); 333 if (err == -EAGAIN) 334 usleep_range(3000, 5000); 335 spin_lock_irq(&ent->lock); 336 if (err) { 337 if (err != -EAGAIN) 338 return err; 339 } else 340 return 0; 341 } else { 342 remove_cache_mr_locked(ent); 343 } 344 } 345 } 346 347 static ssize_t size_write(struct file *filp, const char __user *buf, 348 size_t count, loff_t *pos) 349 { 350 struct mlx5_cache_ent *ent = filp->private_data; 351 u32 target; 352 int err; 353 354 err = kstrtou32_from_user(buf, count, 0, &target); 355 if (err) 356 return err; 357 358 /* 359 * Target is the new value of total_mrs the user requests, however we 360 * cannot free MRs that are in use. Compute the target value for 361 * available_mrs. 362 */ 363 spin_lock_irq(&ent->lock); 364 if (target < ent->total_mrs - ent->available_mrs) { 365 err = -EINVAL; 366 goto err_unlock; 367 } 368 target = target - (ent->total_mrs - ent->available_mrs); 369 if (target < ent->limit || target > ent->limit*2) { 370 err = -EINVAL; 371 goto err_unlock; 372 } 373 err = resize_available_mrs(ent, target, false); 374 if (err) 375 goto err_unlock; 376 spin_unlock_irq(&ent->lock); 377 378 return count; 379 380 err_unlock: 381 spin_unlock_irq(&ent->lock); 382 return err; 383 } 384 385 static ssize_t size_read(struct file *filp, char __user *buf, size_t count, 386 loff_t *pos) 387 { 388 struct mlx5_cache_ent *ent = filp->private_data; 389 char lbuf[20]; 390 int err; 391 392 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); 393 if (err < 0) 394 return err; 395 396 return simple_read_from_buffer(buf, count, pos, lbuf, err); 397 } 398 399 static const struct file_operations size_fops = { 400 .owner = THIS_MODULE, 401 .open = simple_open, 402 .write = size_write, 403 .read = size_read, 404 }; 405 406 static ssize_t limit_write(struct file *filp, const char __user *buf, 407 size_t count, loff_t *pos) 408 { 409 struct mlx5_cache_ent *ent = filp->private_data; 410 u32 var; 411 int err; 412 413 err = kstrtou32_from_user(buf, count, 0, &var); 414 if (err) 415 return err; 416 417 /* 418 * Upon set we immediately fill the cache to high water mark implied by 419 * the limit. 420 */ 421 spin_lock_irq(&ent->lock); 422 ent->limit = var; 423 err = resize_available_mrs(ent, 0, true); 424 spin_unlock_irq(&ent->lock); 425 if (err) 426 return err; 427 return count; 428 } 429 430 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, 431 loff_t *pos) 432 { 433 struct mlx5_cache_ent *ent = filp->private_data; 434 char lbuf[20]; 435 int err; 436 437 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); 438 if (err < 0) 439 return err; 440 441 return simple_read_from_buffer(buf, count, pos, lbuf, err); 442 } 443 444 static const struct file_operations limit_fops = { 445 .owner = THIS_MODULE, 446 .open = simple_open, 447 .write = limit_write, 448 .read = limit_read, 449 }; 450 451 static bool someone_adding(struct mlx5_mr_cache *cache) 452 { 453 unsigned int i; 454 455 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 456 struct mlx5_cache_ent *ent = &cache->ent[i]; 457 bool ret; 458 459 spin_lock_irq(&ent->lock); 460 ret = ent->available_mrs < ent->limit; 461 spin_unlock_irq(&ent->lock); 462 if (ret) 463 return true; 464 } 465 return false; 466 } 467 468 /* 469 * Check if the bucket is outside the high/low water mark and schedule an async 470 * update. The cache refill has hysteresis, once the low water mark is hit it is 471 * refilled up to the high mark. 472 */ 473 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) 474 { 475 lockdep_assert_held(&ent->lock); 476 477 if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) 478 return; 479 if (ent->available_mrs < ent->limit) { 480 ent->fill_to_high_water = true; 481 queue_work(ent->dev->cache.wq, &ent->work); 482 } else if (ent->fill_to_high_water && 483 ent->available_mrs + ent->pending < 2 * ent->limit) { 484 /* 485 * Once we start populating due to hitting a low water mark 486 * continue until we pass the high water mark. 487 */ 488 queue_work(ent->dev->cache.wq, &ent->work); 489 } else if (ent->available_mrs == 2 * ent->limit) { 490 ent->fill_to_high_water = false; 491 } else if (ent->available_mrs > 2 * ent->limit) { 492 /* Queue deletion of excess entries */ 493 ent->fill_to_high_water = false; 494 if (ent->pending) 495 queue_delayed_work(ent->dev->cache.wq, &ent->dwork, 496 msecs_to_jiffies(1000)); 497 else 498 queue_work(ent->dev->cache.wq, &ent->work); 499 } 500 } 501 502 static void __cache_work_func(struct mlx5_cache_ent *ent) 503 { 504 struct mlx5_ib_dev *dev = ent->dev; 505 struct mlx5_mr_cache *cache = &dev->cache; 506 int err; 507 508 spin_lock_irq(&ent->lock); 509 if (ent->disabled) 510 goto out; 511 512 if (ent->fill_to_high_water && 513 ent->available_mrs + ent->pending < 2 * ent->limit && 514 !READ_ONCE(dev->fill_delay)) { 515 spin_unlock_irq(&ent->lock); 516 err = add_keys(ent, 1); 517 spin_lock_irq(&ent->lock); 518 if (ent->disabled) 519 goto out; 520 if (err) { 521 /* 522 * EAGAIN only happens if pending is positive, so we 523 * will be rescheduled from reg_mr_callback(). The only 524 * failure path here is ENOMEM. 525 */ 526 if (err != -EAGAIN) { 527 mlx5_ib_warn( 528 dev, 529 "command failed order %d, err %d\n", 530 ent->order, err); 531 queue_delayed_work(cache->wq, &ent->dwork, 532 msecs_to_jiffies(1000)); 533 } 534 } 535 } else if (ent->available_mrs > 2 * ent->limit) { 536 bool need_delay; 537 538 /* 539 * The remove_cache_mr() logic is performed as garbage 540 * collection task. Such task is intended to be run when no 541 * other active processes are running. 542 * 543 * The need_resched() will return TRUE if there are user tasks 544 * to be activated in near future. 545 * 546 * In such case, we don't execute remove_cache_mr() and postpone 547 * the garbage collection work to try to run in next cycle, in 548 * order to free CPU resources to other tasks. 549 */ 550 spin_unlock_irq(&ent->lock); 551 need_delay = need_resched() || someone_adding(cache) || 552 !time_after(jiffies, 553 READ_ONCE(cache->last_add) + 300 * HZ); 554 spin_lock_irq(&ent->lock); 555 if (ent->disabled) 556 goto out; 557 if (need_delay) 558 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); 559 remove_cache_mr_locked(ent); 560 queue_adjust_cache_locked(ent); 561 } 562 out: 563 spin_unlock_irq(&ent->lock); 564 } 565 566 static void delayed_cache_work_func(struct work_struct *work) 567 { 568 struct mlx5_cache_ent *ent; 569 570 ent = container_of(work, struct mlx5_cache_ent, dwork.work); 571 __cache_work_func(ent); 572 } 573 574 static void cache_work_func(struct work_struct *work) 575 { 576 struct mlx5_cache_ent *ent; 577 578 ent = container_of(work, struct mlx5_cache_ent, work); 579 __cache_work_func(ent); 580 } 581 582 /* Allocate a special entry from the cache */ 583 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, 584 unsigned int entry, int access_flags) 585 { 586 struct mlx5_mr_cache *cache = &dev->cache; 587 struct mlx5_cache_ent *ent; 588 struct mlx5_ib_mr *mr; 589 590 if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || 591 entry >= ARRAY_SIZE(cache->ent))) 592 return ERR_PTR(-EINVAL); 593 594 /* Matches access in alloc_cache_mr() */ 595 if (!mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) 596 return ERR_PTR(-EOPNOTSUPP); 597 598 ent = &cache->ent[entry]; 599 spin_lock_irq(&ent->lock); 600 if (list_empty(&ent->head)) { 601 spin_unlock_irq(&ent->lock); 602 mr = create_cache_mr(ent); 603 if (IS_ERR(mr)) 604 return mr; 605 } else { 606 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 607 list_del(&mr->list); 608 ent->available_mrs--; 609 queue_adjust_cache_locked(ent); 610 spin_unlock_irq(&ent->lock); 611 612 mlx5_clear_mr(mr); 613 } 614 mr->access_flags = access_flags; 615 return mr; 616 } 617 618 /* Return a MR already available in the cache */ 619 static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) 620 { 621 struct mlx5_ib_mr *mr = NULL; 622 struct mlx5_cache_ent *ent = req_ent; 623 624 spin_lock_irq(&ent->lock); 625 if (!list_empty(&ent->head)) { 626 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 627 list_del(&mr->list); 628 ent->available_mrs--; 629 queue_adjust_cache_locked(ent); 630 spin_unlock_irq(&ent->lock); 631 mlx5_clear_mr(mr); 632 return mr; 633 } 634 queue_adjust_cache_locked(ent); 635 spin_unlock_irq(&ent->lock); 636 req_ent->miss++; 637 return NULL; 638 } 639 640 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) 641 { 642 struct mlx5_cache_ent *ent = mr->cache_ent; 643 644 spin_lock_irq(&ent->lock); 645 list_add_tail(&mr->list, &ent->head); 646 ent->available_mrs++; 647 queue_adjust_cache_locked(ent); 648 spin_unlock_irq(&ent->lock); 649 } 650 651 static void clean_keys(struct mlx5_ib_dev *dev, int c) 652 { 653 struct mlx5_mr_cache *cache = &dev->cache; 654 struct mlx5_cache_ent *ent = &cache->ent[c]; 655 struct mlx5_ib_mr *tmp_mr; 656 struct mlx5_ib_mr *mr; 657 LIST_HEAD(del_list); 658 659 cancel_delayed_work(&ent->dwork); 660 while (1) { 661 spin_lock_irq(&ent->lock); 662 if (list_empty(&ent->head)) { 663 spin_unlock_irq(&ent->lock); 664 break; 665 } 666 mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); 667 list_move(&mr->list, &del_list); 668 ent->available_mrs--; 669 ent->total_mrs--; 670 spin_unlock_irq(&ent->lock); 671 mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key); 672 } 673 674 list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { 675 list_del(&mr->list); 676 kfree(mr); 677 } 678 } 679 680 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) 681 { 682 if (!mlx5_debugfs_root || dev->is_rep) 683 return; 684 685 debugfs_remove_recursive(dev->cache.root); 686 dev->cache.root = NULL; 687 } 688 689 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) 690 { 691 struct mlx5_mr_cache *cache = &dev->cache; 692 struct mlx5_cache_ent *ent; 693 struct dentry *dir; 694 int i; 695 696 if (!mlx5_debugfs_root || dev->is_rep) 697 return; 698 699 cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); 700 701 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 702 ent = &cache->ent[i]; 703 sprintf(ent->name, "%d", ent->order); 704 dir = debugfs_create_dir(ent->name, cache->root); 705 debugfs_create_file("size", 0600, dir, ent, &size_fops); 706 debugfs_create_file("limit", 0600, dir, ent, &limit_fops); 707 debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); 708 debugfs_create_u32("miss", 0600, dir, &ent->miss); 709 } 710 } 711 712 static void delay_time_func(struct timer_list *t) 713 { 714 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); 715 716 WRITE_ONCE(dev->fill_delay, 0); 717 } 718 719 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) 720 { 721 struct mlx5_mr_cache *cache = &dev->cache; 722 struct mlx5_cache_ent *ent; 723 int i; 724 725 mutex_init(&dev->slow_path_mutex); 726 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); 727 if (!cache->wq) { 728 mlx5_ib_warn(dev, "failed to create work queue\n"); 729 return -ENOMEM; 730 } 731 732 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); 733 timer_setup(&dev->delay_timer, delay_time_func, 0); 734 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 735 ent = &cache->ent[i]; 736 INIT_LIST_HEAD(&ent->head); 737 spin_lock_init(&ent->lock); 738 ent->order = i + 2; 739 ent->dev = dev; 740 ent->limit = 0; 741 742 INIT_WORK(&ent->work, cache_work_func); 743 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); 744 745 if (i > MR_CACHE_LAST_STD_ENTRY) { 746 mlx5_odp_init_mr_cache_entry(ent); 747 continue; 748 } 749 750 if (ent->order > mr_cache_max_order(dev)) 751 continue; 752 753 ent->page = PAGE_SHIFT; 754 ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / 755 MLX5_IB_UMR_OCTOWORD; 756 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; 757 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) && 758 !dev->is_rep && mlx5_core_is_pf(dev->mdev) && 759 mlx5_ib_can_load_pas_with_umr(dev, 0)) 760 ent->limit = dev->mdev->profile.mr_cache[i].limit; 761 else 762 ent->limit = 0; 763 spin_lock_irq(&ent->lock); 764 queue_adjust_cache_locked(ent); 765 spin_unlock_irq(&ent->lock); 766 } 767 768 mlx5_mr_cache_debugfs_init(dev); 769 770 return 0; 771 } 772 773 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) 774 { 775 unsigned int i; 776 777 if (!dev->cache.wq) 778 return 0; 779 780 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { 781 struct mlx5_cache_ent *ent = &dev->cache.ent[i]; 782 783 spin_lock_irq(&ent->lock); 784 ent->disabled = true; 785 spin_unlock_irq(&ent->lock); 786 cancel_work_sync(&ent->work); 787 cancel_delayed_work_sync(&ent->dwork); 788 } 789 790 mlx5_mr_cache_debugfs_cleanup(dev); 791 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); 792 793 for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) 794 clean_keys(dev, i); 795 796 destroy_workqueue(dev->cache.wq); 797 del_timer_sync(&dev->delay_timer); 798 799 return 0; 800 } 801 802 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) 803 { 804 struct mlx5_ib_dev *dev = to_mdev(pd->device); 805 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 806 struct mlx5_ib_mr *mr; 807 void *mkc; 808 u32 *in; 809 int err; 810 811 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 812 if (!mr) 813 return ERR_PTR(-ENOMEM); 814 815 in = kzalloc(inlen, GFP_KERNEL); 816 if (!in) { 817 err = -ENOMEM; 818 goto err_free; 819 } 820 821 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 822 823 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); 824 MLX5_SET(mkc, mkc, length64, 1); 825 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0, 826 pd); 827 828 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 829 if (err) 830 goto err_in; 831 832 kfree(in); 833 mr->mmkey.type = MLX5_MKEY_MR; 834 mr->ibmr.lkey = mr->mmkey.key; 835 mr->ibmr.rkey = mr->mmkey.key; 836 mr->umem = NULL; 837 838 return &mr->ibmr; 839 840 err_in: 841 kfree(in); 842 843 err_free: 844 kfree(mr); 845 846 return ERR_PTR(err); 847 } 848 849 static int get_octo_len(u64 addr, u64 len, int page_shift) 850 { 851 u64 page_size = 1ULL << page_shift; 852 u64 offset; 853 int npages; 854 855 offset = addr & (page_size - 1); 856 npages = ALIGN(len + offset, page_size) >> page_shift; 857 return (npages + 1) / 2; 858 } 859 860 static int mr_cache_max_order(struct mlx5_ib_dev *dev) 861 { 862 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) 863 return MR_CACHE_LAST_STD_ENTRY + 2; 864 return MLX5_MAX_UMR_SHIFT; 865 } 866 867 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) 868 { 869 struct mlx5_ib_umr_context *context = 870 container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); 871 872 context->status = wc->status; 873 complete(&context->done); 874 } 875 876 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) 877 { 878 context->cqe.done = mlx5_ib_umr_done; 879 context->status = -1; 880 init_completion(&context->done); 881 } 882 883 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, 884 struct mlx5_umr_wr *umrwr) 885 { 886 struct umr_common *umrc = &dev->umrc; 887 const struct ib_send_wr *bad; 888 int err; 889 struct mlx5_ib_umr_context umr_context; 890 891 mlx5_ib_init_umr_context(&umr_context); 892 umrwr->wr.wr_cqe = &umr_context.cqe; 893 894 down(&umrc->sem); 895 err = ib_post_send(umrc->qp, &umrwr->wr, &bad); 896 if (err) { 897 mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); 898 } else { 899 wait_for_completion(&umr_context.done); 900 if (umr_context.status != IB_WC_SUCCESS) { 901 mlx5_ib_warn(dev, "reg umr failed (%u)\n", 902 umr_context.status); 903 err = -EFAULT; 904 } 905 } 906 up(&umrc->sem); 907 return err; 908 } 909 910 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, 911 unsigned int order) 912 { 913 struct mlx5_mr_cache *cache = &dev->cache; 914 915 if (order < cache->ent[0].order) 916 return &cache->ent[0]; 917 order = order - cache->ent[0].order; 918 if (order > MR_CACHE_LAST_STD_ENTRY) 919 return NULL; 920 return &cache->ent[order]; 921 } 922 923 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, 924 u64 length, int access_flags, u64 iova) 925 { 926 mr->ibmr.lkey = mr->mmkey.key; 927 mr->ibmr.rkey = mr->mmkey.key; 928 mr->ibmr.length = length; 929 mr->ibmr.device = &dev->ib_dev; 930 mr->ibmr.iova = iova; 931 mr->access_flags = access_flags; 932 } 933 934 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, 935 u64 iova) 936 { 937 /* 938 * The alignment of iova has already been checked upon entering 939 * UVERBS_METHOD_REG_DMABUF_MR 940 */ 941 umem->iova = iova; 942 return PAGE_SIZE; 943 } 944 945 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, 946 struct ib_umem *umem, u64 iova, 947 int access_flags) 948 { 949 struct mlx5_ib_dev *dev = to_mdev(pd->device); 950 struct mlx5_cache_ent *ent; 951 struct mlx5_ib_mr *mr; 952 unsigned int page_size; 953 954 if (umem->is_dmabuf) 955 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); 956 else 957 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, 958 0, iova); 959 if (WARN_ON(!page_size)) 960 return ERR_PTR(-EINVAL); 961 ent = mr_cache_ent_from_order( 962 dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size))); 963 /* 964 * Matches access in alloc_cache_mr(). If the MR can't come from the 965 * cache then synchronously create an uncached one. 966 */ 967 if (!ent || ent->limit == 0 || 968 !mlx5_ib_can_reconfig_with_umr(dev, 0, access_flags)) { 969 mutex_lock(&dev->slow_path_mutex); 970 mr = reg_create(pd, umem, iova, access_flags, page_size, false); 971 mutex_unlock(&dev->slow_path_mutex); 972 return mr; 973 } 974 975 mr = get_cache_mr(ent); 976 if (!mr) { 977 mr = create_cache_mr(ent); 978 /* 979 * The above already tried to do the same stuff as reg_create(), 980 * no reason to try it again. 981 */ 982 if (IS_ERR(mr)) 983 return mr; 984 } 985 986 mr->ibmr.pd = pd; 987 mr->umem = umem; 988 mr->page_shift = order_base_2(page_size); 989 set_mr_fields(dev, mr, umem->length, access_flags, iova); 990 991 return mr; 992 } 993 994 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ 995 MLX5_UMR_MTT_ALIGNMENT) 996 #define MLX5_SPARE_UMR_CHUNK 0x10000 997 998 /* 999 * Allocate a temporary buffer to hold the per-page information to transfer to 1000 * HW. For efficiency this should be as large as it can be, but buffer 1001 * allocation failure is not allowed, so try smaller sizes. 1002 */ 1003 static void *mlx5_ib_alloc_xlt(size_t *nents, size_t ent_size, gfp_t gfp_mask) 1004 { 1005 const size_t xlt_chunk_align = 1006 MLX5_UMR_MTT_ALIGNMENT / ent_size; 1007 size_t size; 1008 void *res = NULL; 1009 1010 static_assert(PAGE_SIZE % MLX5_UMR_MTT_ALIGNMENT == 0); 1011 1012 /* 1013 * MLX5_IB_UPD_XLT_ATOMIC doesn't signal an atomic context just that the 1014 * allocation can't trigger any kind of reclaim. 1015 */ 1016 might_sleep(); 1017 1018 gfp_mask |= __GFP_ZERO | __GFP_NORETRY; 1019 1020 /* 1021 * If the system already has a suitable high order page then just use 1022 * that, but don't try hard to create one. This max is about 1M, so a 1023 * free x86 huge page will satisfy it. 1024 */ 1025 size = min_t(size_t, ent_size * ALIGN(*nents, xlt_chunk_align), 1026 MLX5_MAX_UMR_CHUNK); 1027 *nents = size / ent_size; 1028 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1029 get_order(size)); 1030 if (res) 1031 return res; 1032 1033 if (size > MLX5_SPARE_UMR_CHUNK) { 1034 size = MLX5_SPARE_UMR_CHUNK; 1035 *nents = size / ent_size; 1036 res = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 1037 get_order(size)); 1038 if (res) 1039 return res; 1040 } 1041 1042 *nents = PAGE_SIZE / ent_size; 1043 res = (void *)__get_free_page(gfp_mask); 1044 if (res) 1045 return res; 1046 1047 mutex_lock(&xlt_emergency_page_mutex); 1048 memset(xlt_emergency_page, 0, PAGE_SIZE); 1049 return xlt_emergency_page; 1050 } 1051 1052 static void mlx5_ib_free_xlt(void *xlt, size_t length) 1053 { 1054 if (xlt == xlt_emergency_page) { 1055 mutex_unlock(&xlt_emergency_page_mutex); 1056 return; 1057 } 1058 1059 free_pages((unsigned long)xlt, get_order(length)); 1060 } 1061 1062 /* 1063 * Create a MLX5_IB_SEND_UMR_UPDATE_XLT work request and XLT buffer ready for 1064 * submission. 1065 */ 1066 static void *mlx5_ib_create_xlt_wr(struct mlx5_ib_mr *mr, 1067 struct mlx5_umr_wr *wr, struct ib_sge *sg, 1068 size_t nents, size_t ent_size, 1069 unsigned int flags) 1070 { 1071 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1072 struct device *ddev = &dev->mdev->pdev->dev; 1073 dma_addr_t dma; 1074 void *xlt; 1075 1076 xlt = mlx5_ib_alloc_xlt(&nents, ent_size, 1077 flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : 1078 GFP_KERNEL); 1079 sg->length = nents * ent_size; 1080 dma = dma_map_single(ddev, xlt, sg->length, DMA_TO_DEVICE); 1081 if (dma_mapping_error(ddev, dma)) { 1082 mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); 1083 mlx5_ib_free_xlt(xlt, sg->length); 1084 return NULL; 1085 } 1086 sg->addr = dma; 1087 sg->lkey = dev->umrc.pd->local_dma_lkey; 1088 1089 memset(wr, 0, sizeof(*wr)); 1090 wr->wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; 1091 if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) 1092 wr->wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; 1093 wr->wr.sg_list = sg; 1094 wr->wr.num_sge = 1; 1095 wr->wr.opcode = MLX5_IB_WR_UMR; 1096 wr->pd = mr->ibmr.pd; 1097 wr->mkey = mr->mmkey.key; 1098 wr->length = mr->ibmr.length; 1099 wr->virt_addr = mr->ibmr.iova; 1100 wr->access_flags = mr->access_flags; 1101 wr->page_shift = mr->page_shift; 1102 wr->xlt_size = sg->length; 1103 return xlt; 1104 } 1105 1106 static void mlx5_ib_unmap_free_xlt(struct mlx5_ib_dev *dev, void *xlt, 1107 struct ib_sge *sg) 1108 { 1109 struct device *ddev = &dev->mdev->pdev->dev; 1110 1111 dma_unmap_single(ddev, sg->addr, sg->length, DMA_TO_DEVICE); 1112 mlx5_ib_free_xlt(xlt, sg->length); 1113 } 1114 1115 static unsigned int xlt_wr_final_send_flags(unsigned int flags) 1116 { 1117 unsigned int res = 0; 1118 1119 if (flags & MLX5_IB_UPD_XLT_ENABLE) 1120 res |= MLX5_IB_SEND_UMR_ENABLE_MR | 1121 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | 1122 MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1123 if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS) 1124 res |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1125 if (flags & MLX5_IB_UPD_XLT_ADDR) 1126 res |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; 1127 return res; 1128 } 1129 1130 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, 1131 int page_shift, int flags) 1132 { 1133 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1134 struct device *ddev = &dev->mdev->pdev->dev; 1135 void *xlt; 1136 struct mlx5_umr_wr wr; 1137 struct ib_sge sg; 1138 int err = 0; 1139 int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) 1140 ? sizeof(struct mlx5_klm) 1141 : sizeof(struct mlx5_mtt); 1142 const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; 1143 const int page_mask = page_align - 1; 1144 size_t pages_mapped = 0; 1145 size_t pages_to_map = 0; 1146 size_t pages_iter; 1147 size_t size_to_map = 0; 1148 size_t orig_sg_length; 1149 1150 if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && 1151 !umr_can_use_indirect_mkey(dev)) 1152 return -EPERM; 1153 1154 if (WARN_ON(!mr->umem->is_odp)) 1155 return -EINVAL; 1156 1157 /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, 1158 * so we need to align the offset and length accordingly 1159 */ 1160 if (idx & page_mask) { 1161 npages += idx & page_mask; 1162 idx &= ~page_mask; 1163 } 1164 pages_to_map = ALIGN(npages, page_align); 1165 1166 xlt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, npages, desc_size, flags); 1167 if (!xlt) 1168 return -ENOMEM; 1169 pages_iter = sg.length / desc_size; 1170 orig_sg_length = sg.length; 1171 1172 if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { 1173 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); 1174 size_t max_pages = ib_umem_odp_num_pages(odp) - idx; 1175 1176 pages_to_map = min_t(size_t, pages_to_map, max_pages); 1177 } 1178 1179 wr.page_shift = page_shift; 1180 1181 for (pages_mapped = 0; 1182 pages_mapped < pages_to_map && !err; 1183 pages_mapped += pages_iter, idx += pages_iter) { 1184 npages = min_t(int, pages_iter, pages_to_map - pages_mapped); 1185 size_to_map = npages * desc_size; 1186 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1187 DMA_TO_DEVICE); 1188 mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); 1189 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1190 DMA_TO_DEVICE); 1191 1192 sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); 1193 1194 if (pages_mapped + pages_iter >= pages_to_map) 1195 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1196 1197 wr.offset = idx * desc_size; 1198 wr.xlt_size = sg.length; 1199 1200 err = mlx5_ib_post_send_wait(dev, &wr); 1201 } 1202 sg.length = orig_sg_length; 1203 mlx5_ib_unmap_free_xlt(dev, xlt, &sg); 1204 return err; 1205 } 1206 1207 /* 1208 * Send the DMA list to the HW for a normal MR using UMR. 1209 * Dmabuf MR is handled in a similar way, except that the MLX5_IB_UPD_XLT_ZAP 1210 * flag may be used. 1211 */ 1212 int mlx5_ib_update_mr_pas(struct mlx5_ib_mr *mr, unsigned int flags) 1213 { 1214 struct mlx5_ib_dev *dev = mr_to_mdev(mr); 1215 struct device *ddev = &dev->mdev->pdev->dev; 1216 struct ib_block_iter biter; 1217 struct mlx5_mtt *cur_mtt; 1218 struct mlx5_umr_wr wr; 1219 size_t orig_sg_length; 1220 struct mlx5_mtt *mtt; 1221 size_t final_size; 1222 struct ib_sge sg; 1223 int err = 0; 1224 1225 if (WARN_ON(mr->umem->is_odp)) 1226 return -EINVAL; 1227 1228 mtt = mlx5_ib_create_xlt_wr(mr, &wr, &sg, 1229 ib_umem_num_dma_blocks(mr->umem, 1230 1 << mr->page_shift), 1231 sizeof(*mtt), flags); 1232 if (!mtt) 1233 return -ENOMEM; 1234 orig_sg_length = sg.length; 1235 1236 cur_mtt = mtt; 1237 rdma_for_each_block (mr->umem->sgt_append.sgt.sgl, &biter, 1238 mr->umem->sgt_append.sgt.nents, 1239 BIT(mr->page_shift)) { 1240 if (cur_mtt == (void *)mtt + sg.length) { 1241 dma_sync_single_for_device(ddev, sg.addr, sg.length, 1242 DMA_TO_DEVICE); 1243 err = mlx5_ib_post_send_wait(dev, &wr); 1244 if (err) 1245 goto err; 1246 dma_sync_single_for_cpu(ddev, sg.addr, sg.length, 1247 DMA_TO_DEVICE); 1248 wr.offset += sg.length; 1249 cur_mtt = mtt; 1250 } 1251 1252 cur_mtt->ptag = 1253 cpu_to_be64(rdma_block_iter_dma_address(&biter) | 1254 MLX5_IB_MTT_PRESENT); 1255 1256 if (mr->umem->is_dmabuf && (flags & MLX5_IB_UPD_XLT_ZAP)) 1257 cur_mtt->ptag = 0; 1258 1259 cur_mtt++; 1260 } 1261 1262 final_size = (void *)cur_mtt - (void *)mtt; 1263 sg.length = ALIGN(final_size, MLX5_UMR_MTT_ALIGNMENT); 1264 memset(cur_mtt, 0, sg.length - final_size); 1265 wr.wr.send_flags |= xlt_wr_final_send_flags(flags); 1266 wr.xlt_size = sg.length; 1267 1268 dma_sync_single_for_device(ddev, sg.addr, sg.length, DMA_TO_DEVICE); 1269 err = mlx5_ib_post_send_wait(dev, &wr); 1270 1271 err: 1272 sg.length = orig_sg_length; 1273 mlx5_ib_unmap_free_xlt(dev, mtt, &sg); 1274 return err; 1275 } 1276 1277 /* 1278 * If ibmr is NULL it will be allocated by reg_create. 1279 * Else, the given ibmr will be used. 1280 */ 1281 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, 1282 u64 iova, int access_flags, 1283 unsigned int page_size, bool populate) 1284 { 1285 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1286 struct mlx5_ib_mr *mr; 1287 __be64 *pas; 1288 void *mkc; 1289 int inlen; 1290 u32 *in; 1291 int err; 1292 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); 1293 1294 if (!page_size) 1295 return ERR_PTR(-EINVAL); 1296 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1297 if (!mr) 1298 return ERR_PTR(-ENOMEM); 1299 1300 mr->ibmr.pd = pd; 1301 mr->access_flags = access_flags; 1302 mr->page_shift = order_base_2(page_size); 1303 1304 inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1305 if (populate) 1306 inlen += sizeof(*pas) * 1307 roundup(ib_umem_num_dma_blocks(umem, page_size), 2); 1308 in = kvzalloc(inlen, GFP_KERNEL); 1309 if (!in) { 1310 err = -ENOMEM; 1311 goto err_1; 1312 } 1313 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); 1314 if (populate) { 1315 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { 1316 err = -EINVAL; 1317 goto err_2; 1318 } 1319 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, 1320 pg_cap ? MLX5_IB_MTT_PRESENT : 0); 1321 } 1322 1323 /* The pg_access bit allows setting the access flags 1324 * in the page list submitted with the command. */ 1325 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); 1326 1327 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1328 set_mkc_access_pd_addr_fields(mkc, access_flags, iova, 1329 populate ? pd : dev->umrc.pd); 1330 MLX5_SET(mkc, mkc, free, !populate); 1331 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); 1332 MLX5_SET(mkc, mkc, umr_en, 1); 1333 1334 MLX5_SET64(mkc, mkc, len, umem->length); 1335 MLX5_SET(mkc, mkc, bsf_octword_size, 0); 1336 MLX5_SET(mkc, mkc, translations_octword_size, 1337 get_octo_len(iova, umem->length, mr->page_shift)); 1338 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); 1339 if (populate) { 1340 MLX5_SET(create_mkey_in, in, translations_octword_actual_size, 1341 get_octo_len(iova, umem->length, mr->page_shift)); 1342 } 1343 1344 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1345 if (err) { 1346 mlx5_ib_warn(dev, "create mkey failed\n"); 1347 goto err_2; 1348 } 1349 mr->mmkey.type = MLX5_MKEY_MR; 1350 mr->umem = umem; 1351 set_mr_fields(dev, mr, umem->length, access_flags, iova); 1352 kvfree(in); 1353 1354 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); 1355 1356 return mr; 1357 1358 err_2: 1359 kvfree(in); 1360 err_1: 1361 kfree(mr); 1362 return ERR_PTR(err); 1363 } 1364 1365 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, 1366 u64 length, int acc, int mode) 1367 { 1368 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1369 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 1370 struct mlx5_ib_mr *mr; 1371 void *mkc; 1372 u32 *in; 1373 int err; 1374 1375 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1376 if (!mr) 1377 return ERR_PTR(-ENOMEM); 1378 1379 in = kzalloc(inlen, GFP_KERNEL); 1380 if (!in) { 1381 err = -ENOMEM; 1382 goto err_free; 1383 } 1384 1385 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 1386 1387 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); 1388 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); 1389 MLX5_SET64(mkc, mkc, len, length); 1390 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); 1391 1392 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 1393 if (err) 1394 goto err_in; 1395 1396 kfree(in); 1397 1398 set_mr_fields(dev, mr, length, acc, start_addr); 1399 1400 return &mr->ibmr; 1401 1402 err_in: 1403 kfree(in); 1404 1405 err_free: 1406 kfree(mr); 1407 1408 return ERR_PTR(err); 1409 } 1410 1411 int mlx5_ib_advise_mr(struct ib_pd *pd, 1412 enum ib_uverbs_advise_mr_advice advice, 1413 u32 flags, 1414 struct ib_sge *sg_list, 1415 u32 num_sge, 1416 struct uverbs_attr_bundle *attrs) 1417 { 1418 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && 1419 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && 1420 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) 1421 return -EOPNOTSUPP; 1422 1423 return mlx5_ib_advise_mr_prefetch(pd, advice, flags, 1424 sg_list, num_sge); 1425 } 1426 1427 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, 1428 struct ib_dm_mr_attr *attr, 1429 struct uverbs_attr_bundle *attrs) 1430 { 1431 struct mlx5_ib_dm *mdm = to_mdm(dm); 1432 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; 1433 u64 start_addr = mdm->dev_addr + attr->offset; 1434 int mode; 1435 1436 switch (mdm->type) { 1437 case MLX5_IB_UAPI_DM_TYPE_MEMIC: 1438 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) 1439 return ERR_PTR(-EINVAL); 1440 1441 mode = MLX5_MKC_ACCESS_MODE_MEMIC; 1442 start_addr -= pci_resource_start(dev->pdev, 0); 1443 break; 1444 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: 1445 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: 1446 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) 1447 return ERR_PTR(-EINVAL); 1448 1449 mode = MLX5_MKC_ACCESS_MODE_SW_ICM; 1450 break; 1451 default: 1452 return ERR_PTR(-EINVAL); 1453 } 1454 1455 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, 1456 attr->access_flags, mode); 1457 } 1458 1459 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, 1460 u64 iova, int access_flags) 1461 { 1462 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1463 struct mlx5_ib_mr *mr = NULL; 1464 bool xlt_with_umr; 1465 int err; 1466 1467 xlt_with_umr = mlx5_ib_can_load_pas_with_umr(dev, umem->length); 1468 if (xlt_with_umr) { 1469 mr = alloc_cacheable_mr(pd, umem, iova, access_flags); 1470 } else { 1471 unsigned int page_size = mlx5_umem_find_best_pgsz( 1472 umem, mkc, log_page_size, 0, iova); 1473 1474 mutex_lock(&dev->slow_path_mutex); 1475 mr = reg_create(pd, umem, iova, access_flags, page_size, true); 1476 mutex_unlock(&dev->slow_path_mutex); 1477 } 1478 if (IS_ERR(mr)) { 1479 ib_umem_release(umem); 1480 return ERR_CAST(mr); 1481 } 1482 1483 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1484 1485 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1486 1487 if (xlt_with_umr) { 1488 /* 1489 * If the MR was created with reg_create then it will be 1490 * configured properly but left disabled. It is safe to go ahead 1491 * and configure it again via UMR while enabling it. 1492 */ 1493 err = mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); 1494 if (err) { 1495 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1496 return ERR_PTR(err); 1497 } 1498 } 1499 return &mr->ibmr; 1500 } 1501 1502 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, 1503 u64 iova, int access_flags, 1504 struct ib_udata *udata) 1505 { 1506 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1507 struct ib_umem_odp *odp; 1508 struct mlx5_ib_mr *mr; 1509 int err; 1510 1511 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1512 return ERR_PTR(-EOPNOTSUPP); 1513 1514 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq); 1515 if (err) 1516 return ERR_PTR(err); 1517 if (!start && length == U64_MAX) { 1518 if (iova != 0) 1519 return ERR_PTR(-EINVAL); 1520 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) 1521 return ERR_PTR(-EINVAL); 1522 1523 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags); 1524 if (IS_ERR(mr)) 1525 return ERR_CAST(mr); 1526 return &mr->ibmr; 1527 } 1528 1529 /* ODP requires xlt update via umr to work. */ 1530 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1531 return ERR_PTR(-EINVAL); 1532 1533 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, 1534 &mlx5_mn_ops); 1535 if (IS_ERR(odp)) 1536 return ERR_CAST(odp); 1537 1538 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); 1539 if (IS_ERR(mr)) { 1540 ib_umem_release(&odp->umem); 1541 return ERR_CAST(mr); 1542 } 1543 xa_init(&mr->implicit_children); 1544 1545 odp->private = mr; 1546 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1547 if (err) 1548 goto err_dereg_mr; 1549 1550 err = mlx5_ib_init_odp_mr(mr); 1551 if (err) 1552 goto err_dereg_mr; 1553 return &mr->ibmr; 1554 1555 err_dereg_mr: 1556 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1557 return ERR_PTR(err); 1558 } 1559 1560 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 1561 u64 iova, int access_flags, 1562 struct ib_udata *udata) 1563 { 1564 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1565 struct ib_umem *umem; 1566 1567 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1568 return ERR_PTR(-EOPNOTSUPP); 1569 1570 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1571 start, iova, length, access_flags); 1572 1573 if (access_flags & IB_ACCESS_ON_DEMAND) 1574 return create_user_odp_mr(pd, start, length, iova, access_flags, 1575 udata); 1576 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); 1577 if (IS_ERR(umem)) 1578 return ERR_CAST(umem); 1579 return create_real_mr(pd, umem, iova, access_flags); 1580 } 1581 1582 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) 1583 { 1584 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; 1585 struct mlx5_ib_mr *mr = umem_dmabuf->private; 1586 1587 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); 1588 1589 if (!umem_dmabuf->sgt) 1590 return; 1591 1592 mlx5_ib_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); 1593 ib_umem_dmabuf_unmap_pages(umem_dmabuf); 1594 } 1595 1596 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { 1597 .allow_peer2peer = 1, 1598 .move_notify = mlx5_ib_dmabuf_invalidate_cb, 1599 }; 1600 1601 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, 1602 u64 length, u64 virt_addr, 1603 int fd, int access_flags, 1604 struct ib_udata *udata) 1605 { 1606 struct mlx5_ib_dev *dev = to_mdev(pd->device); 1607 struct mlx5_ib_mr *mr = NULL; 1608 struct ib_umem_dmabuf *umem_dmabuf; 1609 int err; 1610 1611 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || 1612 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) 1613 return ERR_PTR(-EOPNOTSUPP); 1614 1615 mlx5_ib_dbg(dev, 1616 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", 1617 offset, virt_addr, length, fd, access_flags); 1618 1619 /* dmabuf requires xlt update via umr to work. */ 1620 if (!mlx5_ib_can_load_pas_with_umr(dev, length)) 1621 return ERR_PTR(-EINVAL); 1622 1623 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, 1624 access_flags, 1625 &mlx5_ib_dmabuf_attach_ops); 1626 if (IS_ERR(umem_dmabuf)) { 1627 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", 1628 PTR_ERR(umem_dmabuf)); 1629 return ERR_CAST(umem_dmabuf); 1630 } 1631 1632 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, 1633 access_flags); 1634 if (IS_ERR(mr)) { 1635 ib_umem_release(&umem_dmabuf->umem); 1636 return ERR_CAST(mr); 1637 } 1638 1639 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); 1640 1641 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); 1642 umem_dmabuf->private = mr; 1643 err = mlx5r_store_odp_mkey(dev, &mr->mmkey); 1644 if (err) 1645 goto err_dereg_mr; 1646 1647 err = mlx5_ib_init_dmabuf_mr(mr); 1648 if (err) 1649 goto err_dereg_mr; 1650 return &mr->ibmr; 1651 1652 err_dereg_mr: 1653 mlx5_ib_dereg_mr(&mr->ibmr, NULL); 1654 return ERR_PTR(err); 1655 } 1656 1657 /** 1658 * revoke_mr - Fence all DMA on the MR 1659 * @mr: The MR to fence 1660 * 1661 * Upon return the NIC will not be doing any DMA to the pages under the MR, 1662 * and any DMA in progress will be completed. Failure of this function 1663 * indicates the HW has failed catastrophically. 1664 */ 1665 static int revoke_mr(struct mlx5_ib_mr *mr) 1666 { 1667 struct mlx5_umr_wr umrwr = {}; 1668 1669 if (mr_to_mdev(mr)->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) 1670 return 0; 1671 1672 umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | 1673 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; 1674 umrwr.wr.opcode = MLX5_IB_WR_UMR; 1675 umrwr.pd = mr_to_mdev(mr)->umrc.pd; 1676 umrwr.mkey = mr->mmkey.key; 1677 umrwr.ignore_free_state = 1; 1678 1679 return mlx5_ib_post_send_wait(mr_to_mdev(mr), &umrwr); 1680 } 1681 1682 /* 1683 * True if the change in access flags can be done via UMR, only some access 1684 * flags can be updated. 1685 */ 1686 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, 1687 unsigned int current_access_flags, 1688 unsigned int target_access_flags) 1689 { 1690 unsigned int diffs = current_access_flags ^ target_access_flags; 1691 1692 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 1693 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING)) 1694 return false; 1695 return mlx5_ib_can_reconfig_with_umr(dev, current_access_flags, 1696 target_access_flags); 1697 } 1698 1699 static int umr_rereg_pd_access(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1700 int access_flags) 1701 { 1702 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1703 struct mlx5_umr_wr umrwr = { 1704 .wr = { 1705 .send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE | 1706 MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS, 1707 .opcode = MLX5_IB_WR_UMR, 1708 }, 1709 .mkey = mr->mmkey.key, 1710 .pd = pd, 1711 .access_flags = access_flags, 1712 }; 1713 int err; 1714 1715 err = mlx5_ib_post_send_wait(dev, &umrwr); 1716 if (err) 1717 return err; 1718 1719 mr->access_flags = access_flags; 1720 return 0; 1721 } 1722 1723 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, 1724 struct ib_umem *new_umem, 1725 int new_access_flags, u64 iova, 1726 unsigned long *page_size) 1727 { 1728 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1729 1730 /* We only track the allocated sizes of MRs from the cache */ 1731 if (!mr->cache_ent) 1732 return false; 1733 if (!mlx5_ib_can_load_pas_with_umr(dev, new_umem->length)) 1734 return false; 1735 1736 *page_size = 1737 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); 1738 if (WARN_ON(!*page_size)) 1739 return false; 1740 return (1ULL << mr->cache_ent->order) >= 1741 ib_umem_num_dma_blocks(new_umem, *page_size); 1742 } 1743 1744 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, 1745 int access_flags, int flags, struct ib_umem *new_umem, 1746 u64 iova, unsigned long page_size) 1747 { 1748 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); 1749 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; 1750 struct ib_umem *old_umem = mr->umem; 1751 int err; 1752 1753 /* 1754 * To keep everything simple the MR is revoked before we start to mess 1755 * with it. This ensure the change is atomic relative to any use of the 1756 * MR. 1757 */ 1758 err = revoke_mr(mr); 1759 if (err) 1760 return err; 1761 1762 if (flags & IB_MR_REREG_PD) { 1763 mr->ibmr.pd = pd; 1764 upd_flags |= MLX5_IB_UPD_XLT_PD; 1765 } 1766 if (flags & IB_MR_REREG_ACCESS) { 1767 mr->access_flags = access_flags; 1768 upd_flags |= MLX5_IB_UPD_XLT_ACCESS; 1769 } 1770 1771 mr->ibmr.length = new_umem->length; 1772 mr->ibmr.iova = iova; 1773 mr->ibmr.length = new_umem->length; 1774 mr->page_shift = order_base_2(page_size); 1775 mr->umem = new_umem; 1776 err = mlx5_ib_update_mr_pas(mr, upd_flags); 1777 if (err) { 1778 /* 1779 * The MR is revoked at this point so there is no issue to free 1780 * new_umem. 1781 */ 1782 mr->umem = old_umem; 1783 return err; 1784 } 1785 1786 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); 1787 ib_umem_release(old_umem); 1788 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); 1789 return 0; 1790 } 1791 1792 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, 1793 u64 length, u64 iova, int new_access_flags, 1794 struct ib_pd *new_pd, 1795 struct ib_udata *udata) 1796 { 1797 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); 1798 struct mlx5_ib_mr *mr = to_mmr(ib_mr); 1799 int err; 1800 1801 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) 1802 return ERR_PTR(-EOPNOTSUPP); 1803 1804 mlx5_ib_dbg( 1805 dev, 1806 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", 1807 start, iova, length, new_access_flags); 1808 1809 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) 1810 return ERR_PTR(-EOPNOTSUPP); 1811 1812 if (!(flags & IB_MR_REREG_ACCESS)) 1813 new_access_flags = mr->access_flags; 1814 if (!(flags & IB_MR_REREG_PD)) 1815 new_pd = ib_mr->pd; 1816 1817 if (!(flags & IB_MR_REREG_TRANS)) { 1818 struct ib_umem *umem; 1819 1820 /* Fast path for PD/access change */ 1821 if (can_use_umr_rereg_access(dev, mr->access_flags, 1822 new_access_flags)) { 1823 err = umr_rereg_pd_access(mr, new_pd, new_access_flags); 1824 if (err) 1825 return ERR_PTR(err); 1826 return NULL; 1827 } 1828 /* DM or ODP MR's don't have a normal umem so we can't re-use it */ 1829 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1830 goto recreate; 1831 1832 /* 1833 * Only one active MR can refer to a umem at one time, revoke 1834 * the old MR before assigning the umem to the new one. 1835 */ 1836 err = revoke_mr(mr); 1837 if (err) 1838 return ERR_PTR(err); 1839 umem = mr->umem; 1840 mr->umem = NULL; 1841 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); 1842 1843 return create_real_mr(new_pd, umem, mr->ibmr.iova, 1844 new_access_flags); 1845 } 1846 1847 /* 1848 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does 1849 * but the logic around releasing the umem is different 1850 */ 1851 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) 1852 goto recreate; 1853 1854 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && 1855 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { 1856 struct ib_umem *new_umem; 1857 unsigned long page_size; 1858 1859 new_umem = ib_umem_get(&dev->ib_dev, start, length, 1860 new_access_flags); 1861 if (IS_ERR(new_umem)) 1862 return ERR_CAST(new_umem); 1863 1864 /* Fast path for PAS change */ 1865 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, 1866 &page_size)) { 1867 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, 1868 new_umem, iova, page_size); 1869 if (err) { 1870 ib_umem_release(new_umem); 1871 return ERR_PTR(err); 1872 } 1873 return NULL; 1874 } 1875 return create_real_mr(new_pd, new_umem, iova, new_access_flags); 1876 } 1877 1878 /* 1879 * Everything else has no state we can preserve, just create a new MR 1880 * from scratch 1881 */ 1882 recreate: 1883 return mlx5_ib_reg_user_mr(new_pd, start, length, iova, 1884 new_access_flags, udata); 1885 } 1886 1887 static int 1888 mlx5_alloc_priv_descs(struct ib_device *device, 1889 struct mlx5_ib_mr *mr, 1890 int ndescs, 1891 int desc_size) 1892 { 1893 struct mlx5_ib_dev *dev = to_mdev(device); 1894 struct device *ddev = &dev->mdev->pdev->dev; 1895 int size = ndescs * desc_size; 1896 int add_size; 1897 int ret; 1898 1899 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); 1900 1901 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); 1902 if (!mr->descs_alloc) 1903 return -ENOMEM; 1904 1905 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); 1906 1907 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); 1908 if (dma_mapping_error(ddev, mr->desc_map)) { 1909 ret = -ENOMEM; 1910 goto err; 1911 } 1912 1913 return 0; 1914 err: 1915 kfree(mr->descs_alloc); 1916 1917 return ret; 1918 } 1919 1920 static void 1921 mlx5_free_priv_descs(struct mlx5_ib_mr *mr) 1922 { 1923 if (!mr->umem && mr->descs) { 1924 struct ib_device *device = mr->ibmr.device; 1925 int size = mr->max_descs * mr->desc_size; 1926 struct mlx5_ib_dev *dev = to_mdev(device); 1927 1928 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, 1929 DMA_TO_DEVICE); 1930 kfree(mr->descs_alloc); 1931 mr->descs = NULL; 1932 } 1933 } 1934 1935 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 1936 { 1937 struct mlx5_ib_mr *mr = to_mmr(ibmr); 1938 struct mlx5_ib_dev *dev = to_mdev(ibmr->device); 1939 int rc; 1940 1941 /* 1942 * Any async use of the mr must hold the refcount, once the refcount 1943 * goes to zero no other thread, such as ODP page faults, prefetch, any 1944 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it. 1945 */ 1946 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 1947 refcount_read(&mr->mmkey.usecount) != 0 && 1948 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))) 1949 mlx5r_deref_wait_odp_mkey(&mr->mmkey); 1950 1951 if (ibmr->type == IB_MR_TYPE_INTEGRITY) { 1952 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 1953 mr->sig, NULL, GFP_KERNEL); 1954 1955 if (mr->mtt_mr) { 1956 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 1957 if (rc) 1958 return rc; 1959 mr->mtt_mr = NULL; 1960 } 1961 if (mr->klm_mr) { 1962 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 1963 if (rc) 1964 return rc; 1965 mr->klm_mr = NULL; 1966 } 1967 1968 if (mlx5_core_destroy_psv(dev->mdev, 1969 mr->sig->psv_memory.psv_idx)) 1970 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 1971 mr->sig->psv_memory.psv_idx); 1972 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 1973 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 1974 mr->sig->psv_wire.psv_idx); 1975 kfree(mr->sig); 1976 mr->sig = NULL; 1977 } 1978 1979 /* Stop DMA */ 1980 if (mr->cache_ent) { 1981 if (revoke_mr(mr)) { 1982 spin_lock_irq(&mr->cache_ent->lock); 1983 mr->cache_ent->total_mrs--; 1984 spin_unlock_irq(&mr->cache_ent->lock); 1985 mr->cache_ent = NULL; 1986 } 1987 } 1988 if (!mr->cache_ent) { 1989 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr); 1990 if (rc) 1991 return rc; 1992 } 1993 1994 if (mr->umem) { 1995 bool is_odp = is_odp_mr(mr); 1996 1997 if (!is_odp) 1998 atomic_sub(ib_umem_num_pages(mr->umem), 1999 &dev->mdev->priv.reg_pages); 2000 ib_umem_release(mr->umem); 2001 if (is_odp) 2002 mlx5_ib_free_odp_mr(mr); 2003 } 2004 2005 if (mr->cache_ent) { 2006 mlx5_mr_cache_free(dev, mr); 2007 } else { 2008 mlx5_free_priv_descs(mr); 2009 kfree(mr); 2010 } 2011 return 0; 2012 } 2013 2014 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, 2015 int access_mode, int page_shift) 2016 { 2017 void *mkc; 2018 2019 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2020 2021 /* This is only used from the kernel, so setting the PD is OK. */ 2022 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd); 2023 MLX5_SET(mkc, mkc, free, 1); 2024 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2025 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); 2026 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); 2027 MLX5_SET(mkc, mkc, umr_en, 1); 2028 MLX5_SET(mkc, mkc, log_page_size, page_shift); 2029 } 2030 2031 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2032 int ndescs, int desc_size, int page_shift, 2033 int access_mode, u32 *in, int inlen) 2034 { 2035 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2036 int err; 2037 2038 mr->access_mode = access_mode; 2039 mr->desc_size = desc_size; 2040 mr->max_descs = ndescs; 2041 2042 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); 2043 if (err) 2044 return err; 2045 2046 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); 2047 2048 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); 2049 if (err) 2050 goto err_free_descs; 2051 2052 mr->mmkey.type = MLX5_MKEY_MR; 2053 mr->ibmr.lkey = mr->mmkey.key; 2054 mr->ibmr.rkey = mr->mmkey.key; 2055 2056 return 0; 2057 2058 err_free_descs: 2059 mlx5_free_priv_descs(mr); 2060 return err; 2061 } 2062 2063 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, 2064 u32 max_num_sg, u32 max_num_meta_sg, 2065 int desc_size, int access_mode) 2066 { 2067 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2068 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); 2069 int page_shift = 0; 2070 struct mlx5_ib_mr *mr; 2071 u32 *in; 2072 int err; 2073 2074 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2075 if (!mr) 2076 return ERR_PTR(-ENOMEM); 2077 2078 mr->ibmr.pd = pd; 2079 mr->ibmr.device = pd->device; 2080 2081 in = kzalloc(inlen, GFP_KERNEL); 2082 if (!in) { 2083 err = -ENOMEM; 2084 goto err_free; 2085 } 2086 2087 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) 2088 page_shift = PAGE_SHIFT; 2089 2090 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, 2091 access_mode, in, inlen); 2092 if (err) 2093 goto err_free_in; 2094 2095 mr->umem = NULL; 2096 kfree(in); 2097 2098 return mr; 2099 2100 err_free_in: 2101 kfree(in); 2102 err_free: 2103 kfree(mr); 2104 return ERR_PTR(err); 2105 } 2106 2107 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2108 int ndescs, u32 *in, int inlen) 2109 { 2110 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), 2111 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, 2112 inlen); 2113 } 2114 2115 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2116 int ndescs, u32 *in, int inlen) 2117 { 2118 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 2119 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2120 } 2121 2122 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, 2123 int max_num_sg, int max_num_meta_sg, 2124 u32 *in, int inlen) 2125 { 2126 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2127 u32 psv_index[2]; 2128 void *mkc; 2129 int err; 2130 2131 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); 2132 if (!mr->sig) 2133 return -ENOMEM; 2134 2135 /* create mem & wire PSVs */ 2136 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); 2137 if (err) 2138 goto err_free_sig; 2139 2140 mr->sig->psv_memory.psv_idx = psv_index[0]; 2141 mr->sig->psv_wire.psv_idx = psv_index[1]; 2142 2143 mr->sig->sig_status_checked = true; 2144 mr->sig->sig_err_exists = false; 2145 /* Next UMR, Arm SIGERR */ 2146 ++mr->sig->sigerr_count; 2147 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2148 sizeof(struct mlx5_klm), 2149 MLX5_MKC_ACCESS_MODE_KLMS); 2150 if (IS_ERR(mr->klm_mr)) { 2151 err = PTR_ERR(mr->klm_mr); 2152 goto err_destroy_psv; 2153 } 2154 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, 2155 sizeof(struct mlx5_mtt), 2156 MLX5_MKC_ACCESS_MODE_MTT); 2157 if (IS_ERR(mr->mtt_mr)) { 2158 err = PTR_ERR(mr->mtt_mr); 2159 goto err_free_klm_mr; 2160 } 2161 2162 /* Set bsf descriptors for mkey */ 2163 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2164 MLX5_SET(mkc, mkc, bsf_en, 1); 2165 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); 2166 2167 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, 2168 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); 2169 if (err) 2170 goto err_free_mtt_mr; 2171 2172 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), 2173 mr->sig, GFP_KERNEL)); 2174 if (err) 2175 goto err_free_descs; 2176 return 0; 2177 2178 err_free_descs: 2179 destroy_mkey(dev, mr); 2180 mlx5_free_priv_descs(mr); 2181 err_free_mtt_mr: 2182 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); 2183 mr->mtt_mr = NULL; 2184 err_free_klm_mr: 2185 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); 2186 mr->klm_mr = NULL; 2187 err_destroy_psv: 2188 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) 2189 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", 2190 mr->sig->psv_memory.psv_idx); 2191 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) 2192 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", 2193 mr->sig->psv_wire.psv_idx); 2194 err_free_sig: 2195 kfree(mr->sig); 2196 2197 return err; 2198 } 2199 2200 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, 2201 enum ib_mr_type mr_type, u32 max_num_sg, 2202 u32 max_num_meta_sg) 2203 { 2204 struct mlx5_ib_dev *dev = to_mdev(pd->device); 2205 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2206 int ndescs = ALIGN(max_num_sg, 4); 2207 struct mlx5_ib_mr *mr; 2208 u32 *in; 2209 int err; 2210 2211 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 2212 if (!mr) 2213 return ERR_PTR(-ENOMEM); 2214 2215 in = kzalloc(inlen, GFP_KERNEL); 2216 if (!in) { 2217 err = -ENOMEM; 2218 goto err_free; 2219 } 2220 2221 mr->ibmr.device = pd->device; 2222 mr->umem = NULL; 2223 2224 switch (mr_type) { 2225 case IB_MR_TYPE_MEM_REG: 2226 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); 2227 break; 2228 case IB_MR_TYPE_SG_GAPS: 2229 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); 2230 break; 2231 case IB_MR_TYPE_INTEGRITY: 2232 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, 2233 max_num_meta_sg, in, inlen); 2234 break; 2235 default: 2236 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); 2237 err = -EINVAL; 2238 } 2239 2240 if (err) 2241 goto err_free_in; 2242 2243 kfree(in); 2244 2245 return &mr->ibmr; 2246 2247 err_free_in: 2248 kfree(in); 2249 err_free: 2250 kfree(mr); 2251 return ERR_PTR(err); 2252 } 2253 2254 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2255 u32 max_num_sg) 2256 { 2257 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); 2258 } 2259 2260 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, 2261 u32 max_num_sg, u32 max_num_meta_sg) 2262 { 2263 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, 2264 max_num_meta_sg); 2265 } 2266 2267 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 2268 { 2269 struct mlx5_ib_dev *dev = to_mdev(ibmw->device); 2270 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); 2271 struct mlx5_ib_mw *mw = to_mmw(ibmw); 2272 unsigned int ndescs; 2273 u32 *in = NULL; 2274 void *mkc; 2275 int err; 2276 struct mlx5_ib_alloc_mw req = {}; 2277 struct { 2278 __u32 comp_mask; 2279 __u32 response_length; 2280 } resp = {}; 2281 2282 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); 2283 if (err) 2284 return err; 2285 2286 if (req.comp_mask || req.reserved1 || req.reserved2) 2287 return -EOPNOTSUPP; 2288 2289 if (udata->inlen > sizeof(req) && 2290 !ib_is_udata_cleared(udata, sizeof(req), 2291 udata->inlen - sizeof(req))) 2292 return -EOPNOTSUPP; 2293 2294 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); 2295 2296 in = kzalloc(inlen, GFP_KERNEL); 2297 if (!in) { 2298 err = -ENOMEM; 2299 goto free; 2300 } 2301 2302 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); 2303 2304 MLX5_SET(mkc, mkc, free, 1); 2305 MLX5_SET(mkc, mkc, translations_octword_size, ndescs); 2306 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); 2307 MLX5_SET(mkc, mkc, umr_en, 1); 2308 MLX5_SET(mkc, mkc, lr, 1); 2309 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); 2310 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); 2311 MLX5_SET(mkc, mkc, qpn, 0xffffff); 2312 2313 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); 2314 if (err) 2315 goto free; 2316 2317 mw->mmkey.type = MLX5_MKEY_MW; 2318 ibmw->rkey = mw->mmkey.key; 2319 mw->mmkey.ndescs = ndescs; 2320 2321 resp.response_length = 2322 min(offsetofend(typeof(resp), response_length), udata->outlen); 2323 if (resp.response_length) { 2324 err = ib_copy_to_udata(udata, &resp, resp.response_length); 2325 if (err) 2326 goto free_mkey; 2327 } 2328 2329 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { 2330 err = mlx5r_store_odp_mkey(dev, &mw->mmkey); 2331 if (err) 2332 goto free_mkey; 2333 } 2334 2335 kfree(in); 2336 return 0; 2337 2338 free_mkey: 2339 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key); 2340 free: 2341 kfree(in); 2342 return err; 2343 } 2344 2345 int mlx5_ib_dealloc_mw(struct ib_mw *mw) 2346 { 2347 struct mlx5_ib_dev *dev = to_mdev(mw->device); 2348 struct mlx5_ib_mw *mmw = to_mmw(mw); 2349 2350 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && 2351 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) 2352 /* 2353 * pagefault_single_data_segment() may be accessing mmw 2354 * if the user bound an ODP MR to this MW. 2355 */ 2356 mlx5r_deref_wait_odp_mkey(&mmw->mmkey); 2357 2358 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key); 2359 } 2360 2361 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, 2362 struct ib_mr_status *mr_status) 2363 { 2364 struct mlx5_ib_mr *mmr = to_mmr(ibmr); 2365 int ret = 0; 2366 2367 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { 2368 pr_err("Invalid status check mask\n"); 2369 ret = -EINVAL; 2370 goto done; 2371 } 2372 2373 mr_status->fail_status = 0; 2374 if (check_mask & IB_MR_CHECK_SIG_STATUS) { 2375 if (!mmr->sig) { 2376 ret = -EINVAL; 2377 pr_err("signature status check requested on a non-signature enabled MR\n"); 2378 goto done; 2379 } 2380 2381 mmr->sig->sig_status_checked = true; 2382 if (!mmr->sig->sig_err_exists) 2383 goto done; 2384 2385 if (ibmr->lkey == mmr->sig->err_item.key) 2386 memcpy(&mr_status->sig_err, &mmr->sig->err_item, 2387 sizeof(mr_status->sig_err)); 2388 else { 2389 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; 2390 mr_status->sig_err.sig_err_offset = 0; 2391 mr_status->sig_err.key = mmr->sig->err_item.key; 2392 } 2393 2394 mmr->sig->sig_err_exists = false; 2395 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; 2396 } 2397 2398 done: 2399 return ret; 2400 } 2401 2402 static int 2403 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2404 int data_sg_nents, unsigned int *data_sg_offset, 2405 struct scatterlist *meta_sg, int meta_sg_nents, 2406 unsigned int *meta_sg_offset) 2407 { 2408 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2409 unsigned int sg_offset = 0; 2410 int n = 0; 2411 2412 mr->meta_length = 0; 2413 if (data_sg_nents == 1) { 2414 n++; 2415 mr->mmkey.ndescs = 1; 2416 if (data_sg_offset) 2417 sg_offset = *data_sg_offset; 2418 mr->data_length = sg_dma_len(data_sg) - sg_offset; 2419 mr->data_iova = sg_dma_address(data_sg) + sg_offset; 2420 if (meta_sg_nents == 1) { 2421 n++; 2422 mr->meta_ndescs = 1; 2423 if (meta_sg_offset) 2424 sg_offset = *meta_sg_offset; 2425 else 2426 sg_offset = 0; 2427 mr->meta_length = sg_dma_len(meta_sg) - sg_offset; 2428 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; 2429 } 2430 ibmr->length = mr->data_length + mr->meta_length; 2431 } 2432 2433 return n; 2434 } 2435 2436 static int 2437 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, 2438 struct scatterlist *sgl, 2439 unsigned short sg_nents, 2440 unsigned int *sg_offset_p, 2441 struct scatterlist *meta_sgl, 2442 unsigned short meta_sg_nents, 2443 unsigned int *meta_sg_offset_p) 2444 { 2445 struct scatterlist *sg = sgl; 2446 struct mlx5_klm *klms = mr->descs; 2447 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2448 u32 lkey = mr->ibmr.pd->local_dma_lkey; 2449 int i, j = 0; 2450 2451 mr->ibmr.iova = sg_dma_address(sg) + sg_offset; 2452 mr->ibmr.length = 0; 2453 2454 for_each_sg(sgl, sg, sg_nents, i) { 2455 if (unlikely(i >= mr->max_descs)) 2456 break; 2457 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); 2458 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); 2459 klms[i].key = cpu_to_be32(lkey); 2460 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2461 2462 sg_offset = 0; 2463 } 2464 2465 if (sg_offset_p) 2466 *sg_offset_p = sg_offset; 2467 2468 mr->mmkey.ndescs = i; 2469 mr->data_length = mr->ibmr.length; 2470 2471 if (meta_sg_nents) { 2472 sg = meta_sgl; 2473 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; 2474 for_each_sg(meta_sgl, sg, meta_sg_nents, j) { 2475 if (unlikely(i + j >= mr->max_descs)) 2476 break; 2477 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + 2478 sg_offset); 2479 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - 2480 sg_offset); 2481 klms[i + j].key = cpu_to_be32(lkey); 2482 mr->ibmr.length += sg_dma_len(sg) - sg_offset; 2483 2484 sg_offset = 0; 2485 } 2486 if (meta_sg_offset_p) 2487 *meta_sg_offset_p = sg_offset; 2488 2489 mr->meta_ndescs = j; 2490 mr->meta_length = mr->ibmr.length - mr->data_length; 2491 } 2492 2493 return i + j; 2494 } 2495 2496 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) 2497 { 2498 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2499 __be64 *descs; 2500 2501 if (unlikely(mr->mmkey.ndescs == mr->max_descs)) 2502 return -ENOMEM; 2503 2504 descs = mr->descs; 2505 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2506 2507 return 0; 2508 } 2509 2510 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) 2511 { 2512 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2513 __be64 *descs; 2514 2515 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs)) 2516 return -ENOMEM; 2517 2518 descs = mr->descs; 2519 descs[mr->mmkey.ndescs + mr->meta_ndescs++] = 2520 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); 2521 2522 return 0; 2523 } 2524 2525 static int 2526 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2527 int data_sg_nents, unsigned int *data_sg_offset, 2528 struct scatterlist *meta_sg, int meta_sg_nents, 2529 unsigned int *meta_sg_offset) 2530 { 2531 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2532 struct mlx5_ib_mr *pi_mr = mr->mtt_mr; 2533 int n; 2534 2535 pi_mr->mmkey.ndescs = 0; 2536 pi_mr->meta_ndescs = 0; 2537 pi_mr->meta_length = 0; 2538 2539 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2540 pi_mr->desc_size * pi_mr->max_descs, 2541 DMA_TO_DEVICE); 2542 2543 pi_mr->ibmr.page_size = ibmr->page_size; 2544 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, 2545 mlx5_set_page); 2546 if (n != data_sg_nents) 2547 return n; 2548 2549 pi_mr->data_iova = pi_mr->ibmr.iova; 2550 pi_mr->data_length = pi_mr->ibmr.length; 2551 pi_mr->ibmr.length = pi_mr->data_length; 2552 ibmr->length = pi_mr->data_length; 2553 2554 if (meta_sg_nents) { 2555 u64 page_mask = ~((u64)ibmr->page_size - 1); 2556 u64 iova = pi_mr->data_iova; 2557 2558 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, 2559 meta_sg_offset, mlx5_set_page_pi); 2560 2561 pi_mr->meta_length = pi_mr->ibmr.length; 2562 /* 2563 * PI address for the HW is the offset of the metadata address 2564 * relative to the first data page address. 2565 * It equals to first data page address + size of data pages + 2566 * metadata offset at the first metadata page 2567 */ 2568 pi_mr->pi_iova = (iova & page_mask) + 2569 pi_mr->mmkey.ndescs * ibmr->page_size + 2570 (pi_mr->ibmr.iova & ~page_mask); 2571 /* 2572 * In order to use one MTT MR for data and metadata, we register 2573 * also the gaps between the end of the data and the start of 2574 * the metadata (the sig MR will verify that the HW will access 2575 * to right addresses). This mapping is safe because we use 2576 * internal mkey for the registration. 2577 */ 2578 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; 2579 pi_mr->ibmr.iova = iova; 2580 ibmr->length += pi_mr->meta_length; 2581 } 2582 2583 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2584 pi_mr->desc_size * pi_mr->max_descs, 2585 DMA_TO_DEVICE); 2586 2587 return n; 2588 } 2589 2590 static int 2591 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2592 int data_sg_nents, unsigned int *data_sg_offset, 2593 struct scatterlist *meta_sg, int meta_sg_nents, 2594 unsigned int *meta_sg_offset) 2595 { 2596 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2597 struct mlx5_ib_mr *pi_mr = mr->klm_mr; 2598 int n; 2599 2600 pi_mr->mmkey.ndescs = 0; 2601 pi_mr->meta_ndescs = 0; 2602 pi_mr->meta_length = 0; 2603 2604 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, 2605 pi_mr->desc_size * pi_mr->max_descs, 2606 DMA_TO_DEVICE); 2607 2608 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, 2609 meta_sg, meta_sg_nents, meta_sg_offset); 2610 2611 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, 2612 pi_mr->desc_size * pi_mr->max_descs, 2613 DMA_TO_DEVICE); 2614 2615 /* This is zero-based memory region */ 2616 pi_mr->data_iova = 0; 2617 pi_mr->ibmr.iova = 0; 2618 pi_mr->pi_iova = pi_mr->data_length; 2619 ibmr->length = pi_mr->ibmr.length; 2620 2621 return n; 2622 } 2623 2624 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, 2625 int data_sg_nents, unsigned int *data_sg_offset, 2626 struct scatterlist *meta_sg, int meta_sg_nents, 2627 unsigned int *meta_sg_offset) 2628 { 2629 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2630 struct mlx5_ib_mr *pi_mr = NULL; 2631 int n; 2632 2633 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); 2634 2635 mr->mmkey.ndescs = 0; 2636 mr->data_length = 0; 2637 mr->data_iova = 0; 2638 mr->meta_ndescs = 0; 2639 mr->pi_iova = 0; 2640 /* 2641 * As a performance optimization, if possible, there is no need to 2642 * perform UMR operation to register the data/metadata buffers. 2643 * First try to map the sg lists to PA descriptors with local_dma_lkey. 2644 * Fallback to UMR only in case of a failure. 2645 */ 2646 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2647 data_sg_offset, meta_sg, meta_sg_nents, 2648 meta_sg_offset); 2649 if (n == data_sg_nents + meta_sg_nents) 2650 goto out; 2651 /* 2652 * As a performance optimization, if possible, there is no need to map 2653 * the sg lists to KLM descriptors. First try to map the sg lists to MTT 2654 * descriptors and fallback to KLM only in case of a failure. 2655 * It's more efficient for the HW to work with MTT descriptors 2656 * (especially in high load). 2657 * Use KLM (indirect access) only if it's mandatory. 2658 */ 2659 pi_mr = mr->mtt_mr; 2660 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2661 data_sg_offset, meta_sg, meta_sg_nents, 2662 meta_sg_offset); 2663 if (n == data_sg_nents + meta_sg_nents) 2664 goto out; 2665 2666 pi_mr = mr->klm_mr; 2667 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, 2668 data_sg_offset, meta_sg, meta_sg_nents, 2669 meta_sg_offset); 2670 if (unlikely(n != data_sg_nents + meta_sg_nents)) 2671 return -ENOMEM; 2672 2673 out: 2674 /* This is zero-based memory region */ 2675 ibmr->iova = 0; 2676 mr->pi_mr = pi_mr; 2677 if (pi_mr) 2678 ibmr->sig_attrs->meta_length = pi_mr->meta_length; 2679 else 2680 ibmr->sig_attrs->meta_length = mr->meta_length; 2681 2682 return 0; 2683 } 2684 2685 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 2686 unsigned int *sg_offset) 2687 { 2688 struct mlx5_ib_mr *mr = to_mmr(ibmr); 2689 int n; 2690 2691 mr->mmkey.ndescs = 0; 2692 2693 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, 2694 mr->desc_size * mr->max_descs, 2695 DMA_TO_DEVICE); 2696 2697 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) 2698 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, 2699 NULL); 2700 else 2701 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, 2702 mlx5_set_page); 2703 2704 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, 2705 mr->desc_size * mr->max_descs, 2706 DMA_TO_DEVICE); 2707 2708 return n; 2709 } 2710